浅谈重金属检测传感器技术的应用论文
摘要: 随着经济的迅猛发展和社会的日新月异, 人们对重金属的开采及加工越来越频繁, 这使得不少重金属存在于大气水以及土壤中, 在很大程度上加重了环境污染, 科学技术的迅猛发展为重金属检测传感器技术的研究提供了很好的途径。针对上述背景下, 对重金属检测传感器技术研究与应用进行合理性阐述, 以促进重金属检测传感器技术的进一步发展。
关键词: 重金属检测; 传感器技术; 环境污染;
重金属污染是环境污染的一个重要组成部分, 重金属在自然界中广泛存在, 随着人类的开采、冶炼、加工活动而使得重金属转变成化学状态或化学形态广泛分布于大气、水、土壤中, 随着时间的积累而不断留存、迁移, 从而引发严重的环境污染问题;重金属甚至还会随着废水的排出而流入海洋中, 对鱼和贝类造成严重的危害;重金属还会附着在人类的鼻腔和食物上, 造成人类呼吸道感染和重金属中毒[1]。重金属具有沉积性和不可降解性, 是一种非常危险的污染源, 因此对于重金属的研究与检测是十分关键的。通过调查与研究, 发现重金属检测传感器技术主要分为离子选择性电极传感器技术、光纤化学传感器技术、生物传感器技术以及微电极矩阵传感器技术四个方面, 本文通过对这四种传感器技术在重金属检测中的研究与应用作简要分析, 以推动重金属检测传感器技术的发展。
1 离子选择性电极传感器技术。
离子选择性电极传感器技术是一种操作简单、性价比高、准确有效的重金属检测传感器技术。离子选择性电极传感器技术因为不需要提前对样品进行操作而被广泛应用于重金属的在线检测中。目前, 国内外学者对离子选择性电极传感器技术进行了大量的研究, 发现选择性高、经济简单的离子选择性电极主要分为基于聚氯乙烯膜的离子选择性电极和基于流系玻璃膜的离子选择性电极两种[2]。
基于聚氯乙烯膜的离子选择性电极。
目前在对基于聚氯乙烯膜的离子选择性电极的研究中, 主要是对离子选择性电极的重金属离子的识别以及聚氯乙烯膜的结构和性能进行研究, 同时, 对不同的载体和膜增塑剂对离子选择性电极性能的影响作简要分析, 从而提高对重金属的识别能力。
基于流系玻璃膜的离子选择性电极。
基于硫系玻璃膜的离子选择性电极良好的红外线透过性是其他离子选择性电极无法相提并论的。许多发达国家都通过购买硫系玻璃膜的离子选择性电极来用于重金属检测工作。
2 光纤化学传感器技术。
对于光纤化学传感器技术的研究比离子选择性电极传感器技术的研究还要早, 光纤化学传感器技术的研究始于美国研究所, 从那以后, 许多国家都在实验室中对光纤化学传感器技术进行研究, 并应用到重金属检测中。陈雷等人对基于聚氯乙烯膜的光纤传感器进行研究并应用到铜离子的检测中, 取得了良好的效果[3]。李学强等人将注册分析法和激光激发荧光光谱技术应用到对金属离子传感器的研制中, 使我国饮用水中的重金属检测工作取得了很大的进展。
3 生物传感器技术。
第一个生物传感器始于Red String仪器公司。之后, 又在多个公司相继推出, 这些生物传感器主要是对人类血糖和尿糖中的重金属物质进行检测。重金属物质在人体中的留存和迁移会对人体的健康造成极大的威胁, 生物传感器可以与人体生物识别因素相互影响, 以达到对人体中的重金属含量进行检测, 从而预防重金属中毒的目的。通过研究发现, 生物传感器主要分为蛋白质为基础的'生物传感器以及整个细胞为基础的重金属传感器两种。
蛋白质为基础的生物传感器。
生物识别因素主要是促进消化的酶、防止病毒入侵的抗体、增强体质的金属键键合蛋白以及脱辅基酶蛋白质。以这几种生物识别因素为基础制作蛋白质为基础的生物传感器, 用来检测铜离子、锌离子、汞离子以及铅离子等金属离子。传统的生物传感器存在灵敏度低、选择性差等一系列缺点, 因此必须研制出选择性高的新型传感器来实现对重金属离子的检测, 这种新型传感器被称为蛋白质为基础的生物传感器。
整个细胞为基础的重金属传感器。
整个细胞为基础的重金属传感器可以实现对微型有机体生物标识的检测, 它具有所受干扰因素少、反应速度快等一系列优点, 可以实现对苔藓、海藻、酵母等海洋生物中的重金属的检测。随着生物医学和环境工程的蓬勃发展, 可以通过改进主传感器的途径来解决重金属检测过程中的干扰问题, 即在基因层次上设计细胞器。
4 结语。
综上所述, 本文通过对重金属检测传感器技术研究与应用进行分析, 主要从离子选择性电极传感器技术、光纤化学传感器技术、生物传感器技术以及微电极矩阵传感器技术这四个方面作简要分析, 为传感器检测技术在重金属中的研究与应用提供理论支持, 以减少重金属污染现象的发生。
参考文献
[1]张涛, 苏倡, 刘艳, 等.泥蚶 (Tegillarca granosa) 重组铁蛋白富集重金属离子的特性及化学传感器的研究[J].海洋与湖沼, 2017, 48 (4) :870-876.
[2]吕攀攀, 肖芳兰, 严锡娟, 等.构建一种基于双启动子模型的特异性检测镉离子的大肠杆菌传感器[J].生物工程学报, 2015, 31 (11) :1601-1611.
[3]贾朔.边超, 佟建华, 等.基于纳米金Core-satellites等离子体耦合增强效应的汞离子光纤传感器的研究[J].分析化学, 2017, 45 (6) :785-790.
参考下: 进入21世纪后,特别在我国加入WTO后,国内产品面临巨大挑战。各行业特别是传统产业都急切需要应用电子技术、自动控制技术进行改造和提升。例如纺织行业,温湿度是影响纺织品质量的重要因素,但纺织企业对温湿度的测控手段仍很粗糙,十分落后,绝大多数仍在使用干湿球湿度计,采用人工观测,人工调节阀门、风机的方法,其控制效果可想而知。制药行业里也基本如此。而在食品行业里,则基本上凭经验,很少有人使用湿度传感器。值得一提的是,随着农业向产业化发展,许多农民意识到必需摆脱落后的传统耕作、养殖方式,采用现代科学技术来应付进口农产品的挑战,并打进国外市场。各地建立了越来越多的新型温室大棚,种植反季节蔬菜,花卉;养殖业对环境的测控也日感迫切;调温冷库的大量兴建都给温湿度测控技术提供了广阔的市场。我国已引进荷兰、以色列等国家较先进的大型温室四十多座,自动化程度较高,成本也高。国内正在逐步消化吸收有关技术,一般先搞调温、调光照,控通风;第二步搞温湿度自动控制及CO2测控。此外,国家粮食储备工程的大量兴建,对温湿度测控技术提也提出了要求。 但目前,在湿度测试领域大部分湿敏元件性能还只能使用在通常温度环境下。在需要特殊环境下测湿的应用场合大部分国内包括许多国外湿度传感器都会“皱起眉头”!例如在上面提到纺织印染行业,食品行业,耐高温材料行业等,都需要在高温情况下测量湿度。一般情况下,印染行业在纱锭烘干中,温度能达到120摄氏度或更高温度;在食品行业中,食物的烘烤温度能达到80-200摄氏度左右;耐高温材料,如陶瓷过滤器的烘干等能达到200摄氏度以上。在这些情况下,普通的湿度传感器是很难测量的。 高分子电容式湿度传感器通常都是在绝缘的基片诸如玻璃、陶瓷、硅等材料上,用丝网漏印或真空镀膜工艺做出电极,再用浸渍或其它办法将感湿胶涂覆在电极上做成电容元件。湿敏元件在不同相对湿度的大气环境中,因感湿膜吸附水分子而使电容值呈现规律性变化,此即为湿度传感器的基本机理。影响高分子电容型元件的温度特性,除作为介质的高分子聚合物的介质常数ε及所吸附水分子的介电常数ε受温度影响产生变化外,还有元件的几何尺寸受热膨胀系数影响而产生变化等因素。根据德拜理论的观点,液体的介电常数ε是一个与温度和频率有关的无量纲常数。水分子的ε在T=5℃时为,在T=20℃时为。有机物ε与温度的关系因材料而异,且不完全遵从正比关系。在某些温区ε随T呈上升趋势,某些温区ε随T增加而下降。多数文献在对高分子湿敏电容元件感湿机理的分析中认为:高分子聚合物具有较小的介电常数,如聚酰亚胺在低湿时介电常数为一。而水分子介电常数是高分子ε的几十倍。因此高分子介质在吸湿后,由于水分子偶极距的存在,大大提高了吸水异质层的介电常数,这是多相介质的复合介电常数具有加和性决定的。由于ε的变 化,使湿敏电容元件的电容量C与相对湿度成正比。在设计和制作工艺中很难组到感湿特性全湿程线性。作为电容器,高分子介质膜的厚度d和平板电容的效面积S也和温度有关。温度变化所引起的介质几何尺寸的变化将影响C值。高分子聚合物的平均热线胀系数可达到 的量级。例如硝酸纤维素的平均热线胀系数为108x10-5/℃。随着温度上升,介质膜厚d增加,对C呈负贡献值;但感湿膜的膨胀又使介质对水的吸附量增加,即对C呈正值贡献。可见湿敏电容的温度特性受多种因素支配,在不同的湿度范围温漂不同;在不同的温区呈不同的温度系数;不同的感湿材料温度特性不同。总之,高分子湿度传感器的温度系数并非常数,而是个变量。所以通常传感器生产厂家能在-10-60摄氏度范围内是传感器线性化减小温度对湿敏元件的影响。 国外厂家比较优质的产品主要使用聚酰胺树脂,产品结构概要为在硼硅玻璃或蓝宝石衬底上真空蒸发制作金电极,再喷镀感湿介质材料(如前所述)形式平整的感湿膜,再在薄膜上蒸发上金电极.湿敏元件的电容值与相对湿度成正比关系,线性度约±2%。虽然,测湿性能还算可以但其耐温性、耐腐蚀性都不太理想,在工业领域使用,寿命、耐温性和稳定性、抗腐蚀能力都有待于进一步提高。 陶瓷湿敏传感器是近年来大力发展的一种新型传感器。优点在于能耐高温,湿度滞后,响应速度快,体积小,便于批量生产,但由于多孔型材质,对尘埃影响很大,日常维护频繁,时常需要电加热加以清洗易影响产品质量,易受湿度影响,在低湿高温环境下线性度差,特别是使用寿命短,长期可靠性差,是此类湿敏传感器迫切解决的问题。 当前在湿敏元件的开发和研究中,电阻式湿度传感器应当最适用于湿度控制领域,其代表产品氯化锂湿度传感器具有稳定性、耐温性和使用寿命长多项重要的优点,氯化锂湿敏传感器已有了五十年以上的生产和研究的历史,有着多种多样的产品型式和制作方法,都应用了氯化锂感湿液具备的各种优点尤其是稳定性最强。 氯化锂湿敏器件属于电解质感湿性材料,在众多的感湿材料之中,首先被人们所注意并应用于制造湿敏器件,氯化锂电解质感湿液依据当量电导随着溶液浓度的增加而下降。电解质溶解于水中降低水面上的水蒸气压的原理而实现感湿。 氯化锂湿敏器件的衬底结构分柱状和梳妆,以氯化锂聚乙烯醇涂覆为主要成份的感湿液和制作金质电极是氯化锂湿敏器件的三个组成部分。多年来产品制作不断改进提高,产品性能不断得到改善,氯化锂感湿传感器其特有的长期稳定性是其它感湿材料不可替代的,也是湿度传感器最重要的性能。在产品制作过程中,经过感湿混合液的配制和工艺上的严格控制是保持和发挥这一特性的关键。 在国内九纯健科技依托于国家计量科学研究院、中科院自动化研究所、化工研究院等大型科研单位从事温湿度传感器产品的研制、生产。选用氯化锂感湿材料作为主攻方向,生产氯化锂湿敏传感器及相关变送器,自动化仪表等产品,在吸取了国内外此项技术的成功经验的同时,努力克服传统产品存在的各项弱点,取得实质性进展。产品选用了Al2O3及SiO2陶瓷基片为衬底,基片面积大大缩小,采用特殊的工艺处理,耐湿性和粘覆性均大大提高。使用烧结工艺,在衬底集片上烧结5个9的工业纯金制成的梳妆电极,氯化锂感湿混合液使用新产品添加剂和固有成份混合经过特殊的老化和涂覆工艺后,湿敏基片的使用寿命和长期稳定性大大提高,特别是耐温性达到了-40℃-120℃,以多片湿敏元件组合的独特工艺,是传感器感湿范围为1%RH-98%RH,具备了15%RH范围以下的测量性能,漂移曲线和感湿曲线均实现了较好的线性化水平,使湿度补偿得以方便实施并较容易地保证了宽温区的测湿精度。采用循环降温装置封闭系统,先对对被测气体采样,然后降温检测并确保绝对湿度的恒定,使探头耐温范围提高到600℃左右,大大增强了高温下测湿的功能。成功解决了“高温湿度测量”这一湿度测量领域难题。现在,不采用任何装置直接测量150度以内环境中的湿度的分体式高温型温湿度传感器JCJ200W已成功应用在木材烘干,高低温试验箱等系统中。同时,JCJ200Y产品能耐温高达600度,也已成功应用在印染行业纱锭自动烘干系统、食品自动烘烤系统、特殊陶瓷材料的自动烘干系统、出口大型烘干机械等方面,并表现出良好的效果,为国内自动化控制域填补了高温湿度测量的空白,为我国工业化进程奠定了一定基础。传感器论文: 低温下压阻式压力传感器性能的实验研究 Experimental Study On Performance Of Pressure Transducer At Low Temperature .... 灌区水位测量记录设备及安装技术 摘要:水位测量施测简单直观,易于为广大用水户所接受而且便于自动观测,因而在灌区水量计量乃至在整个灌区信息化建设中都占有十分重要的地位。目前我国灌区中水位监测采用的传感器依据输出量的不同主要分为模拟传感.... 主成分分析在空调系统传感器故障检测与诊断中的应用研究 摘要 本文阐述了用主成分分析法进行系统测量数据建模和传感器故障检测、故障诊断、故障重构及确定最优主成分数的原理。用主成分分析法对空调监测系统中的四类传感器故障进行检测方法。结果表明:主成.... 透光脉动传感器的影响因素研究 摘要:通过试验研究和总结生产应用经验,对透光脉动传感器的影响因素进行了分析,并提出了其最优工作参数。光源宜选择波长为860nm的激光二极管;传感器的管径根据使用目的确定,试验研究一般选用1~3mm,生.... 生物传感器的研究现状及应用 摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料.... 方向盘转角传感器接口 汽车环境对电子产品而言是非常苛刻的:任何连接到12V电源上的电路都必须工作在9V至16V的标称电压范围内,其它需要迫切应对的问题包括负载突降、冷车发动、电池反向、双电池助推、尖峰信号、噪声和极宽的温度.... 用于电容传感器接口的模拟前端元件 因为采用了传统机械开关,用户使用电容传感器接口的方式直接与各种工作条件下(可靠性)接触传感器的响应度(员敏度)梧关。本文将介绍一些通用电容传感器模拟前端测量方法 灵敏度 电容传感器的灵敏度是由其物理结.... 智能传感器与现代汽车电子 现代汽车电子从所应用的电子元器件到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器。 一、汽车电子操控和安全系统谈起 近几年来我国汽车工业增长迅速,发展.... 霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。本文简要介绍其工作原理, 产品特性及其典型应用。 霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。 按照霍尔器件的功能可将它们分为: 霍尔线性器件 和 霍尔开关器件 。前者输出模拟量,后者输出数字量。 按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。 一 霍尔器件的工作原理 在磁场作用下,通有电流的金属片上产生一横向电位差如图1所示: 这个电压和磁场及控制电流成正比: VH=K╳|H╳IC| 式中VH为霍尔电压,H为磁场,IC为控制电流,K为霍尔系数。 在半导体中霍尔效应比金属中显著,故一般霍尔器件是采用半导体材料制作的。 用霍尔器件,可以进行非接触式电流测量,众所周知,当电流通过一根长的直导线时,在导线周围产生磁场,磁场的大小与流过导线的电流成正比,这一磁场可以通过软磁材料来聚集,然后用霍尔器件进行检测,由于磁场与霍尔器件的输出有良好的线性关系,因此可利用霍尔器件测得的讯号大小,直接反应出电流的大小,即: I∞B∞VH 其中I为通过导线的电流,B为导线通电流后产生的磁场,VH为霍尔器件在磁场B中产生的霍尔电压、当选用适当比例系数时,可以表示为等式。霍尔传感器就是根据这种工作原理制成的。 二 霍尔传感器的应用 1 霍尔接近传感器和接近开关 在霍尔器件背后偏置一块永久磁体,并将它们和相应的处理电路装在一个壳体内,做成一个探头,将霍尔器件的输入引线和处理电路的输出引线用电缆连接起来,构成如图1所示的接近传感器。它们的功能框见图19。(a)为霍尔线性接近传感器,(b)为霍尔接近开关。 图1 霍尔接近传感器的外形图 a)霍尔线性接近传感器 (b)霍尔接近开关 图2 霍尔接近传感器的功能框图 霍尔线性接近传感器主要用于黑色金属的自控计数,黑色金属的厚度检测、距离检测、齿轮数齿、转速检测、测速调速、缺口传感、张力检测、棉条均匀检测、电磁量检测、角度检测等。 霍尔接近开关主要用于各种自动控制装置,完成所需的位置控制,加工尺寸控制、自动计数、各种计数、各种流程的自动衔接、液位控制、转速检测等等。霍尔翼片开关 霍尔翼片开关就是利用遮断工作方式的一种产品,它的外形如图20所示,其内部结构及工作原理示于图21。 图3 霍尔翼片开关的外形图 2 霍尔齿轮传感器 如图4所示,新一代的霍尔齿轮转速传感器,广泛用于新一代的汽车智能发动机,作为点火定时用的速度传感器,用于ABS(汽车防抱死制动系统)作为车速传感器等。 在ABS中,速度传感器是十分重要的部件。ABS的工作原理示意图如图23所示。图中,1是车速齿轮传感器;2是压力调节器;3是控制器。在制动过程中,控制器3不断接收来自车速齿轮传感器1和车轮转速相对应的脉冲信号并进行处理,得到车辆的滑移率和减速信号,按其控制逻辑及时准确地向制动压力调节器2发出指令,调节器及时准确地作出响应,使制动气室执行充气、保持或放气指令,调节制动器的制动压力,以防止车轮抱死,达到抗侧滑、甩尾,提高制动安全及制动过程中的可驾驭性。在这个系统中,霍尔传感器作为车轮转速传感器,是制动过程中的实时速度采集器,是ABS中的关键部件之一。 在汽车的新一代智能发动机中,用霍尔齿轮传感器来检测曲轴位置和活塞在汽缸中的运动速度,以提供更准确的点火时间,其作用是别的速度传感器难以代替的,它具有如下许多新的优点。 (1)相位精度高,可满足°曲轴角的要求,不需采用相位补偿。 (2)可满足度曲轴角的熄火检测要求。 (3)输出为矩形波,幅度与车辆转速无关。在电子控制单元中作进一步的传感器信号调整时,会降低成本。 用齿轮传感器,除可检测转速外,还可测出角度、角速度、流量、流速、旋转方向等等。 图4 霍尔速度传感器的内部结构 1. 车轮速度传感器2.压力调节器3.电子控制器 2. 图4 ABS气制动系统的工作原理示意图 3 旋转传感器 按图5所示的各种方法设置磁体,将它们和霍尔开关电路组合起来可以构成各种旋转传感器。霍尔电路通电后,磁体每经过霍尔电路一次,便输出一个电压脉冲。 (a)径向磁极(b)轴向磁极(c)遮断式 图5 旋转传感器磁体设置 由此,可对转动物体实施转数、转速、角度、角速度等物理量的检测。在转轴上固定一个叶轮和磁体,用流体(气体、液体)去推动叶轮转动,便可构成流速、流量传感器。在车轮转轴上装上磁体,在靠近磁体的位置上装上霍尔开关电路,可制成车速表,里程表等等,这些应用的实例如图25所示。 图6的壳体内装有一个带磁体的叶轮,磁体旁装有霍尔开关电路,被测流体从管道一端通入,推动叶轮带动与之相连的磁体转动,经过霍尔器件时,电路输出脉冲电压,由脉冲的数目,可以得到流体的流速。若知管道的内径,可由流速和管径求得流量。霍尔电路由电缆35来供电和输出。 图6 霍尔流量计 由图7可见,经过简单的信号转换,便可得到数字显示的车速。 利用锁定型霍尔电路,不仅可检测转速,还可辨别旋转方向,如图27所示。 曲线1对应结构图(a),曲线2对应结构图(b),曲线3对应结构图(c)。 图7 霍尔车速表的框图 图8 利用霍尔开关锁定器进行方向和转速测定 4 在大电流检测中的应用 在冶金、化工、超导体的应用以及高能物理(例如可控核聚变)试验装置中都有许多超大型电流用电设备。用多霍尔探头制成的电流传感器来进行大电流的测量和控制,既可满足测量准确的要求,又不引入插入损耗,还免除了像使用罗果勘斯基线圈法中需用的昂贵的测试装置。图9示出一种用于DⅢ-D托卡马克中的霍尔电流传感器装置。采用这种霍尔电流传感器,可检测高达到300kA的电流。 图9(a)为G-10安装结构,中心为电流汇流排,(b)为电缆型多霍尔探头,(c)为霍尔电压放大电路。 (a)G�10安装结构(b)电缆型多霍尔探头(c)霍尔电压放大电路 图9 多霍尔探头大电流传感器 图10霍尔钳形数字电流表线路示意图 图11霍尔功率计原理图 (a)霍尔控制电路 (b)霍尔磁场电路 图12霍尔三相功率变送器中的霍尔乘法器 图13霍尔电度表功能框图 图14霍尔隔离放大器的功能框图 5 霍尔位移传感器 若令霍尔元件的工作电流保持不变,而使其在一个均匀梯度磁场中移动,它输出的霍尔电压VH值只由它在该磁场中的位移量Z来决定。图15示出3种产生梯度磁场的磁系统及其与霍尔器件组成的位移传感器的输出特性曲线,将它们固定在被测系统上,可构成霍尔微位移传感器。从曲线可见,结构(b)在Z<2mm时,VH与Z有良好的线性关系,且分辨力可达1μm,结构(C)的灵敏度高,但工作距离较小。 图15 几种产生梯度磁场的磁系统和几种霍尔位移传感器的静态特性 用霍尔元件测量位移的优点很多:惯性小、频响快、工作可靠、寿命长。 以微位移检测为基础,可以构成压力、应力、应变、机械振动、加速度、重量、称重等霍尔传感器。 6 霍尔压力传感器 霍尔压力传感器由弹性元件,磁系统和霍尔元件等部分组成,如图16所示。在图16中,(a)的弹性元件为膜盒,(b)为弹簧片,(c)为波纹管。磁系统最好用能构成均匀梯度磁场的复合系统,如图29中的(a)、(b),也可采用单一磁体,如(c)。加上压力后,使磁系统和霍尔元件间产生相对位移,改变作用到霍尔元件上的磁场,从而改变它的输出电压VH。由事先校准的p~f(VH)曲线即可得到被测压力p的值。 图16 几种霍尔压力传感器的构成原理 7 霍尔加速度传感器 图17示出霍尔加速度传感器的结构原理和静态特性曲线。在盒体的O点上固定均质弹簧片S,片S的中部U处装一惯性块M,片S的末端b处固定测量位移的霍尔元件H,H的上下方装上一对永磁体,它们同极性相对安装。盒体固定在被测对象上,当它们与被测对象一起作垂直向上的加速运动时,惯性块在惯性力的作用下使霍尔元件H产生一个相对盒体的位移,产生霍尔电压VH的变化。可从VH与加速度的关系曲线上求得加速度。 图17 霍尔加速度传感器的结构及其静态特性 三 小结 目前霍尔传感器已从分立元件发展到了集成电路的阶段,正越来越受到人们的重视,应用日益广泛。
土壤重金属污染治理的策略与技术论文
在学习、工作生活中,大家都不可避免地会接触到论文吧,论文是学术界进行成果交流的工具。相信许多人会觉得论文很难写吧,以下是我为大家收集的土壤重金属污染治理的策略与技术论文,欢迎大家分享。
摘要:
在我国社会经济快速发展的背景下,土壤污染问题十分严重,严重影响了人民群众的生命健康安全。为此在新时期要高度重视土壤重金属污染的有效治理,避免土壤结构被大量破坏造成土壤中的矿物质流失。通过对土壤重金属污染治理的原因和问题进行分析,制定科学高效的应对措施,保证土壤重金属污染治理的整体水平全面提高,确保土壤重金属污染治理的效率大幅度提高,保护土壤生态,为社会经济可持续发展做出重要贡献。
关键词:
士壤重金属污染;治理问题:对策
引言:
土壤作为社会发展重要基础,必须要高度重视对土壤生态环境的妥善保护与科学处理。重金属作为土壤环境最重要的指标,由于受到工业农业的快速发展,土壤中的重金属物质含量显着超标,对于整个土壤的破坏十分明显,严重影响了土壤安全,在新时期需要重点关注土壤重金属物质,并采取有效的处理措施,减少土壤重金属造成的破坏与损伤,确保土壤重金属得到有效控制。
1、土壤重金属危害
重金属是指通过自然环境难以有效降解的各种物质。包括铅汞等,这些重金属物质如果进入到人体会引发重金属中毒,对人体造成明显损伤,而在土壤和水源中会大量淤积,也会导致水生动物和植物的生长发育受限,不利于生态环境土壤污染的农田,如果种植农作物也会造成大量的重金属进入农作物内部,植物中含有大量重金属就会通过饮食进入人体而导致食品安全问题[1]。土壤重金属污染越来越严重,对人们的生活造成巨大的威胁。为此要有效处理重金属污染,降低土壤中重金属含量。
2、土壤重金属污染主要成因
目前对于土壤重金属污染的成因主要包括自然因素和人为因素两方面,其中自然因素是指在自然环境中发生的火山爆发和土壤自身形成的因素,而人为因素则涉及工业农业交通等多个领域,也是造成土壤重金属污染的关键因素。例如在干旱地区为了提高农作物的产量解决缺水问题,往往会采取大面积灌溉的方式造成土壤养分流失,或者在灌溉中所使用的水资源受到污染,导致金属含量超标等,必然会使土壤出现金属污染问题,此外在工业领域不断发展的背景下,金属冶炼对社会发展具有十分重要的作用,但在冶炼过程中也会产生大量的重金属废水,如果没有对重金属进行妥善无害化处理,而直接排放到自然环境中,会造成土壤的重金属污染[2]。在城市发展中人们的生活水平日益提高,汽车保有量显着增多,而车辆也会生成大量汽车尾气,这些汽车尾气会直接污染大气,经过雨水冲刷会导致重金属污染物渗入到土壤内部。
还有部分有机肥料来自城市建筑垃圾、河道淤泥等,这些原材料本身富含大量重金属元素。在进入到土壤后也会造成土壤重金属含量显着升高,对土壤结构造成破坏。我国地形复杂,面积范围广大,土壤种类丰富,这也使得土壤污染问题存在明显的区域性差异,在农业发达的西北地区具有良好的土壤环境,而在中南地区由于工业密集,所以土壤污染问题严重。在发达地区为了提高农作物,往往会使用大量的化肥农药,这样就会造成农业用地日积月累受到严重的污染,致使蔬菜粮食存在农药残留,而且农业用地污染问题大部分都以有机或无机复合为主,造成土壤无法复原。当土壤受到重金属污染以后,基本无法恢复,土壤之中也会富含大量的胶体致使重金属物质不断富集,长此以往重金属污染也会日益严重,在人类正常的生活与工作中,耕地的酸碱值会发生明显变化,而且化学反应也会使重金属的离子价态和形态会发生明显的变化,而且大多数的土壤重金属污染,无法通过人类的感官进行准确识别,往往需要经过长时间的沉淀以后才能发现,这样也就造成土壤重金属污染难治理难度不断增加。
3、土壤重金属污染的主要治理策略
目前在土壤污染防治中,需要高度重视对土壤环境的妥善监测,通过对土壤中的重金属指标进行快速准确监测,能够判断土壤内部重金属富集的具体情况,为此有关部门要高度重视。建设土壤监测监管机制,采取相应的设备,对土壤的组成成分进行全面分析,提高土壤检测数据的科学性,例如成立土壤监测部门,按照专业的监管机制,安排专业人员对土壤相关数据进行全方面检测,确保土壤环境得到妥善处理,在土壤数据监测完毕后,还要将有关数据上传至监管部门,明确各个地区土壤的重金属含量,确保土壤重金属污染得到有效控制,一旦发现异常超标情况,则需要采取科学的解决,确保土壤重金属物质处理的效率全面提升,满足土壤重金属污染监测的实际需求。由于我国对土壤污染防治工作开展的时间比较晚,为此在新时期要积极加强土壤污染的有效预防,制定高效目标,坚持以预防为主,保护优先,树立完善的风险监管意识,从而确保土壤污染治理的.整体水平全面提升[3]。
要主动采取分级风险管控措施探索土壤重金属污染治理的全新方案,提高控制管理的水平,同时要做好技术调查,在全国范围内对土壤污染的具体状况进行准确的排查,保证土壤污染问题得到清晰有效的控制与解决,建立土壤重金属污染相关信息化平台(表1),实现资源共享,通过设立全国规模的土壤污染监测管理网络,保证对土壤污染监测点覆盖到市县级,做到监管数据实时更新。确保土壤管理的效率全面提升。要逐步建立污染土地目录或者土地使用污染目录,严格控制土壤的实际使用途径。加强监管存量,对源头严格防控,有效提高农业污染的监督管理力度。要坚决从源头加强土壤保护,避免土地随意滥用。
表1基于GIS系统土壤环境风险控制管理体系
4、土壤重金属污染治理的主要技术
、生物治理
当前的土壤生物治理可以通过植物微生物等手段减少土壤重金属含量或降低其毒性。在植物治理中,需要积极培育能够吸附重金属物质的植物,有效去除土壤中的大量重金属物质。这种方案成本低廉,技艺简单,具有大范围推广应用的实际意义。另外可以通过微生物对土壤进行改良,但这种技术对微生物要求比较高,而且治理周期比较长,还会存在一定的风险问题[4]。
、化学防治
化学防治可以通过重金属改良剂,根据不同的金属特点采取相应的化学反应,确保对重金属进行有效抑制,使这些潜藏在土壤中的重金属能够快速凝聚,减轻土壤对重金属吸收,避免造成恶劣影响。还可以直接使用金属拮抗剂,因为金属之间存在许多的相互作用,金属的特性也并不会对人体造成明显的伤害,通过化学防治可以通过有益金属对重金属相互作用产生拮抗性,减轻重金属的活跃度[5]。
、生态修复技术
在农业生态修复中通过农艺修复或生态修复等不同的方法,可以保证土壤中的水分含量,耕作制度得到有效控制,技术人员可以通过对土壤中的水分进行控制,有效改善土壤的pH,而且有部分重金属在氧化还原下会不断迁移发生变化,此外造成土壤氧化还原的主要因素在于水含量增多,所以在修复的过程中要加强对水含量的有效调控,增强氧化还原整体效能,避免重金属的快速迁移,促进土壤修复的整体质量水平全面提高。生态修复能够对土壤的水分肥力进行快速还原,改善当地的环境气候条件,有效控制重金属污染物所处的环境介质。在土壤重金属污染治理时,生态修复技术的效率比较缓慢,在短时间内并不能看到显着的效果。
、工程治理技术
工程治理技术能够通过工程机械理论,加强对污染土地治理。目前常用工程治理技术包括换土法、克土法以及深耕翻土法等,是指被污染的土壤中增加干净土壤,并且快速将被污染土壤与外界隔离,减少土壤中的重金属污染物浓度。换土法则是直接将被污染的土壤快速挖掘,并搬运别处进行妥善处置,换上干净土壤。深耕翻地法是利用机械,使上部重金属污染物迅速向下部翻转,保证表土表面重金属污染浓度降低。在运用工程治理技术中,需要根据不同的技术要求选择科学的治理方法,通常污染程度比较轻的土地可以采用深耕翻土法,污染程度比较重的则需要采用换土法以及克土法,需要注意的是,在采用换土法时对被挖出的污染土壤要及时进行处理,避免对环境造成二次污染。
、联合修复技术
由于土壤重金属污染物的成分多样化,不同地区的污染类型,污染程度也各不相同,凭借单一的技术很难达到预期的修复效果,为此要积极针对土壤重金属污染的具体情况,采取联合修复的方式,通过对植物和微生物联合物理和化学联合等多样化的修复手段,能够促进土壤恢复效果,减轻土壤受污染的程度[6]。
、改良剂改性修复
改良剂改性修复,主要是在重金属污染土壤中加入固定配方的改良剂,使改良剂与重金属之间出现明显的吸附作用、抗结作用以及氧化还原作用,但这样的技术最终造成土壤重金属污染物活性显着下降。石灰石、碳酸钙、硅酸盐等各种改良剂相互作用还能够促进土壤的养分得到显着变化。
5、结束语
我国目前土壤重金属污染问题十分严重,而且防治工作起步晚、技术落后,给土壤重金属污染防控造成严峻挑战。针对污染物有效防治采取相应的措施加以治理,确保土壤重金属污染物的改良效果全面提高,促进我国土壤资源的安全。
参考文献
[1]赵瑞芬,程滨,滑小赞,等忻州市灌区土壤重金属污染评价及分布特征分析[J].北方园艺,2021(6):81-88.
[2]马叶,赵国梁,王晓凤,等添加螯合剂诱导栽培红叶荞菜(.)修复铅和镉污染土壤效果的研究[J].土壤通报,2021(2):416-424.
[3]薄录吉,李冰,张荣全,等.金乡县大蒜产区土壤重金属特征及潜在生态风险评价[J].土壤通报,2021(2):434-442.
[4]张启,吴明洲.某疑似污染农用地地块土壤调查布点及评价方法[J].安徽农业科学,2018(20)117-119.
[5]王海东,方凤满,谢宏芳,等芜湖市区土壤重金属污染评价及来源分析[J]2010(4):36-40.
[6]张仕军土壤中重金属污染治理存在的问题及对策研究[J]资源节约与环保,2020(9):93-94.
用丁二酮肟(二甲基乙二醛肟)分光光度法测定水中镍元素的含量当取试样体积10mL,本法可测定上限为10mg/L,最低检出浓度为/L。适当多取样品或稀释,可测浓度范围还能扩展。 原理在氨溶液中,碘存在下,镍与丁二酮肟作用,形成组成比为1:4的酒红色可溶性络合物。于波长530nm处进行分光光度测定。试剂除非另有说明,分析时均使用符合国家标准或专业标准的分析纯试剂和蒸馏水或同等纯度的水。 硝酸(HNO3),密度(ρ20)为/mL。 氨水(NH3·H2O),密度(ρ20)为/mL。 高氯酸(HClO4),密度(ρ20)为/mL。 乙醇(C2H5OH),95%(V/V)。 次氯酸钠(NaoCl)溶液,活性氯含量不小于52g/L。 正丁醇[CH3(CH2)2CH2OH],密度(ρ20)为/mL。 硝酸溶液,1+1(V/V)。 硝酸溶液,1+99(V/V)。 氢氧化钠溶液,C(NaOH)=2mol/L。 柠檬酸铵[(NH4)3C6H5O7]溶液,500g/L。 柠檬酸铵[(NH4)3C6H5O7]溶液,200g/L。 碘溶液,C(I2)=/L:称取碘片(I2),加到含有25g碘化钾(KI)的少量水中,研磨溶解后,用水稀释至1000mL。 丁二酮肟[(CH3)2C2(NOH)2]溶液,5g/L:称取丁二酮肟溶解于50mL氨水中,用水稀释至100mL。 丁二酮肟乙醇溶液,10g/L:称取1g丁二酮肟,溶解于100mL乙醇中。 Ka2-EDTA[C10H14N2O8Na2·2H2O]溶液,50g/L。 氨水溶液,1+1(V/V)。 氨水溶液,C(NH3·H2O)=/L。 盐酸溶液,C(HCl)=/L。 氨水-氯化铵缓冲溶液,pH=10±;称取氯化铵(NH4Cl),加到143mL氨水中,用水稀释至250mL。贮存于聚乙烯塑料瓶中,4℃下保存。 镍标准贮备液,1000mg/L:准确称取金属镍(含量%以上)溶解在10mL硝酸溶液中,加热蒸发至近干,冷却后加硝酸溶液溶解,转移到100mL容量瓶中,用水稀释至标线。 镍标准工作溶液,/L:取镍标准贮备液于500mL容量瓶中,用水稀释至标线。 酚酞乙醇溶液,1g/L:称取酚酞,溶解于100mL乙醇中。1 试料取适量样品(含镍量不得超过100μg),置于25mL容量瓶中并用水稀释至约10mL,用氢氧化钠溶液约1mL使呈中性,加2mL柠檬酸铵溶液)。2 空白试验在测定的同时应进行空白试验,所用试剂及其用量与在测定中所用的相同,测定步骤亦相同,但用水代替试料。3 干扰的消除在测定条件下,干扰物主要是铁、钻、铜离子,加入Na2-EDTA溶液,可消除300mg/L铁、100mg/L钻及50mg/L铜对5mg/L镍测定的干扰。若铁、钴、铜的含量超过上述浓度,则可采用丁二酮肟-正丁醇萃取分离除去(见附录A)。氰化物亦干扰测定,样品经前处理即可消除。若直接制备试料,则可在样品中加2mL次氯酸钠溶液和硝酸加热分解镍氰络合物。4 测定a 前处理 .除非证明样品的消解处理是不必要的,可直接制备试料),否则按下述步骤进行前处理:取样品适量(含镍量不得超过100μg)于烧杯中,加硝酸),置烧杯于电热板上,在近沸状态下蒸发至近干,冷却后,再加硝酸和高氯酸继续加热消解,蒸发至近干。冷却后,用硝酸溶液溶解,若溶液仍不清沏,则重复上述操作,直至溶液清沏为止。将溶解液转移到25mL容量瓶中,用少量水冲洗烧杯,溶液体积不宜超过,按制备试料。b 显色 于试料中加1mL碘溶液),加水至20mL,摇匀1),加2mL丁二酮肟溶液),摇匀2)。加2mLNa2-EDTA溶液),加水至标线,摇匀。 注:1)加入碘溶液后,必须加水至约20mL并摇匀,否则加入丁二酮肟后不能正常显色。2)必须在加入丁二酮肟溶液并摇匀后再加入Na2-EDTA溶液,否则将不显色。c 测量 用10mm比色皿,以水为参比液,在530nm波长下测量显色液的吸光度减去空白试试验所测的吸光度。
一、测定方法石墨炉原子吸收分光光度法二、方法依据《生活饮用水卫生规范》(2001)三、测定范围1.适用于生活饮用水其水源中镍的测定2.最低测质量为,若取20μL水样测定,则最低检测浓度为μg/.水中共存离子一般不产生干扰.四、测定原理样品经适当处理后,注入石墨炉原子化器,所含的金属离子在石墨管内经原子化高温蒸发解离为原子蒸气,待测元素的基态原子吸收来自同种元素空心阴极灯发出的共振线,其吸收强度在一定范围内与金属浓度成正比。五、试剂镍标准储备溶液;称取1克金属镍(高纯或光谱纯),溶于10mL硝酸溶液(1+1)中,加热驱除二氧化氮,用水定容至1000mL。此溶液ρ(Ni)=1mg/mL。镍标准中间溶液:取镍标准储备溶液5mL于100mL溶量瓶中,用硝酸溶液(1+99)稀释至刻度,摇匀,此溶液ρ(Ni)=50μg/mL。镍标准使用溶液:取镍标准中间溶液2mL于100mL容量瓶中,用硝酸溶液(1+99)稀释至刻度,摇匀,此溶液ρ(Ni)=1μg/mL。硝酸镁(50g/L):称取优级纯硝酸镁[Mg(NO3)2]5g,加水溶解并定容至100mL。六、仪器设备仪器石墨炉原子吸收分光光度计。镍元素空心阴极灯。氩气钢瓶。微量加样器,20μL。聚乙烯瓶,100mL。仪器参数测定镍的原子化条件干燥灰化原子化元素波长nm-------------------------温度,℃时间,S温度,℃时间,S温度℃时间七、分析步骤吸取镍标准使用溶液0,于5个100mL容量瓶内,分别加入硝酸溶液,用硝酸溶液(1+99)稀释至刻度,摇匀,分别配制成ρ(Ni)=0,5,10,20和30ng/mL的标准系列。吸取10mL水样,加入硝酸镁溶液,同时取10mL硝酸溶液(1+99),加入硝酸镁溶液,作为试剂空白。仪器参数设定后依次吸取20μL试剂空白,标准系列和样品,注入石墨管,启动石墨炉控制程序和记录仪,记录吸收峰值或峰面积,每测定10个样品之间,加测一个内控样品或相当于工作曲线中等浓度的标准溶液。八、计算从吸光度----浓度工作曲线查出镍浓度后,按下式计算ρ(Ni)=ρ1×V1/V其中:ρ(Ni)----水样中镍的质量浓度,μg/L;ρ1----从工作曲线上查得试样中镍的质量浓度,μg/L;V1----测定样品的体积,mL;V----原水样体积,mL。
重金属指的是密度在5以上的金属,如金、银、铜、铅、锌、镍、钴、镉、铬和汞等45种。从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬以及类金属砷等生物毒性显著的重金属,也指具有一定毒性的一般重金属如锌、铜、钴、镍、锡等。目前最引起人们注意的是汞、镉、铬等。重金属随废水排出时,即使浓度很小,也可能造成危害。由重金属造成的环境污染称为重金属污染。 重金属污染的特点表现在以下几方面: (1)水体中的某些重金属可在微生物作用下转化为毒性更强的金属化合物,如汞的甲基化作用就是其中典型例子; (2)生物从环境中摄取重金属可以经过食物链的生物放大作用,在较高级生物体内成千万倍地富集起来,然后通过食物进入人体,在人体的某些器官中积蓄起来造成慢性中毒,危害人体健康; (3)在天然水体中只要有微量重金属即可产生毒性效应,一般重金属产生毒性的范围大约在1—10mg/L之间,毒性较强的金属如汞、镉等产生毒性的质量浓度范围在0.0l—0.001mg/L之间。重金属的污染有时会造成很大的危害.例如,日本发生的水俣病(汞污染)和骨痛病(镉污染)等公害病,都是由重金属污染引起的,所以.应严格防止重金属污染。 如汞中毒的临床表现有,全身症状为头痛、头昏、乏力、发热。口腔及消化道症状表现为齿龈红肿酸痛、糜烂出血、牙齿松动、龈槽溢脓,口腔有臭味,并有恶心、呕吐、食欲不振、腹痛、腹泻。皮肤接触可出现红色斑丘疹,以四肢及头面部分布较多。少数患者可有肾损害,个别严重者可有咳嗽、胸痛、呼吸困难、绀紫等急性间质性肺炎的表现。重金属指比重大于5的金属(一般指密度大于克每立方厘米的金属)。约有45种,一般都是属于过渡元素。如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒。 例如,汞中毒的临床表现有:全身症状为头痛、头昏、乏力、发热。口腔及消化道症状表现为齿龈红肿酸痛、糜烂出血、牙齿松动、龈槽溢脓,口腔有臭味,并有恶心、呕吐、食欲不振、腹痛、腹泻。皮肤接触可出现红色斑丘疹,以四肢及头面部分布较多。少数患者可有肾损害,个别严重者可有咳嗽、胸痛、呼吸困难、绀紫等急性间质性肺炎的表现。 重金属中毒会使体内的蛋白质凝固,这个你可以从高三的化学书看到。如果轻微中毒就大量喝牛奶。牛奶中的蛋白质会和重金属反应。这样不会损伤到你自身的身体机能。喝了以后还必须马上就医。 对什么是重金属,目前尚没有严格的统一定义,在环境污染方面所说的重金属主要是指汞(水银)、镉、铅、铬以及类金属砷等生物毒性显著的重元素。重金属不能被生物降解,相反却能在食物链的生物放大作用下,成千百倍地富集,最后进入人体。重金属在人体内能和蛋白质及酶等发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中累积,造成慢性中毒。重金属元素由于某些原因未经处理就被排入河流、湖泊或海洋,或者进入了土壤中,使得这些河流、湖泊、海洋和土壤受到污染,它们不能被生物降解。鱼类或贝类如果积累重金属而为人类所食,或者重金属被稻谷、小麦等农作物所吸收被人类食用,重金属就会进入人体使人产生重金属中毒,轻则发生怪病(水俣病、骨痛病等),重者就会死亡。所以我们不要过量地进食海产,每次进食前一定要把海产彻底煮熟,以免吃入细菌。希望对你有帮助
你可以先查看排放标准,后面都有金属离子的检测方法,然后你在查具体的步骤
重金属指的是密度在5以上的金属,如金、银、铜、铅、锌、镍、钴、镉、铬和汞等45种。从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬以及类金属砷等生物毒性显著的重金属,也指具有一定毒性的一般重金属如锌、铜、钴、镍、锡等。目前最引起人们注意的是汞、镉、铬等。重金属随废水排出时,即使浓度很小,也可能造成危害。由重金属造成的环境污染称为重金属污染。 重金属污染的特点表现在以下几方面: (1)水体中的某些重金属可在微生物作用下转化为毒性更强的金属化合物,如汞的甲基化作用就是其中典型例子; (2)生物从环境中摄取重金属可以经过食物链的生物放大作用,在较高级生物体内成千万倍地富集起来,然后通过食物进入人体,在人体的某些器官中积蓄起来造成慢性中毒,危害人体健康; (3)在天然水体中只要有微量重金属即可产生毒性效应,一般重金属产生毒性的范围大约在1—10mg/L之间,毒性较强的金属如汞、镉等产生毒性的质量浓度范围在0.0l—0.001mg/L之间。重金属的污染有时会造成很大的危害.例如,日本发生的水俣病(汞污染)和骨痛病(镉污染)等公害病,都是由重金属污染引起的,所以.应严格防止重金属污染。 如汞中毒的临床表现有,全身症状为头痛、头昏、乏力、发热。口腔及消化道症状表现为齿龈红肿酸痛、糜烂出血、牙齿松动、龈槽溢脓,口腔有臭味,并有恶心、呕吐、食欲不振、腹痛、腹泻。皮肤接触可出现红色斑丘疹,以四肢及头面部分布较多。少数患者可有肾损害,个别严重者可有咳嗽、胸痛、呼吸困难、绀紫等急性间质性肺炎的表现。重金属指比重大于5的金属(一般指密度大于克每立方厘米的金属)。约有45种,一般都是属于过渡元素。如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒。 例如,汞中毒的临床表现有:全身症状为头痛、头昏、乏力、发热。口腔及消化道症状表现为齿龈红肿酸痛、糜烂出血、牙齿松动、龈槽溢脓,口腔有臭味,并有恶心、呕吐、食欲不振、腹痛、腹泻。皮肤接触可出现红色斑丘疹,以四肢及头面部分布较多。少数患者可有肾损害,个别严重者可有咳嗽、胸痛、呼吸困难、绀紫等急性间质性肺炎的表现。 重金属中毒会使体内的蛋白质凝固,这个你可以从高三的化学书看到。如果轻微中毒就大量喝牛奶。牛奶中的蛋白质会和重金属反应。这样不会损伤到你自身的身体机能。喝了以后还必须马上就医。 对什么是重金属,目前尚没有严格的统一定义,在环境污染方面所说的重金属主要是指汞(水银)、镉、铅、铬以及类金属砷等生物毒性显著的重元素。重金属不能被生物降解,相反却能在食物链的生物放大作用下,成千百倍地富集,最后进入人体。重金属在人体内能和蛋白质及酶等发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中累积,造成慢性中毒。重金属元素由于某些原因未经处理就被排入河流、湖泊或海洋,或者进入了土壤中,使得这些河流、湖泊、海洋和土壤受到污染,它们不能被生物降解。鱼类或贝类如果积累重金属而为人类所食,或者重金属被稻谷、小麦等农作物所吸收被人类食用,重金属就会进入人体使人产生重金属中毒,轻则发生怪病(水俣病、骨痛病等),重者就会死亡。所以我们不要过量地进食海产,每次进食前一定要把海产彻底煮熟,以免吃入细菌。希望对你有帮助
生物传感器的研究现状及应用摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料电极等构成生物传感器,在发酵工业、环境监测、食品监测、临床医学等方面得到广泛的应用。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。 关键词:生物传感器;发酵工业;环境监测。中图分类号: 文献标识码:a 文章编号:1006-883x(2002)10-0001-06一、 引言 从1962年,clark和lyons最先提出生物传感器的设想距今已有40 年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初15年里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(pcr)的发展,应用pcr的dna生物传感器也越来越多。二、 研究现状及主要应用领域 1、 发酵工业各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。(1). 原材料及代谢产物的测定微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(psoudomonas fluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(trichosporon brassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。此外,还有用大肠杆菌()组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌―胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。(2). 微生物细胞总数的测定在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的[1]。(3). 代谢试验的鉴定传统的微生物代谢类型的鉴定都是根据微生物在某种培养基上的生长情况进行的。这些实验方法需要较长的培养时间和专门的技术。微生物对底物的同化作用可以通过其呼吸活性进行测定。用氧电极可以直接测量微生物的呼吸活性。因此,可以用微生物传感器来测定微生物的代谢特征。这个系统已用于微生物的简单鉴定、微生物培养基的选择、微生物酶活性的测定、废水中可被生物降解的物质估计、用于废水处理的微生物选择、活性污泥的同化作用试验、生物降解物的确定、微生物的保存方法选择等[2]。2、 环境监测(1). 生化需氧量的测定生化需氧量(biochemical oxygen demand ?bod)的测定是监测水体被有机物污染状况的最常用指标。常规的bod测定需要5天的培养期,操作复杂、重复性差、耗时耗力、干扰性大,不宜现场监测,所以迫切需要一种操作简单、快速准确、自动化程度高、适用广的新方法来测定。目前,有研究人员分离了两种新的酵母菌种spt1和spt2,并将其固定在玻璃碳极上以构成微生物传感器用于测量bod,其重复性在±10%以内。将该传感器用于测量纸浆厂污水中bod的测定,其测量最小值可达2 mg/l,所用时间为5min[3]。还有一种新的微生物传感器,用耐高渗透压的酵母菌种作为敏感材料,在高渗透压下可以正常工作。并且其菌株可长期干燥保存,浸泡后即恢复活性,为海水中bod的测定提供了快捷简便的方法[4]。 除了微生物传感器,还有一种光纤生物传感器已经研制出来用于测定河水中较低的bod值。该传感器的反应时间是15min,最适工作条件为30°c,ph=7。这个传感器系统几乎不受氯离子的影响(在1000mg/l范围内),并且不被重金属(fe3+、cu2+、mn2+、cr3+、zn2+)所影响。该传感器已经应用于河水bod的测定,并且获得了较好的结果[4]。现在有一种将bod生物传感器经过光处理(即以tio2作为半导体,用6 w灯照射约4min)后,灵敏度大大提高,很适用于河水中较低bod的测量[5]。同时,一种紧凑的光学生物传感器已经发展出来用于同时测量多重样品的bod值。它使用三对发光二极管和硅光电二极管,假单胞细菌(pseudomonas fluorescens)用光致交联的树脂固定在反应器的底层,该测量方法既迅速又简便,在4℃下可使用六周,已经用于工厂废水处理的过程中[5]。(2). 各种污染物的测定常用的重要污染指标有氨、亚硝酸盐、硫化物、磷酸盐、致癌物质与致变物质、重金属离子、酚类化合物、表面活性剂等物质的浓度。目前已经研制出了多种测量各类污染物的生物传感器并已投入实际应用中了。测量氨和硝酸盐的微生物传感器,多是用从废水处理装置中分离出来的硝化细菌和氧电极组合构成。目前有一种微生物传感器可以在黑暗和有光的条件下测量硝酸盐和亚硝酸盐(nox-),它在盐环境下的测量使得它可以不受其他种类的氮的氧化物的影响。用它对河口的nox-进行了测量,其效果较好[6]。硫化物的测定是用从硫铁矿附近酸性土壤中分离筛选得到的专性、自养、好氧性氧化硫硫杆菌制成的微生物传感器。在ph=、31℃时一周测量200余次,活性保持不变,两周后活性降低20%。传感器寿命为7天,其设备简单,成本低,操作方便。目前还有用一种光微生物电极测硫化物含量,所用细菌是,与氢电极连接构成[7]。最近科学家们在污染区分离出一种能够发荧光的细菌,此种细菌含有荧光基因,在污染源的刺激下能够产生荧光蛋白,从而发出荧光。可以通过遗传工程的方法将这种基因导入合适的细菌内,制成微生物传感器,用于环境监测。现在已经将荧光素酶导入大肠杆菌()中,用来检测砷的有毒化合物[8]。水体中酚类和表面活性剂的浓度测定已经有了很大的发展。目前,有9种革兰氏阴性细菌从西西伯利亚石油盆地的土壤中分离出来,以酚作为唯一的碳源和能源。这些菌种可以提高生物传感器的感受器部分的灵敏度。它对酚的监测极限为5 ´10-9mol。该传感器工作的最适条件为:ph=、35℃,连续工作时间为30h[9]。还有一种假单胞菌属(pseudomonas rathonis)制成的测量表面活性剂浓度的电流型生物传感器,将微生物细胞固定在凝胶(琼脂、琼脂糖和海藻酸钙盐)和聚乙醇膜上,可以用层析试纸gf/a,或者是谷氨酸醛引起的微生物细胞在凝胶中的交联,长距离的保持它们在高浓度表面活性剂检测中的活性和生长力。该传感器能在测量结束后很快的恢复敏感元件的活性[10]。还有一种电流式生物传感器,用于测定有机磷杀虫剂,使用的是人造酶。利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测量极限为100´10-9mol,在40℃只要4min[11]。还有一种新发展起来的磷酸盐生物传感器,使用丙酮酸氧化酶g,与自动系统cl-fia台式电脑结合,可以检测(32~96)´10-9mol的磷酸盐,在25°c下可以使用两周以上,重复性高[12]。最近,有一种新型的微生物传感器,用细菌细胞作为生物组成部分,测定地表水中壬基酚(nonyl-phenol etoxylate --np-80e)的含量。用一个电流型氧电极作传感器,微生物细胞固定在氧电极上的透析膜上,其测量原理是测量毛孢子菌属(trichosporum grablata)细胞的呼吸活性。该生物传感器的反应时间为15~20min,寿命为7~10天(用于连续测定时)。在浓度范围内,电信号与np-80e浓度呈线性关系,很适合于污染的地表水中分子表面活性剂的检测[13]。除此之外,污水中重金属离子浓度的测定也是不容忽视的。目前已经成功设计了一个完整的,基于固定化微生物和生物体发光测量技术上的重金属离子生物有效性测定的监测和分析系统。将弧菌属细菌(vibrio fischeri)体内的一个操纵子在一个铜诱导启动子的控制下导入产碱杆菌属细菌(alcaligenes eutrophus (ae1239))中,细菌在铜离子的诱导下发光,发光程度与离子浓度成正比。将微生物和光纤一起包埋在聚合物基质中,可以获得灵敏度高、选择性好、测量范围广、储藏稳定性强的生物传感器。目前,这种微生物传感器可以达到最低测量浓度1´10-9mol[14]。还有一种专门测量铜离子的电流型微生物传感器。它用酒酿酵母(saccharomyces cerevisiae)重组菌株作为生物元件,这些菌株带有酒酿酵母cup1基因上的铜离子诱导启动子与大肠杆菌lacz基因的融合体。其工作原理,首先是cup1启动子被cu2+诱导,随后乳糖被用作底物进行测量。如果cu2+存在于溶液中,这些重组体细菌就可以利用乳糖作为碳源,这将导致这些好氧细胞需氧量的改变。该生物传感器可以在浓度范围()´10-3mol范围内测定cuso4溶液。目前已经将各类金属离子诱导启动子转入大肠杆菌中,使得大肠杆菌会在含有各种金属离子的的溶液中出现发光反应。根据它发光的强度可以测定重金属离子的浓度,其测量范围可以从纳摩尔到微摩尔,所需时间为60~100min[15][16]。用于测量污水中锌浓度的生物传感器也已经研制成功,使用嗜碱性细菌alcaligenes cutrophus,并用于对污水中锌的浓度和生物有效性进行测量,其结果令人满意[17]。估测河口出水流污染情况的海藻传感器是由一种螺旋藻属蓝细菌( cyanobacterium spirlina subsalsa)和一个气敏电极构成的。通过监测光合作用被抑制的程度来估测由于环境污染物的存在而引起水的毒性变化。以标准天然水为介质,对三种主要污染物(重金属、除草剂、氨基甲酸盐杀虫剂)的不同浓度进行了测定,均可监测到它们的有毒反应,重复性和再生性都很高[18]。近来由于聚合酶链式反应技术(pcr)的迅猛发展及其在环境监测方面的广泛应用,不少科学家开始着手于将它与生物传感器技术结合应用。有一种应用pcr技术的dna压电生物传感器,可以测定一种特殊的细菌毒素。将生物素酰化的探针固定在装有链酶抗生素铂金表面的石英晶体上,用1´10-6mol的盐酸可以使循环式测量在同一晶体表面进行。用细菌中提取的dna样品进行同样的杂交反应并由pcr放大,产物为气单胞菌属(aeromonas hydrophila)的一种特殊基因片断。这种压电生物传感器可以鉴别样品中是否含有这种基因,这为从水样中检测是否含带有这种病原的各种气单胞菌提供了可能[19]。还有一种通道生物传感器可以检测浮游植物和水母等生物体产生的腰鞭毛虫神经毒素等毒性物质,目前已经能够测量在一个浮游生物细胞内含有的极微量的psp毒素[20]。dna传感器也在迅速的得到应用,目前有一种小型化dna生物传感器,能将dna识别信号转换为电信号,用于测量水样中隐孢子和其他水源传染体。该传感器着重于改进核酸的识别作用和加强该传感器的特异性和灵敏性,并寻求将杂交信号转化为有用信号的新方法,目前研究工作为识别装置和转换装置的一体化[21]。微藻素是一种从蓝藻细菌引起的水华中产生的细菌肝毒素,一种固定有表面细胞质粒基因组的生物传感器已经制得,用于测量水中微藻素的含量,它直接的测量范围是50~1000 ´10-6g/l[22]。 一种基于酶的抑制性分析的多重生物传感器用于测量毒性物质的设想也已经提出。在这种多重生物传感器中,应用了两种传导器―对ph敏感的电子晶体管和热敏性的薄膜电极,以及三种酶―尿素酶、乙酰胆碱酯酶和丁酰胆碱酯酶。该生物传感器的性能已经得到测试,效果较好[23]。除了发酵工业和环境监测,生物传感器还深入的应用于食品工程、临床医学、军事及军事医学等领域,主要用于测量葡萄糖、乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。三、 讨论与展望 美国的harold 指出,生物传感器商品化要具备以下几个条件:足够的敏感性和准确性、易操作、价格便宜、易于批量生产、生产过程中进行质量监测。其中,价格便宜决定了传感器在市场上有无竞争力。而在各种生物传感器中,微生物传感器最大的优点就是成本低、操作简便、设备简单,因此其在市场上的前景是十分巨大和诱人的。相比起来,酶生物传感器等的价格就比较昂贵。但微生物传感器也有其自身的缺点,主要的缺点就是选择性不够好,这是由于在微生物细胞中含有多种酶引起的。现已有报道加专门抑制剂以解决微生物电极的选择性问题。除此之外,微生物固定化方法也需要进一步完善,首先要尽可能保证细胞的活性,其次细胞与基础膜结合要牢固,以避免细胞的流失。另外,微生物膜的长期保存问题也待进一步的改进,否则难于实现大规模的商品化。 总之,常用的微生物电极和酶电极在各种应用中各有其优越之处。若容易获得稳定、高活性、低成本的游离酶,则酶电极对使用者来说是最理想的。相反的,若生物催化需经过复杂途径,需要辅酶,或所需酶不宜分离或不稳定时,微生物电极则是更理想的选择。而其他各种形式的生物传感器也在蓬勃发展中,其应用也越来越广泛。随着固定化技术的进一步完善,随着人们对生物体认识的不断深入,生物传感器必将在市场上开辟出一片新的天地。--------------------------------------------------------------------------------参考文献[1]韩树波,郭光美,李新等.伏安型细菌总数生物传感器的研究与应用[j].华夏医学,2000,63(2):49-52 [2]蔡豪斌.微生物活细胞检测生物传感器的研究[j]. 华夏医学,2000,13(3):252-256[3] trosok sp, driscoll bt, luong jht mediated microbial biosensor using a novel yeast strain for wastewater bod measurement[j]. applied micreobiology and biotechnology,2001, 56 (3-4): 550-554 [4] 张悦,王建龙,李花子等.生物传感器快速测定bod在海洋监测中的应用[j].海洋环境科学,2001,20(1):50-54[5] yoshida n, mcniven sj, yoshida a, compact optical system for multi-determination of biochemical oxygen demand using disposable strips[j]. field analytical chemistry and technology,2001,5 (5): 222-227[6] meyer rl, kjaer t, revsbech np. use of nox- microsensors to estimate the activity of sediment nitrification and nox- consumption along an estuarine salinity, nitrate, and light gradient[j]. aquatic microbial ecology, 2001,26 (2): 181-193[7]王晓辉,白志辉,孙裕生等.硫化物微生物传感器的研制与应用[j]. 分析试验室,2000,19(3):83-86[8] alexander d c,costanzo m a, guzzo j, cai j, towards the next millennium: luciferase fusions to identify genes responsive to environmental stress[j].water, air and soil pollution, 2000,123(1-4):81-94[9] makarenko aa, bezverbnaya ip, kosheleva ia,etc. development of biosensors for phenol determination from bacteria found in petroleum fields of west siberia[j].applied biochemistry and microbiology, 2002,38 (1): 23-27[10]semenchuk in, taranova la, kalenyuk aa,etc. effect of various methods of immobilization on the stability of a microbial biosensor for surfactants based on pseudomonas rathonis t[j]. applied biochemistry and microbiology, 2000, 36 (1): 69-72[11]yamazaki t, meng z, mosbach k,etc. a novel amperometric sensor for organophosphotriester insecticides detection employing catalytic polymer mimicking phosphotriesterase catalytic center[j]. electrochemistry,2001,69 (12): 969-97[12] nakamura h. phosphate ion determination in water for drinking using biosensors[j]. bunseki kagaku,2001,50 (8): 581-582[13] a, lucaciu i, fleschin s, magearu v. microbial biosensor for nonyl-phenol etoxylate (np-80e) [j].south african jounal of chemistry-suid-afrikaanse tydskrif vir chemie , 2000,53 (1): 14-17[14] leth s, maltoni s, simkus r,etc. engineered bacteria based biosensors for monitoring bioavailable heavy metal[j].electroanalysis, 2002,14 (1): 35-42 [15] lehmann m, riedel k, adler k,etc. amperometric measurement of copper ions with a deputy substrate using a novel saccharomyces cerevisiae sensor[j]. biosensors and bioelectronics, 2000, 15 (3-4): 211-219[16] riether kb, dollard ma, billard p. assessment of heavy metal bioavailability using escherichia coli zntap lux and copap lux-based biosensors[j]. applied microbiology and biotechnology,2001,57 (5-6): 712-716[17] karlen c, wallinder io, heijerick d, etc. runoff rates and ecotoxicity of zinc induced by atmospheric corrosion[j]. science of the total environment,2001,277 (1-3): 169-180[18] campanella l,cubadda f,sammartino m p, algal biosensor for the monitoring of water toxicity in estuarine enviraonments[j].wate research, 2001,35(1):69-76[19] tombelli sara,mascini marco,soca cristiana, dna piezoelectric biosensor assay coupled with a polyerase chain reaction for bacterial toxicity determination in environmental samples[j]. analytica chimica acta,2000,418(1):1-9[20] lee hae-ok,cheun byeung soo,yoo jong su, of a channel biosensor for toxicity measurements in cultured alexandrium tamarense[j]. journal of natural toxins,2000, 9(4):341-348[21] wang, dna biosensor for detecting cryptosporidium in water samples. technical . comletion-311, 2000(3), 26p [22]nakamura c, kobayashi t, miyake m,etc. usage of a dna aptamer as a ligand targeting microcystin[j]. molecular crystals and liquid crystals, 2001, 371: 369-374 [23]arkhypova vn, dzyadevych sv, soldatkin ap, etc. multibiosensor based on enzyme inhibition analysis for determination of different toxic substances[j]. talanta,2001, 55 (5): 919-927the recent research and application of biosensorabstract: in this article, the recent research progress and application of biosensors ,especially the micro- biosensors, are reviewed, and the prospect of biosensors development is also prognosticated. biosensors are made up of bioelectrode , using immobile organism as sensitive material for molecule recognition, together with oxygen-electrode, membrane -eletrode and fuel-electrode. biosensors are broadly used in zymosis industry, environment monitor, food monitor and clinic medicine. fast, accurate, facilitate as biosensors is,there will be an excellent prospect for biosensors in the marketkeywords:biosensor, zymosis -industry, environment-monitor作者简介:何星月:中国科学技术大学生命科学院,合肥230027刘之景,中国科学技术大学天文与应用物理系教授,合肥230026电话:0551―3601895
参考下: 进入21世纪后,特别在我国加入WTO后,国内产品面临巨大挑战。各行业特别是传统产业都急切需要应用电子技术、自动控制技术进行改造和提升。例如纺织行业,温湿度是影响纺织品质量的重要因素,但纺织企业对温湿度的测控手段仍很粗糙,十分落后,绝大多数仍在使用干湿球湿度计,采用人工观测,人工调节阀门、风机的方法,其控制效果可想而知。制药行业里也基本如此。而在食品行业里,则基本上凭经验,很少有人使用湿度传感器。值得一提的是,随着农业向产业化发展,许多农民意识到必需摆脱落后的传统耕作、养殖方式,采用现代科学技术来应付进口农产品的挑战,并打进国外市场。各地建立了越来越多的新型温室大棚,种植反季节蔬菜,花卉;养殖业对环境的测控也日感迫切;调温冷库的大量兴建都给温湿度测控技术提供了广阔的市场。我国已引进荷兰、以色列等国家较先进的大型温室四十多座,自动化程度较高,成本也高。国内正在逐步消化吸收有关技术,一般先搞调温、调光照,控通风;第二步搞温湿度自动控制及CO2测控。此外,国家粮食储备工程的大量兴建,对温湿度测控技术提也提出了要求。 但目前,在湿度测试领域大部分湿敏元件性能还只能使用在通常温度环境下。在需要特殊环境下测湿的应用场合大部分国内包括许多国外湿度传感器都会“皱起眉头”!例如在上面提到纺织印染行业,食品行业,耐高温材料行业等,都需要在高温情况下测量湿度。一般情况下,印染行业在纱锭烘干中,温度能达到120摄氏度或更高温度;在食品行业中,食物的烘烤温度能达到80-200摄氏度左右;耐高温材料,如陶瓷过滤器的烘干等能达到200摄氏度以上。在这些情况下,普通的湿度传感器是很难测量的。 高分子电容式湿度传感器通常都是在绝缘的基片诸如玻璃、陶瓷、硅等材料上,用丝网漏印或真空镀膜工艺做出电极,再用浸渍或其它办法将感湿胶涂覆在电极上做成电容元件。湿敏元件在不同相对湿度的大气环境中,因感湿膜吸附水分子而使电容值呈现规律性变化,此即为湿度传感器的基本机理。影响高分子电容型元件的温度特性,除作为介质的高分子聚合物的介质常数ε及所吸附水分子的介电常数ε受温度影响产生变化外,还有元件的几何尺寸受热膨胀系数影响而产生变化等因素。根据德拜理论的观点,液体的介电常数ε是一个与温度和频率有关的无量纲常数。水分子的ε在T=5℃时为,在T=20℃时为。有机物ε与温度的关系因材料而异,且不完全遵从正比关系。在某些温区ε随T呈上升趋势,某些温区ε随T增加而下降。多数文献在对高分子湿敏电容元件感湿机理的分析中认为:高分子聚合物具有较小的介电常数,如聚酰亚胺在低湿时介电常数为一。而水分子介电常数是高分子ε的几十倍。因此高分子介质在吸湿后,由于水分子偶极距的存在,大大提高了吸水异质层的介电常数,这是多相介质的复合介电常数具有加和性决定的。由于ε的变 化,使湿敏电容元件的电容量C与相对湿度成正比。在设计和制作工艺中很难组到感湿特性全湿程线性。作为电容器,高分子介质膜的厚度d和平板电容的效面积S也和温度有关。温度变化所引起的介质几何尺寸的变化将影响C值。高分子聚合物的平均热线胀系数可达到 的量级。例如硝酸纤维素的平均热线胀系数为108x10-5/℃。随着温度上升,介质膜厚d增加,对C呈负贡献值;但感湿膜的膨胀又使介质对水的吸附量增加,即对C呈正值贡献。可见湿敏电容的温度特性受多种因素支配,在不同的湿度范围温漂不同;在不同的温区呈不同的温度系数;不同的感湿材料温度特性不同。总之,高分子湿度传感器的温度系数并非常数,而是个变量。所以通常传感器生产厂家能在-10-60摄氏度范围内是传感器线性化减小温度对湿敏元件的影响。 国外厂家比较优质的产品主要使用聚酰胺树脂,产品结构概要为在硼硅玻璃或蓝宝石衬底上真空蒸发制作金电极,再喷镀感湿介质材料(如前所述)形式平整的感湿膜,再在薄膜上蒸发上金电极.湿敏元件的电容值与相对湿度成正比关系,线性度约±2%。虽然,测湿性能还算可以但其耐温性、耐腐蚀性都不太理想,在工业领域使用,寿命、耐温性和稳定性、抗腐蚀能力都有待于进一步提高。 陶瓷湿敏传感器是近年来大力发展的一种新型传感器。优点在于能耐高温,湿度滞后,响应速度快,体积小,便于批量生产,但由于多孔型材质,对尘埃影响很大,日常维护频繁,时常需要电加热加以清洗易影响产品质量,易受湿度影响,在低湿高温环境下线性度差,特别是使用寿命短,长期可靠性差,是此类湿敏传感器迫切解决的问题。 当前在湿敏元件的开发和研究中,电阻式湿度传感器应当最适用于湿度控制领域,其代表产品氯化锂湿度传感器具有稳定性、耐温性和使用寿命长多项重要的优点,氯化锂湿敏传感器已有了五十年以上的生产和研究的历史,有着多种多样的产品型式和制作方法,都应用了氯化锂感湿液具备的各种优点尤其是稳定性最强。 氯化锂湿敏器件属于电解质感湿性材料,在众多的感湿材料之中,首先被人们所注意并应用于制造湿敏器件,氯化锂电解质感湿液依据当量电导随着溶液浓度的增加而下降。电解质溶解于水中降低水面上的水蒸气压的原理而实现感湿。 氯化锂湿敏器件的衬底结构分柱状和梳妆,以氯化锂聚乙烯醇涂覆为主要成份的感湿液和制作金质电极是氯化锂湿敏器件的三个组成部分。多年来产品制作不断改进提高,产品性能不断得到改善,氯化锂感湿传感器其特有的长期稳定性是其它感湿材料不可替代的,也是湿度传感器最重要的性能。在产品制作过程中,经过感湿混合液的配制和工艺上的严格控制是保持和发挥这一特性的关键。 在国内九纯健科技依托于国家计量科学研究院、中科院自动化研究所、化工研究院等大型科研单位从事温湿度传感器产品的研制、生产。选用氯化锂感湿材料作为主攻方向,生产氯化锂湿敏传感器及相关变送器,自动化仪表等产品,在吸取了国内外此项技术的成功经验的同时,努力克服传统产品存在的各项弱点,取得实质性进展。产品选用了Al2O3及SiO2陶瓷基片为衬底,基片面积大大缩小,采用特殊的工艺处理,耐湿性和粘覆性均大大提高。使用烧结工艺,在衬底集片上烧结5个9的工业纯金制成的梳妆电极,氯化锂感湿混合液使用新产品添加剂和固有成份混合经过特殊的老化和涂覆工艺后,湿敏基片的使用寿命和长期稳定性大大提高,特别是耐温性达到了-40℃-120℃,以多片湿敏元件组合的独特工艺,是传感器感湿范围为1%RH-98%RH,具备了15%RH范围以下的测量性能,漂移曲线和感湿曲线均实现了较好的线性化水平,使湿度补偿得以方便实施并较容易地保证了宽温区的测湿精度。采用循环降温装置封闭系统,先对对被测气体采样,然后降温检测并确保绝对湿度的恒定,使探头耐温范围提高到600℃左右,大大增强了高温下测湿的功能。成功解决了“高温湿度测量”这一湿度测量领域难题。现在,不采用任何装置直接测量150度以内环境中的湿度的分体式高温型温湿度传感器JCJ200W已成功应用在木材烘干,高低温试验箱等系统中。同时,JCJ200Y产品能耐温高达600度,也已成功应用在印染行业纱锭自动烘干系统、食品自动烘烤系统、特殊陶瓷材料的自动烘干系统、出口大型烘干机械等方面,并表现出良好的效果,为国内自动化控制域填补了高温湿度测量的空白,为我国工业化进程奠定了一定基础。传感器论文: 低温下压阻式压力传感器性能的实验研究 Experimental Study On Performance Of Pressure Transducer At Low Temperature .... 灌区水位测量记录设备及安装技术 摘要:水位测量施测简单直观,易于为广大用水户所接受而且便于自动观测,因而在灌区水量计量乃至在整个灌区信息化建设中都占有十分重要的地位。目前我国灌区中水位监测采用的传感器依据输出量的不同主要分为模拟传感.... 主成分分析在空调系统传感器故障检测与诊断中的应用研究 摘要 本文阐述了用主成分分析法进行系统测量数据建模和传感器故障检测、故障诊断、故障重构及确定最优主成分数的原理。用主成分分析法对空调监测系统中的四类传感器故障进行检测方法。结果表明:主成.... 透光脉动传感器的影响因素研究 摘要:通过试验研究和总结生产应用经验,对透光脉动传感器的影响因素进行了分析,并提出了其最优工作参数。光源宜选择波长为860nm的激光二极管;传感器的管径根据使用目的确定,试验研究一般选用1~3mm,生.... 生物传感器的研究现状及应用 摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料.... 方向盘转角传感器接口 汽车环境对电子产品而言是非常苛刻的:任何连接到12V电源上的电路都必须工作在9V至16V的标称电压范围内,其它需要迫切应对的问题包括负载突降、冷车发动、电池反向、双电池助推、尖峰信号、噪声和极宽的温度.... 用于电容传感器接口的模拟前端元件 因为采用了传统机械开关,用户使用电容传感器接口的方式直接与各种工作条件下(可靠性)接触传感器的响应度(员敏度)梧关。本文将介绍一些通用电容传感器模拟前端测量方法 灵敏度 电容传感器的灵敏度是由其物理结.... 智能传感器与现代汽车电子 现代汽车电子从所应用的电子元器件到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器。 一、汽车电子操控和安全系统谈起 近几年来我国汽车工业增长迅速,发展.... 霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。本文简要介绍其工作原理, 产品特性及其典型应用。 霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。 按照霍尔器件的功能可将它们分为: 霍尔线性器件 和 霍尔开关器件 。前者输出模拟量,后者输出数字量。 按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。 一 霍尔器件的工作原理 在磁场作用下,通有电流的金属片上产生一横向电位差如图1所示: 这个电压和磁场及控制电流成正比: VH=K╳|H╳IC| 式中VH为霍尔电压,H为磁场,IC为控制电流,K为霍尔系数。 在半导体中霍尔效应比金属中显著,故一般霍尔器件是采用半导体材料制作的。 用霍尔器件,可以进行非接触式电流测量,众所周知,当电流通过一根长的直导线时,在导线周围产生磁场,磁场的大小与流过导线的电流成正比,这一磁场可以通过软磁材料来聚集,然后用霍尔器件进行检测,由于磁场与霍尔器件的输出有良好的线性关系,因此可利用霍尔器件测得的讯号大小,直接反应出电流的大小,即: I∞B∞VH 其中I为通过导线的电流,B为导线通电流后产生的磁场,VH为霍尔器件在磁场B中产生的霍尔电压、当选用适当比例系数时,可以表示为等式。霍尔传感器就是根据这种工作原理制成的。 二 霍尔传感器的应用 1 霍尔接近传感器和接近开关 在霍尔器件背后偏置一块永久磁体,并将它们和相应的处理电路装在一个壳体内,做成一个探头,将霍尔器件的输入引线和处理电路的输出引线用电缆连接起来,构成如图1所示的接近传感器。它们的功能框见图19。(a)为霍尔线性接近传感器,(b)为霍尔接近开关。 图1 霍尔接近传感器的外形图 a)霍尔线性接近传感器 (b)霍尔接近开关 图2 霍尔接近传感器的功能框图 霍尔线性接近传感器主要用于黑色金属的自控计数,黑色金属的厚度检测、距离检测、齿轮数齿、转速检测、测速调速、缺口传感、张力检测、棉条均匀检测、电磁量检测、角度检测等。 霍尔接近开关主要用于各种自动控制装置,完成所需的位置控制,加工尺寸控制、自动计数、各种计数、各种流程的自动衔接、液位控制、转速检测等等。霍尔翼片开关 霍尔翼片开关就是利用遮断工作方式的一种产品,它的外形如图20所示,其内部结构及工作原理示于图21。 图3 霍尔翼片开关的外形图 2 霍尔齿轮传感器 如图4所示,新一代的霍尔齿轮转速传感器,广泛用于新一代的汽车智能发动机,作为点火定时用的速度传感器,用于ABS(汽车防抱死制动系统)作为车速传感器等。 在ABS中,速度传感器是十分重要的部件。ABS的工作原理示意图如图23所示。图中,1是车速齿轮传感器;2是压力调节器;3是控制器。在制动过程中,控制器3不断接收来自车速齿轮传感器1和车轮转速相对应的脉冲信号并进行处理,得到车辆的滑移率和减速信号,按其控制逻辑及时准确地向制动压力调节器2发出指令,调节器及时准确地作出响应,使制动气室执行充气、保持或放气指令,调节制动器的制动压力,以防止车轮抱死,达到抗侧滑、甩尾,提高制动安全及制动过程中的可驾驭性。在这个系统中,霍尔传感器作为车轮转速传感器,是制动过程中的实时速度采集器,是ABS中的关键部件之一。 在汽车的新一代智能发动机中,用霍尔齿轮传感器来检测曲轴位置和活塞在汽缸中的运动速度,以提供更准确的点火时间,其作用是别的速度传感器难以代替的,它具有如下许多新的优点。 (1)相位精度高,可满足°曲轴角的要求,不需采用相位补偿。 (2)可满足度曲轴角的熄火检测要求。 (3)输出为矩形波,幅度与车辆转速无关。在电子控制单元中作进一步的传感器信号调整时,会降低成本。 用齿轮传感器,除可检测转速外,还可测出角度、角速度、流量、流速、旋转方向等等。 图4 霍尔速度传感器的内部结构 1. 车轮速度传感器2.压力调节器3.电子控制器 2. 图4 ABS气制动系统的工作原理示意图 3 旋转传感器 按图5所示的各种方法设置磁体,将它们和霍尔开关电路组合起来可以构成各种旋转传感器。霍尔电路通电后,磁体每经过霍尔电路一次,便输出一个电压脉冲。 (a)径向磁极(b)轴向磁极(c)遮断式 图5 旋转传感器磁体设置 由此,可对转动物体实施转数、转速、角度、角速度等物理量的检测。在转轴上固定一个叶轮和磁体,用流体(气体、液体)去推动叶轮转动,便可构成流速、流量传感器。在车轮转轴上装上磁体,在靠近磁体的位置上装上霍尔开关电路,可制成车速表,里程表等等,这些应用的实例如图25所示。 图6的壳体内装有一个带磁体的叶轮,磁体旁装有霍尔开关电路,被测流体从管道一端通入,推动叶轮带动与之相连的磁体转动,经过霍尔器件时,电路输出脉冲电压,由脉冲的数目,可以得到流体的流速。若知管道的内径,可由流速和管径求得流量。霍尔电路由电缆35来供电和输出。 图6 霍尔流量计 由图7可见,经过简单的信号转换,便可得到数字显示的车速。 利用锁定型霍尔电路,不仅可检测转速,还可辨别旋转方向,如图27所示。 曲线1对应结构图(a),曲线2对应结构图(b),曲线3对应结构图(c)。 图7 霍尔车速表的框图 图8 利用霍尔开关锁定器进行方向和转速测定 4 在大电流检测中的应用 在冶金、化工、超导体的应用以及高能物理(例如可控核聚变)试验装置中都有许多超大型电流用电设备。用多霍尔探头制成的电流传感器来进行大电流的测量和控制,既可满足测量准确的要求,又不引入插入损耗,还免除了像使用罗果勘斯基线圈法中需用的昂贵的测试装置。图9示出一种用于DⅢ-D托卡马克中的霍尔电流传感器装置。采用这种霍尔电流传感器,可检测高达到300kA的电流。 图9(a)为G-10安装结构,中心为电流汇流排,(b)为电缆型多霍尔探头,(c)为霍尔电压放大电路。 (a)G�10安装结构(b)电缆型多霍尔探头(c)霍尔电压放大电路 图9 多霍尔探头大电流传感器 图10霍尔钳形数字电流表线路示意图 图11霍尔功率计原理图 (a)霍尔控制电路 (b)霍尔磁场电路 图12霍尔三相功率变送器中的霍尔乘法器 图13霍尔电度表功能框图 图14霍尔隔离放大器的功能框图 5 霍尔位移传感器 若令霍尔元件的工作电流保持不变,而使其在一个均匀梯度磁场中移动,它输出的霍尔电压VH值只由它在该磁场中的位移量Z来决定。图15示出3种产生梯度磁场的磁系统及其与霍尔器件组成的位移传感器的输出特性曲线,将它们固定在被测系统上,可构成霍尔微位移传感器。从曲线可见,结构(b)在Z<2mm时,VH与Z有良好的线性关系,且分辨力可达1μm,结构(C)的灵敏度高,但工作距离较小。 图15 几种产生梯度磁场的磁系统和几种霍尔位移传感器的静态特性 用霍尔元件测量位移的优点很多:惯性小、频响快、工作可靠、寿命长。 以微位移检测为基础,可以构成压力、应力、应变、机械振动、加速度、重量、称重等霍尔传感器。 6 霍尔压力传感器 霍尔压力传感器由弹性元件,磁系统和霍尔元件等部分组成,如图16所示。在图16中,(a)的弹性元件为膜盒,(b)为弹簧片,(c)为波纹管。磁系统最好用能构成均匀梯度磁场的复合系统,如图29中的(a)、(b),也可采用单一磁体,如(c)。加上压力后,使磁系统和霍尔元件间产生相对位移,改变作用到霍尔元件上的磁场,从而改变它的输出电压VH。由事先校准的p~f(VH)曲线即可得到被测压力p的值。 图16 几种霍尔压力传感器的构成原理 7 霍尔加速度传感器 图17示出霍尔加速度传感器的结构原理和静态特性曲线。在盒体的O点上固定均质弹簧片S,片S的中部U处装一惯性块M,片S的末端b处固定测量位移的霍尔元件H,H的上下方装上一对永磁体,它们同极性相对安装。盒体固定在被测对象上,当它们与被测对象一起作垂直向上的加速运动时,惯性块在惯性力的作用下使霍尔元件H产生一个相对盒体的位移,产生霍尔电压VH的变化。可从VH与加速度的关系曲线上求得加速度。 图17 霍尔加速度传感器的结构及其静态特性 三 小结 目前霍尔传感器已从分立元件发展到了集成电路的阶段,正越来越受到人们的重视,应用日益广泛。
传感器在环境检测中可分为气体传感器和液体传感器,这是我为大家整理的传感器检测技术论文,仅供参考!
试述传感器技术在环境检测中的应用
摘要:传感器在环境检测中可分为气体传感器和液体传感器,其中气体传感器主要检测氮氧化合物和含硫氧化物;液体传感器主要检测重金属离子、多环芳香烃类、农药、生物来源类。本文阐述了传感器技术在环境检测方面的应用。
关键词:气体传感器 液体传感器 环境检测
中图分类号:O659 文献标识码:A 文章编号:
随着人们对环境质量越加重视,在实际的环境检测中,人们通常需要既能方便携带,又可以够实现多种待测物持续动态监测的仪器和分析设备。而新型的传感器技术就能够很好的满足上述需求。
传感器技术主要包括两个部分:能与待测物反应的部分和信号转换器部分。信号转换器的作用是将与待测物反应后的变化通过电学或光学信号表示出来。根据检测方法的不同,我们将传感器分为光学传感器和电化学传感器;根据反应原理的不同,分为免疫传感器、酶生物传感器、化学传感器;根据检测对象不同,分为液体传感器和气体传感器。
1气体传感器
气体传感器可以对室内的空气质量进行检测,尤其是有污染的房屋或楼道;也可以对大气环境中的污染物进行检测,如含硫氧化物、氮氧化合物等,检测过程快速方便地。
以含氮氧化物(NOx)为例。汽车排放的尾气是含氮氧化物的主要来源,但随着时代的发展,国内消费水平的提高,汽车尾气的排放量呈逐年上升趋势。通过金属氧化物半导体对汽车尾气及工厂废气中的含氮氧化物进行直接检测。如Dutta设计的传感器,采用铂为电极,氧化钇和氧化锆为氧离子转换器,安装到气体排放口,可以检测到含量为10-4~10-3的NO。含硫氧化物是造成酸雨的主要物质,也是目前环境检测的重点项目,因为在大气环境中的含量低于10-6,需要更高灵敏度的传感器。如高检测的灵敏度的表面声波设备。
Starke等人采用直径为8~16nm的氧化锡、氧化铟、氧化钨纳米颗粒制作的纳米颗粒传感器,对NO和NO2的检测下限可达到10-8,提高反应的比表面积,增加反应灵敏度,且工作温度比常规的传感器大大降低,减少了能源消耗。
2液体传感器
在实际环境检测中,液体传感器大多应用于水的检测。由于水环境中的污染物种类广泛,因此液体传感器比气体传感器的应用更为广泛和重要。水中的污染物除了少量的天然污染物以外,大部分都是人为倾倒的无机物和有机物。无机物中,重金属离子为重点检测对象;有机污染物包括杀虫剂、激素类代谢物、多环芳香烃类物质等。这些污染物的过度超标,会严重影响到所有生物体的健康和安全。
重金属离子检测
采水体中重金属离子的主要来源包括开矿、冶金、印染等企业排放的废水。这些生产废水往往混合了多种废水,所含的重金属离子种类繁多,常见的有汞、锰、铅、镉、铬等。重金属离子会不断发生形态的改变和在不同相之间进行转移,若处置不当,容易形成二次污染。生物体从环境中摄取到的重金属离子,经过食物链,逐渐在高级生物体内富集,最终导致生物体的中毒。因此如果供人类食用的鱼类金属离子超标,将对人类产生严重的影响,因此对于重金属离子的检测显得尤为重要。
Burge等人发明的传感器,可以利用1,2,2联苯卡巴肼和分光光度计,可以检测地下水中的重金属铬浓度是否超标。
除了通过化学反应检测外,采用特殊的生物物质,也可以方便和灵敏地检测重金属离子。如大肠杆菌体内有一种蛋白质可以结合镍离子,有人在这种蛋白质的镍离子结合位点附近插入荧光基团,当蛋白质结合镍离子后,荧光基团会被淬灭,由于荧光的强度与镍离子浓度成反比,从而实现对镍离子的定量检测,检测范围未10-8~10-2mol/L。日方法也可应用于检测Cu2+、Co2+、Fe2+和Cd2+等几种离子中。他们还结合了微流体技术,该技术只需消耗几十纳升体积的待测液体,就可以对100nmol/L以下浓度的Pb2+进行检测。Matsunaga小组将TPPS固定在多孔硅基质中,当环境中存在Hg2+时,随着Hg2+浓度的变化,TPPS的颜色会从橘黄色逐渐转变成绿色,该传感器的检测限为,通过加入硅铝酸去除干扰离子Ni2+和Zn2+。
利用传感器技术不仅可以准确测定待测物的浓度,而且由于传感器的微型化技术特点,还可以通过传感器的偶联,进行多项指标的检测。Lau等人设计了基于发光二极管原理的传感器,可以同时检测Cd2+和Pb2+,该传感器对Cd2+和Pb2+的检测限分别为10-6和10-8。
农药残留物质的检测
农药是一类特殊的化学品,它在防治农林病虫害的同时,也会对人畜造成严重的危害。中国是农业大国,每年的农药使用量相当庞大,因此有必要对其进行监测。采用钴-苯二甲蓝染料和电流计就能方便地检测三嗪类除草剂,无需脱氧,直接检测的下限为50Lg/L,如果通过预处理进行样品浓缩后,检测限可以达到200ng/L。
采用带有光纤的红外光谱传感器可以进行杀虫剂的快速检测。将光纤内壁涂覆经非极性有机物修饰的气溶胶材料后,能显著改善光纤中水分子对信号的耗散作用,并且能够提取出溶液中的有机磷类杀虫剂进行光谱分析。此类传感器对于有机溶剂,如苯、甲苯、二甲苯的检测限则可达10-8~8*10-8。
多环芳香烃类化合物的检测
多环芳香烃类物质是另外一大类有害的污染物质,这类物质具有致癌性,但在许多工业生产过程中均会使用或产生此类物质。水体中的多环芳香烃类物质含量非常低,一般在10-9范围内,因此需要借助高灵敏度的检测传感器,Schechter小组发明了光纤光学荧光传感器。在直接检测过程中,待测样本中还可能存在一些如泥土这样的干扰物质,会降低检测信号值,如果用聚合物膜先将非极性的PAH富集,然后对膜上的物质进行荧光检测,从而解决信号干扰问题,报道称这种经膜富集后的传感器技术,对pyrene的检测可达到6*10-11,蒽类物质则可达4*10-10。Stanley等人利用石英晶振微天平作为传感器,在芯片表面固定上蒽-碳酸的单分子膜,检测限可达到2*10-9。
基于免疫分析原理,采用分子印迹的方法,在传感器表面印上能够结合不同待测物质的抗体分子,可以实现多种不同物质的检测。近年来发展起来的微接触印刷技术,也可应用到该领域,这样制备得到的传感器体积可以更加微型化。
生物类污染物质
除了以上的无机和有机合成类污染物质,还有生物来源的一些潜在污染分子。如激素类分子及其代谢物的污染常常会引起生物体生长、发育和繁殖的异常。Gauglitz带领的研究小组采用全内反射荧光生物传感器和睾丸激素抗体,对河流中的睾丸激素直接进行了即时检测,其检测限为。该技术无需样品的预处理,对于不同地区的自然界水体均可以进行睾丸激素的现场直接检测,检测范围为9~90ng/L。
另外,致病菌和病毒也是被检测的对象,水体中出现某些特定菌种,可以表明水体受到了某种污染,利用传感器技术非常容易检测到这些生物样本的存在,而且选择性非常高,如可以从烟草叶中快速地发现植物病毒烟草花叶病毒,采用QCM可以直接检测到酵母细胞的数量。
3结论和展望
目前,传感器技术已开始应用于各环境监测机构的应急检测,但是实际应用中有诸多的局限性,比如在对大气中的某些有害物质进行检测时,由于其含量往往低于传感器的最低检测限,因此在实际应用过程中,还需要进行气体的浓缩处理,这样就使传感器不容易实现微型化,或者需要借助更高灵敏度的传感器;同样,在野外水体检测时,常常会出现待测水体含有多种复杂干扰成分的情况,无法与实验室的标准化条件相比;在有些以膜分离分析技术为原理的传感器中,其膜的使用寿命往往较短,而频繁更换新膜的价格较为昂贵,因此仍然无法得到广泛的应用。
尽管如此,随着传感器技术的不断发展和完善,仍然有望应用于将来工厂企业排气、排污的现场直接检测和野外环境的动态无人监测,而且其结果能与实验室常规仪器的检测结果相符,这样将大大加快对环境监测和治理的步伐。
参考文献
[1]NaglS,,2007,132:507-511.
[2],2005,59:209-217.
[3]HanrahanG,,2004,6:657-664.
[4]HoneychurchKC,,2003,22:456-469.
[5]AmineA,,2006,21:1405-1423
传感器与自动检测技术教学改革探讨
摘要:传感器与自动检测技术是电气信息类专业重要的主干专业课,传统授课方法侧重于理论知识的传授,而忽略了应用层面的培养。针对此问题试图从教学目的、教学内容、教学形式、教学效果等多个方面进行分析,对该课程的教学方案改革进行探讨,提出一套技能与理论知识相结合、行之有效的教学方案。
关键词:传感器与自动检测技术;教学内容;教学模式;工程思维
“传感器与自动检测技术”是电气信息类专业重要的主干专业课,是一门必修课,也是一门涉及电工电子技术、传感器技术、光电检测技术、控制技术、计算机技术、数据处理技术、精密机械设计技术等众多基础理论和技术的综合性技术,现代检测系统通常集光、机、电于一体,软硬件相结合。
“传感器与自动检测技术”课程于20世纪80年代开始在我国普通高校的本科阶段和研究生阶段开设。本课程侧重于传感器与自动检测技术理论的传授,重知识,轻技能;教师之间也缺乏沟通,教学资源不能得到充分利用,教学效果不理想,学生学习兴趣不高。
一、教学过程中发现的问题及改革必要性分析
笔者在独立学院讲授“传感器与自动检测技术”课程已有四年,最开始沿用了研究型大学的教学计划和教学大纲,由于研究型大学是以培养研究型人才为主,而独立学院是以培养应用型人才为主,在人才培养目标上有较大差异,在逐渐深入的过程中发现传统方案不太符合学院培养应用型人才的定位,存在以下几方面的问题。
1.重理论,轻实践
该课程是应用型课程,其中也有大量的理论知识、数学推导,而传统的研究型教学方法普遍都以理论教学为主,在课堂上大篇幅讲解传感器的原理,进行数学公式推导,相比而言传感器的应用通常只是通过一个实例简单介绍,导致最后大多数学生只是粗略地知道该传感器的结构,而不知道如何用,在哪里用。
2.教学模式单一
该课程传统上以讲授的教学方式为主,将现成的结论、公式和定理告诉学生,学生不能主动地思考和探索,过程枯燥乏味,导致学生产生了厌学情绪。同时理论教学与实训、实践教学脱节问题也很严重。
3.教学实验安排不合理
传统的实验课程安排,验证性实验比例高达80%,综合设计性实验极少,缺少实训、实践环节。然而应用型人才的培养应该以实践教学为核心,重点培养学生的工程思维和实践能力、动手能力,以在学生毕业时达到企业对技术水平与能力的要求,使学生毕业后能尽快适应工作岗位。
二、适合独立学院培养应用型人才的教学方案改革
传统的传感器与自动检测技术课程重理论、轻实践,教学模式单一,教学实验以验证性实验为主,这种方案能够培养研究型人才,但却无法培养合格的应用型人才。在教学过程中,笔者潜心研习,并反复实践,总结出以下几个可以改革的方面。
1.优化教学内容,注重工程思维
本课程一个很重要的内容是各种类型传感器的原理,传统的教学要讲清楚其中的来龙去脉,而本人则认为针对应用型人才培养,充分讲授清楚基本概念、基本原理和基本方法即可,涉及大额数学公式可以选择重要的进行讲解,其他则可作为学生的自学内容,让学生课余自学。同时应该重点讲解该传感器的工程应用实例;另一方面要结合最新实际工程讲解。这样才能激发学生的学习兴趣,培养学生应用型工程学习思维。
2.改革教学方法,改变教学模式
传统的教学是“灌输式”的方法,无论学生是否接受,直接把要讲的内容全部讲述给学生,而这也违背了培养学生分析问题和解决问题的能力以及创新能力的出发点和归宿。笔者认为应该应用工程案例教学,实行启发式、讨论式、研究式等与实践相结合的教学方法,发挥学生在教学活动中的主体地位。
3.与工程实际相结合,与其他课程相结合
教学过程中要从不同行业提取典型的工程应用实例,精简以后作为实例进行讲解。在进行教学时,要培养学生的系统观,让学生明白这不是一门独立的课程,而是与自动控制原理、智能控制理论等课程相融合的,以达到融会贯通的学习效果。
4.实验环节改革
实验教学主要是为了提高学生的动手能力、分析问题和解决问题的能力,加深学生对课堂教学中理论、概念的感性认识。以往该课程的实验内容大部分为原理性、验证性的实验,学生容易感到枯燥无味,毫无学习积极性,很少有学生进行独立思考并发现问题,实验效果极不理想。为了改变这种模式化的教育,笔者将实验内容由传统的验证性实验调整为设计开发型实验。在实验教学中根据客观条件在适当减少验证性实验的基础上,增加了开拓性实验项目以及设计综合性实验。
5.改革教学评价方法,提高课堂教学效率
高效的学习成果反馈机制是促进教学相长的必要手段,目前该课程都是通过课程作业进行学习效果反馈,可以采用每一个章节布置一道设计型题目,让学生更加广泛地查阅资料,并在一定知识广度的基础上深入分析题目中用到的内容,进而从更深的层面分析解决问题,以达到深度、广度相结合的效果。
本文针对传感器与自动检测技术传统研究型大学的方案,提出了三个方面的问题,并根据四年的教学积累,在教学内容、教学模式、实验环节、教学评价及反馈等几个方面进行了探讨分析并提出了一套改革的方法和措施。本方案以实际工程应用实例为核心,在教学内容上侧重于传感器应用方面的讲解,以提出问题、分析问题、解决问题为主线调动学生的学习积极性和主动性,培养学生的工程思维和能力,重视实验环节,以设计性、综合性实验代替验证性实验培养学生将抽象的知识具体化、培养学生的实际应用能力、动手能力和创新能力。
参考文献:
[1]吴建平,甘媛.“传感器”课程实验教学研究[J].成都理工大学学报.
[2]曹良玉,赵堂春.传感器技术及其应用.课程改革初探[J].中国现代教育装备.
[3]李玉华,胡雪梅.传感器及应用.课程教学改革的探讨Ⅱ技术与市场.
关于重金属对蔬菜的污染问题研究与治理方法论文
摘要:近些年,随着全球经济化的迅速发展,含有重金属的污染物通过各种途径进入农业生态环境中,使土壤和水体受到污染。文章就重金属对蔬菜污染及治理方法做一浅谈。
关键词:重金属;污染;研究;治理方法
1 蔬菜是人们日常生活中必不可少的食物,蔬菜质量的优劣直接关系到人们的身体健康
影响蔬菜质量的最大危害是重金属污染。蔬菜中重金属污染主要来自工业“三废”,城镇生活垃圾、污水及农业生产本身。按蔬菜被污染的途径,可有以下几个方面的来源。
污水的灌溉
城市工业的发展和城市化进程的加快,水资源逐渐匮乏,污水灌溉已成为农业灌溉用水的重要组成部分,工业废水中往往含有重金属。大量的不加处理的工业废水和废渣排放江河、湖中,使水资源受到不同程度的污染,蔬菜生产和增产主要靠灌溉。城市工矿区,郊区菜田不得不大量使用工业废水和生活污水灌溉菜田。所以,我国主要的土壤重金属污染区都是由于污水灌溉引起的。
工业废渣
据不完全统计;全国75个城市历年积累的工业废渣和尾矿达亿t,1980年统计78个省市工业废渣共亿t。这些废渣不仅占用了大片土地,而且造成更多的土壤污染。特别是城市近郊区和工矿企业附近的蔬菜地受重金属污染愈来愈严重。
农业生产活动
(1)在农业生产活动中人们为了片面的追求高产,增加效益,大量的施用含有Hg、Cd、Pb、As等不合格的化肥,城市垃圾不经任何处理直接当作肥料施用,导致土壤有机质和作物必需的营养元素含量降低,重金属含量超标,从而影响蔬菜的;(2)农业生产活动中,农用塑料薄膜,生产应用的稳定剂等都含有重金属Cd和As,在大量使用塑料大棚和地膜过程中都可能造成土壤重金属的污染,从而对蔬菜等农作物的生长、产量、品质均有较大的危害。
其他方面来源
随着汽车工业的迅速发展,含Pb汽油的大量使用、汽车尾气的排放、汽车轮胎磨损产生的大量重金属、有毒有害气体、粉尘等,都会引起交通干线附近土壤和蔬菜等作物的重金属污染。还有润滑油中的Cd、镀Cd的工艺等生产或排放过程均将含有Cd废物排入土壤造成污染。此外,还有微生物的污染。
2 重金属对人体健康最直接的影响之一就是对食品安全造成威胁
大多数消费者的食品安全观念仅仅在农药残留和食品变质上,对土壤重金属污染影响食品安全的问题知之甚少。而且重金属污染具有潜在性,普通消费者无法从外观上判断农产品是否受重金属污染而避开它。
(1)不同重金属对身体危害不同,对人体危害最大的是有机汞,它不仅毒性高,能伤害大脑,而且比较稳定,在人体内停留的半寿命长达70d之久,所以即使剂量很少也可累积致毒。可见,重金属给人类带来的危害是无法估量的,因此,无污染蔬菜的生产正日益受到人们的重视。
(2)目前,菜地和蔬菜遭受到污染是十分严重的,已经暴露出来的重金属和硝酸盐的污染必须给以足够的重视。土壤污染对蔬菜影响较大的'重金属有Cd、Hg、Cr、As等。
3 治理土壤中重金属的方法
我们通过对各种蔬菜做实验找到不同蔬菜超标时的土壤临界浓度,通过控制和治理土壤中的重金属含量来控制蔬菜中重金属的含量。由于蔬菜重金属的主要来源是土壤,我们可以通过以下几个方面对土壤中的重金属进行治理。
土壤污染的防治
土壤污染可采用工程措施,它包括:(1)客土法:就是在污染土壤上加入净土。但客人的土应尽量选择比较粘重或有机质含量高的土壤,以增加土壤容量,减少客土量。本法适应于浅根植物和移动性较差的污染物。(2)换土法:就是将已污染的土壤移去,换上新土;而换土法对小面积严重污染且污染物是有放射性或易扩散难分解的土壤是必须的,以防止扩大范围,危害人畜健康。
加强对工业“三废”的治理和综合利用
(1)禁止使用未经处理的工业污水灌溉农田。在积极慎重地推广污水灌溉的同时,对灌溉农田的污水,必须进行严格的监测和控制。(2)减少工业废水和生活污水的排放量,发展区域性污染防治系统,包括制定区域性水质管理规划,合理利用自然净化能力,实行排放污染物的总量控制,调整工业布局,改变产品结构,除此之外,还应有完善的管理措施。工业布局要合理,改变燃料的燃烧方法,绿化造林,采用高烟囱和高效除尘设备,采取集中供热,减少交通废气污染,施用低毒、低残留的农药等。(3)选择未受工业废水、废渣、废气污染的农田,在远离城市的工矿企业、医院、生活垃圾、生活用水等污染源的地区建立蔬菜生产基地。
对粪便、垃圾和生活污水进行无公害化处理
对禽畜粪便须经堆肥化处理,其目的都是利用微生物分解有机物过程中产生的高温(70℃)消灭病菌,虫卵和病毒等,不致对蔬菜造成生物污染。近几年来绿色食品蔬菜生产的新型肥料即生物肥有生物菌剂与生物有机肥,施入土壤后,释放土壤中的迟效养分,供蔬菜吸收利用,减少农药残留、重金属污染,不但有利于提高蔬菜品质,还有利于生态环境的保护。
要提高对蔬菜的质量意识,必须保护农业生态环境。水源、土壤、空气、生态是人类世世代代赖以生存的环境及食物链的资源基础。我们必须痛下决心,加强立法,重视农业生态环境的综合整治。一方面防治城市工业和乡镇企业环境的污染;另一方面要广泛宣传蔬菜科学用药,标准化生产,无公害农产品生产技术规程等,提高菜农和市民的质量意识,农产品安全意识和农产品标准化意识。发展绿色食品,开展生态工程建设,保护和改善农业生态环境。
土壤重金属的污染问题与防治路径论文
在平平淡淡的日常中,大家对论文都再熟悉不过了吧,论文是探讨问题进行学术研究的一种手段。相信许多人会觉得论文很难写吧,下面是我精心整理的土壤重金属的污染问题与防治路径论文,欢迎大家分享。
摘要:
当今环境问题中最为严重的就是土壤污染,土壤污染中危害最大、影响面积最广的是土壤重金属污染,极大地破坏了生态环境、损害人们的身体健康,甚至严重威胁到我国的可持续发展。在绿色发展理念的倡导下,人们逐渐意识到了土壤环境保护与污染的防治修复的重要程度。本文通过对我国重金属污染的现状、造成污染的原因以及危害的简要分析,结合全国各地治理土壤污染的基本措施,总结出了防治土壤污染的几点对策。
关键词:
土壤污染;危害;防治对策;
1、土壤重金属污染问题的现状与污染成因
、我国土壤污染现状
土壤是人类不可或缺的生存资源。人类从土壤中获得足以休养生息的物质财富,没有土地,人类难以生存。人们在日常生活中对土壤环境资源缺乏足够的保护意识,造成土壤污染状况日趋严重。近些年,我国工农业突飞猛进的发展,土壤环境污染程度越来越高,污染物的含量不断增加,种类也不断增多。土壤重金属污染已经严重影响人们的生活,威胁着每一个人的生命安全。土壤重金属污染是指比重大于5的金属或其化合物侵入土壤造成的污染,目前人们已发现包括镉(Cd)、镍(Ni)、铬(Cr)、锰(Mn)、砷(As)、汞(Hg)、锌(Zn)等大约45种重金属元素。我国受砷、镉、铅、铬等重金属污染的耕地面积大约占全部耕地面积的1/5。据我国2016年农业部监测系统的调查数据表明,我国每年因为重金属污染土壤而使粮食产量降低1000万t以上。根据农业农村部的污水灌溉区统计数据得出,我国有大约140万hm2的污水灌溉区,而有的土地面积遭受重金属污染。污水里的重金属污染物使土壤中的植物遭受二次污染。生物体吸收了这些有毒有害的物质,如汞、铅、锌、镉、铜等金属元素,通过食物链等渠道进入到人身体内,给人们的身体健康埋下巨大隐患,甚至会损害人体的生理器官,严重影响身体健康。
、我国土壤重金属污染成因
土壤重金属污染原因广泛,主要有过量使用化肥农药、工业和生活污染、交通污染等。化肥农药是重要的农业生产物资,农药在农业生产过程中对防治农作物的病虫危害具有至关重要的作用,但是由于缺乏正确科学选用农药品种和使用方法的指导,造成土壤的生态系统遭到破坏;化肥可以大幅提高农作物的产量,农民为了追求高产,长期施用过量的化肥,造成土壤酸化板结,不但降低了土壤肥力,还严重破坏了土壤耕地层的质量;长期使用化肥和农药造成严重的土壤和农作物重金属的累积污染问题。工业和生活污染是指工业及生活污水和垃圾,其中含有大量的重金属、有机物等大量有毒有害物质,将未经处理的工业污水直接灌溉农田,造成部分农田严重污染,破坏了土壤生态环境;凡以重金属和含有重金属的材料为原料的行业,在生产过程中如果将未经严格处理的废液、废渣、废水排放,都会造成重金属地污染。
2、土壤重金属污染的危害
土壤能够为植物提供生长所需的基本营养元素,当土壤中重金属超标时,将会影响植物对氮、磷的吸收,改变钾的形态,从而影响植物的生长,引起植物生理特征的改变,高浓度的重金属会引起植物营养不足,降低酶的有效性。有的农作物可以富集重金属,造成农作物本身重金属超标,甚至有的逐渐转化为毒性更大的甲基化合物,以有害的浓度通过食物链的方式在人类体内蓄积,严重危害人体健康。人体摄入过多的重金属会引起免疫力降低,呼吸系统紊乱等病变。铅能通过破坏儿童的中枢神经系统,造成儿童的智力和行为障碍,也能对成人的神经、消化、心血管等系统产生危害。摄入过量的`镉,可使骨折发生几率增加和骨密度降低,能够对人体的肾、肝、肺、骨骼,以及血液和免疫系统产生伤害。Pb、Hg能够通过影响人的妊娠,引发胎儿的流产、畸形、死亡等。砷能够造成肝脾肿大、肝腹水、抑制儿童智力发育,还能引发黑脚病、糖尿病、肾病、脑血管等方面的疾病。人体内积蓄过多的铜元素,会引起铜中毒,造成机体代谢紊乱,严重会导致急性肾功能衰竭。在土壤重金属污染、大气污染和水污染三者中,土壤重金属污染很难得到有效治理。土壤中汇聚的多种重金属会对土壤环境、动物、植物、微生物都产生严重伤害。
3、土壤重金属污染的防治措施
、制定管理和监督的法律法规
面对日益严重的土壤重金属污染,应当建立和完善保障土壤污染防治与修复工作顺利进行的政策和法律法规。2016年印发了《土壤污染防治行动计划》,2018年通过了《中华人民共和国土壤污染防治法》。2项法规都是以改善土壤环境质量为核心,严格防治工矿企业、农业生产生活等方面的重金属污染,进行土壤污染法规标准的制定与问责。土壤污染防治应当坚持预防为主,保护优先,严控新增污染,分阶段分类别管理,形成政府主导,企业担责、公众参与、社会监督的土壤污染防治体系。保护土壤质量,防治土壤污染是每一个公民和组织义不容辞的责任。
、紧抓源头,防控土壤重金属污染源
严控土壤重金属污染源必须从源头抓起,针对污染源头分类分级管理严控污染源。必须遵循预防为主,防与治相结合的基本原则。对工农业生产以及居民生活的污染排放进行严格控制。采取有效措施,以削减、控制和消除污染源。大力推广清洁无毒工艺,减少或消除工矿企业重金属污染物的随意排放,对工业“废水、废液、废渣”必须进行回收和处理,严格控制污染物排放量与浓度,避免重金属对土壤环境的二次污染。在农业生产化肥、农药的控制方面,要增强广大农民群体保护耕地质量的意识,加大土壤污染防治的宣传和教育;执法部门和农药监测部门定期对市场上流通的农药产品进行监测,禁止或限制使用剧毒农药,积极推广如除虫菊酯、烟碱等植物体天然成分的毒性小、效果好、残留低的农药;推广开展天敌防治法,既要消除病虫害对农作物的威胁,又要把农药对生态环境的危害降到最低程度。
4、做好污染土壤的防治修复工作
面对我国日益严重的土壤重金属污染现状,要充分认识土壤重金属污染的4大特点———不可逆性、治理难且周期长、累积与地域性、隐蔽性,积极采取各种各样的修复治理措施,缓解土壤污染的程度,营造安全、美丽、幸福的生态环境。针对目前我国各地治理土壤重金属污染采取的措施,一般有工程治理措施、化学治理措施、生物治理措施和农业生态治理措施4种方法。
、工程治理措施
工程治理措施作为一种比较具有权威性的土壤重金属污染治理方法,可以从根本上解决重金属的污染问题,但是实施起来工程量大,需要投入大量的人员和资金,而且会破坏土壤结构,降低土壤肥力,同时也需要处理置换出来的污染土壤。工程治理一般是通过客土、换土和深耕翻土等措施来治理土壤中的重金属污染。污染比较严重、面积较小的农业大棚的土壤污染适用客土法,把由别处移来的未被污染的洁净土壤加入到受污染的土壤里面,大多会选用质地好的人工土或沙壤土,降低土壤耕作层的重金属浓度,减少重金属对植物根系的毒害,加快土壤生态修复的速度。换土法是把受污染的土壤转移出来,更换没有被污染的洁净土壤。这种方法可以很快修复受损土壤,效果明显,但是换土法费时费力,成本较高。对于具有放射性污染物或含有难分解易扩散污染物的污染严重的景区花园和科研场所等面积较小的土壤可以采用换土法。污染较轻、耕作层较厚的土壤污染可采用深耕翻土法,翻土法是通过深耕技术,拌匀、翻动、混合耕作层土壤来降低土壤耕作层重金属污染物的含量。
、化学治理措施
化学治理就是向污染土壤投入抑制剂、改良剂,以降低重金属的生物可利用度。化学方法治理效果明显,周期短、投资适中,但是不能确保治理效果的长期稳定性。
、生物治理措施
生物技术治理污染土壤是一种正在被广泛推广的新型治理措施。是通过植物、动物和微生物的某些特有习性抑制、削减和改良吸收、降解土壤中污染物,降低重金属毒性。植物修复技术是利用超富集植物吸收土壤中的过量重金属,投资小和维护成本低,具有较高美化环境的价值、二次污染小的特点,是一种新兴的、很有潜力的绿色安全修复技术,受到许多国家的青睐。微生物修复是在合适的环境条件下,充分利用大自然中天然存在的或人工培养的具有特定功能的微生物群的微生物代谢功能,达到将其降解成无毒物质或降低有毒污染物活性的生物修复技术。微生物修复实际就是生物降解,是利用微生物群具有繁殖快、个体小、易变异、适应性强的特点来达到对环境污染的分解作用,还可以降解和转化那些“陌生”的化合物。
、农业生态治理措施
农业生态治理方法是在农业生产的过程中,采用一些因地制宜的土壤耕作管理制度,种植合适的植物品种,改善土壤的生态环境,减轻或阻断重金属对人体造成的危害。合理规划农业种植区域,把高富集重金属的经济作物或树、花、草种植在重金属污染严重区域,既能美化环境,又能净化土壤;将低富集重金属作物品种植在基本适宜区,这样能够减少重金属在作物中的累积,提高土壤的质量。农业生态治理方法循环周期长、效果不明显。
5、结束语
土壤中过高重金属含量严重危害了人类的生存环境,对整个自然界地理环境都造成负面影响。采用单一的修复技术无法完全修复土壤,必须要以植物修复为主,优化特定微生物的筛选,建立相关基因库,培养超强工程菌,多种治理措施相辅相成,从而彻底清除土壤中的重金属。做好土壤环境保护方面的知识引导和宣传,提高人们的环境保护意识,促进土壤生态向健康的方向发展。
参考文献
[1]张婧,杜阿朋.桉树在土壤重金属污染区土壤生物修复应用前景[J].桉树科技,2010(02):43-47.
[2]何容,杜佳佳,许波峰,等.土壤重金属污染研究概况[J].山东林业科技,2008(01):85-87.
[3]王雪.土壤重金属污染及其治理对策[J].速度(上旬),2015(09):290.
[4]何明清.土壤与固化废物监测技术问答[M].北京:化学工业出版社,2006.
[5]唐会娟.浅析土壤重金属污染的防治技术[J].科教导刊(电子版),2016(06):128.
[6]王海慧,郇恒福,罗瑛,等.土壤重金属污染及植物修复技术[J].中国农学通报,2009(11):210-214.
[7]杨苏才,南忠仁,曾静静.土壤重金属污染现状与治理途径探究进展[J].安徽农业科学,2006(03):549-552.
[8]何凤鹏,谷雨,冯光辉,吴海勇,刘琼峰,李明德.不同类型土壤调理剂对土壤-水稻系统重金属含量的影响[J].湖南农业科学,2016(05):31-34.
[9]郭培俊,杨菁.重金属污染的土壤的修复与防治[J].科技资讯,2019(03):93-94.
[10]廖健.土壤重金属污染及其化学修复技术的研究进展[J].中国石油和化工标准与质量,2013(24):28,30.
[11]黄成敏.环境地学导论[M].成都:四川大学出版社,2005.
[12]岳永德.环境保护学[M].北京:中国农业出版社,2009.
[13]李学林.农田污染与农产品质量安全问题分析[J].南方农业,2018(24):161-162.
浅谈重金属检测传感器技术的应用论文
摘要: 随着经济的迅猛发展和社会的日新月异, 人们对重金属的开采及加工越来越频繁, 这使得不少重金属存在于大气水以及土壤中, 在很大程度上加重了环境污染, 科学技术的迅猛发展为重金属检测传感器技术的研究提供了很好的途径。针对上述背景下, 对重金属检测传感器技术研究与应用进行合理性阐述, 以促进重金属检测传感器技术的进一步发展。
关键词: 重金属检测; 传感器技术; 环境污染;
重金属污染是环境污染的一个重要组成部分, 重金属在自然界中广泛存在, 随着人类的开采、冶炼、加工活动而使得重金属转变成化学状态或化学形态广泛分布于大气、水、土壤中, 随着时间的积累而不断留存、迁移, 从而引发严重的环境污染问题;重金属甚至还会随着废水的排出而流入海洋中, 对鱼和贝类造成严重的危害;重金属还会附着在人类的鼻腔和食物上, 造成人类呼吸道感染和重金属中毒[1]。重金属具有沉积性和不可降解性, 是一种非常危险的污染源, 因此对于重金属的研究与检测是十分关键的。通过调查与研究, 发现重金属检测传感器技术主要分为离子选择性电极传感器技术、光纤化学传感器技术、生物传感器技术以及微电极矩阵传感器技术四个方面, 本文通过对这四种传感器技术在重金属检测中的研究与应用作简要分析, 以推动重金属检测传感器技术的发展。
1 离子选择性电极传感器技术。
离子选择性电极传感器技术是一种操作简单、性价比高、准确有效的重金属检测传感器技术。离子选择性电极传感器技术因为不需要提前对样品进行操作而被广泛应用于重金属的在线检测中。目前, 国内外学者对离子选择性电极传感器技术进行了大量的研究, 发现选择性高、经济简单的离子选择性电极主要分为基于聚氯乙烯膜的离子选择性电极和基于流系玻璃膜的离子选择性电极两种[2]。
基于聚氯乙烯膜的离子选择性电极。
目前在对基于聚氯乙烯膜的离子选择性电极的研究中, 主要是对离子选择性电极的重金属离子的识别以及聚氯乙烯膜的结构和性能进行研究, 同时, 对不同的载体和膜增塑剂对离子选择性电极性能的影响作简要分析, 从而提高对重金属的识别能力。
基于流系玻璃膜的离子选择性电极。
基于硫系玻璃膜的离子选择性电极良好的红外线透过性是其他离子选择性电极无法相提并论的。许多发达国家都通过购买硫系玻璃膜的离子选择性电极来用于重金属检测工作。
2 光纤化学传感器技术。
对于光纤化学传感器技术的研究比离子选择性电极传感器技术的研究还要早, 光纤化学传感器技术的研究始于美国研究所, 从那以后, 许多国家都在实验室中对光纤化学传感器技术进行研究, 并应用到重金属检测中。陈雷等人对基于聚氯乙烯膜的光纤传感器进行研究并应用到铜离子的检测中, 取得了良好的效果[3]。李学强等人将注册分析法和激光激发荧光光谱技术应用到对金属离子传感器的研制中, 使我国饮用水中的重金属检测工作取得了很大的进展。
3 生物传感器技术。
第一个生物传感器始于Red String仪器公司。之后, 又在多个公司相继推出, 这些生物传感器主要是对人类血糖和尿糖中的重金属物质进行检测。重金属物质在人体中的留存和迁移会对人体的健康造成极大的威胁, 生物传感器可以与人体生物识别因素相互影响, 以达到对人体中的重金属含量进行检测, 从而预防重金属中毒的目的。通过研究发现, 生物传感器主要分为蛋白质为基础的'生物传感器以及整个细胞为基础的重金属传感器两种。
蛋白质为基础的生物传感器。
生物识别因素主要是促进消化的酶、防止病毒入侵的抗体、增强体质的金属键键合蛋白以及脱辅基酶蛋白质。以这几种生物识别因素为基础制作蛋白质为基础的生物传感器, 用来检测铜离子、锌离子、汞离子以及铅离子等金属离子。传统的生物传感器存在灵敏度低、选择性差等一系列缺点, 因此必须研制出选择性高的新型传感器来实现对重金属离子的检测, 这种新型传感器被称为蛋白质为基础的生物传感器。
整个细胞为基础的重金属传感器。
整个细胞为基础的重金属传感器可以实现对微型有机体生物标识的检测, 它具有所受干扰因素少、反应速度快等一系列优点, 可以实现对苔藓、海藻、酵母等海洋生物中的重金属的检测。随着生物医学和环境工程的蓬勃发展, 可以通过改进主传感器的途径来解决重金属检测过程中的干扰问题, 即在基因层次上设计细胞器。
4 结语。
综上所述, 本文通过对重金属检测传感器技术研究与应用进行分析, 主要从离子选择性电极传感器技术、光纤化学传感器技术、生物传感器技术以及微电极矩阵传感器技术这四个方面作简要分析, 为传感器检测技术在重金属中的研究与应用提供理论支持, 以减少重金属污染现象的发生。
参考文献
[1]张涛, 苏倡, 刘艳, 等.泥蚶 (Tegillarca granosa) 重组铁蛋白富集重金属离子的特性及化学传感器的研究[J].海洋与湖沼, 2017, 48 (4) :870-876.
[2]吕攀攀, 肖芳兰, 严锡娟, 等.构建一种基于双启动子模型的特异性检测镉离子的大肠杆菌传感器[J].生物工程学报, 2015, 31 (11) :1601-1611.
[3]贾朔.边超, 佟建华, 等.基于纳米金Core-satellites等离子体耦合增强效应的汞离子光纤传感器的研究[J].分析化学, 2017, 45 (6) :785-790.
传感器在环境检测中可分为气体传感器和液体传感器,这是我为大家整理的传感器检测技术论文,仅供参考!
试述传感器技术在环境检测中的应用
摘要:传感器在环境检测中可分为气体传感器和液体传感器,其中气体传感器主要检测氮氧化合物和含硫氧化物;液体传感器主要检测重金属离子、多环芳香烃类、农药、生物来源类。本文阐述了传感器技术在环境检测方面的应用。
关键词:气体传感器 液体传感器 环境检测
中图分类号:O659 文献标识码:A 文章编号:
随着人们对环境质量越加重视,在实际的环境检测中,人们通常需要既能方便携带,又可以够实现多种待测物持续动态监测的仪器和分析设备。而新型的传感器技术就能够很好的满足上述需求。
传感器技术主要包括两个部分:能与待测物反应的部分和信号转换器部分。信号转换器的作用是将与待测物反应后的变化通过电学或光学信号表示出来。根据检测方法的不同,我们将传感器分为光学传感器和电化学传感器;根据反应原理的不同,分为免疫传感器、酶生物传感器、化学传感器;根据检测对象不同,分为液体传感器和气体传感器。
1气体传感器
气体传感器可以对室内的空气质量进行检测,尤其是有污染的房屋或楼道;也可以对大气环境中的污染物进行检测,如含硫氧化物、氮氧化合物等,检测过程快速方便地。
以含氮氧化物(NOx)为例。汽车排放的尾气是含氮氧化物的主要来源,但随着时代的发展,国内消费水平的提高,汽车尾气的排放量呈逐年上升趋势。通过金属氧化物半导体对汽车尾气及工厂废气中的含氮氧化物进行直接检测。如Dutta设计的传感器,采用铂为电极,氧化钇和氧化锆为氧离子转换器,安装到气体排放口,可以检测到含量为10-4~10-3的NO。含硫氧化物是造成酸雨的主要物质,也是目前环境检测的重点项目,因为在大气环境中的含量低于10-6,需要更高灵敏度的传感器。如高检测的灵敏度的表面声波设备。
Starke等人采用直径为8~16nm的氧化锡、氧化铟、氧化钨纳米颗粒制作的纳米颗粒传感器,对NO和NO2的检测下限可达到10-8,提高反应的比表面积,增加反应灵敏度,且工作温度比常规的传感器大大降低,减少了能源消耗。
2液体传感器
在实际环境检测中,液体传感器大多应用于水的检测。由于水环境中的污染物种类广泛,因此液体传感器比气体传感器的应用更为广泛和重要。水中的污染物除了少量的天然污染物以外,大部分都是人为倾倒的无机物和有机物。无机物中,重金属离子为重点检测对象;有机污染物包括杀虫剂、激素类代谢物、多环芳香烃类物质等。这些污染物的过度超标,会严重影响到所有生物体的健康和安全。
重金属离子检测
采水体中重金属离子的主要来源包括开矿、冶金、印染等企业排放的废水。这些生产废水往往混合了多种废水,所含的重金属离子种类繁多,常见的有汞、锰、铅、镉、铬等。重金属离子会不断发生形态的改变和在不同相之间进行转移,若处置不当,容易形成二次污染。生物体从环境中摄取到的重金属离子,经过食物链,逐渐在高级生物体内富集,最终导致生物体的中毒。因此如果供人类食用的鱼类金属离子超标,将对人类产生严重的影响,因此对于重金属离子的检测显得尤为重要。
Burge等人发明的传感器,可以利用1,2,2联苯卡巴肼和分光光度计,可以检测地下水中的重金属铬浓度是否超标。
除了通过化学反应检测外,采用特殊的生物物质,也可以方便和灵敏地检测重金属离子。如大肠杆菌体内有一种蛋白质可以结合镍离子,有人在这种蛋白质的镍离子结合位点附近插入荧光基团,当蛋白质结合镍离子后,荧光基团会被淬灭,由于荧光的强度与镍离子浓度成反比,从而实现对镍离子的定量检测,检测范围未10-8~10-2mol/L。日方法也可应用于检测Cu2+、Co2+、Fe2+和Cd2+等几种离子中。他们还结合了微流体技术,该技术只需消耗几十纳升体积的待测液体,就可以对100nmol/L以下浓度的Pb2+进行检测。Matsunaga小组将TPPS固定在多孔硅基质中,当环境中存在Hg2+时,随着Hg2+浓度的变化,TPPS的颜色会从橘黄色逐渐转变成绿色,该传感器的检测限为,通过加入硅铝酸去除干扰离子Ni2+和Zn2+。
利用传感器技术不仅可以准确测定待测物的浓度,而且由于传感器的微型化技术特点,还可以通过传感器的偶联,进行多项指标的检测。Lau等人设计了基于发光二极管原理的传感器,可以同时检测Cd2+和Pb2+,该传感器对Cd2+和Pb2+的检测限分别为10-6和10-8。
农药残留物质的检测
农药是一类特殊的化学品,它在防治农林病虫害的同时,也会对人畜造成严重的危害。中国是农业大国,每年的农药使用量相当庞大,因此有必要对其进行监测。采用钴-苯二甲蓝染料和电流计就能方便地检测三嗪类除草剂,无需脱氧,直接检测的下限为50Lg/L,如果通过预处理进行样品浓缩后,检测限可以达到200ng/L。
采用带有光纤的红外光谱传感器可以进行杀虫剂的快速检测。将光纤内壁涂覆经非极性有机物修饰的气溶胶材料后,能显著改善光纤中水分子对信号的耗散作用,并且能够提取出溶液中的有机磷类杀虫剂进行光谱分析。此类传感器对于有机溶剂,如苯、甲苯、二甲苯的检测限则可达10-8~8*10-8。
多环芳香烃类化合物的检测
多环芳香烃类物质是另外一大类有害的污染物质,这类物质具有致癌性,但在许多工业生产过程中均会使用或产生此类物质。水体中的多环芳香烃类物质含量非常低,一般在10-9范围内,因此需要借助高灵敏度的检测传感器,Schechter小组发明了光纤光学荧光传感器。在直接检测过程中,待测样本中还可能存在一些如泥土这样的干扰物质,会降低检测信号值,如果用聚合物膜先将非极性的PAH富集,然后对膜上的物质进行荧光检测,从而解决信号干扰问题,报道称这种经膜富集后的传感器技术,对pyrene的检测可达到6*10-11,蒽类物质则可达4*10-10。Stanley等人利用石英晶振微天平作为传感器,在芯片表面固定上蒽-碳酸的单分子膜,检测限可达到2*10-9。
基于免疫分析原理,采用分子印迹的方法,在传感器表面印上能够结合不同待测物质的抗体分子,可以实现多种不同物质的检测。近年来发展起来的微接触印刷技术,也可应用到该领域,这样制备得到的传感器体积可以更加微型化。
生物类污染物质
除了以上的无机和有机合成类污染物质,还有生物来源的一些潜在污染分子。如激素类分子及其代谢物的污染常常会引起生物体生长、发育和繁殖的异常。Gauglitz带领的研究小组采用全内反射荧光生物传感器和睾丸激素抗体,对河流中的睾丸激素直接进行了即时检测,其检测限为。该技术无需样品的预处理,对于不同地区的自然界水体均可以进行睾丸激素的现场直接检测,检测范围为9~90ng/L。
另外,致病菌和病毒也是被检测的对象,水体中出现某些特定菌种,可以表明水体受到了某种污染,利用传感器技术非常容易检测到这些生物样本的存在,而且选择性非常高,如可以从烟草叶中快速地发现植物病毒烟草花叶病毒,采用QCM可以直接检测到酵母细胞的数量。
3结论和展望
目前,传感器技术已开始应用于各环境监测机构的应急检测,但是实际应用中有诸多的局限性,比如在对大气中的某些有害物质进行检测时,由于其含量往往低于传感器的最低检测限,因此在实际应用过程中,还需要进行气体的浓缩处理,这样就使传感器不容易实现微型化,或者需要借助更高灵敏度的传感器;同样,在野外水体检测时,常常会出现待测水体含有多种复杂干扰成分的情况,无法与实验室的标准化条件相比;在有些以膜分离分析技术为原理的传感器中,其膜的使用寿命往往较短,而频繁更换新膜的价格较为昂贵,因此仍然无法得到广泛的应用。
尽管如此,随着传感器技术的不断发展和完善,仍然有望应用于将来工厂企业排气、排污的现场直接检测和野外环境的动态无人监测,而且其结果能与实验室常规仪器的检测结果相符,这样将大大加快对环境监测和治理的步伐。
参考文献
[1]NaglS,,2007,132:507-511.
[2],2005,59:209-217.
[3]HanrahanG,,2004,6:657-664.
[4]HoneychurchKC,,2003,22:456-469.
[5]AmineA,,2006,21:1405-1423
传感器与自动检测技术教学改革探讨
摘要:传感器与自动检测技术是电气信息类专业重要的主干专业课,传统授课方法侧重于理论知识的传授,而忽略了应用层面的培养。针对此问题试图从教学目的、教学内容、教学形式、教学效果等多个方面进行分析,对该课程的教学方案改革进行探讨,提出一套技能与理论知识相结合、行之有效的教学方案。
关键词:传感器与自动检测技术;教学内容;教学模式;工程思维
“传感器与自动检测技术”是电气信息类专业重要的主干专业课,是一门必修课,也是一门涉及电工电子技术、传感器技术、光电检测技术、控制技术、计算机技术、数据处理技术、精密机械设计技术等众多基础理论和技术的综合性技术,现代检测系统通常集光、机、电于一体,软硬件相结合。
“传感器与自动检测技术”课程于20世纪80年代开始在我国普通高校的本科阶段和研究生阶段开设。本课程侧重于传感器与自动检测技术理论的传授,重知识,轻技能;教师之间也缺乏沟通,教学资源不能得到充分利用,教学效果不理想,学生学习兴趣不高。
一、教学过程中发现的问题及改革必要性分析
笔者在独立学院讲授“传感器与自动检测技术”课程已有四年,最开始沿用了研究型大学的教学计划和教学大纲,由于研究型大学是以培养研究型人才为主,而独立学院是以培养应用型人才为主,在人才培养目标上有较大差异,在逐渐深入的过程中发现传统方案不太符合学院培养应用型人才的定位,存在以下几方面的问题。
1.重理论,轻实践
该课程是应用型课程,其中也有大量的理论知识、数学推导,而传统的研究型教学方法普遍都以理论教学为主,在课堂上大篇幅讲解传感器的原理,进行数学公式推导,相比而言传感器的应用通常只是通过一个实例简单介绍,导致最后大多数学生只是粗略地知道该传感器的结构,而不知道如何用,在哪里用。
2.教学模式单一
该课程传统上以讲授的教学方式为主,将现成的结论、公式和定理告诉学生,学生不能主动地思考和探索,过程枯燥乏味,导致学生产生了厌学情绪。同时理论教学与实训、实践教学脱节问题也很严重。
3.教学实验安排不合理
传统的实验课程安排,验证性实验比例高达80%,综合设计性实验极少,缺少实训、实践环节。然而应用型人才的培养应该以实践教学为核心,重点培养学生的工程思维和实践能力、动手能力,以在学生毕业时达到企业对技术水平与能力的要求,使学生毕业后能尽快适应工作岗位。
二、适合独立学院培养应用型人才的教学方案改革
传统的传感器与自动检测技术课程重理论、轻实践,教学模式单一,教学实验以验证性实验为主,这种方案能够培养研究型人才,但却无法培养合格的应用型人才。在教学过程中,笔者潜心研习,并反复实践,总结出以下几个可以改革的方面。
1.优化教学内容,注重工程思维
本课程一个很重要的内容是各种类型传感器的原理,传统的教学要讲清楚其中的来龙去脉,而本人则认为针对应用型人才培养,充分讲授清楚基本概念、基本原理和基本方法即可,涉及大额数学公式可以选择重要的进行讲解,其他则可作为学生的自学内容,让学生课余自学。同时应该重点讲解该传感器的工程应用实例;另一方面要结合最新实际工程讲解。这样才能激发学生的学习兴趣,培养学生应用型工程学习思维。
2.改革教学方法,改变教学模式
传统的教学是“灌输式”的方法,无论学生是否接受,直接把要讲的内容全部讲述给学生,而这也违背了培养学生分析问题和解决问题的能力以及创新能力的出发点和归宿。笔者认为应该应用工程案例教学,实行启发式、讨论式、研究式等与实践相结合的教学方法,发挥学生在教学活动中的主体地位。
3.与工程实际相结合,与其他课程相结合
教学过程中要从不同行业提取典型的工程应用实例,精简以后作为实例进行讲解。在进行教学时,要培养学生的系统观,让学生明白这不是一门独立的课程,而是与自动控制原理、智能控制理论等课程相融合的,以达到融会贯通的学习效果。
4.实验环节改革
实验教学主要是为了提高学生的动手能力、分析问题和解决问题的能力,加深学生对课堂教学中理论、概念的感性认识。以往该课程的实验内容大部分为原理性、验证性的实验,学生容易感到枯燥无味,毫无学习积极性,很少有学生进行独立思考并发现问题,实验效果极不理想。为了改变这种模式化的教育,笔者将实验内容由传统的验证性实验调整为设计开发型实验。在实验教学中根据客观条件在适当减少验证性实验的基础上,增加了开拓性实验项目以及设计综合性实验。
5.改革教学评价方法,提高课堂教学效率
高效的学习成果反馈机制是促进教学相长的必要手段,目前该课程都是通过课程作业进行学习效果反馈,可以采用每一个章节布置一道设计型题目,让学生更加广泛地查阅资料,并在一定知识广度的基础上深入分析题目中用到的内容,进而从更深的层面分析解决问题,以达到深度、广度相结合的效果。
本文针对传感器与自动检测技术传统研究型大学的方案,提出了三个方面的问题,并根据四年的教学积累,在教学内容、教学模式、实验环节、教学评价及反馈等几个方面进行了探讨分析并提出了一套改革的方法和措施。本方案以实际工程应用实例为核心,在教学内容上侧重于传感器应用方面的讲解,以提出问题、分析问题、解决问题为主线调动学生的学习积极性和主动性,培养学生的工程思维和能力,重视实验环节,以设计性、综合性实验代替验证性实验培养学生将抽象的知识具体化、培养学生的实际应用能力、动手能力和创新能力。
参考文献:
[1]吴建平,甘媛.“传感器”课程实验教学研究[J].成都理工大学学报.
[2]曹良玉,赵堂春.传感器技术及其应用.课程改革初探[J].中国现代教育装备.
[3]李玉华,胡雪梅.传感器及应用.课程教学改革的探讨Ⅱ技术与市场.
问题一:如何检测水里的重金属 重金属污染极为普遍,研究报告显示水霉菌对重金属非常敏感,故本研究之主要目的即在探讨利用水霉菌作为检测重金属污染程度的可能性。在CA培养基内分别加入不同浓度的锌、铜、铅等重金属,再将水霉菌菌株移至此些培养基上培养。由实验结果得知,培养基内含500 ppm硫酸锌、40 ppm硫酸铜与500ppm硝酸铅时,皆会使水霉无法生长;而含有450 ppm硫酸锌、30 ppm硫酸铜与450ppm硝酸铅时,水霉虽生长不佳,但仍可生长、繁殖。 由于水霉菌在适当湿度、温度并提供适量光照的环境下生长十分快速,约1~2日,所以可以十分快速检验水中重金属的含量,加上菌株容易取得、培养材料十分便宜,因此,利用水霉或检测水中水霉含量即可作为检测重金属污染程度一项十分经济、快速、简便且准确的参考指标之一。至于有关水霉菌对各种重金属的灵敏度与如何推广应用水霉来检测水中,甚至土壤中重金属污染程度则有待进一步试验和改善。 问题二:怎样判断水中有没有重金属 送到当地质检所检测,你自己不可能做的,太需要设备了。 问题三:谁知道怎么用最简单的方法检测水中是否重金属超标 1. 基本原理 化学检测仪器三部分组成。其中电解质溶液即电分析化学的分析对象。电化学传感器也称为电极,根据应用形式不同,又分为双电极,三电极,四电极体系。电极之间通过电路与检测仪器连接。检测时,电流通过连接电极的外电路从一个电极流到另一个电极,同时电极/溶液界面上发生电化学反应,伴随着反应的进行,电解质溶液中的正负离子会在电极之间沿电场方向发生移动,使得电荷能够在溶液和电极之间进行传递。 2.重金属检测方法 根据国际纯粹与应用化学联合会的分类方法,电化学分析一般可分为三大类。第一类为不涉及双电层和电极反应的方法,如电导分析、高频滴定分析等;第二类为涉及到双电层但不涉及电极反应的方法,如一些非法拉第测量方法等;第三类为同时涉及双电层和电极反应的方法,如极谱法、伏安法、电位分析法、库伦分析法等大多数电化学分析方法。电化学分析中可用于对重金属元素进行分析的方法主要有以下几种。 电位分析法 电位分析法(PotentiometricMethod)是在保持电极之间不产生电流的情况下,通过测量电极之间的电位或电动势变化来对被测溶液中的物质成分以及含量进行测量的一种电化学分析方法。在电位分析法中应用较为广泛的是离子选择性电极。离子选择性电极(Ion-selective Electrode )是一类利用膜电势测定溶液中离子的活度或浓度的电化学传感器,当电极与待测离子接触时,敏感膜与溶液的异相界面上会产生与被测离子活度相关的膜电势,而活度又可在一定条件下转换为离子浓度。离子选择性电极具有使用方便、检测速度快、仪器结构简单、功耗低、操作方便等优点。宋文撮等采用离子选择性电极对海水中的铅、镉、铜进行了测定,实验表明传感器检测结果准确、性能可靠、成本低廉,适合在现场对重金属进行快速监测。刘新露等用离子载体掺杂PVC膜制作了一种重金属锌离子选择性电极并将其应用于对工业废水以及饲料中锌的检测, 结果表明该电极具有响应时间短、稳定性好等优点。目前离子选择性电极的主要缺点是检测灵敏度和准确度相对较低,实现痕量分析较为困难,由于其敏感膜易受溶液中其它离子的影响,因此在对实际样本进行测量时常存在多离子交叉影响问题,另外敏感膜的使用寿命较短也是制约离子选择性电极应用的一个重要问题。 电导分析法 电导分析法(Method of Conductometric Analysis)是一种通过测量溶液的电导率来对被测物质进行定性和定量分析的方法。目前应用较多的为直接电导分析和电导滴定分析。电导分析具有检测速度快,仪器结构简单,操作方便等优点。但是电导分析一般只能测量溶液中所有离子的总体电导率,对于复杂溶液体系,很难对其中离子种类进行分辨,方法选择性较差。 极谱法 极谱法(Polarography)是一种通过检测电化学反应过程中产生的极化电极的电流-电位(或电位-时间)关系来对溶液中被测物质成分和浓度进行分析的方法。极谱法一般采用能够表面更新的液态滴束电极作为工作电极。按照检测原理区分,极谱法可分为电位控制和电流控制极谱两大类。而按照工作电极扫描方式区分,极谱法可分为直流极谱法、交流极谱法、单扫描极谱法、方波极谱法、脉冲极谱法、半微分极谱法等多种。极谱法可用于测定铅、镉、媒、锡、镉等多种重金属离子,其灵敏度可达到l(r9mol/L,具有检测灵敏度高、分辨能力强等优点,因此被广泛应用在冶金、食品、环境分析等多个领域。 溶出伏安法 伴随着极谱法的广泛应用,滴束电极在上个世纪成为电化学分析中应用最为广泛的工作电极。滴亲电极的主要优点是电极表面......>> 问题四:怎样才可以检查水里有没有重金属? 任何水里都含有重金属,知识含量的高低而已,而且人得身体也需要及其微量的重金属,只是摄入过量就会出现累积性的问题。 想要检测水里有没有重金属,比如自来水,一般的简单的方法都只能测出高含量的,低含量的必须采用精密的仪器测定,比如原子吸收分光光度计、原子荧光分光光度计、ICP、ICP-MS等,这些仪器都太贵,动则几十万大洋。如果是污水还需要处理后才能用仪器分析,比如要消解水,过滤水等等。 kainisi/ 问题五:怎么才能检测出水中含有重金属 科标检测可以做水质各项检测 问题六:如何检测水中重金属含量,水质重金属快速检测方法 水中重金属含量并不容易检测,要想快速检测只能借助一些专业测试水中重金属的便携仪器来测试,但是如果要想准确测试还是需要专业实验室检测设备做的。 问题七:如何检测水里的重金属 根据《生活饮用水标准检验方法 金属指标》GB/T5750-2006中列明了各种重金属的 *** 标准和检测方法。
一到两天。水质检测报告一般是1到2天就可以检测出来的,不会很长时间的,如果一直不下来的话,是可以去投诉的,你可以去相关部门进行投诉出结果一般比较快。