首页 > 学术期刊知识库 > 云计算研究生论文英文

云计算研究生论文英文

发布时间:

云计算研究生论文英文

Master's Thesis

同学,你好!正如百科里写的,这段话是NIST给出的云计算的定义,原文为英文,内容为“Cloud computing is a model for enabling ubiquitous,convenient, on-demand network access to a shared poolof configurable computing resources (. networks, servers,storage, applications and services) that can be rapidlyprovisioned and released with minimal management effortor service provider interaction.”相关参考文献为The NIST Definition of Cloud Computing. Peter Mell,Timothy Grance. Sep 2011.

但接近时又很难掌握。 But approached and difficult to master. 近几年来,云计算在国内外可谓风生水起,热闹非凡。 In recent years, cloud computing is wind at home and abroad, boisterous. 然而,云计算从概念到落地实际上只能从2010年算起。 However, cloud computing from concept to landing in fact only from starting in 2010. 在此之前只能看成是云计算的市场引入阶段。 Before this can only as cloud computing market introducing stage. 目前,最简单的云计算技术在网络服务中已经随处可见,例如搜索引擎、网络信箱等,使用者只要输入简单指令即能得到大量信息。 At present, the most simple cloud computing technology in network services have everywhere, such as a search engine, network mailbox, users just enter the simple instructions that can get enormous amounts of information. 但是,从一种新的业务模式的发展周期来看,尤其是从国内的情况来看,目前的云计算还只能算是初级发展,或者说,还处于教育阶段。 But, from a new business model development cycle, especially from domestic see the situation, the current cloud computing is only as primary development, or education, is still at the stage. 本文主要对微软云计算技术在微软云计算平台基础设施方面的应用开展研究,阐述了云计算的研究背景、发展现状、体系结构、各种云、服务层次、优点等; This paper mainly for Microsoft's cloud computing technology in Microsoft's cloud computing platforms infrastructure application research, this paper expounds the cloud computing research background, development present situation, the system structure, various cloud, service level, advantages; 概括分析了云计算中 基础设施即服务模式的概念、技术层次、储存服务、安全性。 Summary analysis of the cloud computing infrastructure namely service mode of the concepts, technical level, storage service, safety. 最后运行云平台的小程序。 Finally the cloud platform small programs running. 得出总结,跟期望。 With expectations that concluded,.

大学生毕业论文 应该是本科毕业论文 Undergraduate Thesis; 研究生毕业论文分为 硕士研究生毕业论文 和博士研究生论文 分别为Master's Thesis和. Thesis。有总称为Graduate Thesis。

关于云计算研究生论文题目

我不会啊。SORRY

云计算的测试,设计,构架的方向简单。这些应用型的题目方向都比较好,而且在实证部分。也相对而言比较容易写。

我给你一个题目,如果你写出来了,我保你论文得优秀。因为当年我就是选这个题目得的优秀。刚才我在网上搜了一下,网上还是没有与这个系统相关的论文。 《高考最低录取分数线查询系统》基本思想很简单,现在的高考分数线查询是很繁琐的,需要先把分数查出来,然后根据录取指南再找你的分数能被录取的学校,高考过的都知道,高考报考指南是一本多么厚的书。所以,这个系统的思想就是:你用所有高校近十年的录取分数线建立一个数据库,然后开发一个系统,当你输入查询命令的时候(查询命令可以用1,2,3这三个数来代替,用flog实现;输入1,查询的是符合你所输入的分数以下的所有高校信息;输入2,查询的是符合你所输入分数段之间的所有高校信息;输入3,查询大于你所给的分数线的高校信息。)当然,你可以再加上一些附加的功能。大致思想就这些。 郑州今迈网络部竭诚为你解答,希望我的答案能帮到你!

随着有关云计算概念、术语和技术的不断涌现和大量报道,人们在生活中越来越多的采用和实施云计算技术。由于云计算概念和技术比较新颖,涵义比较宽泛,再加上市场上一些人将云计算放大成无所不包、无所不能和无所不在的万能技术,对云计算的描述和推销多少出现了一些浮燥和炒做的嫌疑。脱离实际过分夸大或缺乏全面分析地炒做云计算不仅可能让人误解,也会使得云计算的发展不切实际,对于云计算产业在中国的成长非常不利。所以,有必要对云计算的由来和概念进行了较为全面的梳理和定义。在总结云计算技术为IT产业带来好处的同时,找出不足及局限,从而更好地发展云计算技术。1.云计算的概念云计算(Cloud Computing)是由分布式计算(Distributed Computing)、并行处理(Parallel Computing)、网格计算(Grid Computing)发展来的,是一种新兴的商业计算模型。中国网格计算、云计算专家刘鹏认为:“云计算将计算任务分布在大量计算机构成的资源池上,使各种应用系统能够根据需要获取计算力、存储空间和各种软件服务”。云计算中的“计算”是一个简单而明确的概念。“计算”系指计算应用,在我们生活中可以指一切IT应用。随着网络技术的发展,所有的信息、通信和视频应用都将整合在统一的平台之上。由此推而广之,云计算中的“计算”可以泛指一切ICT的融合应用。所以,云计算术语的关键特征并不在于“计算”,而在于“云”。2.云计算的发展模式及其特征早期云计算来之于国际上以亚马逊、和谷歌(Google)为代表的公司,并且都提供了具有显著特征,但又代表着不同模式的成功云业务。云计算按照层次将业务模式划分为3层,最顶层是软云,中间层是平云,底层是基云。在基云之下是构建云计算的基础技术。云计算的核心思想,是将大量用网络连接的计算资源统一管理和调度,构成一个计算资源池向用户按需服务。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。这种特性经常被称为像水电一样使用IT基础设施。总的来说,云计算可以算作是网格计算的一个商业演化版。3.“云计算”促进科技协同研究环境的建立云计算的平台即服务可以把开发环境作为一种服务提供到用户端,这种服务为科学协同研究创造了一个很好的平台。通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将与互联网更相似。这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统。好比是从古老的单台发电机模式转向了电厂集中供电的模式。它意味着计算能力也可以作为一种商品进行流通,就像煤气、水电一样,取用方便,费用低廉。最大的不同在于,它是通过互联网进行传输的。4.“云计算”提升数据共享服务云计算是下一代的数据中心,随着云计算的发展,科学数据共享应用云计算的技术模式在数据挖掘、数据加工、数据利用、数据管理、数据存储、数据迁移等方面可以得到便捷的发展,使科学数据共享服务得到正真提升。5.“云计算”推进网络科技环境中的发展应用“云计算”,网络科技环境可更好地实现高性能计算、实时协同研究、远程观测、海量数据存储与传输、科技文献、实验仪器与设备、应用软件、科学数据、网络工具以及科研活动的综合协同,在云计算环境下支持位于不同地点的科技工作者实现软件资源、硬件资源和数据资源的共享,促进科学研究方式的变革,促进科学工作者的交流,从而推动科技创新的步伐。6.“云计算”是创建绿色网络环境的一个途径随着网络的发展,倡导绿色,节约能源已成为网络发展进程必须解决的问题。设备的空载,电力资源的浪费,制冷环境的扩展,引起许多网络管理部门、运行部门和政府的极大关注。云计算实现了对资源的整合,顺应了网络的发展需求。在未来我们行业网络发展中也需要把绿色网络环境的创建考虑进去,这样才能使我们的发展不走弯路。

云计算论文研究意义

不能具体点吗?比如说云计算的定义,服务模式,优势劣势,关键技术还是案例啊? 1.云计算的概念1.1 NIST云计算定义草案美国标准局(NIST)专家于2009年4月24日给出了一个云计算定义草案,概括了云计算的五大特点、三大服务模式、四大部署模式。 云计算定义 云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用软件,服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。云计算模式提高了可用性。云计算模式由五个主要特点、三个服务模式、四个部署模式构成。 主要特点(1)按需自助服务。消费者可以单方面按需部署处理能力,如服务器时间和网络存储,而不需要与每个服务供应商进行人工交互。 (2)通过网络访问。可以通过互联网获取各种能力, 并可以通过标准方式访问,以通过众多瘦客户端或富客户端推广使用(例如移动电话,笔记本电脑,PDA等)。 (3)与地点无关的资源池。供应商的计算资源被集中,以便以多用户租用模式服务所有客户,同时不同的物理和虚拟资源可根据客户需求动态分配和重新分配。客户一般无法控制或知道资源的确切位置。这些资源包括存储、处理器、内存、网络带宽和虚拟机器。 (4)快速伸缩性。可以迅速、弹性地提供能力,能快速扩展,也可以快速释放实现快速缩小。对客户来说,可以租用的资源看起来似乎是无限的,并且可在任何时间购买任何数量的资源。 (5)按使用付费。能力的收费是基于计量的一次一付,或基于广告的收费模式,以促进资源的优化利用。比如计量存储,带宽和计算资源的消耗,按月根据用户实际使用收费。在一个组织内的云可以在部门之间计算费用,但不一定使用真实货币。注:云计算软件服务着重于无国界、低耦合、模块化和语义互操作性,充分利用云计算模式的优势。 服务模式(1)云计算软件即服务。提供给客户的能力是服务商运行在云计算基础设施上的应用程序,可以在各种客户端设备上通过瘦客户端界面访问,比如浏览器。消费者不需要管理或控制的底层云计算基础设施、网络、服务器、操作系统、存储,甚至单个应用程序的功能,可能的例外就是一些有限的客户可定制的应用软件配置设置。 (2)云计算平台即服务。提供给消费者的能力是把客户利用供应商提供的开发语言和工具(例如Java,python, .Net)创建的应用程序部署到云计算基础设施上去。客户不需要管理或控制底层的云基础设施、网络、服务器、操作系统、存储,但消费者能控制部署的应用程序,也可能控制应用的托管环境配置。 (3)云基础设施即服务。提供给消费者的能力是出租处理能力、存储、网络和其它基本的计算资源,用户能够依此部署和运行任意软件,包括操作系统和应用程序。消费者不管理或控制底层的云计算基础设施,但能控制操作系统、储存、部署的应用,也有可能选择网络组件(例如,防火墙,负载均衡器)。四、部署模式(1)私有云。云基础设施被某单一组织拥有或租用,该基础设施只为该组织运行。(2)社区云。基础设施被一些组织共享,并为一个有共同关注点的社区服务(例如,任务,安全要求,政策和准则等等)。 (3)公共云。基础设施是被一个销售云计算服务的组织所拥有,该组织将云计算服务销售给一般大众或广泛的工业群体。 (4)混合云。基础设施是由两种或两种以上的云(内部云,社区云或公共云)组成,每种云仍然保持独立,但用标准的或专有的技术将它们组合起来,具有数据和应用程序的可移植性(例如,可以用来处理突发负载)。云计算领域现状的特点是:(1)当前市场上主要的云计算厂商都是一些IT巨头,都处在攻城略地阶段。(2)标准尚未形成。在标准问题上基本各说各的。目前,市场上的云计算产品与服务千差万别,用户在选择时也不知道该如何下手。

大数据不是抽样数据,而是全部的数据;所以大数据必须依赖云计算,不可能是局域网的;物联网目标是把所有的物体都连接到互联网,并把物体虚拟化,数据上传,自然就是大数据了。云计算是为了大并发、大数据下的解决实际运算问题;大数据是为了解决海量数据分析问题;物联网是解决设备与软件的融合问题;可见,它们之间的关系是互相关联、互相作用的:物联网是很多大数据的来源(设备数据),而大量设备数据的采集、控制、服务要依托云计算,设备数据的分析要依赖于大数据,而大数据的采集、分析同样依托云计算,物联网反过来能为云计算提供issa层的设备和服务控制,大数据分析又能为云计算所产生的运营数据提供分析、决策依据。

随着有关云计算概念、术语和技术的不断涌现和大量报道,人们在生活中越来越多的采用和实施云计算技术。由于云计算概念和技术比较新颖,涵义比较宽泛,再加上市场上一些人将云计算放大成无所不包、无所不能和无所不在的万能技术,对云计算的描述和推销多少出现了一些浮燥和炒做的嫌疑。脱离实际过分夸大或缺乏全面分析地炒做云计算不仅可能让人误解,也会使得云计算的发展不切实际,对于云计算产业在中国的成长非常不利。所以,有必要对云计算的由来和概念进行了较为全面的梳理和定义。在总结云计算技术为IT产业带来好处的同时,找出不足及局限,从而更好地发展云计算技术。1.云计算的概念云计算(Cloud Computing)是由分布式计算(Distributed Computing)、并行处理(Parallel Computing)、网格计算(Grid Computing)发展来的,是一种新兴的商业计算模型。中国网格计算、云计算专家刘鹏认为:“云计算将计算任务分布在大量计算机构成的资源池上,使各种应用系统能够根据需要获取计算力、存储空间和各种软件服务”。云计算中的“计算”是一个简单而明确的概念。“计算”系指计算应用,在我们生活中可以指一切IT应用。随着网络技术的发展,所有的信息、通信和视频应用都将整合在统一的平台之上。由此推而广之,云计算中的“计算”可以泛指一切ICT的融合应用。所以,云计算术语的关键特征并不在于“计算”,而在于“云”。2.云计算的发展模式及其特征早期云计算来之于国际上以亚马逊、和谷歌(Google)为代表的公司,并且都提供了具有显著特征,但又代表着不同模式的成功云业务。云计算按照层次将业务模式划分为3层,最顶层是软云,中间层是平云,底层是基云。在基云之下是构建云计算的基础技术。云计算的核心思想,是将大量用网络连接的计算资源统一管理和调度,构成一个计算资源池向用户按需服务。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。这种特性经常被称为像水电一样使用IT基础设施。总的来说,云计算可以算作是网格计算的一个商业演化版。3.“云计算”促进科技协同研究环境的建立云计算的平台即服务可以把开发环境作为一种服务提供到用户端,这种服务为科学协同研究创造了一个很好的平台。通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将与互联网更相似。这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统。好比是从古老的单台发电机模式转向了电厂集中供电的模式。它意味着计算能力也可以作为一种商品进行流通,就像煤气、水电一样,取用方便,费用低廉。最大的不同在于,它是通过互联网进行传输的。4.“云计算”提升数据共享服务云计算是下一代的数据中心,随着云计算的发展,科学数据共享应用云计算的技术模式在数据挖掘、数据加工、数据利用、数据管理、数据存储、数据迁移等方面可以得到便捷的发展,使科学数据共享服务得到正真提升。5.“云计算”推进网络科技环境中的发展应用“云计算”,网络科技环境可更好地实现高性能计算、实时协同研究、远程观测、海量数据存储与传输、科技文献、实验仪器与设备、应用软件、科学数据、网络工具以及科研活动的综合协同,在云计算环境下支持位于不同地点的科技工作者实现软件资源、硬件资源和数据资源的共享,促进科学研究方式的变革,促进科学工作者的交流,从而推动科技创新的步伐。6.“云计算”是创建绿色网络环境的一个途径随着网络的发展,倡导绿色,节约能源已成为网络发展进程必须解决的问题。设备的空载,电力资源的浪费,制冷环境的扩展,引起许多网络管理部门、运行部门和政府的极大关注。云计算实现了对资源的整合,顺应了网络的发展需求。在未来我们行业网络发展中也需要把绿色网络环境的创建考虑进去,这样才能使我们的发展不走弯路。

首先介绍下云计算,的发展历史,他的前身,现在的应用,然后在介绍现在计算机的应用,在应用之中的不足,然后,着重阐述云计算的优势,我这里有一份关于这方面的对比及心得,发给你,希望能帮到你。 云计算简史著名的美国计算机科学家、 图灵奖 (Turing Award) 得主麦卡锡 (John McCarthy,1927-) 在半个世纪前就曾思考过这个问题。 1961 年, 他在麻省理工学院 (MIT) 的百年纪念活动中做了一个演讲。 在那次演讲中, 他提出了象使用其它资源一样使用计算资源的想法,这就是时下 IT 界的时髦术语 “云计算” (Cloud Computing) 的核心想法。云计算中的这个 “云” 字虽然是后人所用的词汇, 但却颇有历史渊源。 早年的电信技术人员在画电话网络的示意图时, 一涉及到不必交待细节的部分, 就会画一团 “云” 来搪塞。 计算机网络的技术人员将这一偷懒的传统发扬光大, 就成为了云计算中的这个 “云” 字, 它泛指互联网上的某些 “云深不知处” 的部分, 是云计算中 “计算” 的实现场所。 而云计算中的这个 “计算” 也是泛指, 它几乎涵盖了计算机所能提供的一切资源。麦卡锡的这种想法在提出之初曾经风靡过一阵, 但真正的实现却是在互联网日益普及的上世纪末。 这其中一家具有先驱意义的公司是甲骨文 (Oracle) 前执行官贝尼奥夫 (Marc Benioff, 1964-) 创立的 Salesforce 公司。 1999 年, 这家公司开始将一种客户关系管理软件作为服务提供给用户, 很多用户在使用这项服务后提出了购买软件的意向, 该公司却死活不干, 坚持只作为服务提供, 这是云计算的一种典型模式, 叫做 “软件即服务” (Software as a Service, 简称 SaaS)。 这种模式的另一个例子, 是我们熟悉的网络电子邮箱 (因此读者哪怕是第一次听到 “云计算” 这个术语, 也不必有陌生感, 因为您多半已是它的老客户了)。 除了 “软件即服务” 外, 云计算还有其它几种典型模式, 比如向用户提供开发平台的 “平台即服务” (Platform as a Service, 简称 PaaS), 其典型例子是谷歌公司 (Google) 的应用程序引擎 (Google App Engine), 它能让用户创建自己的网络程序。 还有一种模式更彻底, 干脆向用户提供虚拟硬件, 叫做 “基础设施即服务” (Infrastructure as a Service, 简称 IaaS), 其典型例子是亚马逊公司 (Amazon) 的弹性计算云 (Amazon Elastic Compute Cloud, 简称 EC2), 它向用户提供虚拟主机, 用户具有管理员权限, 爱干啥就干啥, 跟使用自家机器一样。1.2云计算的概念狭义云计算是指计算机基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的资源(硬件、平台、软件)。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。广义云计算是指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的服务。这种服务可以是计算机和软件、互联网相关的,也可以是其他的服务。云计算是并行计算(Parallel Computing)、分布式计算(Distributed Computing)和网格计算(Grid Computing)的发展,或者说是这些计算机科学概念的商业实现。云计算是虚拟化(Virtualization)、效用计算(Utility Computing)、IaaS(基础设施即服务)、PaaS(平台即服务)、SaaS(软件即服务)等概念混合演进并跃升的结果。云计算的特点和优势(一)超大规模性。“云”具有相当的规模,Google云计算已经拥有100多万台服务器,Amazon、IBM、微软、Yahoo等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器。“云”能赋予用户前所未有的计算能力。(二)虚拟化。云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现用户需要的一切,甚至包括超级计算这样的任务。[2](三)高可靠性。“云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。(四)通用性。云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。(五)高可扩展性。“云”的规模可以动态伸缩,满足应用和用户规模增长的需要。(六)价格合适。由于“云”的特殊容错措施可以采用具有经济性的节点来构成“云”,“云”的自动化集中式管理使大量企业无需负担日益高昂的数据中心管理成本,“云”的通用性使资源的利用率较之传统系统大幅提升,因此用户可以充分享受“云”的低成本优势,经常只要花费几百美元、几天时间就能完成以前需要数万美元、数月时间才能完成的任务。云计算作为一种技术,与其它一些依赖互联网的技术——比如网格计算 (Grid Computing)——有一定的相似之处,但不可混为一谈。拿网格计算来说, 科学爱好者比较熟悉的例子是 SETI@Home,那是一个利用互联网上计算机的冗余计算能力搜索地外文明的计算项目,目前约有来自两百多个国家和地区的两百多万台计算机参与。它在 2009 年底的运算能力相当于当时全世界最快的超级计算机运算能力的三分之一。有些读者可能还知道另外一个例子:ZetaGrid,那是一个研究黎曼 ζ 函数零点分布的计算项目, 曾有过一万多台计算机参与 (但现在已经终止了,原因可参阅拙作 超越 ZetaGrid)。从这两个著名例子中我们可以看到网格计算的特点,那就是计算性质单一,但运算量巨大 (甚至永无尽头,比如 ZetaGrid)。而云计算的特点恰好相反,是计算性质五花八门,但运算量不大[注三],这是它们的本质区别,也是云计算能够面向大众成为服务的根本原因。云计算能够流行,它到底有什么优点呢? 我们举个例子来说明,设想你要开一家网络公司。按传统方法,你得有一大笔启动资金, 因为你要购买计算机和软件,你要租用机房,你还要雇专人来管理和维护计算机。 当你的公司运作起来时,业务总难免会时好时坏,为了在业务好的时候也能正常运转, 你的人力和硬件都要有一定的超前配置, 这也要花钱。 更要命的是, 无论硬件还是软件厂商都会频繁推出新版本, 你若不想被技术前沿抛弃, 就得花钱费力不断更新 (当然, 也别怪人家, 你的公司运作起来后没准也得这么赚别人的钱)。如果用云计算, 情况就不一样了: 计算机和软件都可以用云计算, 业务好的时候多用一点, 业务坏的时候少用一点, 费用就跟结算煤气费一样按实际用量来算, 无需任何超前配置[注四]。 一台虚拟服务器只需鼠标轻点几下就能到位, 不象实体机器, 从下定单, 到进货, 再到调试, 忙得四脚朝天不说, 起码得好几天的时间。虚拟服务器一旦不需要了, 鼠标一点就可以让它从你眼前 (以及账单里)消失。至于软硬件的升级换代,服务器的维护管理等,那都是云计算服务商的事,跟你没半毛钱的关系。更重要的是,开公司总是有风险的, 如果你试了一两个月后发现行不通,在关门大吉的时候,假如你用的是云计算,那你只需支付实际使用过的资源。假如你走的是传统路子,买了硬件、软件,雇了专人,那很多投资可就打水漂了。浅谈云计算的一个核心理念大规模消息通信:云计算的一个核心理念就是资源和软件功能都是以服务的形式进行发布的,不同服务之间经常需要通过消息通信进行协助。由于同步消息通信的低效率,我们只考虑异步通信。如Java Message Service是J2EE平台上的一个消息通信标准,J2EE应用程序可以通过JMS来创建,发送,接收,阅读消息。异步消息通信已经成为面向服务架构中组件解耦合及业务集成的重要技术。大规模分布式存储:分布式存储的目标是利用多台服务器的存储资源来满足单台服务器所不能满足的存储需求。分布式存储要求存储资源能够被抽象表示和统一管理,并且能够保证数据读写操作的安全性,可靠性,性能等各方面要求。下面是几个典型的分布式文件系统:◆Frangipani是一个可伸缩性很好的高兴能分布式文件系统,采用两层的服务体系架构:底层是一个分布式存储服务,该服务能够自动管理可伸缩,高可用的虚拟磁盘;上层运行着Frangipani分布式文件系统。◆JetFile是一个基于P2P的主播技术,支持在Internet这样的异构环境中分享文件的分布式文件系统。◆Ceph是一个高性能并且可靠地分布式文件系统,它通过把数据和对数据的管理在最大程度上分开来获取极佳的I/O性能。◆Google File System(GFS)是Google公司设计的可伸缩的分布式文件系统。GFS能够很好的支持大规模海量数据处理应用程序。在云计算环境中,数据的存储和操作都是以服务的形式提供的;数据的类型多种多样;必须满足数据操作对性能,可靠性,安全性和简单性的要求。在云计算环境下的大规模分布式存储方向,BigTable是Google公司设计的用来存储海量结构化数据的分布式存储系统;Dynamo是Amazon公司设计的一种基于键值对的分布式存储系统,它能提供非常高的可用性;Amazon公司的Simple Storage Service(S3)是一个支持大规模存储多媒体这样的二进制文件的云计算存储服务;Amazon公司的SimpleDB是建立在S3和Amazon EC2之上的用来存储结构化数据的云计算服务。许可证管理与计费:目前比较成熟的云环境计费模型是Amazon公司提供的Elastic Compute Cloud(EC2)和Simple Storage Service(S3)的按量计费模型,用户按占用的虚拟机单元,IP地址,带宽和存储空间付费。云计算的现状云计算是个热度很高的新名词。由于它是多种技术混合演进的结果,其成熟度较高,又有大公司推动,发展极为迅速。Amazon、Google、IBM、微软和Yahoo等大公司是云计算的先行者。云计算领域的众多成功公司还包括Salesforce、Facebook、Youtube、Myspace等。Amazon使用弹性计算云(EC2)和简单存储服务(S3)为企业提供计算和存储服务。收费的服务项目包括存储服务器、带宽、CPU资源以及月租费。月租费与电话月租费类似,存储服务器、带宽按容量收费,CPU根据时长(小时)运算量收费。Amazon把云计算做成一个大生意没有花太长的时间:不到两年时间,Amazon上的注册开发人员达44万人,还有为数众多的企业级用户。有第三方统计机构提供的数据显示,Amazon与云计算相关的业务收入已达1亿美元。云计算是Amazon增长最快的业务之一。Google当数最大的云计算的使用者。Google搜索引擎就建立在分布在200多个地点、超过100万台服务器的支撑之上,这些设施的数量正在迅猛增长。Google地球、地图、Gmail、Docs等也同样使用了这些基础设施。采用Google Docs之类的应用,用户数据会保存在互联网上的某个位置,可以通过任何一个与互联网相连的系统十分便利地访问这些数据。目前,Google已经允许第三方在Google的云计算中通过Google App Engine运行大型并行应用程序。Google值得称颂的是它不保守。它早已以发表学术论文的形式公开其云计算三大法宝:GFS、MapReduce和BigTable,并在美国、中国等高校开设如何进行云计算编程的课程。IBM在2007年11月推出了“改变游戏规则”的“蓝云”计算平台,为客户带来即买即用的云计算平台。它包括一系列的自动化、自我管理和自我修复的虚拟化云计算软件,使来自全球的应用可以访问分布式的大型服务器池。使得数据中心在类似于互联网的环境下运行计算。IBM正在与17个欧洲组织合作开展云计算项目。欧盟提供了亿欧元做为部分资金。该计划名为RESERVOIR,以“无障碍的资源和服务虚拟化”为口号。2008年8月, IBM宣布将投资约4亿美元用于其设在北卡罗来纳州和日本东京的云计算数据中心改造。IBM计划在2009年在10个国家投资3亿美元建13个云计算中心。微软紧跟云计算步伐,于2008年10月推出了Windows Azure操作系统。Azure(译为“蓝天”)是继Windows取代DOS之后,微软的又一次颠覆性转型——通过在互联网架构上打造新云计算平台,让Windows真正由PC延伸到“蓝天”上。微软拥有全世界数以亿计的Windows用户桌面和浏览器,现在它将它们连接到“蓝天”上。Azure的底层是微软全球基础服务系统,由遍布全球的第四代数据中心构成。云计算的新颖之处在于它几乎可以提供无限的廉价存储和计算能力。纽约一家名为Animoto的创业企业已证明云计算的强大能力(此案例引自和讯网维维编译《纽约时报》2008年5月25日报道)。Animoto允许用户上传图片和音乐,自动生成基于网络的视频演讲稿,并且能够与好友分享。该网站目前向注册用户提供免费服务。2008年年初,网站每天用户数约为5000人。4月中旬,由于Facebook用户开始使用Animoto服务,该网站在三天内的用户数大幅上升至75万人。Animoto联合创始人Stevie Clifton表示,为了满足用户需求的上升,该公司需要将服务器能力提高100倍,但是该网站既没有资金,也没有能力建立规模如此巨大的计算能力。因此,该网站与云计算服务公司RightScale合作,设计能够在亚马逊的网云中使用的应用程序。通过这一举措,该网站大大提高了计算能力,而费用只有每服务器每小时10美分。这样的方式也加强创业企业的灵活性。当需求下降时,Animoto只需减少所使用的服务器数量就可以降低服务器支出。在我国,云计算发展也非常迅猛。2008年5月10日,IBM在中国无锡太湖新城科教产业园建立的中国第一个云计算中心投入运营。2008年6月24日,IBM在北京IBM中国创新中心成立了第二家中国的云计算中心——IBM大中华区云计算中心;2008年11月28日,广东电子工业研究院与东莞松山湖科技产业园管委会签约,广东电子工业研究院将在东莞松山湖投资2亿元建立云计算平台;2008年12月30日,阿里巴巴集团旗下子公司阿里软件与江苏省南京市政府正式签订了2009年战略合作框架协议,计划于2009年初在南京建立国内首个“电子商务云计算中心”,首期投资额将达上亿元人民币;世纪互联推出了CloudEx产品线,包括完整的互联网主机服务"CloudEx Computing Service", 基于在线存储虚拟化的"CloudEx Storage Service",供个人及企业进行互联网云端备份的数据保全服务等等系列互联网云计算服务;中国移动研究院做云计算的探索起步较早,已经完成了云计算中心试验。中移动董事长兼CEO王建宙认为云计算和互联网的移动化是未来发展方向。我国企业创造的“云安全”概念,在国际云计算领域独树一帜。云安全通过网状的大量客户端对网络中软件行为的异常监测,获取互联网中木马、恶意程序的最新信息,推送到服务端进行自动分析和处理,再把病毒和木马的解决方案分发到每一个客户端。云安全的策略构想是:使用者越多,每个使用者就越安全,因为如此庞大的用户群,足以覆盖互联网的每个角落,只要某个网站被挂马或某个新木马病毒出现,就会立刻被截获。云安全的发展像一阵风,瑞星、趋势、卡巴斯基、MCAFEE、SYMANTEC、江民科技、PANDA、金山、360安全卫士、卡卡上网安全助手等都推出了云安全解决方案。瑞星基于云安全策略开发的2009新品,每天拦截数百万次木马攻击,其中1月8日更是达到了765万余次。势科技云安全已经在全球建立了5大数据中心,几万部在线服务器。据悉,云安全可以支持平均每天55亿条点击查询,每天收集分析亿个样本,资料库第一次命中率就可以达到99%。借助云安全,趋势科技现在每天阻断的病毒感染最高达1000万次。值得一提的是,云安全的核心思想,与刘鹏早在2003年就提出的反垃圾邮件网格非常接近[1][2]。刘鹏当时认为,垃圾邮件泛滥而无法用技术手段很好地自动过滤,是因为所依赖的人工智能方法不是成熟技术。垃圾邮件的最大的特征是:它会将相同的内容发送给数以百万计的接收者。为此,可以建立一个分布式统计和学习平台,以大规模用户的协同计算来过滤垃圾邮件:首先,用户安装客户端,为收到的每一封邮件计算出一个唯一的“指纹”,通过比对“指纹”可以统计相似邮件的副本数,当副本数达到一定数量,就可以判定邮件是垃圾邮件;其次,由于互联网上多台计算机比一台计算机掌握的信息更多,因而可以采用分布式贝叶斯学习算法,在成百上千的客户端机器上实现协同学习过程,收集、分析并共享最新的信息。反垃圾邮件网格体现了真正的网格思想,每个加入系统的用户既是服务的对象,也是完成分布式统计功能的一个信息节点,随着系统规模的不断扩大,系统过滤垃圾邮件的准确性也会随之提高。用大规模统计方法来过滤垃圾邮件的做法比用人工智能的方法更成熟,不容易出现误判假阳性的情况,实用性很强。反垃圾邮件网格就是利用分布互联网里的千百万台主机的协同工作,来构建一道拦截垃圾邮件的“天网”。反垃圾邮件网格思想提出后,被IEEE Cluster 2003国际会议选为杰出网格项目在香港作了现场演示,在2004年网格计算国际研讨会上作了专题报告和现场演示,引起较为广泛的关注,受到了中国最大邮件服务提供商网易公司创办人丁磊等的重视。既然垃圾邮件可以如此处理,病毒、木马等亦然,这与云安全的思想就相去不远了。 2008年11月25日,中国电子学会专门成立了云计算专家委员会,聘任中国工程院院士李德毅为主任委员,聘任IBM大中华区首席技术总裁叶天正、中国电子科技集团公司第十五研究所所长刘爱民、中国工程院院士张尧学、Google全球副总裁/中国区总裁李开复、中国工程院院士倪光南、中国移动通信研究院院长黄晓庆六位专家为副主任委员,聘任国内外30多位知名专家学者为专家委员会委员。2009年5月22日,中国电子学会将于在北京中国大饭店隆重举办首届中国云计算大会。

云计算安全研究毕业论文

云计算发展方向,云计算发展前景,云计算热门技术这些方向都可以的,中国云计算网站有很多这方面的参考资料,你可以下载资料参考一下!

这个链接你看是不是提纲式的浅谈云计算 摘要云计算是当前计算机领域的一个热点。它的出现宣告了低成本提供超级计算时代的到来。云计算将改变人们获取信息、分享内容和互相沟通的方式。此文阐述了云计算的简史、概念、特点、现状、保护、应用和发展前景,并对云计算的发展及前景进行了分析。关键词: 云计算特点, 云计算保护, 云计算应用.1云计算简史著名的美国计算机科学家、 图灵奖 (Turing Award) 得主麦卡锡 (John McCarthy,1927-) 在半个世纪前就曾思考过这个问题。 1961 年, 他在麻省理工学院 (MIT) 的百年纪念活动中做了一个演讲。 在那次演讲中, 他提出了象使用其它资源一样使用计算资源的想法,这就是时下 IT 界的时髦术语 “云计算” (Cloud Computing) 的核心想法。云计算中的这个 “云” 字虽然是后人所用的词汇, 但却颇有历史渊源。 早年的电信技术人员在画电话网络的示意图时, 一涉及到不必交待细节的部分, 就会画一团 “云” 来搪塞。 计算机网络的技术人员将这一偷懒的传统发扬光大, 就成为了云计算中的这个 “云” 字, 它泛指互联网上的某些 “云深不知处” 的部分, 是云计算中 “计算” 的实现场所。 而云计算中的这个 “计算” 也是泛指, 它几乎涵盖了计算机所能提供的一切资源。麦卡锡的这种想法在提出之初曾经风靡过一阵, 但真正的实现却是在互联网日益普及的上世纪末。 这其中一家具有先驱意义的公司是甲骨文 (Oracle) 前执行官贝尼奥夫 (Marc Benioff, 1964-) 创立的 Salesforce 公司。 1999 年, 这家公司开始将一种客户关系管理软件作为服务提供给用户, 很多用户在使用这项服务后提出了购买软件的意向, 该公司却死活不干, 坚持只作为服务提供, 这是云计算的一种典型模式, 叫做 “软件即服务” (Software as a Service, 简称 SaaS)。 这种模式的另一个例子, 是我们熟悉的网络电子邮箱 (因此读者哪怕是第一次听到 “云计算” 这个术语, 也不必有陌生感, 因为您多半已是它的老客户了)。 除了 “软件即服务” 外, 云计算还有其它几种典型模式, 比如向用户提供开发平台的 “平台即服务” (Platform as a Service, 简称 PaaS), 其典型例子是谷歌公司 (Google) 的应用程序引擎 (Google App Engine), 它能让用户创建自己的网络程序。 还有一种模式更彻底, 干脆向用户提供虚拟硬件, 叫做 “基础设施即服务” (Infrastructure as a Service, 简称 IaaS), 其典型例子是亚马逊公司 (Amazon) 的弹性计算云 (Amazon Elastic Compute Cloud, 简称 EC2), 它向用户提供虚拟主机, 用户具有管理员权限, 爱干啥就干啥, 跟使用自家机器一样。1.2云计算的概念狭义云计算是指计算机基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的资源(硬件、平台、软件)。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。广义云计算是指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的服务。这种服务可以是计算机和软件、互联网相关的,也可以是其他的服务。云计算是并行计算(Parallel Computing)、分布式计算(Distributed Computing)和网格计算(Grid Computing)的发展,或者说是这些计算机科学概念的商业实现。云计算是虚拟化(Virtualization)、效用计算(Utility Computing)、IaaS(基础设施即服务)、PaaS(平台即服务)、SaaS(软件即服务)等概念混合演进并跃升的结果。云计算的特点和优势(一)超大规模性。“云”具有相当的规模,Google云计算已经拥有100多万台服务器,Amazon、IBM、微软、Yahoo等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器。“云”能赋予用户前所未有的计算能力。(二)虚拟化。云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现用户需要的一切,甚至包括超级计算这样的任务。[2](三)高可靠性。“云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。(四)通用性。云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。(五)高可扩展性。“云”的规模可以动态伸缩,满足应用和用户规模增长的需要。(六)价格合适。由于“云”的特殊容错措施可以采用具有经济性的节点来构成“云”,“云”的自动化集中式管理使大量企业无需负担日益高昂的数据中心管理成本,“云”的通用性使资源的利用率较之传统系统大幅提升,因此用户可以充分享受“云”的低成本优势,经常只要花费几百美元、几天时间就能完成以前需要数万美元、数月时间才能完成的任务。云计算作为一种技术,与其它一些依赖互联网的技术——比如网格计算 (Grid Computing)——有一定的相似之处,但不可混为一谈。拿网格计算来说, 科学爱好者比较熟悉的例子是 SETI@Home,那是一个利用互联网上计算机的冗余计算能力搜索地外文明的计算项目,目前约有来自两百多个国家和地区的两百多万台计算机参与。它在 2009 年底的运算能力相当于当时全世界最快的超级计算机运算能力的三分之一。有些读者可能还知道另外一个例子:ZetaGrid,那是一个研究黎曼 ζ 函数零点分布的计算项目, 曾有过一万多台计算机参与 (但现在已经终止了,原因可参阅拙作 超越 ZetaGrid)。从这两个著名例子中我们可以看到网格计算的特点,那就是计算性质单一,但运算量巨大 (甚至永无尽头,比如 ZetaGrid)。而云计算的特点恰好相反,是计算性质五花八门,但运算量不大[注三],这是它们的本质区别,也是云计算能够面向大众成为服务的根本原因。云计算能够流行,它到底有什么优点呢? 我们举个例子来说明,设想你要开一家网络公司。按传统方法,你得有一大笔启动资金, 因为你要购买计算机和软件,你要租用机房,你还要雇专人来管理和维护计算机。 当你的公司运作起来时,业务总难免会时好时坏,为了在业务好的时候也能正常运转, 你的人力和硬件都要有一定的超前配置, 这也要花钱。 更要命的是, 无论硬件还是软件厂商都会频繁推出新版本, 你若不想被技术前沿抛弃, 就得花钱费力不断更新 (当然, 也别怪人家, 你的公司运作起来后没准也得这么赚别人的钱)。如果用云计算, 情况就不一样了: 计算机和软件都可以用云计算, 业务好的时候多用一点, 业务坏的时候少用一点, 费用就跟结算煤气费一样按实际用量来算, 无需任何超前配置[注四]。 一台虚拟服务器只需鼠标轻点几下就能到位, 不象实体机器, 从下定单, 到进货, 再到调试, 忙得四脚朝天不说, 起码得好几天的时间。虚拟服务器一旦不需要了, 鼠标一点就可以让它从你眼前 (以及账单里)消失。至于软硬件的升级换代,服务器的维护管理等,那都是云计算服务商的事,跟你没半毛钱的关系。更重要的是,开公司总是有风险的, 如果你试了一两个月后发现行不通,在关门大吉的时候,假如你用的是云计算,那你只需支付实际使用过的资源。假如你走的是传统路子,买了硬件、软件,雇了专人,那很多投资可就打水漂了。浅谈云计算的一个核心理念大规模消息通信:云计算的一个核心理念就是资源和软件功能都是以服务的形式进行发布的,不同服务之间经常需要通过消息通信进行协助。由于同步消息通信的低效率,我们只考虑异步通信。如Java Message Service是J2EE平台上的一个消息通信标准,J2EE应用程序可以通过JMS来创建,发送,接收,阅读消息。异步消息通信已经成为面向服务架构中组件解耦合及业务集成的重要技术。大规模分布式存储:分布式存储的目标是利用多台服务器的存储资源来满足单台服务器所不能满足的存储需求。分布式存储要求存储资源能够被抽象表示和统一管理,并且能够保证数据读写操作的安全性,可靠性,性能等各方面要求。下面是几个典型的分布式文件系统:◆Frangipani是一个可伸缩性很好的高兴能分布式文件系统,采用两层的服务体系架构:底层是一个分布式存储服务,该服务能够自动管理可伸缩,高可用的虚拟磁盘;上层运行着Frangipani分布式文件系统。◆JetFile是一个基于P2P的主播技术,支持在Internet这样的异构环境中分享文件的分布式文件系统。◆Ceph是一个高性能并且可靠地分布式文件系统,它通过把数据和对数据的管理在最大程度上分开来获取极佳的I/O性能。◆Google File System(GFS)是Google公司设计的可伸缩的分布式文件系统。GFS能够很好的支持大规模海量数据处理应用程序。在云计算环境中,数据的存储和操作都是以服务的形式提供的;数据的类型多种多样;必须满足数据操作对性能,可靠性,安全性和简单性的要求。在云计算环境下的大规模分布式存储方向,BigTable是Google公司设计的用来存储海量结构化数据的分布式存储系统;Dynamo是Amazon公司设计的一种基于键值对的分布式存储系统,它能提供非常高的可用性;Amazon公司的Simple Storage Service(S3)是一个支持大规模存储多媒体这样的二进制文件的云计算存储服务;Amazon公司的SimpleDB是建立在S3和Amazon EC2之上的用来存储结构化数据的云计算服务。许可证管理与计费:目前比较成熟的云环境计费模型是Amazon公司提供的Elastic Compute Cloud(EC2)和Simple Storage Service(S3)的按量计费模型,用户按占用的虚拟机单元,IP地址,带宽和存储空间付费。云计算的现状云计算是个热度很高的新名词。由于它是多种技术混合演进的结果,其成熟度较高,又有大公司推动,发展极为迅速。Amazon、Google、IBM、微软和Yahoo等大公司是云计算的先行者。云计算领域的众多成功公司还包括Salesforce、Facebook、Youtube、Myspace等。Amazon使用弹性计算云(EC2)和简单存储服务(S3)为企业提供计算和存储服务。收费的服务项目包括存储服务器、带宽、CPU资源以及月租费。月租费与电话月租费类似,存储服务器、带宽按容量收费,CPU根据时长(小时)运算量收费。Amazon把云计算做成一个大生意没有花太长的时间:不到两年时间,Amazon上的注册开发人员达44万人,还有为数众多的企业级用户。有第三方统计机构提供的数据显示,Amazon与云计算相关的业务收入已达1亿美元。云计算是Amazon增长最快的业务之一。Google当数最大的云计算的使用者。Google搜索引擎就建立在分布在200多个地点、超过100万台服务器的支撑之上,这些设施的数量正在迅猛增长。Google地球、地图、Gmail、Docs等也同样使用了这些基础设施。采用Google Docs之类的应用,用户数据会保存在互联网上的某个位置,可以通过任何一个与互联网相连的系统十分便利地访问这些数据。目前,Google已经允许第三方在Google的云计算中通过Google App Engine运行大型并行应用程序。Google值得称颂的是它不保守。它早已以发表学术论文的形式公开其云计算三大法宝:GFS、MapReduce和BigTable,并在美国、中国等高校开设如何进行云计算编程的课程。IBM在2007年11月推出了“改变游戏规则”的“蓝云”计算平台,为客户带来即买即用的云计算平台。它包括一系列的自动化、自我管理和自我修复的虚拟化云计算软件,使来自全球的应用可以访问分布式的大型服务器池。使得数据中心在类似于互联网的环境下运行计算。IBM正在与17个欧洲组织合作开展云计算项目。欧盟提供了亿欧元做为部分资金。该计划名为RESERVOIR,以“无障碍的资源和服务虚拟化”为口号。2008年8月, IBM宣布将投资约4亿美元用于其设在北卡罗来纳州和日本东京的云计算数据中心改造。IBM计划在2009年在10个国家投资3亿美元建13个云计算中心。微软紧跟云计算步伐,于2008年10月推出了Windows Azure操作系统。Azure(译为“蓝天”)是继Windows取代DOS之后,微软的又一次颠覆性转型——通过在互联网架构上打造新云计算平台,让Windows真正由PC延伸到“蓝天”上。微软拥有全世界数以亿计的Windows用户桌面和浏览器,现在它将它们连接到“蓝天”上。Azure的底层是微软全球基础服务系统,由遍布全球的第四代数据中心构成。云计算的新颖之处在于它几乎可以提供无限的廉价存储和计算能力。纽约一家名为Animoto的创业企业已证明云计算的强大能力(此案例引自和讯网维维编译《纽约时报》2008年5月25日报道)。Animoto允许用户上传图片和音乐,自动生成基于网络的视频演讲稿,并且能够与好友分享。该网站目前向注册用户提供免费服务。2008年年初,网站每天用户数约为5000人。4月中旬,由于Facebook用户开始使用Animoto服务,该网站在三天内的用户数大幅上升至75万人。Animoto联合创始人Stevie Clifton表示,为了满足用户需求的上升,该公司需要将服务器能力提高100倍,但是该网站既没有资金,也没有能力建立规模如此巨大的计算能力。因此,该网站与云计算服务公司RightScale合作,设计能够在亚马逊的网云中使用的应用程序。通过这一举措,该网站大大提高了计算能力,而费用只有每服务器每小时10美分。这样的方式也加强创业企业的灵活性。当需求下降时,Animoto只需减少所使用的服务器数量就可以降低服务器支出。在我国,云计算发展也非常迅猛。2008年5月10日,IBM在中国无锡太湖新城科教产业园建立的中国第一个云计算中心投入运营。2008年6月24日,IBM在北京IBM中国创新中心成立了第二家中国的云计算中心——IBM大中华区云计算中心;2008年11月28日,广东电子工业研究院与东莞松山湖科技产业园管委会签约,广东电子工业研究院将在东莞松山湖投资2亿元建立云计算平台;2008年12月30日,阿里巴巴集团旗下子公司阿里软件与江苏省南京市政府正式签订了2009年战略合作框架协议,计划于2009年初在南京建立国内首个“电子商务云计算中心”,首期投资额将达上亿元人民币;世纪互联推出了CloudEx产品线,包括完整的互联网主机服务"CloudEx Computing Service", 基于在线存储虚拟化的"CloudEx Storage Service",供个人及企业进行互联网云端备份的数据保全服务等等系列互联网云计算服务;中国移动研究院做云计算的探索起步较早,已经完成了云计算中心试验。中移动董事长兼CEO王建宙认为云计算和互联网的移动化是未来发展方向。我国企业创造的“云安全”概念,在国际云计算领域独树一帜。云安全通过网状的大量客户端对网络中软件行为的异常监测,获取互联网中木马、恶意程序的最新信息,推送到服务端进行自动分析和处理,再把病毒和木马的解决方案分发到每一个客户端。云安全的策略构想是:使用者越多,每个使用者就越安全,因为如此庞大的用户群,足以覆盖互联网的每个角落,只要某个网站被挂马或某个新木马病毒出现,就会立刻被截获。云安全的发展像一阵风,瑞星、趋势、卡巴斯基、MCAFEE、SYMANTEC、江民科技、PANDA、金山、360安全卫士、卡卡上网安全助手等都推出了云安全解决方案。瑞星基于云安全策略开发的2009新品,每天拦截数百万次木马攻击,其中1月8日更是达到了765万余次。势科技云安全已经在全球建立了5大数据中心,几万部在线服务器。据悉,云安全可以支持平均每天55亿条点击查询,每天收集分析亿个样本,资料库第一次命中率就可以达到99%。借助云安全,趋势科技现在每天阻断的病毒感染最高达1000万次。值得一提的是,云安全的核心思想,与刘鹏早在2003年就提出的反垃圾邮件网格非常接近[1][2]。刘鹏当时认为,垃圾邮件泛滥而无法用技术手段很好地自动过滤,是因为所依赖的人工智能方法不是成熟技术。垃圾邮件的最大的特征是:它会将相同的内容发送给数以百万计的接收者。为此,可以建立一个分布式统计和学习平台,以大规模用户的协同计算来过滤垃圾邮件:首先,用户安装客户端,为收到的每一封邮件计算出一个唯一的“指纹”,通过比对“指纹”可以统计相似邮件的副本数,当副本数达到一定数量,就可以判定邮件是垃圾邮件;其次,由于互联网上多台计算机比一台计算机掌握的信息更多,因而可以采用分布式贝叶斯学习算法,在成百上千的客户端机器上实现协同学习过程,收集、分析并共享最新的信息。反垃圾邮件网格体现了真正的网格思想,每个加入系统的用户既是服务的对象,也是完成分布式统计功能的一个信息节点,随着系统规模的不断扩大,系统过滤垃圾邮件的准确性也会随之提高。用大规模统计方法来过滤垃圾邮件的做法比用人工智能的方法更成熟,不容易出现误判假阳性的情况,实用性很强。反垃圾邮件网格就是利用分布互联网里的千百万台主机的协同工作,来构建一道拦截垃圾邮件的“天网”。反垃圾邮件网格思想提出后,被IEEE Cluster 2003国际会议选为杰出网格项目在香港作了现场演示,在2004年网格计算国际研讨会上作了专题报告和现场演示,引起较为广泛的关注,受到了中国最大邮件服务提供商网易公司创办人丁磊等的重视。既然垃圾邮件可以如此处理,病毒、木马等亦然,这与云安全的思想就相去不远了。2008年11月25日,中国电子学会专门成立了云计算专家委员会,聘任中国工程院院士李德毅为主任委员,聘任IBM大中华区首席技术总裁叶天正、中国电子科技集团公司第十五研究所所长刘爱民、中国工程院院士张尧学、Google全球副总裁/中国区总裁李开复、中国工程院院士倪光南、中国移动通信研究院院长黄晓庆六位专家为副主任委员,聘任国内外30多位知名专家学者为专家委员会委员。2009年5月22日,中国电子学会将于在北京中国大饭店隆重举办首届中国云计算大会。

首先介绍下云计算,的发展历史,他的前身,现在的应用,然后在介绍现在计算机的应用,在应用之中的不足,然后,着重阐述云计算的优势,我这里有一份关于这方面的对比及心得,发给你,希望能帮到你。 云计算简史著名的美国计算机科学家、 图灵奖 (Turing Award) 得主麦卡锡 (John McCarthy,1927-) 在半个世纪前就曾思考过这个问题。 1961 年, 他在麻省理工学院 (MIT) 的百年纪念活动中做了一个演讲。 在那次演讲中, 他提出了象使用其它资源一样使用计算资源的想法,这就是时下 IT 界的时髦术语 “云计算” (Cloud Computing) 的核心想法。云计算中的这个 “云” 字虽然是后人所用的词汇, 但却颇有历史渊源。 早年的电信技术人员在画电话网络的示意图时, 一涉及到不必交待细节的部分, 就会画一团 “云” 来搪塞。 计算机网络的技术人员将这一偷懒的传统发扬光大, 就成为了云计算中的这个 “云” 字, 它泛指互联网上的某些 “云深不知处” 的部分, 是云计算中 “计算” 的实现场所。 而云计算中的这个 “计算” 也是泛指, 它几乎涵盖了计算机所能提供的一切资源。麦卡锡的这种想法在提出之初曾经风靡过一阵, 但真正的实现却是在互联网日益普及的上世纪末。 这其中一家具有先驱意义的公司是甲骨文 (Oracle) 前执行官贝尼奥夫 (Marc Benioff, 1964-) 创立的 Salesforce 公司。 1999 年, 这家公司开始将一种客户关系管理软件作为服务提供给用户, 很多用户在使用这项服务后提出了购买软件的意向, 该公司却死活不干, 坚持只作为服务提供, 这是云计算的一种典型模式, 叫做 “软件即服务” (Software as a Service, 简称 SaaS)。 这种模式的另一个例子, 是我们熟悉的网络电子邮箱 (因此读者哪怕是第一次听到 “云计算” 这个术语, 也不必有陌生感, 因为您多半已是它的老客户了)。 除了 “软件即服务” 外, 云计算还有其它几种典型模式, 比如向用户提供开发平台的 “平台即服务” (Platform as a Service, 简称 PaaS), 其典型例子是谷歌公司 (Google) 的应用程序引擎 (Google App Engine), 它能让用户创建自己的网络程序。 还有一种模式更彻底, 干脆向用户提供虚拟硬件, 叫做 “基础设施即服务” (Infrastructure as a Service, 简称 IaaS), 其典型例子是亚马逊公司 (Amazon) 的弹性计算云 (Amazon Elastic Compute Cloud, 简称 EC2), 它向用户提供虚拟主机, 用户具有管理员权限, 爱干啥就干啥, 跟使用自家机器一样。1.2云计算的概念狭义云计算是指计算机基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的资源(硬件、平台、软件)。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。广义云计算是指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的服务。这种服务可以是计算机和软件、互联网相关的,也可以是其他的服务。云计算是并行计算(Parallel Computing)、分布式计算(Distributed Computing)和网格计算(Grid Computing)的发展,或者说是这些计算机科学概念的商业实现。云计算是虚拟化(Virtualization)、效用计算(Utility Computing)、IaaS(基础设施即服务)、PaaS(平台即服务)、SaaS(软件即服务)等概念混合演进并跃升的结果。云计算的特点和优势(一)超大规模性。“云”具有相当的规模,Google云计算已经拥有100多万台服务器,Amazon、IBM、微软、Yahoo等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器。“云”能赋予用户前所未有的计算能力。(二)虚拟化。云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现用户需要的一切,甚至包括超级计算这样的任务。[2](三)高可靠性。“云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。(四)通用性。云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。(五)高可扩展性。“云”的规模可以动态伸缩,满足应用和用户规模增长的需要。(六)价格合适。由于“云”的特殊容错措施可以采用具有经济性的节点来构成“云”,“云”的自动化集中式管理使大量企业无需负担日益高昂的数据中心管理成本,“云”的通用性使资源的利用率较之传统系统大幅提升,因此用户可以充分享受“云”的低成本优势,经常只要花费几百美元、几天时间就能完成以前需要数万美元、数月时间才能完成的任务。云计算作为一种技术,与其它一些依赖互联网的技术——比如网格计算 (Grid Computing)——有一定的相似之处,但不可混为一谈。拿网格计算来说, 科学爱好者比较熟悉的例子是 SETI@Home,那是一个利用互联网上计算机的冗余计算能力搜索地外文明的计算项目,目前约有来自两百多个国家和地区的两百多万台计算机参与。它在 2009 年底的运算能力相当于当时全世界最快的超级计算机运算能力的三分之一。有些读者可能还知道另外一个例子:ZetaGrid,那是一个研究黎曼 ζ 函数零点分布的计算项目, 曾有过一万多台计算机参与 (但现在已经终止了,原因可参阅拙作 超越 ZetaGrid)。从这两个著名例子中我们可以看到网格计算的特点,那就是计算性质单一,但运算量巨大 (甚至永无尽头,比如 ZetaGrid)。而云计算的特点恰好相反,是计算性质五花八门,但运算量不大[注三],这是它们的本质区别,也是云计算能够面向大众成为服务的根本原因。云计算能够流行,它到底有什么优点呢? 我们举个例子来说明,设想你要开一家网络公司。按传统方法,你得有一大笔启动资金, 因为你要购买计算机和软件,你要租用机房,你还要雇专人来管理和维护计算机。 当你的公司运作起来时,业务总难免会时好时坏,为了在业务好的时候也能正常运转, 你的人力和硬件都要有一定的超前配置, 这也要花钱。 更要命的是, 无论硬件还是软件厂商都会频繁推出新版本, 你若不想被技术前沿抛弃, 就得花钱费力不断更新 (当然, 也别怪人家, 你的公司运作起来后没准也得这么赚别人的钱)。如果用云计算, 情况就不一样了: 计算机和软件都可以用云计算, 业务好的时候多用一点, 业务坏的时候少用一点, 费用就跟结算煤气费一样按实际用量来算, 无需任何超前配置[注四]。 一台虚拟服务器只需鼠标轻点几下就能到位, 不象实体机器, 从下定单, 到进货, 再到调试, 忙得四脚朝天不说, 起码得好几天的时间。虚拟服务器一旦不需要了, 鼠标一点就可以让它从你眼前 (以及账单里)消失。至于软硬件的升级换代,服务器的维护管理等,那都是云计算服务商的事,跟你没半毛钱的关系。更重要的是,开公司总是有风险的, 如果你试了一两个月后发现行不通,在关门大吉的时候,假如你用的是云计算,那你只需支付实际使用过的资源。假如你走的是传统路子,买了硬件、软件,雇了专人,那很多投资可就打水漂了。浅谈云计算的一个核心理念大规模消息通信:云计算的一个核心理念就是资源和软件功能都是以服务的形式进行发布的,不同服务之间经常需要通过消息通信进行协助。由于同步消息通信的低效率,我们只考虑异步通信。如Java Message Service是J2EE平台上的一个消息通信标准,J2EE应用程序可以通过JMS来创建,发送,接收,阅读消息。异步消息通信已经成为面向服务架构中组件解耦合及业务集成的重要技术。大规模分布式存储:分布式存储的目标是利用多台服务器的存储资源来满足单台服务器所不能满足的存储需求。分布式存储要求存储资源能够被抽象表示和统一管理,并且能够保证数据读写操作的安全性,可靠性,性能等各方面要求。下面是几个典型的分布式文件系统:◆Frangipani是一个可伸缩性很好的高兴能分布式文件系统,采用两层的服务体系架构:底层是一个分布式存储服务,该服务能够自动管理可伸缩,高可用的虚拟磁盘;上层运行着Frangipani分布式文件系统。◆JetFile是一个基于P2P的主播技术,支持在Internet这样的异构环境中分享文件的分布式文件系统。◆Ceph是一个高性能并且可靠地分布式文件系统,它通过把数据和对数据的管理在最大程度上分开来获取极佳的I/O性能。◆Google File System(GFS)是Google公司设计的可伸缩的分布式文件系统。GFS能够很好的支持大规模海量数据处理应用程序。在云计算环境中,数据的存储和操作都是以服务的形式提供的;数据的类型多种多样;必须满足数据操作对性能,可靠性,安全性和简单性的要求。在云计算环境下的大规模分布式存储方向,BigTable是Google公司设计的用来存储海量结构化数据的分布式存储系统;Dynamo是Amazon公司设计的一种基于键值对的分布式存储系统,它能提供非常高的可用性;Amazon公司的Simple Storage Service(S3)是一个支持大规模存储多媒体这样的二进制文件的云计算存储服务;Amazon公司的SimpleDB是建立在S3和Amazon EC2之上的用来存储结构化数据的云计算服务。许可证管理与计费:目前比较成熟的云环境计费模型是Amazon公司提供的Elastic Compute Cloud(EC2)和Simple Storage Service(S3)的按量计费模型,用户按占用的虚拟机单元,IP地址,带宽和存储空间付费。云计算的现状云计算是个热度很高的新名词。由于它是多种技术混合演进的结果,其成熟度较高,又有大公司推动,发展极为迅速。Amazon、Google、IBM、微软和Yahoo等大公司是云计算的先行者。云计算领域的众多成功公司还包括Salesforce、Facebook、Youtube、Myspace等。Amazon使用弹性计算云(EC2)和简单存储服务(S3)为企业提供计算和存储服务。收费的服务项目包括存储服务器、带宽、CPU资源以及月租费。月租费与电话月租费类似,存储服务器、带宽按容量收费,CPU根据时长(小时)运算量收费。Amazon把云计算做成一个大生意没有花太长的时间:不到两年时间,Amazon上的注册开发人员达44万人,还有为数众多的企业级用户。有第三方统计机构提供的数据显示,Amazon与云计算相关的业务收入已达1亿美元。云计算是Amazon增长最快的业务之一。Google当数最大的云计算的使用者。Google搜索引擎就建立在分布在200多个地点、超过100万台服务器的支撑之上,这些设施的数量正在迅猛增长。Google地球、地图、Gmail、Docs等也同样使用了这些基础设施。采用Google Docs之类的应用,用户数据会保存在互联网上的某个位置,可以通过任何一个与互联网相连的系统十分便利地访问这些数据。目前,Google已经允许第三方在Google的云计算中通过Google App Engine运行大型并行应用程序。Google值得称颂的是它不保守。它早已以发表学术论文的形式公开其云计算三大法宝:GFS、MapReduce和BigTable,并在美国、中国等高校开设如何进行云计算编程的课程。IBM在2007年11月推出了“改变游戏规则”的“蓝云”计算平台,为客户带来即买即用的云计算平台。它包括一系列的自动化、自我管理和自我修复的虚拟化云计算软件,使来自全球的应用可以访问分布式的大型服务器池。使得数据中心在类似于互联网的环境下运行计算。IBM正在与17个欧洲组织合作开展云计算项目。欧盟提供了亿欧元做为部分资金。该计划名为RESERVOIR,以“无障碍的资源和服务虚拟化”为口号。2008年8月, IBM宣布将投资约4亿美元用于其设在北卡罗来纳州和日本东京的云计算数据中心改造。IBM计划在2009年在10个国家投资3亿美元建13个云计算中心。微软紧跟云计算步伐,于2008年10月推出了Windows Azure操作系统。Azure(译为“蓝天”)是继Windows取代DOS之后,微软的又一次颠覆性转型——通过在互联网架构上打造新云计算平台,让Windows真正由PC延伸到“蓝天”上。微软拥有全世界数以亿计的Windows用户桌面和浏览器,现在它将它们连接到“蓝天”上。Azure的底层是微软全球基础服务系统,由遍布全球的第四代数据中心构成。云计算的新颖之处在于它几乎可以提供无限的廉价存储和计算能力。纽约一家名为Animoto的创业企业已证明云计算的强大能力(此案例引自和讯网维维编译《纽约时报》2008年5月25日报道)。Animoto允许用户上传图片和音乐,自动生成基于网络的视频演讲稿,并且能够与好友分享。该网站目前向注册用户提供免费服务。2008年年初,网站每天用户数约为5000人。4月中旬,由于Facebook用户开始使用Animoto服务,该网站在三天内的用户数大幅上升至75万人。Animoto联合创始人Stevie Clifton表示,为了满足用户需求的上升,该公司需要将服务器能力提高100倍,但是该网站既没有资金,也没有能力建立规模如此巨大的计算能力。因此,该网站与云计算服务公司RightScale合作,设计能够在亚马逊的网云中使用的应用程序。通过这一举措,该网站大大提高了计算能力,而费用只有每服务器每小时10美分。这样的方式也加强创业企业的灵活性。当需求下降时,Animoto只需减少所使用的服务器数量就可以降低服务器支出。在我国,云计算发展也非常迅猛。2008年5月10日,IBM在中国无锡太湖新城科教产业园建立的中国第一个云计算中心投入运营。2008年6月24日,IBM在北京IBM中国创新中心成立了第二家中国的云计算中心——IBM大中华区云计算中心;2008年11月28日,广东电子工业研究院与东莞松山湖科技产业园管委会签约,广东电子工业研究院将在东莞松山湖投资2亿元建立云计算平台;2008年12月30日,阿里巴巴集团旗下子公司阿里软件与江苏省南京市政府正式签订了2009年战略合作框架协议,计划于2009年初在南京建立国内首个“电子商务云计算中心”,首期投资额将达上亿元人民币;世纪互联推出了CloudEx产品线,包括完整的互联网主机服务"CloudEx Computing Service", 基于在线存储虚拟化的"CloudEx Storage Service",供个人及企业进行互联网云端备份的数据保全服务等等系列互联网云计算服务;中国移动研究院做云计算的探索起步较早,已经完成了云计算中心试验。中移动董事长兼CEO王建宙认为云计算和互联网的移动化是未来发展方向。我国企业创造的“云安全”概念,在国际云计算领域独树一帜。云安全通过网状的大量客户端对网络中软件行为的异常监测,获取互联网中木马、恶意程序的最新信息,推送到服务端进行自动分析和处理,再把病毒和木马的解决方案分发到每一个客户端。云安全的策略构想是:使用者越多,每个使用者就越安全,因为如此庞大的用户群,足以覆盖互联网的每个角落,只要某个网站被挂马或某个新木马病毒出现,就会立刻被截获。云安全的发展像一阵风,瑞星、趋势、卡巴斯基、MCAFEE、SYMANTEC、江民科技、PANDA、金山、360安全卫士、卡卡上网安全助手等都推出了云安全解决方案。瑞星基于云安全策略开发的2009新品,每天拦截数百万次木马攻击,其中1月8日更是达到了765万余次。势科技云安全已经在全球建立了5大数据中心,几万部在线服务器。据悉,云安全可以支持平均每天55亿条点击查询,每天收集分析亿个样本,资料库第一次命中率就可以达到99%。借助云安全,趋势科技现在每天阻断的病毒感染最高达1000万次。值得一提的是,云安全的核心思想,与刘鹏早在2003年就提出的反垃圾邮件网格非常接近[1][2]。刘鹏当时认为,垃圾邮件泛滥而无法用技术手段很好地自动过滤,是因为所依赖的人工智能方法不是成熟技术。垃圾邮件的最大的特征是:它会将相同的内容发送给数以百万计的接收者。为此,可以建立一个分布式统计和学习平台,以大规模用户的协同计算来过滤垃圾邮件:首先,用户安装客户端,为收到的每一封邮件计算出一个唯一的“指纹”,通过比对“指纹”可以统计相似邮件的副本数,当副本数达到一定数量,就可以判定邮件是垃圾邮件;其次,由于互联网上多台计算机比一台计算机掌握的信息更多,因而可以采用分布式贝叶斯学习算法,在成百上千的客户端机器上实现协同学习过程,收集、分析并共享最新的信息。反垃圾邮件网格体现了真正的网格思想,每个加入系统的用户既是服务的对象,也是完成分布式统计功能的一个信息节点,随着系统规模的不断扩大,系统过滤垃圾邮件的准确性也会随之提高。用大规模统计方法来过滤垃圾邮件的做法比用人工智能的方法更成熟,不容易出现误判假阳性的情况,实用性很强。反垃圾邮件网格就是利用分布互联网里的千百万台主机的协同工作,来构建一道拦截垃圾邮件的“天网”。反垃圾邮件网格思想提出后,被IEEE Cluster 2003国际会议选为杰出网格项目在香港作了现场演示,在2004年网格计算国际研讨会上作了专题报告和现场演示,引起较为广泛的关注,受到了中国最大邮件服务提供商网易公司创办人丁磊等的重视。既然垃圾邮件可以如此处理,病毒、木马等亦然,这与云安全的思想就相去不远了。 2008年11月25日,中国电子学会专门成立了云计算专家委员会,聘任中国工程院院士李德毅为主任委员,聘任IBM大中华区首席技术总裁叶天正、中国电子科技集团公司第十五研究所所长刘爱民、中国工程院院士张尧学、Google全球副总裁/中国区总裁李开复、中国工程院院士倪光南、中国移动通信研究院院长黄晓庆六位专家为副主任委员,聘任国内外30多位知名专家学者为专家委员会委员。2009年5月22日,中国电子学会将于在北京中国大饭店隆重举办首届中国云计算大会。

研究选题主要有以下几个方法:1、往深处思考、在纵向上挖掘:即围绕着云计算自身的发展进行选题,比如云计算安全研究......2、往广处思考、在横向上挖掘:即围绕着云计算在其他行业的应用进行选题,比如制造云研究......3、往博处思考、在集成上挖掘:即围绕着云计算与其他领域集成后的新领域进行选题,比如云计算经济学......

计算机专业研究生英文论文

(1)找经典的与研究方向有关的英文论文。(2)从摘要->引言,仔细阅读,每个句子最好弄明白后面的含义。论文的背景知识找相关文献了解清楚。(3)仔细了解论文的创新点,实验部分在创新点弄明白后也需要弄清楚,不要忽视。总结:以经典论文为中心,查阅其他文献粗读来辅助完成。

艾默生过程管理旗下的高准(Micro Motion)公司新近推出MVD多参数数字变送器,它以DSP数字信号处理技术的使用为特点,显示了高准公司在科里奥利质量流量测量技术上的雄厚实力。 高准 MVD多参数数字技术提供了一个模式化的结构来重新定义传感器和变送器,并使流量计工作得更灵巧。DSP数字信号处理器的核心处理器与传感器安装在一起,把来自科里奥利传感器中的模拟信号转换为数字信号,并产生一个正比于质量流量的电子信号。 1000系列和2000系列两种变送器可与核心处理器之间通过普通的4线电缆相连接,它们将输出最终测量信号、提供显示和一些其他的功能。变送器也可以一体地与核心处理器安装在一起。 一 什么是DSP数字信号处理器 DSP数字信号处理器是一个实时处理信号的微处理器。家用电脑的微处理器根据储存在存储器里的数据进行工作,这对于结算支票或玩电子游戏是合适的,但它不能处理某些现实世界里的东西,如音频信号、视频信号、医疗传感器的信号或来自于科里奥利传感器的信号。这里我们需要一个非常快的微处理器对这些信号做各种我们想要做的分析。 家用电脑需要显示器、磁盘驱动器、打印机、软件和一些连接电缆,像家用电脑里的微处理器一样,DSP数字信号处理器也需要支持的软件和硬件。在DSP的世界里,我们需要做的第一件事就是要把现实世界里的信号转换成为DSP世界里的信号,所用的装置被称为“模拟 —数字转换器”。 字串3 我们也需要一些软件去操作“数字化”信号,让我们举一个例子来看看我们用软件可做些什么。在远距离通话中,我们有时会听到自己声音的回声,这令人气恼。人的耳朵习惯于过滤掉短回声,但是长回声使通信非常困难。电话公司复制了你的声音然后在合适的时间加到它的反向以消除回声,不是回声没有发生,它只是被非常复杂的DSP数字信号处理软件过滤掉了。在科里奥利流量计里,我们使测量管在一个已知的频率下振动,因此任何在此振动频率范围之外的频率都是“噪声”,需要除掉它们以准确地确定质量流量。例如,一个50Hz或60Hz的信号很可能来源于与附近动力线的耦合。如何在实际上“过滤”这些多余的信号则需要一些更多的在那时刻所得到的背景信息,图1表明了噪声如何出现在原转换器信号上,以及被过滤后的最终信号。 既然我们已经处理了信号,就需要把它从数字世界再转换回到现实世界,完成这项任务的装置是“数字—模拟转换器”。 我们需要一些存储器来储存DSP数字信号处理程序,也需要一些控制装置去实现DSP数字信号处理器。字串1 二 DSP数字信号处理技术为科里奥利质量流量计带来的好处 和家用电脑处理数据带来的好处一样,DSP数字信号处理技术也给处理现实世界的信号带来了同样的好处:DSP数字信号处理器比传统的模拟处理器要小得多,这正是我们如何能把所有技术都封装到核心处理器中并使传感器智能化的原因;比起传统的模拟处理器,DSP数字信号处理器使用了更小的能量和更少的元件,并提高了可靠性;DSP数字信号处理器的精确度至少比类似的模拟处理器高一个数量级,这意味着即使较差的传感器信号也能得出较好的最终测量值;通过软件更新,核心处理器可适用于其他的传感器类型。对于高准产品来说,这意味着市场开拓更快;对于用户来说,这意味着更少的备用部件。 三 和DSP数字信号处理器有关的一些数学知识 自然界存在的信号一般是连续的,并可被连续变化的电压信号所表示。科里奥利流量计的信号也是连续信号,当我们通过一个模拟—数字转换器来发送信号时,事实上我们已把信号量化为离散的或数字化的样本。例如,假设我们通过一个12位的ADC以每秒1000个样本的采样率来传送转换器的电压,每毫秒我们将信号量化为212=4096个可能的级别之一。图2显示了一个已被量化后的信号。字串4 ADC运行一秒我们可采集1000个转换器电压的样本,我们称样本的数目为N。如果需要,我们可把所有的采样值加在一起,然后除以N来计算转换器电压的平均值。以一个类似的形式我们可计算信号的标准偏差,平均值代表我们想测量的实际信号,而标准偏差代表噪声信号。平均值的平方除以标准偏差的平方被称作信噪比或SNR。信噪比越高,被分析的数据的质量就越高。这些计算可用于计算被测变量的值。过滤和减小带宽(技术上叫作十倍程下降率)可用于提高信噪比和质量流量的精确度。 四 傅立叶分析 傅立叶分析是以法国数学家和物理学家 Jean Baptiste Loseph Fourier的名字命名的分析方法。 傅立叶认为任何连续的周期信号可被适当选择的正弦信号波的总和所描述。取一个连续的周期信号并把它转换为一族正弦波被定义为进行一个傅立叶变换。傅立叶变换在数学上很复杂,但我们只需大致了解即可。核心处理器取已量化的转换器信号并进行了信号的傅立叶变换,如图3所示。字串4 五 数字滤波 图3中信号的频谱,只有一个信号数据,其余的都是噪声,100Hz的信号代表了测量管的振动频率。我们也看到了在200Hz、300Hz、400Hz等频率处的信号,这些被称为二次、三次和四次谐波。我们还看到了一个来源于动力线耦合的60Hz的小信号。 这些数据在DSP的存储器里只是一个表格,我们想做的是抛弃任何实际测量中所不需要的信息,也就是要忽略掉100Hz测量管频率之外的信息,这被称为数字滤波。 注意到在图3中只有一个信号在100Hz测量管频率附近,在较老的传感器中,通常确定信号附近什么是数据和什么是噪声都是非常困难的。高准传感器在测量管工作频率附近有一个格外高的信号纯度,这就是高准质量流量计具有高精确度的一个重要原因。 六 DSP数字信号处理技术对高准质量流量计的实际意义 与使用时间常量去阻抑和稳定信号相比,使用DSP数字信号处理技术的主要好处之一是能够以一个被提高了的采样率去过滤实时信号,这使得流量计对流量的阶跃变化的响应时间快多了。使用MVD多参数数字变送器的响应时间比使用模拟信号处理的传统变送器快2~4倍,更快的响应时间会提高短批量控制的效率和精确度。在发动机测试装置里,我们能更好地测量发动机对燃料喷射的阶跃变化的响应。用一个紧凑的校验装置还能提高现场校验高准流量计的能力。图4是MVD多参数数字科里奥利变送器、压力变送器和普通科里奥利变送器对流量的阶跃变化的响应。字串8 DSP数字信号处理技术另一个颇有价值的实例是气体测量。气体测量是一个更富有挑战性的应用,因为高速气体通过流量计会引起相对较严重的噪声。通过高准Elite系列传感器,与流量信号混杂的噪声已被减至最小。现在DSP数字信号处理技术能更好地滤波,并进一步减小了质量流量计对噪声的敏感度。采用MVD多参数数字变送器测量气体的结果在重复性和精确度上都有了显著提高,效果如图5、图6所示。 七 未来 DSP数字信号处理技术提供了一个“通往处理的窗户”,今天,当浏览这个窗户时,首先集中在测量管振动频率附近的信号上。实际上,有意地抛弃了其余的信息,很可能正是隐藏在这些“无用的”数据里的信息会铺平通往新的诊断技术的道路。例如,频谱分析可能会引导我们取得在夹杂空气或团状流动流体测量上的进展,流体在测量管内壁的附着也是另一个有希望被DSP数字信号处理技术检测到的故障,频谱的变化也很可能被用于预测传感器的故障。 字串5 八 总结 今天,DSP数字信号处理技术通过给予质量流量计一个更快、更可靠、更高效、更稳定、更灵活的的解决办法,体现了它的价值。这也使得我们的传感器更灵巧。对于未来,高准公司充满了信心,DSP数字信号处理技术将在推动流量测量上显示出巨大的潜力。

Good Moring, ladies and gentlemen, Today my topic of my speech is the advantages and the disadvantages of computers. In this information age/era, computer is very important in our everyday lives. It definitely make our lives easier in many ways. First of all, it helps us communicate with people all around the world, which means it not only save a lot of time when we have to send a message from one country to another, but also save a large of unnecessary troubles for us. Secondly, it gives many unemployed people chances to get a job. We can use computers and the Internet to sell and buy almost anything nowadays. Last but not least, many wonderful games come along with the advent of computers. And playing computer games is one of the most popular ways to entertain and to relax. So, computers are really good for our human beings in many different , every coin has two sides. Computers also bring us many troubles. It gets across much unhealthy information and causes many crimes. But if we can use computer properly, it is still an amazing invention to us. Therefore, I hope that everyone, especially the young people, like me, can really appreciate the help of computers and make the best use of them.很多的,我分次发~~~~~~~~~~~~~~~~~~~~

在里面找。,都是论文,大把。。。。

  • 索引序列
  • 云计算研究生论文英文
  • 关于云计算研究生论文题目
  • 云计算论文研究意义
  • 云计算安全研究毕业论文
  • 计算机专业研究生英文论文
  • 返回顶部