首页 > 学术期刊知识库 > 关于初中数学论文500字

关于初中数学论文500字

发布时间:

关于初中数学论文500字

在数学教学中,只有把数学理论知识和现实问题相结合,才能激发学生的数学思维,调动他们的积极探究欲望,使学生在探究数学知识时能够不断获得发展。本文是我为大家整理的初二的数学教学论文内容,欢迎查看!

一、注重概念教学理念的创新

(一)以适学情境的构建激发学生学习兴趣

在教学理念方面,教师应改变以往完全将概念教学集中在抽象的教学材料方面,可适时引入一定的情境素材以激发学生学习的动机。具体实践中可引入相关的数学 故事 或数学趣闻等。如关于数学概念的形成,可引入“杨辉三角形”概念的提出或祖冲之对圆周率的计算过程等,也可将国外许多如哥德巴赫猜想或象棋发明者塞萨的 事迹 等内容融入课堂中,集中学生注意力的同时也能加深学生对数学知识的理解。以初中数学“平面直角坐标系”教学内容为例,教学中教师可首先为学生讲述笛卡尔的故事,笛卡尔通过对蜘蛛结网的观察而推出由点的运动可以形成直线或曲线,进而得出直角坐标系的概念。此时学生便会对平面直角坐标系的概念产生一定的求知欲望,既增强了与教师之间的互动交流,也能够满足以学生为主体的教学目的。

(二)注重对概念教学“形式”与“实质”关系的处理

教学中的“形式”可理解为初中数学教学中的相关概念与定理,而“实质”为数学知识的具体应用。概念教学中教师可充分发挥自身的引导作用,如关于代数式教学过程中,不必对代数式给予更多繁琐的定义,其会为学生带来更多抽象性问题,可首先在概念引入前列举相关的代数式使学生从中体会代数式的内涵。再如,初中数学中的乘法公式教学内容,只需使学生理解字母a与b即可,不必要求学生完全进行文字叙述,如(a+b)(a-b)=a2-b2,对括号内项特征掌握后便能理解该公式,当面对其他如(a+b-c)(a-b+c)类型题时,学生能够直接通过平方差公式的概念对其进行解答。另外,在其他内容教学中如平行线判定或方程教学中也需注意“形式”与“实质”关系的处理,确保学生能够得到实质性的训练。

二、对概念教学内容的创新

现阶段,大多初中数学课堂教学在教学内容体系上仍存在以本为本、以纲为纲的现象,使学生的学习过程中以及教师的教学受到一定程度的制约,所以需改变这种照本宣科的教学方式,注重对教学内容进行创新,具体创新策略主要表现在以下两方面。

(一)把握教材整体内容与概念层次特征

初中数学教材中的概念内容本身具有螺旋式上升特点,无法一次为学生所理解,需要教师对教材的相关概念进行整体把握,并注重各部分概念能够层层推进。以初中数学教学中的绝对值概念为例,教材中对其定义为正数绝对值为其本身,负数绝对值为其相反数,而零的绝对值仍为零。若单纯依靠此定义,学生很难理解,所以在教材内容中又对绝对值概念提出其主要为原点与此时数的点的距离,学生能够初步认识绝对值概念。而在二次根式教学内容时,教学内容又涉及到绝对值概念,学生可将开平方运算联系到绝对值,领会概念的实质。因此,实际概念教学过程中教师需在掌握教学内容整体的基础上按照概念层次性特点进行教学。

(二)概念知识与实际应用的结合

数学学习的目的在于使学生将习得的概念与规律运用在实际生活中,促进实践动手能力的提高。然而大多数学教师为防止信息丢失,对所有的概念内容在讲授中面面俱到,如在学生未练习应用因式分解概念的情况下,便将因式分解可在哪种数系范围中进行或具体分解为哪种形式等进行系统讲解,但是学生尚未掌握前一部分概念的应用便涉及更多内容,很难形成良好的知识体系。因此,要求教师在概念知识教学中应在保证不脱离教材的前提下,对教材内容适当取舍,使学生能够边学边用。

三、注重 教学 方法 的创新

素质 教育 的推行更强调对学生创新意识的培养。以往教学中过于陈旧的教学模式很难构建良好的课堂氛围,促进学生思维能力的提高,因此需要在概念教学中改变以往“满堂灌”或“填鸭式”的教学方法,引入一定的问题情境以调动学生参与课堂积极性。

(一)对数学概念本质的揭示

概念教学过程中,问题情境的引入需考虑到素材的选择问题,避免造成数学概念内容失去自身的层次性特征与连续性特征。以函数的概念为例,若从字面概念定义,可引入x,y两个变量,在一定范围中y都存在与x值相对应的确定值,此时y为x的函数,而x为自变量。此时,教师可将生活中的摩天轮运动引入其中,提出假设学生坐在摩天轮上,运动过程中与地面高度会存在那种变化,不同时间内高度能否确定等,学生便会寻找相关的函数数学语言去分析摩天轮运动时间与高度存在的关系,以此使抽象化的函数概念具体化,通过对事物本质的揭示促进数学思维能力的增强。

(二)对数学教学信息的概括

数学概念本身是对事物本质的反映,具有极为明显的抽象特点,要求教学过程中教师能够采用正确的教学方法使概念中的内容特征与表现规律展示出来,引导学生对信息内容进行概括,这样数学概念将更为清晰。例如,数学教学中引入摩天轮旋转实例,其旋转的时间与高度本身存在一定函数关系,且保持相互对应。通过学生对摩天轮旋转特征的描述,找出与时间相对应的高度,这样在教师的适时引导下将会完整的概括出函数的概念,习得函数知识的同时也提高学生对数学概念的概括能力。因此,概念教学中教师应采取切合实际的教学方法,避免脱离学生生活,使学生能够自然掌握数学概念。

四、注重教学手段的创新

信息化时代的到来使传统数学教学手段受到一定的冲击,要求初中数学教学过程中应引入更具形、色、声等特征的多媒体教学手段,使原本较为枯燥的课堂教学更为生动,并将抽象的数学概念形象化,有效地提高数学教学效果。

(一)充分发挥多媒体教学设备的作用

在教育心理学内容中,提出学生 抽象思维 能力的培养要求采用直观教学的方式,无论在数学概念掌握或数学知识结构形成方面都需充分发挥教学中形象直观教学的应用。而传统初中数学教学中并未注重引入更加生动的教具,不具备可感性,所以可通过多媒体设备的引入,将较为抽象的概念以及图形参数等融入其中。例如,平面几何教学过程中,教师可利用计算机进行图形的绘制,将整个过程向学生展示,这样关于平面几何的相关概念与图形都可为学生所理解。

(二)课堂演示与实践过程的结合

多媒体手段应用过程中,在课堂演示方面需由教师操作完成,可使关于数学概念的电子课件利用教学网络向终端屏幕传送,讲解的同时应向学生提问确保学生能够参与到课堂活动中,并对学生学习情况给出适时的评价。例如,关于平面几何中“圆”的概念,讲解过程中可将圆心为O、半径为R的圆在屏幕中画出,然后引导学生利用数学概念对圆的画法进行描述,并实际操作验证。教师可组织学生利用数学概念自行画圆,对于完成情况较好的可在屏幕中体现出来,以此增强学生的自信心,激发学生学习兴趣并促进实践动手能力的提高。

作者:陈建芳 单位:昆山市周庄中学

一、问题探究教学模式的基本涵义与基本原则

要想让问题探究教学模式在初中数学教学中获得良好的教学效果,教师就要准确把握问题探究教学模式的基本涵义和基本原则.问题探究教学模式的主要内容是教师通过各种方式,让学生在教学过程中,能够自主地发现问题、提出问题和解决问题,并且在探索问题的过程中获取知识和培养能力.在初中数学教学中有效运用问题探究教学模式的基本原则:(1)以学生为主体的原则.在问题探究教学模式中,要注重教师的主导作用,更要充分发挥学生的主体作用,让学生能够积极主动地参与到教学过程中.(2)以问题为核心的原则.以问题为核心就是指在教学过程中培养学生的问题意识,学生具有良好的问题意识是实施问题探索教学模式的源头,教师要让学生知道如何去发现问题、提出问题和解决问题,这也是决定问题探究教学模式能否成功的关键原则.(3)以情感为依托的原则.在教学过程中,教师要注重知识的传授,还要注重与学生之间的情感交流.构建和谐的课堂师生情感关系,对实施问题探究教学模式具有十分重要的促进作用,也是问题探究教学模式获得良好效果的保证.

二、在初中数学教学中有效运用问题探究教学模式的策略

初中数学课堂实施问题探究教学模式的目的主要是:为了促进学生综合能力的发展和提高课堂教学效率和质量.

1.准确把握学生实际的认知水平

任何教学方式要想获得良好的教学效果,都必须要遵循课堂教学中学生实际的认识结构才行.不然的话,就算再好的教学模式,也是不可能获得良好教学质量和效果的.学生实际的数学认知结构是整个问题探究模式的出发点.因此,在初中数学教学中运用问题探究教学模式时,教师一定要对学生现有的认知结构有准确的把握和认识,这样才能有针对性地对学生开展问题探究教学模式.

2.注重培养学生课堂教学中的问题意识

培养学生课堂教学中的问题意识是整个问题探索教学模式的核心内容,也是该教学模式能否成功的关键因素.因此,在初中数学教学中运用问题探究教学模式时,教师一定要认真研究,并运用多种方式,将要教授的学习内容转化为数学问题思维情境,让学生在问题思维模式下自主学习,真正遵循初中数学教学中“提出问题—建构数学—解决问题”的探究过程.例如,在讲“相似形”时,教师可以设计这样一个问题情境:用多媒体播放埃及的金字塔,让学生观察大小金字塔的外形之间有什么相似之处,之间有什么联系.根据这个问题情境,教师可以设置如下两个问题:(1)根据相似形能否测出大金字塔的高度?(2)相似形各边比例是否相等?各个对应的角是否相等?为什么?让学生自己去寻求解答.通过教师创设的这种问题情境,再由学生自主去探索,这种让学生亲身去经历提出问题、解决问题、应用 反思 的过程,就能使学生切实感受到在探索中学习的快乐,而且这种模式也能使教师课堂教学的知识目标、能力目标都得到较好的落实.

3.探索课堂师生之间的情感体验模式

初中数学教学中运用问题探究教学模式,不仅要关注学生数学学习的效果和质量,也要关注学生在数学课堂活动中所表现出来的情感与态度.因为问题探究式教学模式就是让学生在课堂中根据教师创设的问题进行探索、讨论和交流,这就使学生只有在态度上真正接受、喜欢和参与,才能使相关的讨论或探索获得良好的效果.因此,学生的情感态度对开展问题探究式教学是有重要影响的,也是教师需要认真去关注的一个问题.教师在运用问题探究式教学向学生传授知识的同时,也要采取各种方式在课堂上构建一个和谐、民主的师生情感关系,这对培养学生的学习兴趣是非常重要的.总之,本文对初中数学教学中有效运用问题探究式教学进行了一些理论和实践的探讨,其中最主要的就是对初中数学问题探究式教学如何开展的问题,无论采用探究什么形式和方法,最重要的是要适合学生的发展,扬长避短,最终使数学教学优点发挥到最大化,让这种探究模式成为教学的主流,让数学教学发展得更好,这对今后初中数学教学改革有非常重要的意义.

作者:李权 单位:江苏沭阳县马厂中学

七年级数学小论文怎么写?下面是小编搜集的七年级数学小论文500字范文,希望对大家有帮助! 七年级数学小论文500字(一) 在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙. 例如,三角形.三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形.通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度.用6个正三角形就可以铺满地面. 再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度.用4个正四边形就可以铺满地面. 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度.它不能铺满地面. 六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度.用3个正四边形就可以铺满地面. 七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度.它不能铺满地面. 由此,我们得出了.n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度.若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面. 我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面. 例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的. 七年级数学小论文500字(二) 1证明一个三角形是直角三角形 2用于直角三角形中的相关计算 3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得: 勾2+股2=弦2 亦即: a2+b2=c2 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。 在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为: 弦=(勾2+股2)(1/2) 即: c=(a2+b2)(1/2) 定理: 如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。 如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理) 七年级数学小论文500字(三) 我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快。可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对。 今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析。这道题目是这样的:求3333333333的平方中有多少个奇数数字?分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变。使题目转化为求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字。这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数。即3×3=9→积中有1个奇数数字。33×33=1089→积中有2个奇数数字。333×333=110889→积中有3个奇数数字。3333×3333=11108889→积中有4个奇数数字。…… 从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面。积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字。 做了这道题,我知道做数奥不能求快,要求懂它的方法。 七年级数学小论文500字(四) 今天,我遇到两道数学题,并得到了一些窍门。 第一题:幼儿园买进大小两种毛巾各40条,共用58。8元。大毛巾比小毛巾的2倍多元。这两种毛巾各多少元?其实,这道题还是较简单的。只要用解方程就行了。先算出大小毛巾的价钱,在计算,不一会,我就做完了。 乔布斯水果店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售,由于定价过高,无人购买。后来不得不按38%的利润重新定价,这样售出了其中的40%。此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果。结果,实际获得的总利润是原定利润的,那么第二次降价后的价格是原来定价的。第二次降价的利润是:(×)÷(1-40%)=25%,价格是原定价的(1+25%)÷(1+100%)=。接着道题要把这批苹果看成1,价格也看成1,这批苹果总共分两次卖,第一次卖了,第二次卖了。总的利润是,总的售出价格就是,第一次卖了40%×,×就是第二次卖出的总货款。再减掉二次的成本60%,就得到第二次多卖出的钱。利润就是销售价比成本价多出来的钱再除以成本,所以用这个钱除以第二次的成本1-40%,就等于第二次降价后的利润,这时候需要注意,原来的定价应该是(1+100%),所以用(1+25%)÷(1+100%)相除就等于所要答案。 某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15,小轿车10元。某日通过该收费站的大客车和小客车数量比是5:6,小客车与小轿车数量比是4:11,收取小轿车通行费比大客车多210元。求这天这三种车辆通过的数量。解题思路:先把两个比换算成同样的比例,这样三个之间就可以作比较。小轿车比大轿车多出210元,车子的数量比是33:10,实际上收费比是3:1,这样形成的差33×1-10×3=3,210除以3就等于每个配给的量是70辆。就是5:6=10:12,4:11=12:33,30:10=3:1,33×1-10×3=3,210÷3=70(辆);大客车:70×30÷30=70(辆),小客车:70×6÷5=84(辆),小轿车:84×11÷4=231(辆)。 不要担心题目有多难,无论什么数学题总会有答案的,数学就是这么简单,就要看你逻辑性、思维和分析能力是否强。希望你们也爱上数学! 七年级数学小论文500字(五) 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。[七年级数学小论文500字]相关文章:1.趣味数学小论文2.数学小论文作文3.数学小论文的作文4.数学小论文200字5.关于数学小论文6.数学高中小论文7.小学有关数学小论文8.高中的数学小论文9.数学与生活(小论文)精选10.数学生活小论文

500字初中数学学习方法 80SOSO用户 2009-02-26满意答案一、预习。 预习一般是指在老师讲课以前,自己先独立地阅读新课内容,做到初步理解,做好上课的准备。所以预习就是自学。 1.通览教材,初步理解教材的基本内容和思路。 2.预习时如发现与新课相联系的旧知识掌握得不好,则查阅和补习旧知识,给学习新知识打好牢固的基础。 3.在阅读新教材过程中,要注意发现自己难以掌握和理解的地方,以便在听课时特别注意。 4.做好预习笔记。预习的结果要认真记在预习笔记上,预习笔记一般应记载教材的主要内容、自己没有弄懂需要在听课过程中着重解决的问题、所查阅的旧知识等。 二、上课。 课堂教学是教学过程中最基本的环节,不言而喻,上课也应是考生学好功课、掌握知识、发展能力的决定性一环。上课要做到: 1.课前抓紧时间简要回忆和复习上节课所学的内容。 2.要带着强烈的求知欲上课,希望在课上能向老师学到新知识,解决新问题。 3.上课时要集中精力听讲,上课铃一响,就应立即进入积极的学习状态,有意识地排除分散注意力的各种因素。 4.听课要紧紧抓住老师的思路,注意老师叙述问题的逻辑性,问题是怎样提出来的,以及分析问题和解决问题的方法步骤。 5.不懂的问题要先记下来,接着往下听,课后再去钻研或向老师请教。 6.要努力当课堂的主人。认真思考老师提出的每一个问题,积极参加课堂讨论。 7.要特别注意老师讲课的开头和结尾。要养成记笔记的好习惯。 三、作业。 作业是学习过程中一个重要环节。通过作业不仅可以及时巩固当天所学知识,加深对知识的理解,更重要的是把学过的知识加以运用,以形成技能技巧,从而发展自己的智力,培养自己的能力。 1.先看书后作业,看书和作业相结合。 2.注意审题。要搞清题目中所给予的条件,明确题目的要求,应用所学和知识,找到解决问题的途径和方法。 3.态度要认真,推理要严谨,养成"言必有据"的习惯。 4.作业要独立完成。对于作业中出现的错误,要认真改正。 5.作业要规范。切忌涂改过多。书写工整,步骤简明有条理。 6.定期将作业分门别类进行整理,复习时,可随时拿来参考。 四、复习。 复习的主要任务是达到对知识的深入理解和掌握,在理解和掌握过程中提高运用知识的技能技巧,使知识融汇贯通。 1.当天的功课当天复习,并且要同时复习头一天学习和复习过的内容,使新旧知识联系起来。 2.单元复习。在课程进行完一个单元以后,要把全单元的知识要点进行一次全面复习,重点领会各知识要点之间的联系,使知识系统化和结构化。 3.期中复习。期中考试前,要把上半学期学过的内容进行系统复习。特别应着重弄清各单元知识之间的联系。 4.期末复习。复习时力求达到“透彻理解、牢固掌握、灵活运用”的目的。 5.假期复习。每年的寒假和暑假,除完成各科作业外,要把以前所学过的内容进行全面复习,重点复习自己掌握得不太好的部分。 五、考试。 考试是学习过程的重要环节。通过考试可以了解自己的学习状况,以便总结经验教训,改进学习方法。 1.要正确对待考试。考得好,可以促进自己进一步努力学习,考得不好,也可以促使自己认真分析原因,找出存在的问题。 2.做好考试前的准备工作。对各科功课进行系统认真的复习,这是考出好成绩的基础。 3.答卷时应注意认真审题,仔细检查,答题先从简单的开始,卷面要整洁,书写要工整,答题步骤要完整。 4.重视考后分析。拿到老师批阅的试卷后,要对试题进行逐一分析,找出自己学习上存在的问题。 5.各科试卷要分类保存,以便复习时参考。 六、课外学习。 课外学习是课内学习的补充和扩展,二者是相互联系、相互渗透的整体。课外学习应注意: 1.可根据自己的学习情况,有目的地选择学习内容,原则是有利于巩固基础知识,弥补自己的学习弱点。 2.可以根据自己的特长和爱好,选择一些有关学科的课外读物学习。 3.课外阅读一定要从自己的实际出发,切忌好高骛远、贪多求全。

把握基础理论,要会感悟,抓住瞬间的灵感,辅以适量的练习

数学小论文初中500字

游戏中的数学一天,熙熙姐姐交给我们一个游戏:两人轮流从1—10按顺序报数,每次只能报1、2或3个数,谁先报到10,谁就赢了.大家都想将对方“打倒”,但是,怎样才能让自己百分之百的胜利呢?这个问题总在我的脑海中回荡,使我疑惑不解.回到家,我在小篮子里挑了十个石子,准备新手操作一下.我把爸爸叫来,让爸爸和我一起做这个游戏.我找来一支笔和一本本子,将我做的每一步记录下来.规则是这样的:我和爸爸轮流拿石子,最多拿3个,最少拿1个,谁拿到最后一个,谁就赢了.第一场我失败了.原来,爸爸先拿,爸爸让我在最短的时间内输的“很惨”;第二场我先拿,我居然赢了……我将记录反复看了几遍,终于发现,我用最大的和最小的数相加:即1+3=4,又用了石子总数除以最大数与最小数的和,也就是10÷4=2…2,如果有余数,就我先拿,余数是几就那几个石子,如果没有余数,让对方先拿.现在余数是2,就拿2个石子,剩下的每次拿的石子和对方拿的和是除数3,我就可以必胜了.为了保证答案的准确性,我又拿了28个石子和爸爸重新玩,有了上面的规律,我果然战无不胜!原来,生活中数学无处不在,它们正等着你去发现呢! 学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中.比如说,上街买东西自然要用到加减法,修房造屋总要画图纸.类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题. 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算.评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识. 从这以后,我开始有意识的把数学和日常生活联系起来.有一次,妈妈烙饼,锅里能放两张饼.我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来.然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定. 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的.看来,我们必须学以致用,才能更好的让数学服务于我们的生活. 数学就应该在生活中学习.有人说,现在书本上的知识都和实际联系不大.这说明他们的知识迁移能力还没有得到充分的锻炼.正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视.希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处. 我在商场里学数学用数学之买家角度 作为一个买家,最主要的是要做到货比三家.要买一件衣服,遇到合适的不妨先把品牌、尺码、价格记下来再到别的店做比较.一个物品的价格是进价+运费+税费+厂商利润,还有店铺租金员工工资等一系列附加成本,所以往往卖价要比商品价值高太多了.其实在省钱这方面有一个更好的办法——网上购物.网上购物价格要便宜多了.在网上一个物品的价格是进价+运费.一件三四百的衣服,在网上可能只卖五六十,十分实惠.就算加上运费也要便宜许多.所以,我认为现在商场中挑选自己合适的东西,把品牌、货号、以及自己合适的尺码记好,再到网上购买.当然有些东西在网上是买不到的,这是就只有货比三家挑出最实惠的再买了.可能有许多人认为一分价钱一分货,便宜没好货……我可以这么说,只要掌握好方法,便宜也是可以买到好东西的.同样一件商品,便宜的和贵的,您会选择哪个呢? 大家也知道网上东西便宜,但存在的风险较大.这就需要我们有一定的警惕性了!网上卖东西的商家是有信誉度的,这个信誉度直接显示在网页上以供买家参考.同时还有成交量啊,好评度阿以及买家的留言,这些都是购物网站为了防止网上行所设置的.现在网上购物已经很透明了,多转转多看看总吃不了亏. 毕竟网上购物还是风险大,所以不妨我们再来看看商场里的活动吧,商场里的活动多,又诱人,其中会不会有什么小陷阱呢?这时就需要运用我们的数学啦! “买一赠一了啊,满200送200!”哟,你瞧,活动来了! 1.满额送券销售活动 每过节假日,我们行走在繁华的大街上,随处可见商家打出的“满200送200”的促销招牌.消费者们蜂拥而至,商场里人山人海,抢购成风.而实际上商家心里早打好了如意算盘.俗话说:只有买亏,没有卖亏,“满200送200元券”只是商家的一种促销手段,其中暗藏着数学问题. 就说满200送200元购物券.某顾客先用490元买了一件羊绒外衣,送来了400元购物券.此时得到的四百元购物券,一般顾客心理都会产生一种捡便宜的感觉,于是就产生了较强的购买欲望,意欲花完为快(一般商家的购物券都是限期消费,在一定的时期内没有消费就过期作废).于是这位顾客又花了248元券买了一双鞋,又用剩下的150元券中的128买了一条围巾.那么顾客到底便宜了多少呢?我们可以算一下128+248+490=866(元),这是原来不打折时需要花的钱.490/866,所打的折扣大约是五六折.这位先生处理还好,因为购物券只能在指定地点使用,如果买了送,送了买…….这样循环下去的话,那商家就赚大了!因为你不得不一直在这个地点消费,商家就算把你套上套了,所以经过真么一算,看来数学真的很重要! “快看报纸!快看看!有奖耶~!诶?!还有个商场打折耶~!不过哪个合算啊?”你瞧瞧!又是一个活动哟… 2.有奖销售与折扣比较 某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖10000元1名,一等奖1000元2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售.我们想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大? 面对问题我们并不能一目了然.在实际问题中,甲商厦每组设奖销售的营业额和参加抽奖的人数都没有限制.所以这个问题应该有几种答案. 分析:(1)若甲商厦确定在单位时间内抽奖,当参加人数较少,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客;(2)若甲商厦确定在单位时间内抽奖,而在单位时间内的消费者很多,那么它给顾客的优惠幅度就相应的小.因为甲商厦提供的优惠金额是固定的,共14000元(10000+2000+1000+1000=14000).假设两商厦提供的优惠都是14000元,则可知乙商厦的营业额为280000元(14000÷5%=280000). “喔~~~原来如此啊!这个还得看人数呢!还牵扯到优惠金额,嗯……数学是多么重要哇!” 学数学固然重要,但是最终目的还是能把它合理运用到实际生活中来,我们要学会学数学用数学!

国庆节中的一天,我和爸爸吃完午饭玩24。从开始到结束一直是我赢,爸爸说:“你有什么技巧?”我说: “巧算24点”是一种数学游戏,游戏方式简单易学,能健脑益智,是一项极为有益的活动.巧算24点的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24.每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8+(9—8)或(9—8÷8)×3等. “算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题.计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑.给你介绍几种常用的、便于学习掌握的方法:1.利用3×8=24、4×6=24求解.把牌面上的四个数想办法凑成3和8、4和6,再相乘求解.如3、3、6、10可组成(10—6÷3)×3=24等.又如2、3、3、7可组成(7+3—2)×3=24等.实践证明,这种方法是利用率最大、命中率最高的一种方法. 2.利用0、11的运算特性求解.如3、4、4、8可组成3×8+4—4=24等.又如4、5、J、K可组成11×(5—4)+13=24等. 3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数) ①(a—b)×(c+d) 如(10—4)×(2+2)=24等. ②(a+b)÷c×d 如(10+2)÷2×4=24等. ③(a-b÷c)×d 如(3—2÷2)×12=24等. ④(a+b-c)×d 如(9+5—2)×2=24等. ⑤a×b+c—d 如11×3+l—10=24等. ⑥(a-b)×c+d 如(4—l)×6+6=24等. 游戏时,同学们不妨按照上述方法试一试.需要说明的是:经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点,如A、A、A、5. 不难看出,“巧算24点”能极大限度地调动眼、脑、手、口、耳多种感官的协调活动,对于培养我们快捷的心算能力和反应能力很有帮助.” 爸爸说“真棒!我送你一个航模。” 看来,生活真离不开数学

那是星期六的一天下午,我嚷着要吃西瓜,妈妈爽快地答应了.于是我和奶奶就去买西瓜.走进菜市场,我一眼就瞅住了一个西瓜堆儿.这里的西瓜是红瓤的,又大又圆,看着就让人垂涎三尺.奶奶说:“给我挑个熟的!”那个小贩在西瓜上敲了敲,说:“包熟!”于是放在电子秤上说:“一斤十块半,斤,17元8角.”奶奶说:“什么?17元8角,这么贵?不买了不买了!”小贩急了,说:“别,别,别,你去其它地方买就不贵吗?我这儿可是全市最便宜的了,我这儿一斤十块半,人家一斤半十五块五了!”奶奶数学本来就不好,被小贩这么一说便糊涂了,我当时也在想:一斤十块半,也就是1斤元,单价是:÷1=元,而一斤半十五块五,也就是斤元,它的单价是:÷,我没细算,想想可能应该比多,但是却犯了个致命的错误.算错就会犯错,我向奶奶使了个眼色,示意让她买,于是奶奶说:“价格能少一点吗?”“不能、不能,本能就比人家便宜,再少,我就亏大了,干脆别卖了.”看着小贩的“真诚”的态度,奶奶于是付了钱,拎着装好西瓜的袋子就走了.回到家,我把这件事告诉给妈妈.妈妈听了之后又问了一遍价钱.我说:“小贩说他这儿一斤十块半,别人那一斤半十五块五.”妈妈哭笑不得,问:“你怎么知道别人那儿贵呢?你再好好的算算”.“因为这儿是÷1=,而别人那儿是÷,反正他这儿便宜”我理直气壮.妈妈说:“你呀,太马虎了,÷……,谁便宜呀!”通过这件事,我知道了数学在我们日常生活中运用十分广泛,学好数学十分重要,另外还要记住:“不要利用数学人,也不能不懂数学而被人!

七年级数学小论文怎么写?下面是小编搜集的七年级数学小论文500字范文,希望对大家有帮助! 七年级数学小论文500字(一) 在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙. 例如,三角形.三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形.通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度.用6个正三角形就可以铺满地面. 再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度.用4个正四边形就可以铺满地面. 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度.它不能铺满地面. 六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度.用3个正四边形就可以铺满地面. 七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度.它不能铺满地面. 由此,我们得出了.n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度.若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面. 我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面. 例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的. 七年级数学小论文500字(二) 1证明一个三角形是直角三角形 2用于直角三角形中的相关计算 3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得: 勾2+股2=弦2 亦即: a2+b2=c2 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。 在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为: 弦=(勾2+股2)(1/2) 即: c=(a2+b2)(1/2) 定理: 如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。 如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理) 七年级数学小论文500字(三) 我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快。可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对。 今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析。这道题目是这样的:求3333333333的平方中有多少个奇数数字?分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变。使题目转化为求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字。这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数。即3×3=9→积中有1个奇数数字。33×33=1089→积中有2个奇数数字。333×333=110889→积中有3个奇数数字。3333×3333=11108889→积中有4个奇数数字。…… 从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面。积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字。 做了这道题,我知道做数奥不能求快,要求懂它的方法。 七年级数学小论文500字(四) 今天,我遇到两道数学题,并得到了一些窍门。 第一题:幼儿园买进大小两种毛巾各40条,共用58。8元。大毛巾比小毛巾的2倍多元。这两种毛巾各多少元?其实,这道题还是较简单的。只要用解方程就行了。先算出大小毛巾的价钱,在计算,不一会,我就做完了。 乔布斯水果店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售,由于定价过高,无人购买。后来不得不按38%的利润重新定价,这样售出了其中的40%。此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果。结果,实际获得的总利润是原定利润的,那么第二次降价后的价格是原来定价的。第二次降价的利润是:(×)÷(1-40%)=25%,价格是原定价的(1+25%)÷(1+100%)=。接着道题要把这批苹果看成1,价格也看成1,这批苹果总共分两次卖,第一次卖了,第二次卖了。总的利润是,总的售出价格就是,第一次卖了40%×,×就是第二次卖出的总货款。再减掉二次的成本60%,就得到第二次多卖出的钱。利润就是销售价比成本价多出来的钱再除以成本,所以用这个钱除以第二次的成本1-40%,就等于第二次降价后的利润,这时候需要注意,原来的定价应该是(1+100%),所以用(1+25%)÷(1+100%)相除就等于所要答案。 某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15,小轿车10元。某日通过该收费站的大客车和小客车数量比是5:6,小客车与小轿车数量比是4:11,收取小轿车通行费比大客车多210元。求这天这三种车辆通过的数量。解题思路:先把两个比换算成同样的比例,这样三个之间就可以作比较。小轿车比大轿车多出210元,车子的数量比是33:10,实际上收费比是3:1,这样形成的差33×1-10×3=3,210除以3就等于每个配给的量是70辆。就是5:6=10:12,4:11=12:33,30:10=3:1,33×1-10×3=3,210÷3=70(辆);大客车:70×30÷30=70(辆),小客车:70×6÷5=84(辆),小轿车:84×11÷4=231(辆)。 不要担心题目有多难,无论什么数学题总会有答案的,数学就是这么简单,就要看你逻辑性、思维和分析能力是否强。希望你们也爱上数学! 七年级数学小论文500字(五) 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。[七年级数学小论文500字]相关文章:1.趣味数学小论文2.数学小论文作文3.数学小论文的作文4.数学小论文200字5.关于数学小论文6.数学高中小论文7.小学有关数学小论文8.高中的数学小论文9.数学与生活(小论文)精选10.数学生活小论文

数学小论文初中500字左右

.......靠自己

呃呃呃呃呃呃呃呃呃呃呃呃呃呃呃呃呃

生活中的数学数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。……由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢?至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域

国庆节中的一天,我和爸爸吃完午饭玩24。从开始到结束一直是我赢,爸爸说:“你有什么技巧?”我说: “巧算24点”是一种数学游戏,游戏方式简单易学,能健脑益智,是一项极为有益的活动.巧算24点的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24.每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8+(9—8)或(9—8÷8)×3等. “算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题.计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑.给你介绍几种常用的、便于学习掌握的方法:1.利用3×8=24、4×6=24求解.把牌面上的四个数想办法凑成3和8、4和6,再相乘求解.如3、3、6、10可组成(10—6÷3)×3=24等.又如2、3、3、7可组成(7+3—2)×3=24等.实践证明,这种方法是利用率最大、命中率最高的一种方法. 2.利用0、11的运算特性求解.如3、4、4、8可组成3×8+4—4=24等.又如4、5、J、K可组成11×(5—4)+13=24等. 3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数) ①(a—b)×(c+d) 如(10—4)×(2+2)=24等. ②(a+b)÷c×d 如(10+2)÷2×4=24等. ③(a-b÷c)×d 如(3—2÷2)×12=24等. ④(a+b-c)×d 如(9+5—2)×2=24等. ⑤a×b+c—d 如11×3+l—10=24等. ⑥(a-b)×c+d 如(4—l)×6+6=24等. 游戏时,同学们不妨按照上述方法试一试.需要说明的是:经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点,如A、A、A、5. 不难看出,“巧算24点”能极大限度地调动眼、脑、手、口、耳多种感官的协调活动,对于培养我们快捷的心算能力和反应能力很有帮助.” 爸爸说“真棒!我送你一个航模。” 看来,生活真离不开数学

数学小论文500字初二

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。

数,数表,方程组:试论用数表形式简化运算假设有如下方程组2x+3y=7 ①3x+5y=10 ②将①*3 我们得到 6x+9y=21 ③将②*2 我们得到 6x+10y=20 ④用③-④ 我们还可以得到-y=1所以 y=-1将y=-1 带入①式子我们可以得到2x-3=7因此 2x=10所以x=5上面的例子我们可以看出解决一个二元一次方程组常用的方法——消元法那么当我们解决一个10元1次方程组的时候,可能就不能这么简单了。因为光是抄写这些方程就需要耗费巨大的精力,且不好找出其中的关系。又如上面的一个方程组。我们将所有的系数构和结果成一个数表,形如2 3 73 5 10那么解决的过程就变得明了了基于消元法的思维,一下运算是可以发生在这个数表中的第一,某行所有数同时乘以一个任意的实数第二,某两行互换第三,某行乘以一个不为0的数加到另外一行那么上述过程的解法被精简了2 3 73 5 10将第一行和第二行分别乘以3和2得到新数表6 9 216 10 20用第二行减第一行6 9 21 0 1 -1我们来看,如果某一行的系数出现了0,就思考是不是能还原成某个未知数=常数的形式上面的数表的第二行可以还原成 0x+1y=-1所以有y=-1此时,再将第一行还原6x+9y=21将y=-1带入上式有 6x-9=21所以6x=30所以x=5在二元一次方程中此方法只能简便抄写和部分运算,但是如果在三元一次、四元一次方程组中,乃至更高元的一次方程组中,这种数表法会帮助我们使得运算简便得多。* 本段话在交作业时请删去上面的小论文其实是线性代数学中关于矩阵运算在二元一次方程中的解释,用来解决所有一次方程组均可。在二元情况下,他的推倒是易于理解的,而且文中用于尽量通俗化看起来更像是一个初中生的创造。这样糊弄个作业还是没什么问题的,请采纳

那是星期六的一天下午,我嚷着要吃西瓜,妈妈爽快地答应了.于是我和奶奶就去买西瓜.走进菜市场,我一眼就瞅住了一个西瓜堆儿.这里的西瓜是红瓤的,又大又圆,看着就让人垂涎三尺.奶奶说:“给我挑个熟的!”那个小贩在西瓜上敲了敲,说:“包熟!”于是放在电子秤上说:“一斤十块半,斤,17元8角.”奶奶说:“什么?17元8角,这么贵?不买了不买了!”小贩急了,说:“别,别,别,你去其它地方买就不贵吗?我这儿可是全市最便宜的了,我这儿一斤十块半,人家一斤半十五块五了!”奶奶数学本来就不好,被小贩这么一说便糊涂了,我当时也在想:一斤十块半,也就是1斤元,单价是:÷1=元,而一斤半十五块五,也就是斤元,它的单价是:÷,我没细算,想想可能应该比多,但是却犯了个致命的错误.算错就会犯错,我向奶奶使了个眼色,示意让她买,于是奶奶说:“价格能少一点吗?”“不能、不能,本能就比人家便宜,再少,我就亏大了,干脆别卖了.”看着小贩的“真诚”的态度,奶奶于是付了钱,拎着装好西瓜的袋子就走了.回到家,我把这件事告诉给妈妈.妈妈听了之后又问了一遍价钱.我说:“小贩说他这儿一斤十块半,别人那一斤半十五块五.”妈妈哭笑不得,问:“你怎么知道别人那儿贵呢?你再好好的算算”.“因为这儿是÷1=,而别人那儿是÷,反正他这儿便宜”我理直气壮.妈妈说:“你呀,太马虎了,÷……,谁便宜呀!”通过这件事,我知道了数学在我们日常生活中运用十分广泛,学好数学十分重要,另外还要记住:“不要利用数学人,也不能不懂数学而被人!

某网友写的:本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”。 一开始接触“函数”这个概念时还是非常陌生的。因为转眼望去,前面的单元基本是“小学”和“初一”接触过得。而对于“函数”来说确是几乎“一无所知”。只知道初一老师说过“可能性”和“函数”有着密切的关系。翻开这个单元时,真的有点“丈二和尚摸不着头脑”。 上面说了种种对“函数”概念的无知。所以自然在一开始学习的过程中会遇到“困难”。这单元的第一章从生活实际出发讲了“函数”的定义等等。这是一个比较“浮浅”的类容(从我现在的角度来说)。从这里我真正接触到了“函数”,但也许是学习没有完全进入。当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他。”第二章类容可以说就是对第一章的一个“浓缩”。好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去。学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多。真正的困难出现在第三章,谈到了“一次函数的图象”。可以老实说这章听得差不多是我本学期听的最累的一节课。老师发下来讲义,我那节课觉得您讲的奇快。我还没反应过来你就讲完了。我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的。于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变。觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了。 以上就是我学习“一次函数”的经历。下面我们在来分析一下“一次函数”。从类别上讲,“一次函数”是一个“数形结合”的“典范”。它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”。使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了。其次“一次函数”我认为是一个有趣,神奇的类容。它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律。不能不觉得“一次函数”充满了“魔力”。此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”。我想2章的联合编排更是教会我们“复习整理”的学习方法。所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”。“一次函数”也使我对这本教材有了全新的认识和看法。 “一次函数”不仅有趣而且更是“历届”中考的“重中之重”。所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容。供参考。

初中力学物理论文500字

在我们这个充满着绚丽色彩的世界中,声音起到着重要的作用。没有声音的世界将会怎样。让我们来幻想一下那将会是一个怎样的世界呢?是有趣的?阴冷的?安静的?还是…… 人类是世界的主宰者,首先声音会对人类怎样呢?那就让我们先来谈谈声音对人类的影响吧!如果没有声音,人类会怎样呢?如果没有声音人们说话发不出声音,就像是那些失声的人打着哑语来交谈。人又为什么要耳朵呢?又没有声音能听,难道是用来装饰的吗?现在的那些优美的音乐又怎么会有呢?如果没有声音整个世界都死寂在死一般宁静的宇宙中有何意义呢?如果没有声音,学生们上学如何读书、识字呢?又怎么会有音乐、英语、信息……课程呢?又将如何表达想要表达的意思,难道靠手语吗?我实在无法想象那时的教学会是怎样的。 中国的祖先盘古制造出人类就是他觉得世界太安静了,太缺少生气了,但现在如果没有声音,没有那欢声笑语。那为什么又要有人类呢,有了人类又有何意义呢。我们不是贝多芬,也没有贝多芬的本领,即使听不见,也能够用牙咬住木棍,根据振动颅骨感到声音,但如果没有声音,连声波也没有,即使是贝多芬也不能感受到声音,更别说弹钢琴了。假如没有声音又怎么会有现在的电话呢,如果亲人在远方,他们又将如何交谈呢?难道相隔那么远也能够打手语吗?如果……如果……太多的如果了,我认为这些如果是不可以的,总而言之人类需要声音。 很难想象如果没有声音,人类将怎样生存呢!当然这不只有人类;动物也同样需要声音,如果没有声音连动物也无法生存;举个例子来说吧!蝙蝠可以说是特殊的动物了,它虽然长有一双眼睛,按说听不见总可以看见吧,但是你们可知道被喻为动物界中的“盲人”。它的眼睛是名不副实的,因为它靠得是耳朵。用耳朵听超声波来辨别位置和躲避障碍物的。如果没有声音,蝙蝠听不见声音,捕不到食物,也不能够飞翔,那它还有生存的机会吗,当然不止蝙蝠一种动物,其他动物同样离不开声音。这里举出这个例子强调“地球离不开声音”。 没有声音,人们仿佛生活在真空中,安安静静的,一丝声也没有。没有风声雨声读书声,更加鸟声歌声欢笑声。所以现在有人类生存的这个宇宙中不能没有色彩更加不能没有声音。

物理是一门以观察和实验为基础的学科。在教学中,有意识地引导学生联系生活实际,分析物理现象;利用身边物品,进行物理实验,都能激发学生的学习兴趣,加深学生体会。这里介绍一组与鸡蛋有关的物理现象和实验。 1、液体蒸发吸热 实验:把刚煮熟的蛋从锅内捞起来,直接用手拿时,虽然较烫,但还可以忍受。过一会儿,当蛋壳上的水膜干了后,感到比刚捞上时更烫了。 分析:因为刚捞上来的蛋壳上附着一层水膜,开始时,水膜蒸发吸热,使蛋壳的温度下降,所以并不觉得很烫。经过一段时间,水膜蒸发完毕。由蛋内部传递出的热量使蛋壳的温度重新升高,所以感到更烫手。 2、热胀冷缩的性质 实验:把煮熟捞起的蛋立刻浸入冷水中,待完全冷却后,再捞起剥落。 分析:首先,蛋刚浸入冷水中,蛋壳直接遇冷收缩,而蛋白温度下降不大,收缩也较小,这时主要表现为蛋壳在收缩。其次,由于不同物质热胀冷缩性质的差异性,当整个蛋都完全冷却时,组织疏松的蛋白收缩率比蛋壳大,收缩程度更明显,造成蛋白蛋壳相互脱离,剥蛋壳就更方便了。 3、验证大气压存在 实验:选一只口径略小于鸡蛋的瓶子,在瓶底热上一层沙子。先点燃一团酒精棉投入瓶内,接着把一只去壳鸡蛋的小头端朝下堵住瓶口。火焰熄灭后,蛋被瓶子缓缓“吞”入瓶肚中。 分析:酒精棉燃烧使瓶内气体受热膨胀,部分气体被排出。当蛋堵住瓶口,火焰熄灭后,瓶内气体由于温度下降,压强变小,低于瓶外的大气压。在大气压作用下,有一定弹性的鸡蛋被压入瓶内。 4、浮沉现象 实验:把一只去壳鸡蛋,浸没在一只装有清水的大口径玻璃杯中。松开手后,发现鸡蛋缓缓沉入杯底。捞出鸡蛋往清水中加入食盐,调制成浓度较高的盐溶液。再把鸡蛋浸没在盐溶液中,松开手后,鸡蛋却缓缓上浮。 分析:物体浮沉情况取决于所受的重力和浮力的大小关系。浸没在液体中的物体体积就是它所排开液体的体积,根据阿基米德原理可知物体密度与液体密度的大小关系可以对应表示重力与浮力的大小关系。因为蛋的密度略微比清水的密度大,当蛋浸入清水中时,所受重力大于浮力,所以蛋将下沉。当浸没在盐水中时,由于盐水密度比蛋的密度大,所受的重力小于浮力,所以蛋将上浮。 5、惯性、摩擦阻力现 象 实验:选用外形相似的生鸡蛋、熟鸡蛋各一只,放在水平桌面上。用相同的力使它们在原处旋转。能迅速旋转的是熟鸡蛋,缓慢旋转几圈就停止的是生鸡蛋。 分析:生鸡蛋的壳内是液状的蛋清,外力作用在蛋壳上旋转时,蛋清由于惯性,继续保持静止状态,则它与蛋壳间存在摩擦阻力作用,使整个蛋只能缓慢转动。而熟鸡蛋内蛋清已凝固成蛋白,外力作用时旋转时,整个蛋就能迅速转动。 6、物体的稳定平衡 实验:选用一只生鸡蛋,在小头一端开个孔并清除干净壳内的蛋清蛋黄。沿小孔滑入一块重物。以蛋壳的大头端为底部,扶好蛋壳。点燃一只蜡烛,滴入烛油,把重物封存在蛋壳底部。烛油大约封存至整个蛋壳高度的四分之一即可。把制好的蛋壳推倒后,蛋壳能自动立起。制成一个“不倒翁”。 分析:在空蛋壳的底端封存的重物和烛油,使整个蛋体的重心移近蛋壳的底部,重心起低,稳定性越好。当蛋壳倾斜,偏离平衡位置时,使蛋体的重心升高。因为蛋壳底端是球形的,在蛋体的自身重力作用下,蛋体又恢复到原来的平衡位置上。 7、分子运动现象 实验:外壳完好的蛋,埋入食盐中腌制一段时间,可以制成一只咸蛋。虽然蛋壳仍然完好,但连内部的蛋黄都变咸了。 分析:因为物质的分子间存在间隙,而且分子不停地做无规则运动,所以食盐分子扩散到蛋黄中,使蛋黄也变咸。 一组与鸡蛋有关的物理现象和实验一文由教育资源网教育资源网搜集整

物理力学是力学的一个新分支,它从物质的微观结构及其运动规律出发,运用近代物理学、物理化学和量子化学等学科的成就,通过分析研究和数值计算,阐明介质和材料的宏观性质,并对介质和材料的宏观现象及其运动规律作出微观解释。主要包括静力学、动力学、流体力学、分析力学、运动学、固体力学、材料力学、复合材料力学、流变学、结构力学、弹性力学、塑性力学、爆炸力学、磁流体力学、空气动力学、理性力学、物理力学、天体力学、生物力学、计算力学 物理力学主要研究平衡现象,如气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡的研究等。对于这类问题,物理力学主要借助统计力学的方法。 物理力学对非平衡现象的研究包括四个方面:一是趋向于平衡的过程,如各种化学反应和弛豫现象的研究;二是偏离平衡状态较小的、稳定的非平衡过程,如物质的扩散、热传导、粘性以及热辐射等的研究;三是远离于衡态的问题,如开放系统中所遇到的各种能量耗散过程的研究;四是平衡和非平衡状态下所发生的突变过程,如相变等。解决这些问题要借助于非平衡统计力学和不可逆过程热力学理论。 物理力学的研究工作,目前主要集中三个方面:高温气体性质,研究气体在高温下的热力学平衡性质(包括状态方程)、输运性质、辐射性质以及与各种动力学过程有关的弛豫现象;稠密流体性质,主要研究高压气体和各种液体的热力学平衡性质(包括状态方程)、输运性质以及相变行为等;固体材料性质,利用微观理论研究材料的弹性、塑性、强度以及本构关系等。 物质的性质及其随状态参量变化规律的知识,无论对科学研究还是工程应用都极为重要,力学本身的发展就一直离不开物性和对物性的研究。 近代工程技术和尖端科学技术迅猛发展,特别需要深入研究各种宏观状态下物体内部原子、分子所处的微观状态和相互作用过程,从而认识宏观状态参量扩大后物体的宏观性质和变化规律。因此,物理力学的建立和发展,不但可直接为工程技术提供所需介质和材科的物性,也将为力学和其他学科的发展创造条件。

力学是研究有关物质宏观运动规律,及其应用的科学。工程给力学提出问题,力学的研究成果改进工程设计思想。从工程上的应用来说,工程力学包括:质点及工程力学刚体力学,固体力学,流体力学,流变学,土力学,岩体力学等。 人类对力学的一些基本原理的认识,一直可以追溯到史前时代。在中国古代及古希腊的著作中,已有关于力学的叙述。但在中世纪以前的建筑物是靠经验建造的。 1638年3月伽利略出版的著作《关于两门新科学的谈话和数学证明》被认为是世界上第一本材料力学著作,但他对于梁内应力分布的研究还是很不成熟的。 纳维于1819年提出了关于梁的强度及挠度的完整解法。1821年5月14日,纳维在巴黎科学院宣读的论文《在一物体的表面及其内部各点均应成立的平衡及运动的一般方程式》 ,这被认为是弹性理论的创始。其后,1870年圣维南又发表了关于塑性理论的论文水力学也是一门古老的学科。 早在中国春秋战国时期(公元前5~前4世纪),墨翟就在《墨经》中叙述过物体所受浮力与其排开的液体体积之间的关系。欧拉提出了理想流体的运动方程式。物体流变学是研究较广义的力学运动的一个新学科。1929年,美国的宾厄姆倡议设立流变学学会,这门学科才受到了普遍的重视。研究方法 分实验研究和理论分析与计算两个方面。但两者往往是综合运用,互相促进。实验研究 工程力学包括实验力学,结构检验,结构试验分析。模型试验分部分模型和整体模型试验。结构的现场测试包括结构构件的试验及整体结构的试验。实验研究是验证和发展理论分析和计算方法的主要手段。结构的现场测试还有其他的目的: ①验证结构的机能与安全性是否符合结构的计划、设计与施工的要求; ②对结构在使用阶段中的健全性的鉴定,并得到维修及加固的资料。理论分析与计算 结构理论分析的步骤是首先确定计算模型,然后选择计算方法。 土力学在二十世纪初期即逐淅形成,并在40年代以后获得了迅速发展。在其形成以及发展的初期,泰尔扎吉起了重要作用。岩体力学是一门年轻的学科, 二十世纪50年代开始组织专题学术讨沦,其后并已由对具有不连续面的硬岩性质的研究扩展到对软岩性质的研究。岩体力学是以工程力学与工程地质学两门学科的融合而发展的。 从十九世纪到二十世纪前半期,连续体力学的特点是研究各个物体的性质,如梁的刚度与强度,柱的稳定性,变形与力的关系,弹性模量,粘性模量等。这一时期的连续体力学是从宏观的角度,通过实验分析与理论分析,研究物体的各种性质。它是由质点力学的定律推广到连续体力学的定律,因而自然也出现一些矛盾。 于是基于二十世纪前半期物理学的进展 ,并以现代数学为基础,出现了一门新的学科——理性力学。1945年,赖纳提出了关于粘性流体分析的论文,1948年,里夫林提出了关于弹性固体分析的论文,逐步奠定了所谓理性连续体力学的新体系。 随着结构工程技术的进步,工程学家也同力学家和数学家一样对工程力学的进步做出了贡献。如在桁架发展的初期并没有分析方法,到1847年,美国的桥梁工程师惠普尔才发表了正确的桁架分析方法。电子计算机的应用,现代化实验设备的使用,新型材料的研究,新的施工技术和现代数学的应用等,促使工程力学日新月异地发展。 质点、质点系及刚体力学是理论力学的研究对象。所谓刚体是指一种理想化的固体,其大小及形状是固定的,不因外来作用而改变,即质点系各点之间的距离是绝对不变的。理论力学的理论基础是牛顿定律,它是研究工程技术科学的力学基础。 固体力学包括材料力学、结构力学、弹性力学、塑性力学、复合材料力学以及断裂力学等。尤其是前三门力学在土木建筑工程上的应用广泛,习惯上把这三门学科统称为建筑力学,以表示这是一门用力学的一般原理研究各种作用对各种形式的土木建筑物的影响的学科。 在二十世纪50年代后期,随着电子计算机和有限元法的出现,逐渐形成了一门交叉学科即计算力学。计算力学又分为基础计算力学及工程计算力学两个分支 ,后者应用于建筑力学时,它的四大支柱是建筑力学、离散化技术、数值分析和计算机软件。其任务是利用离散化技术和工程力学数值分析方法,研究结构分析的计算机程序化方法,结构优化方法和结构分析图像显示等。 如按使结构产生反应的作用性质分类,工程力学的许多分支都可以 再分为静力学与动力学。例如结构静力学与结构动力学,后者主要包括:结构振动理论、波动力学、结构动力稳定性理论。由于施加在结构上的外力几乎都是随机的,而材料强度在本质上也具有非确定性。 随着科学技术的进步,20世纪50年代以来,概率统计理论在工程力学上的应用愈益广泛和深入,并且逐渐形成了新的分支和方法,如可靠性力学、概率有限元法等。编辑本段《工程力学》 《工程力学》是由中国科协主管、中国力学学会主办、清华大学土木系承办的以工程应用为特点的全国性学术刊物。主要报导力学在工程及结构中的应用,刊登力学在科研、设计、施工、教学和生产方面具有学术水平、创造性和实用价值的论文,包括力学在土木建筑、水工港工、公路铁路、桥梁隧道、航海造船、航空航天、矿山冶金、机械化工、国防军工、防灾减灾、能源环保等工程中的应用且具有一定学术水平的研究成果。所以,它是力学刊物中专业覆盖面最宽、行业涉及面最广的期刊之一。《工程力学》 主管单位:中国科学技术协会 主办单位:中国力学学会 承办单位:清华大学土木系 出版单位:《工程力学》杂志社[1] 国际统一刊号:ISSN1000-4750 国内统一刊号:CN11-2595/O3 国际刊名代码:(CODEN)GOLIEB 性质及等级:EI全刊收录的一级学会主办的O3力学类核心期刊。百种中国杰出学术期刊。在各类科技期刊排名中,载文量、被引频次及影响因子均位居前列。其中1999年在力学类期刊中影响因子位居第一位,2002年名列第二 年期数:月刊。每年另有两期正规增刊(审批、Ei收录) 印张及版面:16个印张256页,大16K双栏 邮发代号:82-862编辑本段《工程力学》资料 工程力学 作 者: 宋本超,卞西文 主编《工程力学》 出 版 社: 国防工业出版社[2] 出版时间: 2010-1-1 开 本: 16开 I S B N : 9787118063950 定价:¥内容简介 本书以教育部《关于全面提高高等职业教育教学质量的若干意见》为指导,以“必需、够用”为原则进行编写。本书共20章,由静力学、材料力学以及运动学与动力学三部分组成。静力学部分包括静力学基本概念、简单力系、平面任意力系、空间力系等内容,主要研究受力分析和刚体的平衡问题,是材料力学的基础。材料力学部分包括轴向拉伸或压缩、扭转、剪切与挤压、弯曲变形、强度理论、组合变形和压杆稳定等内容。运动学与动力学部分包括点的运动、刚体的基本运动、点的运动合成、刚体的平面运动、质点和刚体的动力学基础、动能定理以及动静法等内容。为了便于学习,每章后面均附有思考题和习题,并在附录中给出了答案。 本教材可作为高等职业院校机械类、机电类专业的教材。各院校也可以根据学时的安排和专业需要选讲部分内容。目录 第一篇 静力学 引言 第1章 静力学基本概念和物体受力分析 静力学的基本概念 刚体的概念 力的概念 集中力与均布载荷 力系 平衡 静力学公理 力的平行四边形法则(公理一) 二力平衡公理(公理二) 加减平衡力系公理(公理三) 作用和反作用定律(公理四) 约束和约束反力 约束相关概念 常见的约束类型 物体的受力分析和受力图 思考题 习题 第2章 简单力系 汇交力系合成与平衡的几何法 汇交力系合成的几何法 平面汇交力系平衡的几何条件 平面汇交力系合成与平衡的解析法 力在坐标轴上的投影 合力投影定理 平面汇交力系合成的解析法 平面汇交力系平衡的解析条件 力对点之矩与合力矩定理 力对点之矩的概念 合力矩定理 平面力偶理论 力偶的概念 力偶的性质 平面力偶系的合成 平面力偶系的平衡条件 思考题 习题 第3章 平面任意力系 力的平移定理 平面任意力系向一点简化 平面任意力系向一点简化 平面一般力系简化结果 平面任意力系的平衡条件 平面一般力系的平衡条件和平衡方程 平面平行力系的平衡方程¨ 静定与超静定问题的概念及物体系统的平衡 静定与超静定问题 物体系统的平衡 考虑摩擦时的平衡问题 思考题 习题 第4章 空间力系 力在空间直角坐标轴上的投影 力在空间直角坐标轴上的投影 合力投影定理 力对轴的矩 力对轴之矩 合力矩定理 空间力系的平衡及其应用 空间力系的简化 空间力系的平衡方程 空间任意力系的平衡问题转化为平面问题的解法 重心与形心 物体的重心 平面图形的形心 用组合法确定平面组合图形的形心 思考题 习题 第二篇 材料力学 引言 第5章 轴向拉伸和压缩 第6章 剪切与挤压 第7章 圆轴扭转 第8章 弯曲内力 第9章 弯曲应力 第10章 弯曲变形 第11章 应力状态分析和强度理论 第12章 组合变形 第13章 压杆稳定 第三篇 运动学与动力学 引言 第14章 点的运动 第15章 刚体的基本运动 第16章 点的合成运动 第17章 刚体的平面运动 第18章 质点和刚体动力学基础 第19章 动能定理 第20章 动静法 附录Ⅰ 常用图形的几何性质 附录Ⅱ 型钢表 附录Ⅲ 习题答案 参考文献编辑本段《工程力学》资料 书 名: 工程力学 《工程力学》作 者:赵晴 出版社: 机械工业出版社 出版时间: 2009-6-1 ISBN: 9787111266075 开本: 16开 定价: 元内容简介 本教材适用于工科非机类各专业本科生,机械类各专业自学考试本科生,机类各专业专科生,参考学时40-90学时。学时安排可分为三种:少学时(40学时)讲授静力学基础、平面力系平衡方程、杆件四种基本变形强度设计和压杆稳定设计;中学时(65学时)讲授静力学、材料力学全部内容;多学时(90学时)讲授静力学、材料力学、运动力学全部内容。 本教材内容编排以够用为度,兼顾理论体系完整;注重与工程实际问题的联系,重点突出,难点分散;全部插图具有三维效果。为了方便学生的学习,每章配有附录,对本章的知识点进行小结;选择典型问题进行讨论、讲解;总结解题方法;设置思考题供学生学习。为降低学生购书成本,此部分附于随书光盘中。图书目录 序 前言 绪论 第一篇 静力学 第一章 静力学基础 第一节 力的概念及其性质 第二节 力矩的计算 第三节 力偶的计算 第四节 约束与约束力 第五节 物体的受力分析 习题 本章小结及扩展练习(见随书光盘) 第二章 平面力系的简化 第一节 平面汇交力系的简化 第二节 平面力偶系的简化 第三节 平面一般力系的简化 习题 本章小结及扩展练习(见随书光盘) 第三章 静力学平衡问题 第一节 平面力系的平衡条件和平衡方程 第二节 物体系统的平衡问题 第三节 考虑摩擦的平衡问题 第四节 空间一般力系的平衡问题 习题 本章小结及扩展练习(见随书光盘) 第四章 重心及平面图形的几何性质 第一节 物体的重心坐标公式 第二节 平面图形的几何性质 习题 本章小结及扩展练习(见随书光盘) 第二篇 材料学 第五章 材料力学的基本概念 第一节 变形固体的概念 第二节 杆件的内力和应力 第三节 杆件的基本变形和应变 本章小结及扩展练习(见随书光盘) 第六章 杆件的内力和内力图 第一节 直杆轴向拉伸(压缩)时的轴力与轴力图 第二节 轴扭转时的内力及内力图 第三节 梁弯曲时的内力及内力图 习题 本章小结及扩展练习(见随书光盘) 第七章 拉(压)杆件的应力、变形分析与强度设计 第一节 拉伸与压缩杆件的应力与强度设计 第二节 拉伸与压缩杆件的变形 第三节 拉(压)杆超静定问题 第四节 材料受拉伸与压缩时的力学性能 习题 本章小结及扩展练习(见随书光盘) 第八章 剪切挤压实用计算 第一节 剪切与挤压 第二节 剪切与挤压的强度计算 习题 本章小结及扩展练习(见随书光盘) 第九章 圆轴的扭转应力、变形分析与强度、刚度设计 第一节 圆轴扭转时的切应力分析 第二节 圆轴扭转强度设计 第三节 圆轴扭转变形与相对扭转角 第四节 扭转时圆轴的剐度设计 习题 本章小结及扩展练习(见随书光盘) 第十章 梁的强度 第一节 弯曲梁横截面上的正应力 …… 第三篇 运动力学 附录 参考文献 [3]编辑本段《工程力学》资料 《工程力学》 武昭晖 张淑娟 葛序风 主编 16开 2008年8月出版 定价:元 ISBN 978-7-301-13653-9 出版社:北京大学出版社内容简介 本书是依据教育部最新制定的高职高专教育机械类及近机械类专业工程力学课程教学基本要求编写而成的。全书共分3篇12章,第1篇为静力学部分,第2篇为材料力学部分,第3篇为运动学和动力学部分。 本书文字简明,内容精练,简化理论推导,注重理论应用。本书可作为高职高专机械类及近机械类专业60~70学时工程力学课程的教学用书,也可供有关技术人员参考。目录 第1篇 静力学 第1章 静力学的基本概念和物体的 受力分析 第2章 平面力系 第3章 空间力系 第2篇 材料力学 第4章 轴向拉伸与压缩 第5章 剪切与挤压 第6章 圆轴扭转 第7章 平面弯曲 第8 章 强度理论与组合 变形时的强度计算 第3篇 运动学和动力学 第9章 点的运动 第10章 刚体的运动 第11章 动能定理 第12章 动静法编辑本段相关院校 很多理工科学校都开设工程力学这个专业。 研究生专业排名前十的学校分别是(排名依据中国研究生院分专业排名): 1、大连理工大学 2、上海交通大学 3、同济大学 4、南京航空航天大学 5、哈尔滨工业大学 6、清华大学 7、北京理工大学 8、浙江大学 9、西安交通大学 10、重庆大学

  • 索引序列
  • 关于初中数学论文500字
  • 数学小论文初中500字
  • 数学小论文初中500字左右
  • 数学小论文500字初二
  • 初中力学物理论文500字
  • 返回顶部