大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
初等代数的基本内容:三种数——有理数、无理数、复数;三种式——整式、分式、根式(统称代数式);三类方程——整式方程、分式方程、无理方程(统称代数方程),以及由有限多个代数方程联立而成的代数方程组。
初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和代数方程的求解。
特点
代数运算是只进行有限次的加、减、乘、除和开方。全部初等代数总起来有十条规则。
在古代,由于数学中有许多数学问题的解法,所以有系统的,更普遍的,用来求解各种数量关系的问题,就有了一个基本的代数。初等代数英文名称elementary algebra,是研究数字和文字的代数运算理论和方法,更确切地说,是研究实数和复数,以及以它们为系数的代数式的代数运算理论和方法的数学分支学科。简单来说:如果我们将算术定义为分别研究苹果、梨、橘子、葡萄等各有什么特点,那么初等代数就是研究水果的共性。
研究范围初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上。它的研究方法是高度计算性的。要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程。所以初等代数的一个重要内容就是代数式。由于事物中的数量关系的不同,大体上初等代数形成了整式、分式和根式这三大类代数式。代数式是数的化身,因而在代数中,它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算。通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算。在初等代数的产生和发展的过程中,通过解方程的研究,也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零。这是初等代数的又一重要内容,就是数的概念的扩充。有了有理数,初等代数能解决的问题就大大的扩充了。但是,有些方程在有理数范围内仍然没有解。于是,数的概念在一次扩充到了实数,进而又进一步扩充到了复数。那么到了复数范围内是不是仍然有方程没有解,还必须把复数再进行扩展呢?数学家们说:不用了。这就是代数里的一个著名的定理—代数基本定理。这个定理简单地说就是n次方程有n个根。1742年12月15日瑞士数学家欧拉曾在一封信中明确地做了陈述,后来另一个数学家、德国的高斯在1799年给出了严格的证明。把上面分析过的内容综合起来,组成初等代数的基本内容就是:三种数——有理数、无理数、复数三种式——整式、分式、根式中心内容是方程——整式方程、分式方程、无理方程和方程组。初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同。比如,严格的说,数的概念、排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的……。这些都只是历史上形成的一种编排方法。初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。代数运算的特点是只进行有限次的运算。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。十条规则初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。代数运算的特点是只进行有限次的运算。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;两条等式基本性质:等式两边同时加(减)上一个数,等式不变;等式两边同时乘(除)以一个非零的数,等式不变;三条指数律:同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方等于乘方的积。初等代数学进一步地向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程。这时候,代数学已由初等代数向着高等代数的方向发展了。
一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r2,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r2=92∏+62∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r2=152∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。
自己去百度找
浅谈数学的文化价值一、数学:打开科学大门的钥匙 科学史表明,一些划时代的科学理论成就的出现,无一不借助于数学的力量。早在古代,希腊的毕达哥拉斯(Pythagoras)学派就把数看作万物之本源。享有“近代自然科学之父”尊称的伽利略(G. Galileo)认为,展现在我们眼前的宇宙像一本用数学语言写成的大书,如不掌握数学的符号语言,就像在黑暗的迷宫里游荡,什么也认识不清。物理学家伦琴( @①ntgen)因发现了X射线而成为1910 年开始的诺贝尔物理奖的第一位获得者。当有人问这位卓越的实验物理学家科学家需要什么样的修养时,他的回答是:第一是数学,第二是数学,第三还是数学。对计算机的发展做出过重大贡献的冯·诺依曼( )认为“数学处于人类智能的中心领域”。他还指出:“数学方法渗透进支配着一切自然科学的理论分支,……它已愈来愈成为衡量成就的主要标志。” 科学家们如此重视教学,他们述说的这些切身经验和坚定的信念,如果从哲学的层次来理解,其实就是说,任何事物都是量和质的统一体,都有自身的量的方面的规律,不掌握量的规律,就不可能对各种事物的质获得明确清晰的认识。而数学正是一门研究“量”的科学,它不断地在总结和积累各种量的规律性,因而必然会成为人们认识世界的有力工具。 马克思曾明确指出:“一门科学只有当它达到了能够成功地运用数学时,才算真正发展了。”这是对数学作用的深刻理解,也是对科学化趋势的深刻预见。事实上,数学的应用越来越广泛,连一些过去认为与数学无缘的学科,如考古学、语言学、心理学等现在也都成为数学能够大显身手的领域。数学方法也在深刻地影响着历史学研究,能帮助历史学家做出更可靠、更令人信服的结论。这些情况使人们认为,人类智力活动中未受到数学的影响而大为改观的领域已寥寥无几了。 二、数学:科学的语言 有不少自然科学家、特别是理论物理学家都曾明确地强调了数学的语言功能。例如,著名物理学家玻尔()就曾指出:“数学不应该被看成是以经验的积累为基础的一种特殊的知识分支,而应该被看成是普通语言的一种精确化,这种精确化给普通语言补充了适当的工具来表示一些关系,对这些关系来说普通字句是不精确的或过于纠缠的。严格说来,量子力学和量子电动力学的数学形式系统,只不过给推导关于观测的预期结果提供了计算法则。”(注:《原子物理学和人类知识论文续编》,商务印书馆1978年版。)狄拉克( )也曾写道:“数学是特别适合于处理任何种类的抽象概念的工具,在这个领域内,它的力量是没有限制的。正因为这个缘故,关于新物理学的书如果不是纯粹描述实验工作的,就必须基本上是数学性的。”(注:狄拉克《量子力学原理》,科学出版社1979年版。)另外,爱因斯坦()则更通过与艺术语言的比较专门论述了数学的语言性质,他写道:“人们总想以最适当的方式来画出一幅简化的和易领悟的世界图像;于是他就试图用他的这种世界体系来代替经验的世界,并来征服它。这就是画家、诗人、思辨哲学家和自然科学家所做的,他们都按照自己的方式去做。……理论物理学家的世界图象在所有这些可能的图象中占有什么地位呢?它在描述各种关系时要求尽可能达到最高标准的严格精确性,这样的标准只有用数学语言才能做到。”(注:《爱因斯坦文集》第1卷,商务印书馆1976年版。) 一般地说,就像对客观世界量的规律性的认识一样,人们对于其他各种自然规律的认识也并非是一种直接的、简单的反映,而是包括了一个在思想中“重新构造”相应研究对象的过程,以及由内在的思维构造向外部的“独立存在”的转化(在爱因斯坦看来,“构造性”和“思辨性”正是科学思想的本质的思想);就现代的理论研究而言,这种相对独立的“研究对象”的构造则又往往是借助于数学语言得以完成的(数学与一般自然科学的认识活动的区别之一就在于:数学对象是一种“逻辑结构”,一般的“科学对象”则可以说是一种“数学建构”),显然,这也就更为清楚地表明了数学的语言性质。 数学作为一种科学语言,还表现在它能以其特有的语言(概念、公式、法则、定理、方程、模型、理论等)对科学真理进行精确和简洁的表述。如著名物理学家、数学家麦克斯韦(J. C. Maxwell )的麦克斯韦方程组,预见了电磁波的存在,推断出电磁波速度等于光速,并断言光就是一种电磁波。这样,麦克斯韦创立了系统的电磁理论,把光、电、磁统一起来,实现了物理学上重大的理论结合和飞跃。还有黎曼(Riemann )几何和不变量理论为爱因斯坦发现相对论提供了绝妙的描述工具。而边界值数学理论使本世纪二三十年代的远距离原子示波器的制成变为现实。矩阵理论为本世纪20年代海森堡(W. K. Heisenberg)和狄拉克引起的物理学革命奠定了基础。 随着社会的数学化程度日益提高,数学语言已成为人类社会中交流和贮存信息的重要手段。如果说,从前在人们的社会生活中,在商业交往中,运用初等数学就够了,而高等数学一般被认为是科学研究人员所使用的一种高深的科学语言,那么在今天的社会生活中,只懂得初等数学就会感到远远不够用了。事实上,高等数学(如微积分、线性代数)的一些概念、语言正在越来越多地渗透到现代社会生活各个方面的各种信息系统中,而现代数学的一些新的概念(如算子、泛函、拓扑、张量、流形等)则开始大量涌现在科学技术文献中,日渐发展成为现代的科学语言。 三、数学:思维的工具 数学是任何人分析问题和解决问题的思想工具。这是因为:首先,数学具有运用抽象思维去把握实在的能力。数学概念是以极度抽象的形式出现的。在现代数学中,集合、结构等概念,作为数学的研究对象,它们本身确是一种思想的创造物。与此同时,数学的研究方法也是抽象的,这就是说数学命题的真理性不能建立在经验之上,而必须依赖于演绎证明。数学家像是生活在一个抽象的数学王国中,然而他们在数学王国的种种发现,即数学结构内部和各种结构之间的规律性的东西,最终还是现实的摹写。而数学应用于实际问题的研究,其关键还在于能建立一个较好的数学模型。建立数学模型的过程,是一个科学抽象的过程,即善于把问题中的次要因素、次要关系、次要过程先撇在一边,抽出主要因素、主要关系、主要过程,经过一个合理的简化步骤,找出所要研究的问题与某种数学结构的对应关系,使这个实际问题转化为数学问题。在一个较好的数学模型上展开数学的推导和计算,以形成对问题的认识、判断和预测。这就是运用抽象思维去把握现实的力量所在。 其次,数学赋予科学知识以逻辑的严密性和结论的可靠性,是使认识从感性阶段发展到理性阶段,并使理性认识进一步深化的重要手段。在数学中,每一个公式、定理都要严格地从逻辑上加以证明以后才能够确立。数学的推理步骤严格地遵守形式逻辑法则,以保证从前提到结论的推导过程中,每一个步骤都在逻辑上准确无误。所以运用数学方法从已知的关系推求未知的关系时,所得结论有逻辑上的确定性和可靠性。数学的逻辑严密性还表现在它的公理化方法上。以理性认识的初级水平发展到更高级的水平,表现在一个理论系统还需要发展到抽象程度更高的公理化系统,通过数学公理化方法,找出最基本的概念、命题,作为逻辑的出发点,运用演绎理论论证各种派生的命题。牛顿所建立的力学系统则可看成自然科学中成功应用公理化方法的典型例子。 第三,数学也是辩证的辅助工具和表现方式。这是恩格斯()对数学的认识功能的一个重要论断。在数学中充满着辩证法,而且有自己特殊的表现方式,即用特殊的符号语言,简明的数学公式,明确地表达出各种辩证的关系和转化。如牛顿(I. Newton )—莱布尼兹(G. W. Leibniz )公式描述了微分和积分两种运算之间的联系和相互转化,概率论和数理统计表现了事物的必然性与偶然性的内在关系等等(注:孙小礼《数学:人类文化的重要力量》,《北京大学学报》(哲学社会科学版),1993年第1期。)。 最后,值得指出的是,数学还是思维的体操。这种思维操练,确实能够增强思维本领,提高科学抽象能力、逻辑推理能力和辩证思维能力
1.中国古代在数的方面的贡献 算筹 根据史书的记载和考古材料的发现,古代的算筹实际上是一根根同样长短和粗细的小棍子,一般长为13--14cm,径粗0.2~0.3cm,多用竹子制成,也有用木头、兽骨、象牙、金属等材料制成的,大约二百七十几枚为一束,放在一个布袋里,系在腰部随身携带。需要记数和计算的时候,就把它们取出来,放在桌上、炕上或地上都能摆弄。别看这些都是一根根不起眼的小棍子,在中国数学史上它们却是立有大功的。而它们的发明,也同样经历了一个漫长的历史发展过程。在算筹计数法中,以纵横两种排列方式来表示单位数目的,其中1-5均分别以纵横方式排列相应数目的算筹来表示,6-9则以上面的算筹再加下面相应的算筹来表示。表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空。这种计数法遵循十进位制。 算筹的出现年代已经不可考,但据史料推测,算筹最晚出现在春秋晚期战国初年(公元前722年~公元前221年),一直到算盘发明推广之前都是中国最重要的计算工具。 算筹的发明就是在以上这些记数方法的历史发展中逐渐产生的。它最早出现在何时,现在已经不可查考了,但至迟到春秋战国;算筹的使用已经非常普遍了。前面说过,算筹是一根根同样长短和粗细的小棍子,那么怎样用这些小棍子来表示各种各样的数目呢? 那么为什么又要有纵式和横式两种不同的摆法呢?这就是因为十进位制的需要了。所谓十进位制,又称十进位值制,包含有两方面的含义。其一是"十进制",即每满十数进一个单位,十个一进为十,十个十进为百,十个百进为千……其二是"位值制,即每个数码所表示的数值,不仅取决于这个数码本身,而且取决于它在记数中所处的位置。如同样是一个数码"2",放在个位上表示2,放在十位上就表示20,放在百位上就表示200,放在千位上就表示2000……在我国商代的文字记数系统中,就已经有了十进位值制的荫芽,到了算筹记数和运算时,就更是标准的十进位值制了。 按照中国古代的筹算规则,算筹记数的表示方法为:个位用纵式,十位用横式,百位再用纵式,千位再用横式,万位再用纵式……这样从右到左,纵横相间,以此类推,就可以用算筹表示出任意大的自然数了。由于它位与位之间的纵横变换,且每一位都有固定的摆法,所以既不会混淆,也不会错位。毫无疑问,这样一种算筹记数法和现代通行的十进位制记数法是完全一致的。 中国古代十进位制的算筹记数法在世界数学史上是一个伟大的创造。把它与世界其他古老民族的记数法作一比较,其优越性是显而易见的。古罗马的数字系统没有位值制,只有七个基本符号,如要记稍大一点的数目就相当繁难。古美洲玛雅人虽然懂得位值制,但用的是20进位;古巴比伦人也知道位值制,但用的是60进位。20进位至少需要19个数码,60进位则需要59个数码,这就使记数和运算变得十分繁复,远不如只用9个数码便可表示任意自然数的十进位制来得简捷方便。中国古代数学之所以在计算方面取得许多卓越的成就,在一定程度上应该归功于这一符合十进位制的算筹记数法。马克思在他的《数学手稿》一书中称十进位记数法为"最妙的发明之一",确实是一点也不过分的。 二进制思想的开创国 著名的哲学家数学家莱布尼茨(1646-1716)发明了对现代计算机系统有着重要意义的二进制,不过他认为在此之前,中国的《易经》中已经提到了有关二进制的初步思想。当代的许多科学家认为易经中并不含有复杂的二进制思想,可是这本中国古籍中的一些基本思想和二进制在很大程度上仍然有着千丝万缕的联系。 元始的《灵宝经》里面把阴阳定义为阳是自冬至到夏至的上升的气,阴为从夏至到冬至下降的气,这是对地球周期运动的最简练认识。阴阳是一种物质认识,后来转化为思想方式,反者道之动等等,都是这种思想的表现。从而开创了对立统一的思想方式,实际上计算机的电子脉冲的思想是与之一致的,采样定律也是与之一致的。 《易经》是我国伏羲、周文王等当政者积累观天测算经验而成的关于天象气象和人变易的经典,从八卦到六十四卦,就是二进制三位到六位表达,上世纪八十年代还有四位计算机,可以说,周文王的六十四卦在表达能力上已经高于四位计算机。 十进制的使用 《卜辞》中记载说,商代的人们已经学会用一、二、三、四、五、六、七、八、九、十、百、千、万这13个单字记十万以内的任何数字,但是现在能够证实的当时最大的数字是三万。甲骨卜辞中还有奇数、偶数和倍数的概念。 十进位位值制记数法包括十进位和位值制两条原则,"十进"即满十进一;"位值"则是同一个数位在不同的位置上所表示的数值也就不同,如三位数"111",右边的"1"在个位上表示1个一,中间的"1"在十位上就表示1个十,左边的"1"在百位上则表示1个百。这样,就使极为困难的整数表示和演算变得如此简便易行,以至于人们往往忽略它对数学发展所起的关键作用。 我们有个成语叫"屈指可数",说明古代人数数确实是离不开手指的,而一般人的手指恰好有十个。因此十进制的使用似乎应该是极其自然的事。但实际情况并不尽然。在文明古国巴比伦使用的是60进位制(这一进位制到现在仍留有痕迹,如一分=60秒等)另外还有采用二十进位制的。古代埃及倒是很早就用10进位制,但他们却不知道位值制。所谓位值制就是一个数码表示什么数,要看它所在的位置而定。位值制是千百年来人类智慧的结晶。零是位值制记数法的精要所在。但它的出现却并非易事。我国是最早使用十进制记数法,且认识到进位制的国家。我们的口语或文字表达的数字也遵守这一原则,比如一百二十七。同时我们对0的认识最早。 十进制是中国人民的一项杰出创造,在世界数学史上有重要意义。著名的英国科学史学家李约瑟教授曾对中国商代记数法予以很高的评价,"如果没有这种十进制,就几乎不可能出现我们现在这个统一化的世界了",李约瑟说"总的说来,商代的数字系统比同一时代的古巴比伦和古埃及更为先进更为科学。" 分数和小数的最早运用 分数的应用 最初分数的出现,并非由除法而来。分数被看作一个整体的一部分。"分"在汉语中有"分开""分割"之意。后来运算过程中也出现了分数,它表示两整数比。分数的加减乘除运算我们小学就已完全掌握了。很简单,是不是?不过在七、八百年以前的欧洲,如果你有这种水平那么就可以说相当了不起了。那时精通自然数的四则运算就已达到了学者水平。至于分数,对当时人来说简直难于上青天。德国有句谚语形容一个人陷入绝境,就说:"掉到分数里去了"。为什么会如此呢?这都是笨拙的记数法导致的。在我国古代,《九章算术》中就有了系统的分数运算方法,这比欧洲大约早1400年。 西汉时期,张苍、耿寿昌等学者整理、删补自秦代以来的数学知识,编成了《九章算术》。在这本数学经典的《方田》章中,提出了完整的分数运算法则。 从后来刘徽所作的《九章算术注》可以知道,在《九章算术》中,讲到约分、合分(分数加法)、减分(分数减法)、乘分(分数乘法)、除分(分数除法)的法则,与我们现在的分数运算法则完全相同。另外,还记载了课分(比较分数大小)、平分(求分数的平均值)等关于分数的知识,是世界上最早的系统叙述分数的著作。 分数运算,大约在15世纪才在欧洲流行。欧洲人普遍认为,这种算法起源于印度。实际上,印度在七世纪婆罗门笈多的著作中才开始有分数运算法则,这些法则都与《九章算术》中介绍的法则相同。而刘徽的《九章算术注》成书于魏景元四年(263年),所以,即使与刘徽的时代相比,我们也要比印度早400年左右。 小数的最早使用 刘徽在《九章算术注》中介绍,开方不尽时用十进分数(徽数,即小数)去逼近,首先提出了关于十进小数的概念。到公元 1300年前后,元代刘瑾所著《律吕成书》中,已将写成把小数部分降低一行写在整数部分的后边。而西方的斯台汶直到1585年才有十进小数的概念,且他的表示方法远不如中国先进,如上述的小数,他记成或106368。 九九表的使用 作为启蒙教材,我们都背过九九乘法表:一一得一、一二得二……九九八十一。而古代是从"九九八十一"开始,因此称"九九表"。九九表的使用,对于完成乘法是大有帮助的。齐恒公纳贤的故事说明,到公元前7世纪时,九九歌诀已不希罕。也许有人认为这种成绩不值一提。但在古代埃及作乘法却要用倍乘的方式呢。举个例子。如算23×13,就需要从23开始,加倍得到23×2,23×4,23×8,然后注意到13=1+4+8,于是23+23×4+23×8加起来的结果就是23×13。从比较中不难看出使用九九表的优越性了。 根据考古专家在湖南张家界古人堤汉代遗址出土的简牍上发现的汉代"九九乘法表",竟与现今生活中使用的乘法口诀表有着惊人的一致。这枚记载有"九九乘法表"的简牍是木质的,大约有22厘米长,残损比较严重。此前在湘西里耶古城出土的一枚秦简上也发现了距今2200多年的乘法口诀表,并被考证为中国现今发现的最早的乘法口诀表实物。 除了里耶秦简外,与张家界古人堤遗址发现的这枚简牍样式基本一致的"九九乘法表"还曾在楼兰文书中见到过,那是写在两张残纸上的九九乘法表,为瑞典探险家斯文赫定在上个世纪初期发掘。 乘法表在古代并非中国一家独有,古巴比伦的泥版书上也有乘法表。但汉字(包括数目字)单音节发声的特点,使之读起来朗朗上口;后来发展起来的珠算口诀也承继了这一特点,对于运算速度的提高和算法的改进起到一定作用。 负数的使用 人们在解方程或其它数的运算过程中,往往要碰到从较小数减去较大数的情形,另外,还遇到了增加与减小,盈余与亏损等互为相反意义的量,这样,人们自然地引进了负数。 负数的引进,是中国古代数学家对数学的一个巨大贡献。在我国古代秦、汉时期的算经《九章算术》的第八章"方程"中,就自由地引入了负数,如负数出现在方程的系数和常数项中,把"卖(收入钱)"作为正,则"买(付出钱)"作为负,把"余钱"作为正,则"不足钱"作为负。在关于粮谷计算的问题中,是以益实(增加粮谷)为正,损实(减少粮谷)为负等,并且该书还指出:"两算得失相反,要以正负以名之"。当时是用算筹来进行计算的,所以在算筹中,相应地规定以红筹为正,黑筹为负;或将算筹直列作正,斜置作负。这样,遇到具有相反意义的量,就能用正负数明确地区别了。 在《九章算术》中,除了引进正负数的概念外,还完整地记载了正负数的运算法则,实际上是正负数加减法的运算法则,也就是书中解方程时用到的"正负术"即"同名相除,异名相益,正无入正之,负无入负之;其异名相除,同名相益,正无入正之,负无入负之。"这段话的前四句说的是正负数减法法则,后四句说的是正负数加法法则。它的意思是:同号两数相减,等于其绝对值相减;异号两数相减,等于其绝对值相加;零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减;同号两数相加,等于其绝对值相加;零加正数得正数,零加负数得负数,当然,从现代数学观点看,古书中的文字叙述还不够严谨,但直到公元17世纪以前,这还是正负数加减运算最完整的叙述。 在国外,负数出现得很晚,直至公元1150年(比《九章算术》成书晚l千多年),印度人巴土卡洛首先提到了负数,而且在公元17世纪以前,许多数学家一直采取不承认的态度。如法国大数学家韦达,尽管在代数方面作出了巨大贡献,但他在解方程时却极力回避负数,并把负根统统舍去。有许多数学家由于把零看作"没有",他们不能理解比"没有"还要"少"的现象,因而认为负数是"荒谬的"。直到17世纪,笛卡儿创立了坐标系,负数获得了几何解释和实际意义,才逐渐得到了公认。 从上面可以看出,负数的引进,是我国古代数学家贡献给世界数学的一份宝贵财富。负数概念引进后,整数集和有理数集就完整地形成了。 圆周率的计算 圆周率是数学中最重要的常数之一。对它的计算,可以作为显示出一个国家古代数学发展的水平的尺度之一。而我国古代数学在这方面取得了令世人瞩目的成绩。 我国古代最初把圆周率取作3,这虽应用起来简便,但太不准确。在求准确圆周率值的征途中,首先迈出关键一步的是刘徽。他创立割圆术,用圆内接正多边形无限逼近圆而求取圆周率值。用这种方法他求得圆周率的近似值为,也有人认为他得到了更好的结果:。青出于蓝,而胜于蓝。后继者祖冲之利用割圆术得出了正确的小数点后七位。而且他还给出了约率与密率。密率的发现是数学史上卓越的成就,保持了一千多年的世界纪录,是一项空前杰作。2.阿拉伯数字并不是阿拉伯人最早发明的,而是最早起源于印度。据传早在公元七世纪时,阿拉伯人渐渐地征服了周围的其他民族,建立起一个东起印度,西到非洲北部及西班牙的萨拉森大帝国。到后来,这个大帝国又分裂成为东、西两个国家。由于两个国家的历代君主都注重文化艺术,所以两国的都城非常繁荣昌盛,其中东都巴格达更胜一筹。这样,西来的希腊文化,东来的印度文化,都汇集于此。阿拉伯人将两种文化理解并消化,形成了新的阿拉伯文化。大约在公元750年左右,有一位印度的天文学家拜访了巴格达王宫,把他随身带来的印度制作的天文表献给了当时的国王。印度数字1、2、3、4……以及印度式的计算方法,也就好似在这个时候介绍给了阿拉伯人。因为印度数字和计算方法简单又方便,所以很快就被阿拉伯人所接受了,并且逐渐地传播到欧洲各个国家。在漫长的传播过程中,印度创造的数字就被称为“阿拉伯数字”了。到后来,人们虽然弄清了“阿拉伯数字”的来龙去脉,但有大家早已习惯了“阿拉伯数字”这个叫法,所以也就沿用下来了。3.人类认识0早,还是认识1早。1、2、3、4……9、0称为“阿拉伯数字”。其实,这些数字并不是阿拉伯人创造的,它们最早产生于古代的印度。大约在公元750年左右,有一位印度的天文学家拜访了巴格达王宫,把他随身带来的印度制作的天文表献给了当时的国王。印度数字1、2、3、4……以及印度式的计算方法,也就在这个时候介绍给了阿拉伯人。因为印度数字和计算方法简单而又方便,所以很快就被阿拉伯人所接受了,并且逐渐地传播到欧洲各个国家。在漫长的传播过程中,印度创造的数字就被称为“阿拉伯数字”了。 由此可以看出,他们是同时被创造的。但我个人认为,人类是先认识1,因为初一的教科书上写着,负数是在人们的生产生活中产生的。人类应该是先发明了用1,2,3...数数,然后发现有东西没有了再用0表示,再发明了负数。4.数学中的符号+ - × ÷ ∧(表示乘方)√(开方)是有理数基本运算符号。 由于研究的需要,人类创造了大量的数学符号,来代替和表示某些数学概念和规律,简化了数学研究工作,促进了数学的发展。 在中学数学中,常见的数学符号有以下六种:一、数量符号 如,圆周率;a,x等。二、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或-),比号(:)等。三、关系符号如“=”是“等号”,读作“等于”;“≈”或“=”是“约等号”读作“约等于”;“≠”是“不等号”。读作“不等于”;“>”是“大于符号”,读作“大于”;“<”是“小干符号”,读作“小于”;“‖”是“平行符号”,读作“平行于”;“⊥”是“垂直符号”,读作“垂直于”等。四、结合符号 如小括号( ),中括号[ ],大括号{ }。五、性质符号 如正号(+)、负号(-),绝对值符号(||)。六、简写符号 如三角形(△),圆(⊙),幂()等。这些符号的产生,一是来源于象形,实际上是缩小的图形。如平行符号“‖”是两条平行的直线;垂直符号“⊥”是互相垂直的两条直线;三角形符号“△”是一个缩小了的三角形;符号“⊙”表示一个圆,中间的一点表示圆心,以免与数0及英文字母O混淆。二是来源于会意,即由图形就可以看出某种特殊的意义。如用两条长度相等的线段“=”并列在一起,表示等号;加一条斜线“≠”,表示不等号;用符号“>”表示大于(左侧大,右边小),“<”表示小于(左侧小,右边大),意思不难理解;用括号“( )”、“[ ]”、“{}”把若干个量结合在一起,也是不言而喻的。三是来源于文字的缩写。如我们以后将要学到的平方根号“”中的“√”,是从拉丁字母Radix(根值)的第一个字母r演变而来。相似符号“∽”是把拉丁字母S横过来写,而S是Sindlar(相似)的第一个字母。还有大量的符号是人们经过规定沿用下来的。当然这些符号并不是一开始就都是这种形状,而是有一个演变过程的,这里就不多讲了。数学符号的产生,为数学科学的发展提供了有利的条件。首先,提高了计算效率。古时候,由于缺少必要的数学符号,提出一个数学问题和解决这个问题的过程,只有用语言文字叙述,几乎象做一篇短文,难怪有人把它称为“文章数学”。这种表达形式很不方便,严重阻碍了数学科学的发展。当数量、图形之间的关系能够用适当的数学符号表达后,人们就可以在这个基础上,根据自己的需要,深入进行推理和计算,因而能更迅速地得到问题的解答或发现新的规律。其次,缩短了学习的时间。初等数学发展到今天,已有两千多年的历史,内容非常丰富,而其中主要的内容今天能够在小学和中学阶段学完,这里数学符号是起一定作用的。例如,我们的祖先开始只有1、2少数几个数字的概念,而今天幼儿园的小朋友就能掌握几十个这样的数。分析原因,除了古今生活条件不同,人们的见识差别极大以外,今天已有一套完整的记数符号,人们容易掌握。第三、推动了深入的研究。我们研究数学概念和规律,不仅需要简明、确切地表达它们,而对它们内部复杂的关系,需要深人地加以探讨,没有数学符号的帮助,进行这样的研究是十分困难的。所以,数学符号的应用,是多快好省地研究数学科学的重要途径。我国宋朝著名科学家沈括曾经说过,数学方法应该“见繁即变,见简即用”。数学符号正是适应这种变“繁”为“简”的实际需要而产生的。数学符号不仅随着数学发展的需要而产生,而且也随着数学的发展不断完善。比如,古代各民族都有自己的记数符号,但在长期使用过程中,印度——阿拉伯数码记数方法显示出更多的优点,因而其他的数码符号逐渐淘汰,国际上都采用了这种记数方法。
可以这样:a-b>0左右都加上b不等式依然成立则: a>b后面两个一样
代数是研究数、数量、关系与结构的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。初等基本内容三种数——有理数、无理数、复数三种式——整式、分式、根式中心内容是方程——整式方程、分式方程、根式方程和方程组。初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同。比如,严格的说,数的概念、排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的……。这些都只是历史上形成的一种编排方法。初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。代数运算的特点是只进行有限次的运算。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。规则五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方,底数不变,指数相乘;积的乘方等于乘方的积。初等代数学进一步的向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程。这时候,代数学已由初等代数向着高等代数的方向发展了。(1)a-b=0,a=b(2)a+b=0,a=-b,b=-a(3)a*b=0,a=0 或 b=0(4)a-b) (a-b)=0,a=b高等研究对象高等代数是代数学发展到高级阶段的总称,它包括许多分支。大学里开设的高等代数,一般包括两部分:线性代数初步 、多项式代数。高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也有很大的不同了。与线性代数的区别和联系很多人把高等代数和线性代数混为一谈,不明白其中的区别。高等代数是大学数学专业开设的专业课,线性代数是大学中除了数学专业以外的理科,工科和部分医科专业开设的课程
可以参阅兰道的《分析基础》,里面从5个皮亚诺公设出发严格证明了这些结论。
研究范围初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上。它的研究方法是高度计算性的。要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程。所以初等代数的一个重要内容就是代数式。由于事物中的数量关系的不同,大体上初等代数形成了整式、分式和根式这三大类代数式。代数式是数的化身,因而在代数中,它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算。通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算。在初等代数的产生和发展的过程中,通过解方程的研究,也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零。这是初等代数的又一重要内容,就是数的概念的扩充。有了有理数,初等代数能解决的问题就大大的扩充了。但是,有些方程在有理数范围内仍然没有解。于是,数的概念在一次扩充到了实数,进而又进一步扩充到了复数。那么到了复数范围内是不是仍然有方程没有解,还必须把复数再进行扩展呢?数学家们说:不用了。这就是代数里的一个著名的定理—代数基本定理。这个定理简单地说就是n次方程有n个根。1742年12月15日瑞士数学家欧拉曾在一封信中明确地做了陈述,后来另一个数学家、德国的高斯在1799年给出了严格的证明。把上面分析过的内容综合起来,组成初等代数的基本内容就是:三种数——有理数、无理数、复数三种式——整式、分式、根式中心内容是方程——整式方程、分式方程、无理方程和方程组。初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同。比如,严格的说,数的概念、排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的……。这些都只是历史上形成的一种编排方法。初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。代数运算的特点是只进行有限次的运算。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。十条规则初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。代数运算的特点是只进行有限次的运算。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;两条等式基本性质:等式两边同时加(减)上一个数,等式不变;等式两边同时乘(除)以一个非零的数,等式不变;三条指数律:同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方等于乘方的积。初等代数学进一步地向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程。这时候,代数学已由初等代数向着高等代数的方向发展了。
α,β是方程x²-3x+1=0的两根,则有α+β=3,αβ=1;1/β=αα²-3α+1=0,α²=3α-1∴ α^4=(α²)²=(3α-1)²=9α²-6α+1=9(3α-1)-6α+1=21α-83/β=3α∴α^4+3/β=(21α-8)+3α=8(3α-1)由方程解得 α=(3+√5)/2∴α^4+3/β=8(3α-1)=4(7+3√5)
一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r2,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r2=92∏+62∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r2=152∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。
可以这样:a-b>0左右都加上b不等式依然成立则: a>b后面两个一样
可以参阅兰道的《分析基础》,里面从5个皮亚诺公设出发严格证明了这些结论。
晕,初中就写论文了?还是数学的,有什么用啊
没什么格式,就像写作文一样。如题目:数学数学,数理人生 数学是这样一种东西:她提醒你有无形的灵魂,她赋予她发现的真理以生命;她唤起心神、澄清智慧;她给我们的内心思想增添光辉;她涤尽我们有生以来的蒙昧和无知。 数学方法的万能性与广泛性使它能够处理种类众多的问题,如空间的和运动的,机会的和概率的,统计的和社会科学的,艺术的和文学的,逻辑的和哲学的,音乐的和建筑的,政治的和战争的,食品的和医药的,遗传的和变异的,人类思维的和电脑的。 数学文化是是人类文明中的精华部分。数学提供了理性思维的范式,它可以使人的思维条理化和敏捷化。数学提供了完善的方法论,可以使人严密化、客观化,排除感情和偏见的介入,从而做出正确的判断。1.数学与对知识的探求。 我们首先问,有独立于人的物理世界存在吗?答案历来有两种。唯物主义认为,存在;而唯心主义认为,不存在。我们是唯物主义者,认为存在一个独立于人的客观世界。这正是我们研究的起点和探索的对象。 其次,自然要问,我们如何获取关于外部世界的知识呢?为了获取关于外部世界的知识,每一个人都不得不依靠自己的感官知觉。人类共有几种知觉?五种:视觉、听觉、触觉、味觉和嗅觉。亚里士多德认为,知识是感觉的结果。他说:“如果我们不能感觉任何事情,我们将不能学会或弄懂任何事情;无论我们何时何地思考什么事情,我们的头脑必然是在同一时间使用着那件事情的概念。”他还说:“感觉和感官经验是科学知识的基础。”那么,通过感官获取的知识正确吗?精确吗?要回答这两个问题,就要对我们日常的经验做些认真的考察了。因为我们日常的生活都是在经验的指导下进行的,也并没有出多少错。但是,当我们依着较高原则的标准,来推论,来思考,来反省事物的本性时,我们就会发现问题了。把一根棒的一部分放在水里,我们看到什么?我们将看到一根弯曲的棒。如果把一根直棒放在水里,也把一根弯棒放在水里,恐怕你很难辨别哪一个是直的吧?这说明,感官具有粗糙性,有时还具有欺性。更令人遗憾的是,许多重大的物理现象根本不是感官所能知觉到的: 有谁感到地球在自转,而且还绕太阳公转? 有谁感到行星受到太阳的引力,而绕太阳公转? 有谁感到电磁波的存在? 既然重大的物理现象不是感官所能知觉到的,那么人类是如何发现这些现象的呢?答案是借助数学这一强大的工具。在探索宇宙的奥秘中,数学是一个本质的、关键的、具有穿透力的工具。事实上,数学方法的运用是科学和前科学的分水岭。例如,静电吸引的现象,虽然古人早就知道,但是直到库仑定律发表的时候,电学才进入科学的行列。2. 数学的精神。正如克莱因所指出的:“数学是一种精神,一种理性精神。正是这种精神激发、促进、鼓舞并驱使人类的思维运转到最完善的程度,也正是这种精神试图决定性地影响人类的物质、道德和社会生活;试图回答人类自身提出的问题:努力去理解和控制自然;尽力去探求和确立已经获得的知识的最深刻和最完美的内涵”。因此,充分认识数学精神及其价值,实现数学与人文的结合是当前素质教育的首要目标。现在,我们对数学本身作些考察。因为,如果对数学本身的认识不本质、不全面、不系统,我们不可能学好和教好数学。3.五个质不同的时期。 数学史大致可以分为五个质不同的时期。精确地区分这些阶段是不可能的,因为每一个阶段的本质特征都是在前一阶段中酝酿形成的。 第一个时期——数学形成时期.这是人类建立最基本的数学概念的时期.人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最简单的几何形式,逐步地形成了理论与证明之间的逻辑关系的“纯粹”数学.算术与几何还没有分开,彼此紧密地交织着.� 第二个时期称为初等数学,即常量数学的时期.这个时期的最基本的、最简单的成果构成现在中学数学的主要内容.它从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年,逐渐形成了初等数学的主要分支: 算术、几何、代数、三角. 这时的几何学以现实世界中的形的关系为主要研究对象。它的主要成果就是欧几里得的《几何原本》及其延续。《几何原本》把几何学的研究推到了高度系统化和理论化的境界,使得人们对于空间的认识和理解在深度上和广度上都大大前进了一步,这是整个人类文明发展史上最辉煌的一页。代数学则研究数的运算。这里的数指自然数、有理数、无理数,并开始包含虚数。解方程的学问在这个时期的代数学中居中心地位。 第三个时期是变量数学的时期.从17世纪开始的数学的新时期——变量数学时期,可以定义为数学分析出现与发展的时期.变量数学建立的第一个决定性步骤出现在1637年笛卡儿的著作《几何学》.这本书奠定了解析几何的基础,它一出现,变量就进入了数学,从而运动进入了数学.恩格斯指出:“数学中的转折点是笛卡儿的变数.有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了……”在这个转折以前,数学中占统治地位的是常量,而在这之后,数学转向研究变量了.变量数学发展的第二个决定性步骤是牛顿和莱布尼茨在17世纪后半叶建立了微积分. 第四个时期为公理化数学时期.19世纪初,数学发生了质的变化,开始了从变量的数学向公理化数学的过渡。主要体现在下面几个方面:数学的研究对象发生了质的变化。在19世纪之前,数学本质上只涉及两个常识性的概念:数和形。此后数学的研究范围大大地扩展了,数学不必把自己限制于数和形,数学可以有效地研究任何事物,例如,向量、矩阵、变换、运动等,而这些事物常常以某种方式与数和形发生关联。数学与现实世界的关系也发生了质的变化。这之前,经验是公理的唯一来源,实际上,当时只有一套公理体系——欧氏几何学的公理体系;这之后,数学开始有意识地背离经验。这之前,数学研究经验世界,那时只存在一种几何学—欧氏几何学;这之后,数学研究可能世界,出现了多种几何学:欧氏几何学、双曲几何学;椭圆几何学、拓扑学等。人类的思维可以自由创造新的公理体系。数学的抽象程度进入更高的阶段。数学常常被看作逻辑过程,并不与哪个特别的事物相关。这就引出了20世纪初罗素的数学定义:数学可以定义为这样一门学科:我们不知道在其中我们说的是什么,也不知道我们说的是否正确。数学家不知道自己所说的是什么,因为纯数学与实际意义无关;数学家不知道自己所说的是否正确,因为作为一个数学家,他不去证实一个定理是否与物质世界相符,他只问推理是否正确。 第五个时期为信息时代的数学。计算机的诞生和广泛使用使数学进入了一个新的时代。几乎同时,信息论和控制论也诞生了,数学迎来了一个新高潮。信息时代,就是以计算机来代替原来由人来从事的信息加工的时代。由于计算机的应用,需要数学更加自觉,更加广泛地深入到人类活动的一切领域。“数学工作”的含义已经发生深刻的变化。信息加工时代的数学工作包括 数学研究工作,数学工程工作和数学生产工作。 数学研究工作有了新的含义。它研究的领域大大扩大了。数学模型具有更大的意义。 数学工程是指需要有数学知识、数学训练的人来从事的信息工程。计算机的软件工程就是一类数学工程,但不限于此,机器证明也属于数学工程。数学生产是实现数学工程,形成产品的工作,就是软件生产。由于数学工程和数学生产的发展,建立数学模型的工作有了更为广泛的需要。并且,离散数学处于更加重要的地位。4.四个高峰期。从前面的论述可以看出,在整个数学史上出现了四个高蜂期。1) 欧几里得《几何原本》的诞生。数学从经验的积累变成了一门理论科学,数学科学形成了。2) 解析几何与微积分的诞生。这使人们在认识和利用自然规律方面大大地前进一步,使力学、物理学有了强有力的工具。引起了整个科学的繁荣。3) 公理化的数学诞生于19世纪末与20世纪初,数学进入成熟期:巩固了自身的基础,并发现了自身的局限性。4) 与计算机结合的当代数学进入更加广阔的领域,并影响到人类文明的一切领域,数学进入新的黄金时代。5.六次飞跃。数学不只是算法和证明,它分出了层次。数学思想的发展,数学领域的扩大呈现了六次大的飞跃。从数字运算到符号运算的飞跃,这就是从算术到代数学的发展。发生在16到17世纪。数学符号的诞生到今天不到400年,但是它大大地促进了数学的发展。从常量数学到变量数学的飞跃,这就是微积分的诞生。出现在17世纪。微积分的诞生对科学技术的发展带来了根本性的影响。可以说是现代世界和古代世界的分水岭。最突出的是航天时代的到来和信息时代的到来。从研究运算到研究结构的飞跃。这主要体现在抽象代数学的诞生。发生在19世纪。这使得数学的研究对象超越了数和形的藩篱,从而研究更加广泛的对象。从必然性数学到或然性数学的飞跃。这就是概率论和统计学的诞生。虽然这两门学科诞生得相当早,但它们的成熟发展却是在20世纪。这个学科促使人们的思考方式发生了新的飞跃。使传统的一一对应的因果关系转变为以统计学作基础。这深刻地影响了理论与经验资料相互联系的方式。从线性到非线性的飞跃。非线性科学的诞生和发展是在20世纪。混沌学的诞生是一个重要标志。混沌是指,由定律支配的无定律状态。数学家梅在1976年说:“不仅学术界,而且在日常的政治学界和经济学界里,要是更多的人认识到,简单的系统不一定具有简单的动力学性质,我们的状况会更好些。“从明晰数学到模糊数学的飞跃。出现在20世纪。当我们综观数学思想这些飞跃发展的时候,我们会有沧海桑田之感。正象一个修仙人,若干年后回到自己的家乡,发现一切都变了:惟有门前鉴池水,春风不改旧时波。我们会感到,旧的课本合上了。我们在学校所学的知识,已经随着新的发明和发现而变得陈旧了。“科学所带来的最大变化是变化的激烈程度。科学所带来最新奇的事是它的新奇程度。”所以,我们面临的现实是,请君莫奏前朝曲,听唱新翻杨柳枝。6.数学的特点。数学区分于其它学科的明显特点有三个:第一是它的抽象性,第二是它的精确性,第三是它的应用的极端广泛性。抽象性。抽象不是数学独有的特性,任何一门科学都具有这一特性。因此,单是数学概念的抽象性还不足以说尽数学抽象的特点。数学抽象的特点在于:第一,在数学的抽象中只保留量的关系和空间形式而舍弃了其它一切;第二,数学的抽象是一级一级逐步提高的,它们所达到的抽象程度大大超过了其它学科中的一般抽象;第三,数学本身几乎完全周旋于抽象概念和它们的相互关系的圈子之中。如果自然科学家为了证明自己的论断常常求助于实验,那么数学家证明定理只需用推理和计算。这就是说,不仅数学的概念是抽象的、思辨的,而且数学的方法也是抽象的、思辨的。数学的抽象性帮助我们抓住事物的共性和本质。维钠说:“ 数学让人们抓住本质而忽略非本质的东西。数学也容许人们在不同的领域提出相同的问题,而不必囿于某一特定专业领域。对那些视野开阔、敏感严谨的数学家而言,数学无疑是发现和发明的工具。”关于抽象的作用,数学家辛富() 说:数学之所以能够以令人吃惊的程度深入到科学和技术的每一个分支中去,其原因在于数学的思想是纯粹抽象的,而抽象化正是科学和技术的主要动力。数学越是远离现实(即走向抽象),它就越靠近现实。因为不管它显得多么抽象,它归根到底还是从某些现实范围中抽象出来的,一定的本质特征的具体表现。数学的抽象性帮助我们抓住事物的共性和本质。正是数学的抽象性使得数学能够处理种类众多的问题,如空间的和运动的,机会的和概率的,艺术的和文学的,音乐的和建筑的,战争的和政治的,食物的和医药的,遗传的和继承的,人类思维的和电脑的等。数学的抽象性显示了思维的广阔性:越抽象的东西,应用的领域就越广。抽象的另一个作用是不断地对日益扩大的数学知识总体进行简化和统一化。数学的精确性表现在数学定义的准确性、推理和计算的逻辑严格性和数学结论的确定无疑与无可争辩性。当然,数学的严格性不是绝对的、一成不变的,而是相对的、发展着的,这正体现了人类认识逐渐深化的过程。数学中的严谨推理和一丝不苟的计算,使得每一个数学结论都是牢固的、不可动摇的。这种思想方法不仅培养了科学家,而且它也有助于提高人的科学文化素质,它是全人类共同的精神财富。爱因斯坦说:“为什么数学比其它一切科学受到特殊的尊重?一个理由是,它的命题是绝对可靠的和无可争辩的,而其它一切科学的命题在某种程度上都是可争辩的,并且经常处于被新发现的事物推翻的危险之中。…数学之所以有高声誉,还有一个理由,那就是数学给精密自然科学以某种程度的可靠性,没有数学,这些科学是达不到这种可靠性的。”数学的精确性是思维严谨性的典范。数学应用的极其广泛性也是它的特点之一。正像已故著名数学家华罗庚教授曾指出的,宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,数学无处不在,凡是出现“量”的地方就少不了用数学,研究量的关系,量的变化,量的变化关系,量的关系的变化等现象都少不了数学。数学之为用贯穿到一切科学部门的深处,而成为它们的得力助手与工具,缺少了它就不能准确地刻画出客观事物的变化,更不能由已知数据推出其它数据,因而就减少了科学预见的。N.布特勒说:“现代数学,这个最令人惊叹的智力创造,已经使人类心灵的目光穿过无限的时间,使人类心灵的手延伸到了无边无际的空间。”数学应用的广泛性是思维广阔性的具体体现。7.数学的教育价值。首先,数学的抽象性使得数学问题的解决伴随着困难。在解决数学问题的过程中,使学生体验到挫折和失败,而这正是砥砺意志和打磨心理品质的绝好时机。愈挫愈奋,百折不挠的良好心理素质不会在温室中形成。如果学生在学校里没有尝尽为求解问题而奋斗的喜怒哀乐,那么数学教育就在一个重要的地方失败了。记住马克思的话:“在科学上是没有平坦大道可走的,只有在崎岖的攀登上不畏劳苦的人,才有希望达到光辉的顶点。”其次,数学的严密性和精确性可以使学生在将来的工作中减少随意性。英国律师至今要在大学中学习许多数学知识,并不是律师工作要多少数学,而是出于这样一种考虑:经过严格的数学训练可以使人养成一种独立思考而又客观公正的办事风格和严谨的学术品格。数学教育是培养学生诚信观念的重要渠道之一。在数学课上形成的诚信观是持久的,根深蒂固的。前苏联的数学家辛钦说:“数学教学一定会慢慢地培养青年人树立起一系列具有道德色彩的特性,这种特性中包括正直和诚实。”再次,数学是思想的体操。进行数学推导和演算是锻炼思维的智力操。这种锻炼能够增强思维本领,提高抽象能力、逻辑推理能力和辨证思维能力,培养思维的灵活性和批判性。思维的灵活性表现在不受思维定式的束缚,能迅速地调整思维方向,并善于从旧的或传统的思维轨道上跳出来,另辟蹊径。数学中的一题多解是培养思维灵活性的有效途径。思维的批判性指,对论证和解答提出自己的看法。数学中常用的反证法和构造反例是思维批判性的具体表现。数学不仅仅是一种工具,它更是一个人必备的素养。它会影响一个人的言行、思维方式等各个方面。一个人,如果他不是以数学为终生职业,那么他的数学素养并只不表现在他能解多难的题,解题有多快,数学能考多少分,关键在于他是否真正领会了数学的思想,数学的精神,是否将这些思想融会到他的日常生活和言行中去。日本的米山国藏说:“我搞了多年的数学教育,发现学生们在初中、高中接受的数学知识因毕业了进入社会后,几乎没有什么机会应用这些作为知识的数学,所以通常是出校门不到一、两年就很快忘掉了。然而,不管他们从事什么业务工作,惟有深深铭刻于头脑中的数学精神,数学的思维方法,研究方法和着眼点等,都随时随地发生作用,使他们受益终生。”数学还有另外的作用。数学家狄尔曼说:“数学能集中、强化人们的注意力,能够给人以发明创造的精细和谨慎的谦虚精神,能够激发人们追求真理的勇气和信心,…数学更能锻炼和发挥人们独立工作精神。”数学已成为现代人的基本素养。这是一篇标准的数学论文,你可以参造其中的论述方式。你可以像文稿中一样分条陈述,可以引用一些名句或例子来充实文章。至于叫我写,怕不如你意,慢慢来总会写好的。
如何学写数学小论文 “ 写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。 (1) 写什么 写小论文的关键,首先就是选题,同学们都是初中一、二年级的学生,受年龄、知识、生活阅历的局限,因此,大家的选题要从自己最熟悉的、最想写的内容入手。 下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。 论文按内容分类,大概有以下几种: ①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测; 如:探究大桥的热胀冷缩度 ②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它; 如: 一台饮水机创造的意想不到的实惠 ③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法 如: 分式“家族”中的亲缘探究 如: 纸飞机里的数学 ④对自己数学学习的某个章节、或某个内容的体会与反思 如: “没有条件”的推理 如: 小议“黄金分割” 如: 奇妙的正五角星 (2) 怎样写 ① 课题要小而集中,要有针对性; ② 见解要真实、独特,有感而发,富有新意; ③ 要用自己的语言表述自己要表达的内容 (四) 评价数学小论文的标准 什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。 “梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与创新论文大赛的活动与交流,并取得好成绩。祝愿今后有更多更好的数学小论文,在同学们的手中诞生;愿有更多的同学从学写数学小论文开始起飞,在今后的人生之路上书写出更多的高水平、高质量的论文。 例子:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
浅谈数学的文化价值一、数学:打开科学大门的钥匙 科学史表明,一些划时代的科学理论成就的出现,无一不借助于数学的力量。早在古代,希腊的毕达哥拉斯(Pythagoras)学派就把数看作万物之本源。享有“近代自然科学之父”尊称的伽利略(G. Galileo)认为,展现在我们眼前的宇宙像一本用数学语言写成的大书,如不掌握数学的符号语言,就像在黑暗的迷宫里游荡,什么也认识不清。物理学家伦琴( @①ntgen)因发现了X射线而成为1910 年开始的诺贝尔物理奖的第一位获得者。当有人问这位卓越的实验物理学家科学家需要什么样的修养时,他的回答是:第一是数学,第二是数学,第三还是数学。对计算机的发展做出过重大贡献的冯·诺依曼( )认为“数学处于人类智能的中心领域”。他还指出:“数学方法渗透进支配着一切自然科学的理论分支,……它已愈来愈成为衡量成就的主要标志。” 科学家们如此重视教学,他们述说的这些切身经验和坚定的信念,如果从哲学的层次来理解,其实就是说,任何事物都是量和质的统一体,都有自身的量的方面的规律,不掌握量的规律,就不可能对各种事物的质获得明确清晰的认识。而数学正是一门研究“量”的科学,它不断地在总结和积累各种量的规律性,因而必然会成为人们认识世界的有力工具。 马克思曾明确指出:“一门科学只有当它达到了能够成功地运用数学时,才算真正发展了。”这是对数学作用的深刻理解,也是对科学化趋势的深刻预见。事实上,数学的应用越来越广泛,连一些过去认为与数学无缘的学科,如考古学、语言学、心理学等现在也都成为数学能够大显身手的领域。数学方法也在深刻地影响着历史学研究,能帮助历史学家做出更可靠、更令人信服的结论。这些情况使人们认为,人类智力活动中未受到数学的影响而大为改观的领域已寥寥无几了。 二、数学:科学的语言 有不少自然科学家、特别是理论物理学家都曾明确地强调了数学的语言功能。例如,著名物理学家玻尔()就曾指出:“数学不应该被看成是以经验的积累为基础的一种特殊的知识分支,而应该被看成是普通语言的一种精确化,这种精确化给普通语言补充了适当的工具来表示一些关系,对这些关系来说普通字句是不精确的或过于纠缠的。严格说来,量子力学和量子电动力学的数学形式系统,只不过给推导关于观测的预期结果提供了计算法则。”(注:《原子物理学和人类知识论文续编》,商务印书馆1978年版。)狄拉克( )也曾写道:“数学是特别适合于处理任何种类的抽象概念的工具,在这个领域内,它的力量是没有限制的。正因为这个缘故,关于新物理学的书如果不是纯粹描述实验工作的,就必须基本上是数学性的。”(注:狄拉克《量子力学原理》,科学出版社1979年版。)另外,爱因斯坦()则更通过与艺术语言的比较专门论述了数学的语言性质,他写道:“人们总想以最适当的方式来画出一幅简化的和易领悟的世界图像;于是他就试图用他的这种世界体系来代替经验的世界,并来征服它。这就是画家、诗人、思辨哲学家和自然科学家所做的,他们都按照自己的方式去做。……理论物理学家的世界图象在所有这些可能的图象中占有什么地位呢?它在描述各种关系时要求尽可能达到最高标准的严格精确性,这样的标准只有用数学语言才能做到。”(注:《爱因斯坦文集》第1卷,商务印书馆1976年版。) 一般地说,就像对客观世界量的规律性的认识一样,人们对于其他各种自然规律的认识也并非是一种直接的、简单的反映,而是包括了一个在思想中“重新构造”相应研究对象的过程,以及由内在的思维构造向外部的“独立存在”的转化(在爱因斯坦看来,“构造性”和“思辨性”正是科学思想的本质的思想);就现代的理论研究而言,这种相对独立的“研究对象”的构造则又往往是借助于数学语言得以完成的(数学与一般自然科学的认识活动的区别之一就在于:数学对象是一种“逻辑结构”,一般的“科学对象”则可以说是一种“数学建构”),显然,这也就更为清楚地表明了数学的语言性质。 数学作为一种科学语言,还表现在它能以其特有的语言(概念、公式、法则、定理、方程、模型、理论等)对科学真理进行精确和简洁的表述。如著名物理学家、数学家麦克斯韦(J. C. Maxwell )的麦克斯韦方程组,预见了电磁波的存在,推断出电磁波速度等于光速,并断言光就是一种电磁波。这样,麦克斯韦创立了系统的电磁理论,把光、电、磁统一起来,实现了物理学上重大的理论结合和飞跃。还有黎曼(Riemann )几何和不变量理论为爱因斯坦发现相对论提供了绝妙的描述工具。而边界值数学理论使本世纪二三十年代的远距离原子示波器的制成变为现实。矩阵理论为本世纪20年代海森堡(W. K. Heisenberg)和狄拉克引起的物理学革命奠定了基础。 随着社会的数学化程度日益提高,数学语言已成为人类社会中交流和贮存信息的重要手段。如果说,从前在人们的社会生活中,在商业交往中,运用初等数学就够了,而高等数学一般被认为是科学研究人员所使用的一种高深的科学语言,那么在今天的社会生活中,只懂得初等数学就会感到远远不够用了。事实上,高等数学(如微积分、线性代数)的一些概念、语言正在越来越多地渗透到现代社会生活各个方面的各种信息系统中,而现代数学的一些新的概念(如算子、泛函、拓扑、张量、流形等)则开始大量涌现在科学技术文献中,日渐发展成为现代的科学语言。 三、数学:思维的工具 数学是任何人分析问题和解决问题的思想工具。这是因为:首先,数学具有运用抽象思维去把握实在的能力。数学概念是以极度抽象的形式出现的。在现代数学中,集合、结构等概念,作为数学的研究对象,它们本身确是一种思想的创造物。与此同时,数学的研究方法也是抽象的,这就是说数学命题的真理性不能建立在经验之上,而必须依赖于演绎证明。数学家像是生活在一个抽象的数学王国中,然而他们在数学王国的种种发现,即数学结构内部和各种结构之间的规律性的东西,最终还是现实的摹写。而数学应用于实际问题的研究,其关键还在于能建立一个较好的数学模型。建立数学模型的过程,是一个科学抽象的过程,即善于把问题中的次要因素、次要关系、次要过程先撇在一边,抽出主要因素、主要关系、主要过程,经过一个合理的简化步骤,找出所要研究的问题与某种数学结构的对应关系,使这个实际问题转化为数学问题。在一个较好的数学模型上展开数学的推导和计算,以形成对问题的认识、判断和预测。这就是运用抽象思维去把握现实的力量所在。 其次,数学赋予科学知识以逻辑的严密性和结论的可靠性,是使认识从感性阶段发展到理性阶段,并使理性认识进一步深化的重要手段。在数学中,每一个公式、定理都要严格地从逻辑上加以证明以后才能够确立。数学的推理步骤严格地遵守形式逻辑法则,以保证从前提到结论的推导过程中,每一个步骤都在逻辑上准确无误。所以运用数学方法从已知的关系推求未知的关系时,所得结论有逻辑上的确定性和可靠性。数学的逻辑严密性还表现在它的公理化方法上。以理性认识的初级水平发展到更高级的水平,表现在一个理论系统还需要发展到抽象程度更高的公理化系统,通过数学公理化方法,找出最基本的概念、命题,作为逻辑的出发点,运用演绎理论论证各种派生的命题。牛顿所建立的力学系统则可看成自然科学中成功应用公理化方法的典型例子。 第三,数学也是辩证的辅助工具和表现方式。这是恩格斯()对数学的认识功能的一个重要论断。在数学中充满着辩证法,而且有自己特殊的表现方式,即用特殊的符号语言,简明的数学公式,明确地表达出各种辩证的关系和转化。如牛顿(I. Newton )—莱布尼兹(G. W. Leibniz )公式描述了微分和积分两种运算之间的联系和相互转化,概率论和数理统计表现了事物的必然性与偶然性的内在关系等等(注:孙小礼《数学:人类文化的重要力量》,《北京大学学报》(哲学社会科学版),1993年第1期。)。 最后,值得指出的是,数学还是思维的体操。这种思维操练,确实能够增强思维本领,提高科学抽象能力、逻辑推理能力和辩证思维能力