首页 > 学术期刊知识库 > 铅锌矿可选性研究论文

铅锌矿可选性研究论文

发布时间:

铅锌矿可选性研究论文

1923 年开始在汽油中加入铅用作抗爆剂以后, 更加速了全球性铅的污染。因此可以说如今世界上已难找到土壤铅含量不受人类活动影响的一片“净土”。Kabata - Pendias 和Rendias[5 ]报道在靠近公路的某一块土壤铅含量高达7000μg/ g。潘如圭等[6 ]研究了汽车尾气中铅对公路两侧蔬菜的污染情况。试验结果表明: 在公路两侧200 m 范围内生长的蔬菜均受到汽车尾气中铅的污染。管建国[7 ]等研究了在金属冶炼厂周围和公路两侧200 m 范围内蔬菜的受污染情况, 发现所调查的普通叶菜的铅含量均超过国家食品卫生标准。彭珊珊等[8 ]对我国一些常用茶中Pb 进行了测定, 结果表明茶叶中的铅超过一般标准, 应引起重视。土壤中的铅大部分形成PbS , 少部分形成PbCO3 、PbSO4 和PbCrO4 等无机化合物, 或与有机物螯合。铅的无机化合物大多难以溶解, 而且因受到下列因素影响, 铅在土壤中的迁移能力也很弱: (1) 土壤有机质对铅的络合作用。土壤有机质的—SH , —NH2 基因能与铅离子形成稳定的络合物。(2) 土壤粘土矿物对铅的吸附作用。粘土矿物的阳离子交换位点可对铅离子进行交换性吸附。另外, 铅离子进入水合氧化物的配位壳, 直接通过共价键或配位键结合于固体表面。由于铅在土壤中迁移能力弱, 而且溶解度低, 因而人为因素造成的铅污染大多停留在土壤表层, 随土壤深度的增加其含量急剧降低, 20 cm 以下趋于自然水平。进入土壤中的铅有可能被植物吸收, 或溶解到地表水中, 通过食物链和饮用水进入动物和人体, 进而影响人类健康。近年来的研究发现, 铅对人类健康的影响具有不可逆性和远期效应[9 ] 。Page[2 ]等研究表明, 人体血铅与土壤铅含量存在一定关系:0112 (Pb - B , μg/ 100mg) = ln (Pb - S ,μg/ g) - 4185这一关系式仅说明了某一地区的特殊情况, 并无广泛适用价值, 但它足以表明土壤铅含量与人体健康有直接关系。2 铅污染土壤的修复技术由于铅对人体具有很强的毒性, 近年来对铅污染土壤的修复引起了人们的普遍关注。铅污染土壤的修复技术可以分为两大类: 物理化学修复技术和生物修复技术。物理化学修复技术又可分为隔离包埋技术、固化稳定技术、Pyrometallurgical Separation 、化学稳定技术和电动修复技术等。生物修复技术又可分为微生物修复技术和植物修复技术等。211 隔离包埋技术(isolation and containment)该法采用物理方法将铅污染土壤与其周围环境隔离开来, 减少铅对周围环境的污染或增加铅的土壤环境容量。具体措施为: 以钢铁、水泥、皂土或灰浆等材料, 在污染土壤四周修建隔离墙, 并防止污染地区的地下水流到周围地区。其中以水泥最为便宜, 应用也最为普遍。为减少地表水的下渗, 还可以在污染土壤上覆盖一层合成膜, 或在污染土壤下面铺一层水泥和石块混合层。212 固化稳定技术(solidification and stabilization)固化稳定技术包括两个方面: 采用化学方法降低铅在土壤中的可溶性和可提取性, 同时采用物理方法将污染土壤包埋在一个坚固基质中。Wheeler 报道[10 ]将水泥、炉渣和石灰混合物加入污染土壤中, 搅拌均匀凝固之后, 形成一个大石块, 将污染土壤包埋在其中。也有人采用电导产热原理给土壤加热升温, 当土壤冷却后, 土壤凝固成玻璃样块状结构, 称之为玻璃化。该方法包括三个具体步骤: (1) 在土壤两端插上电极电流通过土壤形成环路, 土壤温度上升并熔化。(2) 在自然冷却过程中, 土壤凝固形成玻璃样土块。(3) 在土块上覆盖一层干净土壤。这一技术已经实际应用于铅污染土壤的修复。·13 ·广东微量元素科学2001 年 GUANGDONG WEILIANG YUANSU KEXUE 第8 卷第9 期© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights Pyrometallurgical Separation在一定温度下, 金属就会熔解或升华为气态。Pyrometallurgical separation 技术利用这一原理,将铅等重金属从污染土壤中“蒸发”出来以达到净化土壤的目的。“蒸发”出来的金属可以再回收或固定, 同时富含金属的剩余炉渣也可用于进一步提炼[11 ] 。铅污染土壤在高温熔化之前要进行预处理, 以促进铅的熔解。这一技术主要应用于具有较高回收效率的严重污染土壤(5 %~20 %) 。214 化学稳定技术(chemical stabilization)化学稳定技术就是应用化学反应将污染土壤中的重金属氧化或还原, 从而达到降低土壤中重金属的活性[11 ] 。对于铅污染土壤, 可用还原剂(二氧化硫、亚硫酸盐或硫酸亚铁) 将铅离子还原, 以减少土壤中铅的可提取量。这一技术也可作为其他修复技术(如固化稳定技术) 的前处理步骤。但必须注意的是, 还原剂的施用可能会造成二次污染。初步研究表明, 施用石灰调节土壤PH7 可降低铅在土壤中的溶解度, 减少植物对铅的吸收[13 ] 。研究表明, 施用羟基磷灰石[14 ] 、水合氧化锰[15 ] 、磷灰岩[16 ,17 ]也可促进铅的沉淀, 减少土壤中的可溶态和可提取态铅。Vidac 和Pohland[18 ]已将这一技术运用于地下水的修复。215 电动修复技术(electrokinetice technology)在污染土壤两端插上电极, 接通电源后, 土壤中的带电粒子向电性相反的电极移动, 最终积聚或沉淀在电极上, 以达到清除污染土壤中重金属的目的。在欧洲, 这一技术不仅应用于铅污染土壤[19 ] , 同时也应用于铜、锌、铬、镍和镉等污染土壤的修复。216 微生物修复技术(microremediation)微生物修复主要是借助微生物的生化反应来清除或稳定环境中的有害物质。根据原理不同可分为生物还原沉淀、生物甲基化和生物吸附三种。生物还原沉淀是应用硫酸还原菌(SRB) 将硫酸根还原为HS - 再与铅生成不溶性的Pb2S。生物甲基化是利用微生物将土壤中的重金属甲基化,甲基化的金属更容易蒸发, 可做为Pyrometallurgical Separation 的预处理。生物吸附是利用细菌细胞和藻类来吸附地下水或其他污染水体中的有害物质。Leusch 等[20 ]报道一种海藻( S . f luitans )对铅的最大吸附量可达到369 mg/ g。Rahmani 等[21 ]研究了浮萍(Lemna minor) 对污染水体中铅的清除能力。结果表明浮萍在亚致死水平下也能有效清除水体中的铅。217 植物提取修复技术(phytoextration)植物提取修复技术主要是利用超积累植物, 将土壤中各种过量元素或化合物大量转移到植株体内特别是地上部分, 从而修复污染土壤[22 ] 。超积累植物相当于一个太阳能驱动泵将土壤中的过量元素不断泵到植株体内[23 ] 。植物修复技术可分为两种, Salt 等[24 ]把利用超积累植物来吸收土壤重金属的方法称之为持续植物提取(continuous phytoextraction) ; 而把利用螯合剂来促进植物吸收土壤重金属的方法称之为诱导植物提取(inducced phytoextraction) 。21711 持续植物提取(continuous phytoextraction)运用持续植物提取技术来修复铅污染土壤的关键是植物超积累铅的能力。一般认为, 只有铅积累量达到1000μg/ g (干重) 才能称为铅超积累植物[25 ] 。已见报道的铅超积累植物有Brassica .nigua [26 ] , Brassica . pekinensis [27 ] , Brassica . juncea [27 ]和T. rotungifolium [28 ] 。其中T. rotungi2folium 的铅积累量最大, 可达到8200μg/ g (干重) [28 ] 。目前对于植物吸收、运输和积累铅以及耐铅胁迫的机制研究甚少。Liu 等[29 ]研究发现印度芥菜( Brassica juncea) 可在根部积累大量的铅但只有极少部分运输到地上部。原因一方面可能是由于根部细胞内存在高浓度磷酸盐或碳酸盐,在细胞内近中性pH 条件下, 铅主要以磷酸盐或碳酸盐形式沉淀在根细胞壁或细胞内; 另一方面·14 ·广东微量元素科学2001 年 GUANGDONG WEILIANG YUANSU KEXUE 第8 卷第9 期© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.铅从根部向中柱迁移的过程还会受到内皮层凯氏带的阻拦。Wozny 等[30 ]认为铅进入中柱后随蒸腾流被动运输到地上部分。运输过程中铅可能会与中柱内的阳离子交换位点结合, 从而被固定在茎部中柱内。研究表明, 铅可与多种小分子有机物螯合[31~33 ] 。推测铅也有可能与各种小分子有机酸、植物螯合肽结合, 减少与阳离子交换位点结合的机会, 从而增加进入了叶部的数量。作者在对浙江西部的某一铅锌矿土壤进行调查时, 发现一种可高浓度积累铅和锌的植物, 据初步调查结果, 其地上部分锌和铅的最高积累量分别达到了5000μg/ g 和1182μg/ g。对于这种植物超积累锌和铅的生理生化机制, 正在进一步的研究中。21712 诱导植物提取(inducced phytoextraction)对于在土壤中极难移动的铅元素, 施用螯合剂可促进植物对其的吸收。施用螯合剂诱导植物超富集作用被称为螯合诱导修复技术。Romheld 和Marschner[34 ]认为螯合物与金属结合后, 金属螯合物可以从内皮层裂口处进入根内, 然后被迅速地转移到茎叶。在用14C - EDTA - Pb 作标记的试验中, Blaylock 等[35 ]发现, 在含这种标记物的介质中生长的植物地上部能快速积累铅, 表明铅与螯合物结合有利于植物对铅的吸收。Salt 等[36 ]认为金属与螯合物结合后阻止了金属的沉淀和吸附, 从而提高了金属的可提取性。螯合诱导修复技术既可选用一般植物也可选用超积累植物。在土壤铅浓度为2500μg/ g 的污染土壤上种植玉米和豌豆, 加入EDTA 后, 植物地上部铅的浓度从500μg/ g 提高到10000μg/ g ; 而且EDTA 还能极大的提高铅从根系向地上部的运输能力,每千克土中加入110 g EDTA , 24 h 后, 玉米木质部中铅的浓度是对照的100 倍, 从根系到地上部的运输转化量是对照的120 倍[37 ] 。不同螯合剂促进植物对铅吸收的效应与螯合剂促进铅从土壤解吸的效应相一致: EDTA > HEDTA >DTPA > EGTA > EDDHA。螯合诱导技术对超积累植物吸收金属的强化效应也很明显。印度芥菜是一种可富集多种金属的植物。Blaylock 等[35 ]研究了柠檬酸、苹果酸、乙酸、EDTA、EGTA、CDTA 对印度芥菜( Brassica juncea) 吸收Cd 和Pb 的效应,发现土壤酸化与施加螯合物相结合可显著增加铅的吸收效率。Vassil 等[38 ]报道用铅和EDTA 共同处理印度芥菜, 其地上部分含量高达55 mmol/ kg (干重) , 相当于培养液铅浓度的75 倍。对印度芥菜茎部提取液的直接测定证明, 茎部的大部分铅是与EDTA 结合的形式运输的。由于螯合剂的价格一般较贵, Blaylock 等[35 ]指出螯合剂( EDTA 和乙酸) 将使每吨铅污染土壤修复成本增加715 美元。此外螯合剂在增加土壤中重金属生物有效性的同时, 也增加了重金属离子的移动性。因而对于螯合诱导修复技术的环境风险应加以系统评价。由于已发现的铅超积累植物种类极少, 而且植物生长慢、生物量小, 因而螯合诱导修复技术比持续提取技术更引人注目。但不论哪种植物修复技术都具有其它物理化学方法所没有的优点:(1) 成本低。据估计, 如果某种植物的茎部铅积累量达到1 % , 且每年产量40 t/ hm2 , 那么通过10 年种植将土壤铅含量从114 %下降为014 %所需费用是245000 美元, 而用物理化学修复技术则需要1600000 美元。(2) 植物利用太阳能, 不破坏生态平衡, 同时还能美化环境, 易为公众所接受。(3) 将富铅植物残体用于植物炼矿, 可产生经济效益。相比之下, 虽然植物修复技术所需时间较长, 而且植物的生长要受到环境的影响, 但这些缺点都不成为重要问题。可以预言, 植物修复将成为一种应用广泛、环境良好和经济有效的修复铅污染土壤的方法。参考文献:[3 ] 陈怀满等. 土壤- 植物系统中的重金属污染[M] . 北京: 科学出版社, 1996.[4 ] Nriagu J O , Acyna J M. Quantitative assessment of worldwide contamination of air , water and soil by trace metal[J ] . Nature , 1988 , 333 : 134~139.[5 ] Kabata - Rendias A , Rendias H. Trace elements in the soil and plant [M] . Florida CRC Press , 1994.[6 ] 潘如圭, 宋佩扬. 汽车尾气中铅对蔬菜污染的研究[J ] . 江苏环境科技, 1998 , 11 (3) : 9~11 , 28.[7 ] 管建国, 潘如圭. 蔬菜铅污染状况及其防治对策[J ] . 南京农专学报, 1998 , 14 (3) : 22~27.[8 ] 彭珊珊, 石燕. 茶叶中的铅[J ] . 广东微量元素科学, 1998 , 5 (6) : 32~33.[9 ] 沙拉麦提, 沙达提. 儿童的铅接触及危害[J ] . 新疆环境保护, 1996 , 18 (1) : 36~38.[10 ] Wheeler P. Leach repellent [J ] Ground Engng , 1995 , 28 : 20~22.[11 ] USEPA. Engineering Buttetin : Technology Alternatives for the Remediation of Soils Contaminated with Arsenic ,Cadmium , Mercury and Lead [M] . U S Envionmental Protection Agency. Office of Emergency and RemedialResponse , Cincinnati . OH. 1996.[12 ] Evando C R , Dzombak D A. Remediation of metals - comtaminated soils and groundwater . Technology Evalua2tion Report , TE97 - 01 [ R ] . Pittsburgh P A. Ground - water Remediation Technologies Analysis Center ,1997.[13 ] Hooda P S , Alloway B J . The effect of liming on heavy metal concentrations in wheat , carrots and spinach grownon previously sludge - applied soils [J ] . J Agric Sci , 1996 , 127 : 289~294.[14 ] Ma L Q. Factors influencing the effctiveness and stability of aqueous lead immobolization by hydroxyapatite [J ] .J Environ Gual , 1996 , 25 (6) : 1420~1429.

沉积岩型铅锌矿床是指赋存于碳酸盐岩和硅质碎屑岩中,且成因与岩浆活动无关的一类铅锌矿床,是世界上铅锌资源的主要来源(Leach et al.,2005)。根据赋矿围岩岩性和成矿元素组合的不同,可细分为砂岩型(Sandstone-type,SST)铅矿、砂岩型铅锌矿、密西西比河谷型(Mississippi Valley-type,MVT)铅锌矿、沉积岩容矿块状硫化物型(Sedimentaryexhalative,SEDEX)铅锌矿4类。其中SEDEX 型矿床主要形成于陆内裂谷-裂陷环境,是对流循环的中温(220~290℃)、中低盐度(3%~13%)流体(Basuki et al.,2004)发生喷流-沉积作用形成的同生块状Pb-Zn硫化物矿体,呈层状和透镜状赋存于碎屑岩建造中(Large,1988;Sangster,1990;Huston et al.,2005)。MVT铅锌矿是指赋存于台地碳酸盐岩中成因与岩浆活动无关的浅成后生层状铅锌矿床(Leach et al.,1993),因其代表地区位于美国中部密西西比河流域而得名(Leach et al.,2005)。MVT铅锌矿床提供了世界上约25%的铅锌资源,它们分布于全球,以北美和欧洲最为丰富(Leach et al.,2005)。MVT型矿床主要形成于陆内裂谷盆地(Clendenin et al.,1990;Sangster,1990)或造山带前陆盆地环境中(Bradley et al.,2003),是低温(80~220℃)、高盐度(>15%)、高氧逸度的盆地卤水长距离运移汇聚(Garven,1985,1986,1995;Leach et al.,1986;Chi et al.,1998;Nakai et al.,1990),并在未变形的台地型碳酸盐岩建造内部淀积Pb-Zn硫化物而形成的后生矿床(Sverjensky,1986,1987,1989;Sangster,1990;Leach et al.,1993)。SST型矿床以海相石英砂岩含矿建造及铅锌矿石高Pb/Zn值(Bjorlykke et al.,1981)区别于MVT型矿床。SSC型矿床又称砂岩型Cu矿,通常产于砂岩红层内部,与富含硫酸盐的膏盐建造和还原前锋密切相关(Misra,2000),主要含水层为红层本身(Bjor-lykke et al.,1981),盆地卤水具有中等盐度和中性pH值,成矿物质通过盆地卤水从红层萃取而来(Misra,2000)。近年来,对这4类矿床的深入研究,有效地指导了铅锌矿床的找矿勘查。

以沉积岩为容矿围岩的铅锌矿床种类繁多,储量巨大,是世界上铅、锌资源的主要来源(杨庆坤等,2010),一直受到广大矿床地质工作者的重视。由于这类铅锌矿床分布广泛,成因复杂,其成矿作用和成矿规律已经成为当前区域成矿学研究的前沿热点之一。

一、MVT矿床基本特点

MVT型铅锌矿是指赋存于台地碳酸盐岩中,提供了世界上约25%的铅锌资源,它们分布于全球,MVT型矿床主要形成于陆内裂谷盆地或造山带前陆盆地环境中,并在未变形的台地型碳酸盐建造内部淀积Pb-Zn硫化物而形成的后生矿床。

MVT矿床又具有以下基本特点(Leach et al.,2005):①矿床产出于造山带边缘前陆环境或靠近克拉通一侧的沉积盆地环境;②容矿围岩以白云岩为主,仅有少数矿床产于灰岩中;③矿床具有后生特征,其形成与岩浆活动无直接联系;④可发育层控的、断层控制及受喀斯特地形控制的矿体,矿体形态变化较大,可以为层状、筒状、透镜状、不规则状等;⑤矿物组合简单,主要为闪锌矿、方铅矿、黄铁矿、白铁矿、白云石、方解石和石英,仅在少数矿床/矿区发育重晶石和萤石,个别矿区发育有含银或者含铜的矿物;⑥硫化物通常交代碳酸盐岩或充填开放孔隙空间,组构变化较大,矿石由粗粒到细粒,由块状到浸染状;⑦围岩蚀变主要有白云岩化、方解石化和硅化,主要涉及围岩的溶解作用和重结晶作用等;⑧最重要的控矿因素为断层、破碎带和溶解坍塌角砾岩等;⑨成矿流体为低温中高盐度盆地流体,温度一般为50~250℃,盐度一般为10%~30%;⑩金属和硫具有壳源特征。

二、MVT矿床研究方法

型铅锌矿流体包裹体

流体包裹体:对于MVT这类低温热液矿床而言,流体包裹体的温压数据是研究成矿系统的基础,也是地球化学分析的基本方法。对不透明矿物流体包裹体观察的红外显微技术在矿床学研究中也有重要意义(张本仁,2005)。

Leach等(1993)和Basuki等(2004)对MVT矿床统计,包裹体均一温度为50~250℃,但多在90~150℃之间,这一温度通常比矿化时正常的地温梯度或估算的地层埋藏温度要高,可能与盆地下部存在热对流或者矿床下部基底岩石中有深部循环流体上升影响正常地温梯度有关(Leach et al.,2005)。包裹体的盐度在10%~30%之间(Leach et al.,2005),许多MVT矿区,如爱尔兰Midland地区、密苏里地区、上西里西亚地区和Cevennes山脉地区,矿床的形成温度超过由地温梯度推算的温度(据埋藏的地层厚度估算),故推断MVT矿床可能形成于高地温梯度的环境中,或与盆地深部对流热传递(密苏里地区)或基底岩石中深部循环的上升流体(波兰U per Silesia和爱尔兰Midland地区)有关(Leach et al.,2005)。包裹体的盐度在10%~30%之间(Leach et al.,2005),与油田水组分相似,反映了MVT铅锌矿成矿流体为盆地卤水起源(Hanor et al.,1979)。Hanor等(1979)认为主要是蒸发盐溶解、同源盐卤水混入或者发生过蒸发作用的地表水渗入导致了卤水的形成。Kharaka等(1987)及kesler等(1996)利用现代盆地卤水中离子含量判断源区,基本支持Hanor等(1979)的观点。

型矿床同位素测年

氧、碳同位素:碳酸盐岩是MVT铅-锌矿的赋矿围岩,用δ18O,δ13C值可以指示碳酸盐类矿物的形成背景。应用共生矿物对的氧同位素来反演成矿温度是其重要的应用之一。在川滇黔地区从含矿方解石、白云石到近矿的碳酸盐岩围岩δ18O和δ13C值有升高的趋势,表明成矿流体应该含有富集轻18O 和13C 等同位素的大气降水,而作为围岩的沉积碳酸盐岩(灰岩、白云岩等)则富集重同位素(周朝宪,1997;张长青,2005)。

铅同位素:MVT铅-锌矿床多数情况下呈现混合型铅同位素演化。利用铅同位素的演化线可分析成矿物质的来源,铅同位素组成则可探讨其成矿物质的多源性。青藏高原东北部多数贱金属矿床的Pb同位素组成介于区域上地壳Pb组成范围内,类似于MVT型矿床,显示Pb等金属元素来源于上地壳岩石(Vaasjoki et al.,1986;Sangster,1990)。

同位素定年:目前主要的同位素定年有Rb-Sr,Sm-Nd,U-Th-Pb等。其中SmNd同位素定年法是近几年才开始应用的,某些陆壳中的热液矿床的形成过程中稀土元素内部会发生分馏,致使一些热液矿物的Sm/Nd值变化很大,甚至远高出地壳岩石的正常值(李华芹,1992;彭建堂,2003)。

3.控矿因素

MVT地区铅锌矿主要控矿因素为断层破碎带、溶解坍塌角砾岩、生物礁-生物碎屑碳酸盐组合及基底隆起等(Repetski,1996)。其中断层和破碎带是MVT地区重要的控矿因素,许多矿体集中产于张性断层带内及其附近,如爱尔兰Midland(Hitzman,1999)和Upper Silesia地区矿石集中于正断层中(Kibitlewski,1991);Viburnum Trend矿体集中产于与扭性断层有关的张性空间中(Clendenin,1993;Clendenin et al.,1994);密苏里地区矿体集中于张性断层内(Hudson,2000);在Cevennes山脉地区,走滑断层之间的张裂带对矿石起着重要控制作用(Bradley et al.,2003)。矿体沉淀均与碳酸盐礁杂岩有关,如Pine Point矿体位于溶解坍塌角砾岩中,角砾岩发育于生物礁-生物碎屑碳酸盐组合中(Rhodes et al.,1984)。

型铅锌矿成矿流体运移

目前,MVT型铅锌矿成矿流体运移主要存在3 种模式,即沉积和压实作用模式、地形或重力驱动模式及热-盐对流循环模式。

沉积和压实作用模式:驱使流体发生运移的原动力为沉积压实作用和成岩过程中孔隙度变化引起的压力梯度。Cathles等(1983)认为沉积盆地发生快速沉积和压实作用,在上覆地层压力和侧向应力存在的情况下,流体迅速转移,在矿集区内形成异常高压,因此流体包裹体温度通常超过正常压力梯度下的温度。

地形或重力驱动模式:其过程为流体在重力的驱动下,在盆地边缘造山隆起区,在页岩地层的阻隔下,沿碳酸盐岩或砂岩等透水层运移。该模式可以很好地解释北美地区的Pine Point矿床流体沿Slave 湖剪切带运移的过程(Hitchon,1993)。Bethke 等(1988)模拟了Ouachita造山带流体从Arkorma盆地边缘隆起部位流动的过程,很好地解释了浅部地层经历高温和岩石中具有较高水岩比值的特征。

热-盐对流循环模式:热-盐对流循环形成于伸展环境下的流体温度和盐度的增高,裂谷盆地形成阶段是重力驱动流体系统向热-盐对流循环系统转化的开始。长时间的小规模对流循环可以形成大面积的碳酸盐化作用(Morrow,1998)。Russell(1986)提出密度驱动是爱尔兰Midland地区主要的流体运移机制,最终导致矿体主要沿后期活化的加里东构造带分布。

三、特提斯成矿域与沉积岩有关的铅锌矿床成矿特征

特提斯成矿域中与沉积岩有关的铅锌矿床分布广泛、延伸稳定,从土耳其的西南部沿Taurus带向东经伊朗的铅锌矿带,至巴基斯坦,再从青藏高原东部向南至中南半岛泰国等地。这条铅锌矿带中包含有不同成因类型、不同成矿背景的众多矿床,显示出特提斯演化的复杂性和成矿的多样性。

现有资料表明,伊朗、土耳其等地的铅锌矿床都受白垩纪末—中新世大陆碰撞挤压的影响,流体大规模运移形成。土耳其的Taurus成矿带,代表矿床有Bayindir层控铅锌矿床位于西安那托利亚的曼德列斯地块北部,含矿层位出露于南北走向的平卧褶皱的核部及两翼。铅锌成矿年龄为早奥陶世,与奥陶纪—早志留世的Sb-Hg-W组合具有相似的成因,铅锌成矿与同期海相火山活动有关(O.ÖDora.,1977)。位于土耳其中部Yahyali地区,产出有9个铅锌矿床,均为碳酸盐岩容矿,层控、构造控矿特征明显,其围岩为破碎结构及岩溶包含结构。这些矿床大多经历了风化和表生过程,矿石品位为18%~34%锌,2%~10%铅。矿石矿物主要为闪锌矿、方铅矿、白铁矿、黄铁矿及表生矿物针铁矿、菱锌矿、铜蓝及铅矾等;脉石矿物有白云石、方解石和石英。原生矿床(如Goynuk和Celaldagi Desandre)形成于晚三叠世—早白垩世的稳定大陆边缘,而再生矿床则发生于大陆边缘块状断层的形成过程中(Osman Koptagel et al.,2005)。

伊朗Zagros造山带中的Kuh-e-Surmeh矿床、Sanandaj—Sirjan构造带中的Irankuh矿床(Ohazban et a1.,1994)、Anjireh-Vejin矿床,与Emarat及Irankuh同在Malayer-Esfahan成矿带,萨南达-锡尔詹缝合带(Sanandaj-Sirjan zone)中部。为著名的四大矿山(Reichert,2007):Irankuh(储量20mt,品位和),Emarat(储量10Mt,品位及),Ahangaran(储量,品位)及 Takiyeh(Rajabi A et al.,2012)。此外,还有很多矿床正在勘探,前景十分广阔(如Anjireh-Tiran铅锌储量,品位;Robat和Kuhkolangeh铅锌储量,品位)。萨南达-锡尔詹缝合带的演化主要与二叠纪新特提斯洋的形成有关,而后者在白垩纪到第三纪(古近-新近纪)随着阿拉伯板块和伊朗板块的汇聚及陆陆碰撞而消亡(Mohajjel et al.,2003;Agard et al.,2005;Ghasemi et al.,2005)。Malayer-Esfahan成矿带内发育巨量铅锌矿床,均为白垩纪碳酸盐岩容矿。虽然硫化物矿石是该带的主要矿石类型,次生非硫化物矿石也是很常见的(如Irankuh矿区)。Irankuh Zn-Pb-Ba矿床产于早白垩世碳酸盐岩地层,成矿流体沿Irankuh断裂运移、汇聚沉淀。该矿床具层控特征,矿体为透镜状,矿石主要为开放空间的充填类型,矿物组合主要有闪锌矿、方铅矿、黄铁矿和白铁矿,非硫化矿物有重晶石、白云石、菱锌矿和少量石英。其成矿过程可解释为晚石炭世造山环境中的卤水运移到断裂引起的扩张区,与海相成因的富硫酸盐的流体混合而形成的矿床(Ghazban F et al.,1994)。

伊朗的Kuh-e-Surmeh矿床是赋存于晚二叠世层状灰岩、白云岩中,位于伊朗西南部Zagms造山带Simply前陆褶皱冲断带中,是与造山有关的MVT矿床。矿化主要充填于开放空间条件下的角砾碳酸盐岩中(Liaghat et a1.,2000),平均含Zn 12%,Pb ,可采达矿石990000 t。矿石矿物主要为闪锌矿、方铅矿及少量黄铁矿、白铅矿、铅矾;脉石矿物有白云石、重晶石、石膏和方解石。矿床成因可以解释为区域构造压实作用使Zard-Kuh盆地脱水,驱使盆地源流体进入多孔的Dalan组角砾状白云岩岩石中,在高盐度(15%)低温条件下(重晶石、方解石包裹体均一温度为50~150℃)沉淀成矿(Liaghat et a1.,2000)。该类矿床的形成是由于晚白垩世—古近纪弧后盆地关闭,挤压作用导致盆地卤水长距离运移,并在成矿条件好的早白垩世地台型碳酸盐岩建造内沉积成矿(Farhad Ehya et al.,2010)。

在巴基斯坦和印度地段主要表现为伸展成矿,具同生层控的特点,赋存有巴基斯坦Lasbela-Khuzdar喷流-沉积型(SEDEX)铅锌矿带。大地构造上属印度古老陆块西北缘,在侏罗纪新特提斯洋盆扩张时,该区为新特提斯洋盆南部的被动陆缘,沉积有杜达(Duddar)、苏迈(Surmai)、贡嘎(Gunga)、顿格(Dhungei)4个矿床,构成著名的巴基斯坦Lasbel Khuzdar铅锌矿带(Silitoe,1978;Turner,1992;Jankovic,2001;Leach et al.,2005b)。

进入青藏高原东部,为挤压驱动流体、后生成矿模式,但含矿建造时代、矿体赋存方式等也不尽相同。卡兰古铅锌矿床位于塔里木板块西南缘的晚古生代碳酸盐台地环境中。该矿床受卡兰古向斜控制,矿体主要产于向斜两翼的白云岩或白云岩化灰岩中,矿体形态复杂,富矿段往往赋存于多组断裂构造交汇部位。矿石根据其结构大体可分两类:一类呈角砾状构造,硫化物呈浸染状,共(伴)生赤铁矿和磁铁矿;另一类矿石中硫化物以胶状、草莓状结构为主。矿物成分主要为方铅矿;其次有黄铜矿、黄铁矿及一些次生矿物;脉石矿物主要为白云石、方解石等。在成矿作用过程中,成矿金属(铅锌)以硫氢配合物形式迁移,喜马拉雅期逆冲推覆褶皱作用所引发的大规模热卤水运移、循环,导致了矿物质的进一步富集、沉淀(匡文龙等,2002)。

青藏高原东北部许多重要的喜马拉雅期硫化物矿床,如滇西金顶巨型铅锌矿床、白秧坪超大型Ag-Cu-Pb-Zn矿集区和金满中型Cu矿床及青南莫海拉亨、东莫扎抓大型铅锌矿床和茶曲帕查铅锌矿床(超大型远景)等,均产于碰撞造山带环境。这些MVT型矿床、矿点的时空分布和矿化特征表明,在青藏高原东北部形成了一个长达1000km、受大规模逆冲推覆构造系统控制的铅锌多金属矿带(侯增谦,2008)。作者研究认为东莫扎抓铅锌矿赋存于上三叠统结扎群波里拉组灰岩中,矿体呈层状、似层状产于角砾发育灰岩中,矿石矿物以闪锌矿、方铅矿为主,脉石矿物主要为黄铁矿、白云石、方解石、石英等,矿石呈角砾状、脉状构造,胶状、粒状结构,受层间断裂控制赋存于碳酸盐岩组矿床。

赋存于由碳酸盐岩组中Pb,Zn矿床向南延续至中南半岛,泰国等地的铅锌矿床是白垩纪末—中新世受大陆碰撞挤压的影响,流体大规模运移形成。泰国的Padaeng矿床,位于泰国西部Mae Sod附近,是世界上第一个次生的非硫化物型铅锌矿(Reynolds et al.,2003),目前的资源数量为亿t,Zn品位为。由于多雨潮湿,该矿床大部分已氧化成为非硫化物型Zn矿。该矿床产于中侏罗统碳酸盐-碎屑岩岩系中,位于NW向Padaeng断裂上盘,层控特征明显,产于NW倾向、高度风化的中侏罗世白云质砂岩。非硫化物型Zn矿石主要为菱亚铅矿,含少量菱锌矿和水锌矿,硫化物型铅锌矿化广泛发育在Padaeng矿床附近,如Pha De和Hua Lon矿床,富闪锌矿,含少量方铅矿和黄铁矿,矿体属层控型,填充于小规模的开放空间中。非硫化物型矿床形成于中新世的Mae Sod山间盆地边缘,由于硫化物矿体抬升、氧化而成。

我国铅锌矿普查勘探工作,从20世纪50~60年代的就矿找矿,已发展到今日运用新的成矿理论开展成矿远景区划和成矿预测,利用地、物、化、遥感综合手段和现代找矿技术,发现和探明了一批大、中型铅锌矿床,使我国铅锌资源量始终保持增长势头。在探明的大、中型矿床中,有58%已开发利用。凡经勘探并获国家储委批准的铅锌矿区,探采验证表明基本上满足了矿山建设和生产要求,矿山经济效益较好,只有个别矿区探明储量减少较多,影响了矿山建设和生产。但是,在过去勘探工作中存在的主要问题是忽视了地质技术经济评价研究,使探明的铅锌储量中,近期不能利用的“呆矿”较多。暂难利用的原因主要有:①氧化矿,选冶技术不过关;②铁、金等矿产伴生,铅锌选冶工艺复杂或成本高,企业经济上不合算;③因水文工程地质条件,开采困难;④交通运输或能源困难;⑤可采工业品位低,矿山亏损等等。随着我国经济体制改革,对普查勘探工作中技术经济评价日益受到重视,使矿床评价周期缩短,单位矿量勘查成本不断降低,提高了未来矿山的经济效益。

凡是提供矿山做设计依据的地质勘探报告所采用的具体工作指标,一般均由矿山设计部门进行经济核算和比较研究后,由省级以上工业主管部门确定。这样的工业指标通常与当前开采、选冶技术和管理水平、各省(自治区)工业发展基础,以及矿山的交通运输、水、电等外部条件相适应,使未来矿山能正常生产和有利可图。但是,许多铅锌矿床在评价时,常采用一般参考工业指标,铅锌累计最低开采品位在2%左右,部分在3%左右,显得偏低,实际上都是一些中、低品位矿。世界上大多数国家铅锌最低开采品位在4%以上。我国东部铅锌矿床的最低开采品位也应在4%以上,才能使矿山有赢利,只是在伴有综合利用的矿产资源时,如湖南桃林,通过经济核算最低开采品位才可适当放低。就我国西北、西南偏远地区交通不便的矿山而言,即使铅+锌含量达到6%,甚至8%,也是无利可图的。我国铅锌储量表中,这样低品位的矿床虽然绝大多数是小型矿床或矿点,但是它们实际上是“呆矿”,甚至地方乡镇企业都不愿问津。特别是金矿、金银矿或铜矿中伴生的铅锌矿,平均品位不到(Pb+Zn),甚至不到(Pb+Zn),矿石利用时铅锌常常也不顺便回收,这部分铅锌储量实际上已无意义,不应列入全国储量表中。

铅锌氧化矿,特别是锌氧化矿,常被划为表外矿或不进入储量表内。近年来,国外应用湿法选冶技术,对锌氧化矿取得了成本低、回收率高、矿山经济效益好的效果,越来越重视氧化矿的勘查、开发和利用,甚至是中、低品位矿石。随着我国选冶技术的发展,铅锌氧化矿就可能变活,对我国南方许多铅锌矿床来说有着重要意义。

铅锌矿体毕业论文

Zhejiang province is located in the middle of the west circum-Pacific volcanic belt, which is the main structural and magmatic activity belt during Mesozoic and Cenozoic time in the eastern part of our country, and also the important component of the Pacific tectono-magmatic metallogenic belt. The giant Jiangshan - Shaoxing joint belt divide province into two major geological structures- east Zhejiang unit and west Zhejiang unit which belongs to the southeast edges of the Yangzi Platform. East Zhejiang belongs to South China fold system which features vast development of draped Mesozoic volcanic and red sedimentary basin. Widely invaded igneous rock and Proterozoic metamorphosed strata exposing like fault block uplift presents "one old, one new" geologic structure characteristics.

卢克标

(福建省地质调查研究院,福州350011)

摘要:矿田蚀变矿物组合具有明显分带:上厂矿田以上厂铜钼多金属矿以中心,向北东方向至雷母寨银铅锌多金属矿,蚀变矿物组合为钾长石化-绢英岩化-硅化-黄铁矿化组合(钼矿,中高温矿物组合)→硅化-绿泥石化-绿帘石化-绢英岩化及绢云母化-黄铁矿化组合等(铜铅锌矿,中低温矿物组合)。

矿田矿床分布、地球化学分带规律:上厂矿田以上厂矿段为中心,向北东方向呈放射状、帚状分布。

成岩与成矿作用在时间、空间上总体具有由南西向北东迁移演化的特点。上厂中高温Mo(Cu、Pb、Zn)矿→金竹坑中低温Cu、Pb、Zn(Ag)矿→雷母寨中低温Ag、Pb、Zn矿。

从时间、空间、物源等方面依存关系,以及矿化类型专属性等,可以将矿田矿床划分为斑岩型铜钼多金属矿床及火山-次火山热液型铅锌银多金属矿床两个成矿系列,并类比预测矿田矿化类型及找矿方向。关键词:福建省;上厂矿田;成矿规律;成矿系列;成矿预测

1 前言

工作区位于武夷山脉东南麓,是福建省“十五”矿产计划工作的重点地区。地处于闽西北隆起带和闽东火山断拗带接合部位(图1)。区域内有3个综合异常带,如南北向浦城管查-建瓯钟山Cu、Mo、Pb、Zn、Au、W综合异常带、北东向建瓯东岩—政和夏山Cu、Pb、Zn、Ag、Au、Mo、W综合异常带、北东向建阳水吉—松溪半岭Mo、W、Cu、Pb、Zn、Au、Ag综合异常带。反映区内成矿元素岩浆热液多期叠加,是铜钼铅锌银的成矿有利区。

其中,上厂地区属于划定浦城金竹坑—松溪半岭找矿工作区。

本文主要侧重研究上厂矿田区域找矿潜力,以指导点上找矿工作,形成从面到点,点面结合的找矿思路。作者通过成矿系列理论研究,结合图表模式建立,定性进行成矿预测等,指出该区主攻的矿床类型为斑岩型或火山—次火山热液交代(充填)矿床,同时兼顾其它类型矿床,应加强综合找矿,运用新理论、新技术、新方法综合评价工作。

2 上厂矿田矿床地质特征

上厂矿田其空间分布以上厂矿段为中心,向北东方向呈放射状、帚状分布,有金竹坑矿段(距上厂4km)、官司坪矿段(金竹坑的南西2km)、雷母寨矿段(距上厂7km)和山镇矿段(金竹坑南东4km)等地已发现具有良好找矿前景的Cu、Pb、Zn、Ag、Mo异常及矿化(图2)。

上厂矿化体地质特征

Mo矿(化)体

花岗斑岩体呈北北东向椭圆形岩株状,出露面积约。含辉钼矿化斑岩及外围热液蚀变发育,矿化中心主要为强硅化、钾长石化,外围主要为硅化、绢云母化等。

图1 福建省构造(断裂)带及构造单元划分略图

在Mo>80×10-6异常区中硅化辉钼矿化花岗斑岩发育,全岩蚀变强烈,其下部为肉红色似斑状细粒二长花岗岩。矿石类型为细脉、浸染型。主要蚀变有硅化、角岩化、绿泥石化、钾化、黄铁矿化等,由地表垂直向下为硅化、强硅化、绢云母化-钾化、绿帘石化、绿泥石化、硅化。面积有800m×230m,Mo平均含量%。从上至下,钼矿化具有地表氧化淋滤矿化贫化(平均%)——原生矿石富集特征(平均%,最高%),矿化类型从硅化石英型钼矿化,至深部细脉浸染状矿化(图3)。

图2 福建省上厂矿田铜钼、铅锌银矿区域地质图

、Pb、Zn、Ag矿(化)体

(1)、(2)号矿(化)体:位于(HT-2)Cu、Pb、Zn、Ag异常中,在推覆面附近见一个铜铅矿化体,为褐铁矿化蚀变岩,矿化体宽,呈北东向。见硅化、绿泥石化、黄铁矿化、褐铁矿化、孔雀石化、铅锌矿化等,%、%、%、。

图3 福建省上厂矿田金竹坑铜铅锌多金属矿区地形地质及工程部署图

金竹坑矿化体地质特征

通过对本区开展1:1万地质填图、槽探揭露及硐探验证,共发现了14条矿化蚀变体,其中Ⅰ、Ⅱ、Ⅲ、Ⅴ号矿体,矿化较好,规模较大。矿体产于北东向(Ⅰ、Ⅴ号矿体)、北西向断裂构造蚀变带中(Ⅱ号矿体),或产于大金山组和梨山组的接触带或推覆构造带附近(Ⅱ号矿体)及花岗斑岩、闪长玢岩(Ⅲ号矿体)中,受北东向、北西向断裂控制。本区北东向、北西向断裂构造及推覆构造带极为发育,延伸长几十公里,且见有铅锌矿体(Ⅱ号矿体),构造蚀变岩型(Ⅰ、Ⅴ号矿体)矿床发育。花岗斑岩、闪长玢岩中也见有铅锌矿体(Ⅲ号矿体),具有次火山岩型、潜斑岩型矿床特征(图4)。

3 上厂矿田成矿规律及成矿预测

上厂矿田空间成矿规律分析

矿田矿化空间分布规律

上厂斑岩钼矿位于浦城—宁德三都澳北西向构造成矿带(是一条Cu、Au、Pb、Zn、Mo多金属矿化带)北西段的北西边缘带上。矿床成矿为燕山中晚期,成岩与成矿作用在空间上总体具有由南西向北东迁移的特点。

矿田以上厂斑岩钼矿为中心,成矿作用在空间上向北东方向迁移。其中,以上厂为中心,金竹坑、官司坪、山镇总体上沿北东方向呈放射状,距上厂约4~5km等距离分布。其中,金竹坑火山热液—次火山热液型铜、铅、锌矿,位于上厂钼矿的北东向约4km。官司坪铅、锌矿,位于金竹坑铜、铅、锌矿南西侧2km;乌龙山钼异常,位于金竹坑铜、铅、锌矿西侧8km,其异常特征同上厂钼矿;山镇铅、锌矿位于金竹坑铜、铅、锌矿南东侧4km。而雷母寨银、铅、锌矿位于上厂Mo钼矿的北东向约,天堂萤石矿位于上厂钼矿的北东向约11km。

图4 福建省上厂矿田金竹坑铜铅锌多金属矿区20线地质剖面图

矿田地球化学分带规律

上厂地区1:5万水系沉积物测量成果显示,区内以Cu、Pb、Zn、Ag、Mo为主的地球化学异常发育,总体构成一长15km、宽7km,面积百余平方千米的综合异常带,分布于浦城上厂—天堂一带,呈北东向分布,并形成多个综合异常浓集中心(上厂、金竹坑、官司坪、山镇、雷母寨等)(图2)。

上厂矿田地球化学特征总的说来,以上厂Mo异常为中心,向北东方向演变为金竹坑、山镇、官司坪Cu、Pb、Zn、Ag异常,再向北东雷母寨Ag、Cu、Pb、Zn为主异常。

矿田蚀变分带规律

上厂铜钼多金属矿段蚀变分带特征

钼矿蚀变具明显分带性:按形式可分为线型脉侧分带和面型水平及垂直分带两种。线型脉侧分带:以蚀变脉体为中心,向外可分为钾长石化带→绢英岩化带→硅化带;面型水平及垂直分带:含矿斑岩体及外围热液蚀变发育,以斑岩体为中心主要为强硅化、钾长石化,外围主要为硅化、绢云母化、角岩化带等。由地表垂直向下为硅化、绢云母化(硅化绢云母化带)→强硅化、绢云母化(硅化绢英岩化带)→钾化、绿帘石化、绿泥石化、硅化组合(钾长绢英岩化带)等。矿体具有典型的斑岩型蚀变分带特征。钼矿化与钾长石化、绢英岩化、角岩化、硅化关系最为密切。

纵观全区异常组合,从南西部以W、Mo、Bi高温元素组合为特征,呈等轴环状分布,而且出露蚀变花岗斑岩、二长花岗岩,见硅化、绢英岩化、绿泥石化、绿帘石化、绢云母化、钾化及钼矿化;往北东部以Cu、Pb、Zn、Ag中低温元素组合为特征,而且出露梨山组、大金组,见硅化、绢英岩化、角岩化、绿泥石化、局部黄铁矿化、铅锌矿化。从南西至北东,异常组合和地层、岩浆岩、蚀变、矿化特征显示斑岩型铜钼矿内外接触带矿化及元素组合特征。

金竹坑、山镇、雷母寨铜铅锌多金属矿段蚀变分带特征

金竹坑蚀变类型主要为硅化、绢英岩化、绿泥石化、绿帘石化及绢云母化、碳酸盐化等。其中硅化、绢英岩化以带状蚀变为主,主要分布于断裂带、脉岩及其内外接触带上,而绿泥石化、绿帘石化及绢云母化则以面状蚀变为主,其中硅化、绢英岩化、绿泥石化、绿帘石化与矿化关系密切。山镇、雷母寨等矿段蚀变特征与金竹坑矿段相近,山镇矿段蚀变特征以硅化、绢英岩化、绢云母化、绿泥石化、黄铁矿化为特征;雷母寨矿段蚀变以硅化、绢云母化、绿泥石化、碳酸盐化及黄铁矿化为特征。

上厂矿田蚀变分带特征

综上所述,上厂矿田以上厂铜钼多金属矿为中心,向北东方向至雷母寨银铅锌多金属矿,其蚀变矿物组合具有明显分带特征:

钾长石化-绢英岩化-硅化(角岩化)-黄铁矿化组合(上厂钼矿,中高温矿物组合),其北东侧伴有硅化-绿泥石化-绢英岩化-黄铁矿化组合(上厂铅锌矿,中低温矿物组合)→硅化-绿泥石化-绿帘石化-绢英岩化及绢云母化-黄铁矿化组合等(金竹坑、官司坪、山镇铜铅锌矿,中低温矿物组合)→硅化-绿泥石化-绢云母化-碳酸盐化-黄铁矿化组合(雷母寨银铅锌矿,中低温矿物组合)→硅化-绿泥石化-叶蜡石化-碳酸盐化组合(天堂萤石矿,中低温矿物组合)。

上厂矿田火山岩成矿系列

上厂矿田矿床成矿系列为燕山中晚期,成岩与成矿作用在时间、空间上总体具有由南西向北东迁移演化的特点。成矿作用与岩浆活动在时间、空间、物源等方面有着一致的依存关系,但有工业价值的矿体大多形成于岩浆活动后期。矿化元素组合、矿化类型等与岩浆成因、性质、活动方式等具有一定专属性。主要成矿元素(含矿物)以上厂为中心从西南至北东逐渐由高温向低温演化,上厂中高温钼矿→金竹坑中低温铜、铅、锌、银矿→雷母寨中低温银、铅、锌矿→活动后期天堂萤石矿。从时间、空间、物源等方面依存关系、演化规律、以及矿化类型专属性等,可以划分为火山-次火山热液型-斑岩型铜钼铅锌多金属矿床成矿系列组合的典型演化规律[1](图5)。

(1)燕山中期阶段中酸性火山喷发→火山热液型-叶蜡石(明矾石、Pb、Zn、Ag)矿,如金竹坑铜铅锌多金属矿,见成矿系列图中(4);中酸性、酸性岩浆侵入→斑岩型、热液型W、Sn、Mo、Ag、Pb、Zn矿。如上厂斑岩型钼多金属矿,见成矿系列图中(1)[2]。

(2)燕山晚期阶段中酸性火山喷发-次火山侵入→明矾石、铀、钼(金、银、铅、锌)矿,为火山-次火山热液型,金竹坑铜铅锌多金属矿和雷母寨银铅锌多金属矿,见成矿系列图中(4);中酸性、酸性岩浆侵入→铜、金、钼、钨、锡矿,如上厂斑岩型铜钼矿,见成矿系列图中(1)[2]。

上厂矿田成矿预测

矿田矿化类型预测

上厂斑岩铜钼多金属矿和赤路式斑岩钼多金属矿类比成矿预测

(1)赤路式斑岩钼多金属成矿模式特征[1]。

在平面上,接触内带中心部位,花岗斑岩、似斑二长花岗岩岩体穹状体顶部,以细脉-浸染状全岩交代作用为主,在接触内带形成似层状矿体、细脉矿带,矿体产状与斑岩体穹状体接触产状一致,为最主要矿体。垂向上分布于钾长石化带、硅化带中。

图5 福建省上厂矿田火山构造洼地岩相—构造—成矿系列图

而在外接触带的火山岩围岩中主要产出不规则状、细脉状、脉状矿体,以脉状、细脉-浸染状充填-交代作用为主,产状与围岩裂隙产状一致。主要矿化类型有细脉-浸染状、脉状、石英脉型,垂向上分布于硅化-绢英岩化带中,从上部到下部矿化分别为脉状石英脉型→细脉→细脉→浸染状矿化。

综上所述,赤路式斑岩钼多金属矿处于未剥蚀-浅剥蚀阶段,内外接触带矿体保存较完好,从上到下分别见有脉状石英脉型→细脉型→细脉-浸染型→浸染型→似层状矿体。与之相对应的围岩蚀变分带也较完整。其蚀变水平和垂直分带:以穹状体为中心向外及由下向上可分为钾长石化带→钾长云英岩化带→硅化云英岩化带→硅化绢云母化带→青盘岩化带。矿化与钾长石化、云英岩化、硅化关系最为密切。

(2)上厂斑岩铜钼多金属矿床特征。

据地球化学异常组合,从南西部石板桥一带(HT-1)以W、Mo、Bi高温元素组合为特征,呈等轴环状分布,而且出露蚀变花岗斑岩、二长花岗岩,见硅化、绢英岩化、绿泥石化、绿帘石化、绢云母化、钾化及全岩钼矿化;往北东部上厂一带(HT-2)以Cu、Pb、Zn、心g中低温元素组合为特征,而且出露梨山组、大金组,见硅化、绢英岩化、角岩化、绿泥石化、局部黄铁矿化、钼矿化、铅锌矿化。从南西至北东,蚀变、矿化特征显示斑岩型铜钼矿内外接触带矿化及元素组合特征。

在平面上,接触内带中心部位,花岗斑岩、似斑二长花岗岩岩体中心见钼矿化类型有全岩交代作用为主的细脉-浸染状矿体、还有硅化细脉状矿体、石英脉型矿体。从上至下为石英脉型矿体→硅化细脉状矿体→细脉→浸染状矿体。矿区蚀变也呈规律变化,在平面上以斑岩体为中心主要为强硅化、钾长石化,外围主要为硅化、绢云母化等;在垂向上,由地表垂直向下为硅化、绢云母化(硅化绢云母化带)→强硅化、绢云母化(硅化绢英岩化带)→钾化、绿帘石化、绿泥石化、硅化组合(钾长绢英岩化带)等。矿体具有典型的斑岩型蚀变分带特征。钼矿化与钾长石化、绢英岩化、角岩化、硅化关系最为密切。

综上所述,上厂斑岩铜钼多金属矿处于浅剥蚀阶段,出露以花岗斑岩、似斑二长花岗岩岩体全岩交代作用为主的细脉-浸染状矿体(钼1),而花岗斑岩、似斑二长花岗岩岩体顶部外接触带围岩矿化被剥蚀(钼4),因此其内外接触带矿体保存一般。而在平面上外接触带既有角岩化钼矿化、硅化脉型钼矿化(钼4),又有构造蚀变岩型脉状铅锌矿化(铅锌1)、推覆面上似层状铅锌矿化(铅锌2)等。

对比赤路式斑岩铜钼多金属矿地质特征,以及其剥蚀程度、矿化、蚀变分带规律,可推测本区岩体顶部缺失外接触带中脉状、不规则状热液型钼矿体(钼4);在平面上外接触带中仍见有脉状、不规则状热液型钼矿体(钼4)。预测花岗斑岩、似斑二长花岗岩岩体中下部可能存在似层状钼矿体(钼3),并且下部可能存在脉状、细脉-浸染状热液型铅锌多金属矿体(铅锌3)、推覆面上似层状铅锌矿化(铅锌2)。在垂直向上总体呈现上铜钼下铜铅锌矿化特点。其中钼1(斑岩型细脉-脉状钼矿)、钼2(斑岩型细脉-浸染状钼矿)为重要类型;钼3:预测斑岩型似层状钼矿;钼4:热液型脉状钼矿;铅锌1:热液型脉状铅锌矿;铅锌2:热液型推覆面上似层状铅锌矿化,为重要类型;铅锌3:预测热液型细脉-浸染状铅锌矿见(表1、表2)。

金竹坑火山-次火山(潜斑岩)热液型铜铅锌多金属矿与紫金山火山-次火山浅成热液型铜金多金属矿类比预测

(1)紫金山火山-次火山浅成热液型铜金多金属成矿特征[1]。

紫金山产于北西向上杭断陷盆地东北侧边缘,主要以英安斑岩、隐爆碎屑岩为中心,构成多个次级火山机构。铜、金矿化主要分布于次火山中心的顶部,深部花岗闪长斑岩具有斑岩型铜钼矿化。

蚀变在纵向上分带更明显,自下而上为:石英绢云母蚀变带→石英明矾石蚀变带→石英地开石蚀变带→硅质交代岩带。紫金山矿床的铜矿化主要产于石英明矾石蚀变带内,而金矿化则多富集于硅质交代岩中,紫金山矿床成矿时代为燕山晚期,成矿具有多期多阶段性,主要可分3个成矿期:岩浆侵入期后中温热液期矿床,产于花岗闪长斑岩中及周边,属中温斑岩型Cu-Mo矿、中低温热液型Cu-Au矿。潜(次)火山中低温隐爆热液期高硫浅成低温热液型Cu-Au矿、低温热液型Ag-Cu-Au矿,为区内主成矿期。表生期,以氧化次生富集铁帽型Au-Ag矿为特征,是金矿的主要富集成矿期。它们在时间上、空间上具有连续演化的特征,含矿热液的物化性质及时空迁移决定了它们在不同地质部位产出不同的矿床类型。3个成矿期五种矿化类型组成紫金山式矿床成矿系列。

紫金山矿田处于浅剥蚀阶段,内外接触带矿体保存较完好,地表多见表生硅化淋滤交代硅质岩铁帽型Au-Ag矿。从上而下矿化类型:铁帽型Au-Ag矿→高硫浅成低温热液型Cu-Au矿→低硫浅成低温热液型Ag-Cu-Au矿→中低温热液型Cu-Au矿→中温斑岩型Cu-Mo矿。与之相对应的围岩蚀变分带也较完整。水平蚀变分带:以次火山机构即以硅质交代岩为中心,向外依次为石英-明矾石交代岩带→石英-地开石交代岩带→石英-绢云母交代岩带;垂直蚀变分带自下而上为:石英绢云母蚀变带→石英明矾石蚀变带→石英地开石蚀变带→硅质交代岩带。

(2)金竹坑火山-次火山(潜斑岩)热液型铜铅锌多金属矿床模式特征。

区内蚀变类型主要为硅化、绿泥石化、绿帘石化、绢英岩化及绢云母化、碳酸盐化等,其中硅化、绢英岩化、绿泥石化、绿帘石化与矿化关系密切。

主要矿化类型从上至下有热液型脉状Cu、Pb、Zn矿→热液型似层状Cu、Pb、Zn矿→火山-次火山热液型Cu、Pb、Zn矿。

表1 上厂斑岩型铜钼多金属矿与赤路式斑岩型钼多金属矿类比预测

钼1:斑岩型细脉-脉状钼矿;钼2:斑岩型细脉-浸染状钼矿;钼3:预测斑岩型似层状钼矿;钼4:热液型脉状钼矿;铅锌1:热液型脉状铅锌矿;铅锌2:热液型推覆面上似层状铅锌矿化;铅锌3:预测热液型细脉-浸染状铅锌矿

总之,该矿区处于未剥蚀-浅剥蚀程度,构造破碎带、推覆构造带极为发育,相当于紫金山式矿田碧田矿段上中部,未见铁帽,地表多见及硅化带。石英斑岩、花岗斑岩、斜长花岗斑岩、闪长玢岩、似斑状混合岩化花岗岩等次火山岩发育,多呈小岩株、岩脉状,并见有铜铅锌矿化,相当于紫金山式矿田紫金山次火山岩型、罗卜岭(潜)斑岩型Cu、Pb、Zn矿段。其中,铜铅锌1、2矿体:热液型脉状、似层状Cu、Pb、Zn矿为重要类型;其次为火山-次火山热液型(铜铅锌3矿体);铜铅锌4:(潜)斑岩型Cu、Pb、Zn矿为预测类型。见表1、2。

表2 金竹坑火山-次火山(潜斑岩)热液型铜铅锌多金属矿与紫金山火山-次火山热液型铜金多金属矿类比预测

铜铅锌1、2:热液型脉状、似层状Cu、Pb、Zn矿为重要类型;铜铅锌3:火山-次火山热液型Cu、Pb、Zn矿为推广类型;铜铅锌4:(潜)斑岩型Cu、Pb、Zn矿预测类型

矿田内有利的成矿地段预测

(1)上厂矿段:根据成矿系列矿化蚀变组合特征,重点在花岗斑岩、似斑状二长花岗岩体的深部评价似层状钼矿、热液型铅锌矿、推覆面上的似层状铅锌矿。如(1)号矿(化)体产在推覆构造面上,(2)号矿(化)体为产于北东向构造带中的热液型铅锌矿,其向北东方向延伸,将同金竹坑矿段矿带(Ⅰ、Ⅲ、Ⅴ号矿体)连成一片,这样将扩大该矿的远景储量;另在乌龙山,其Mo异常与上厂Mo异常类似,并且发育有斑岩体,也可能是钼多金属矿产的重要成矿地段。

(2)金竹坑、雷母寨、山镇等矿段:根据成矿系列矿化蚀变组合特征、矿化类型,其中金竹坑矿段重点加强次火山岩热液型矿、推覆构造带上似层状矿、构造蚀变岩型铅锌多金属矿研究;而雷母寨、山镇矿段地质特征类似金竹坑,预测矿化类型同金竹坑一样。

上厂、金竹坑、雷母寨矿化处于同一矿带上,如上厂(1)号、(2)号矿(化)体产于北东向构造带中或推覆构造面上的热液型铅锌矿,其北东方向延伸,将同金竹坑矿段矿带(Ⅰ、Ⅲ、Ⅴ号矿体)连成一片,将扩大矿田的找矿远景;同时金竹坑北西向构造控矿也是重要成矿部位。再通过上厂—雷母寨北东向构造成矿带,研究雷母寨土壤异常在龙井坑一带形成浓集中心,Ag异常与Mo、Bi、Pb、Zn、Cu套合程度较高,是有利成矿地带。

致谢

本论文编写过程中得到福建省地质调查研究院院长周珍琦高级工程师、院总工程师张克尧高级工程师等领导同志给予极大支持和帮助,并给予悉心指导,在此表示衷心感谢!

同时得到中国地质调查局华东地调中心班宜忠总工程师大力支持和帮助,并给予悉心指导,也在此表示衷心感谢!

参考文献

[1]高天钧,王振民,吴克隆等.台湾海峡及其周边地区构造岩浆演化与成矿作用.北京:地质出版社,~121,128~132,152~158,170~171

[2][美].考克斯.辛格.矿床模式.宋伯庆,李文祥,朱裕生等编译.北京:地质出版社,~79

Study of Ore-forming Regulations and Predicting of Cu-Mo,Pb-Zn-Ag Metal Deposits in Shangchang Ore-field,Fujian Province

Lu Kebiao

(Fujian Institute of Geological Survey, Fuzhou 350011)

Abstract: The altered minerals assemble in ore field has the zoning characters: From the center of Shangchang ore field-Shangchang Cu, Mo multi-metal deposit through NE to Leimuzhai Ag, Pb, Zn multi-metal deposit, the altered mineral assemblage is K-feldspar-phylite-silite-pyrite (Mo deposit, middle-high temperature mineral assemblage) →silite-chlorite-epidote-phylite-sericite-pyrite assemblage ( Pb-Zndeposits, middle-low temperature mineral assemblage).

The deposits distribution and geochemical zoning regulations in ore field: The center of Shangchang ore field is Shangchang ore block,and distribute in NE.

species, Diagenesis mineralization has the evolve character from SW to NE in time and space. Shangchang middle-high temperature Mo,(Cu, Pb, Zn) deposits→Jinzhukeng low temperature Cu-Pb-Zn (Ag) deposits→Leimuzhai middle-low temperature Ag-Pb-Zn deposits.

The relationships of time, space and matter resources, and the species of mineralization,. We can distinct the deposits in are field into two series, porphyry Cu-Mo multi-metal deposits and volcanic-subvolcanic hydrothermal Pb-Zn-Ag multi-metal deposits, and predict the species of mineralization and prospecting direction in ore field.

Key words: Fujian Province; Shangchang ore field; Ore-forming regulations; Ore-forming series; Metallogenic predicting

1. Li Wang, BingganWei, Yonghua Li*, Hairong Li, FengyingZhang, Mark Rosenberg, Thomas Krafft, Linsheng Yang, Jixia Huang, Wuyi Wang. Astudy of air pollutants influencing life expectancy and longevity from spatialperspective in of theTotal Environment. 2014, 487: Li*, Li Wang, Linsheng Yang, Hairong Li. Dynamics of rhizosphereproperities and antioxidative responses in wheat (Triticum aestivum L.) under cadmium stress. Ecotoxicology and Environmental Safety, 2014, 102:. Binggan Wei, Yonghua Li*,Hairong Li, Jiangping Yu, Bixiong Ye, Linsheng Yang, Tao Liang. Rare earthelements in human hair from a mining area of China. Ecotoxicology and Environmental Safety, 2013, 96:. Yonghua Li*, Hongfei Sun, Hairong Li, LinshengYang, Bixiong Ye, Wuyi Wang. Dynamic changes of rhizosphere properties andantioxidant enzyme responses of wheat plants (Triticum aestivum L.)grown in mercury contaminated soils. Chemosphere,2013, 93:. Bixiong Ye, Linsheng Yang, YonghuaLi*, Wuyi Wang, Hairong Li. Watersources and their protection from the impact of microbial contamination inrural areas of Beijing, China. InternationalJournal of Environmental Research and Public Health, 2013, 10: Li*. Environmental contamination and risk assessment of mercuryfrom a historic mercury mine located in southwestern China. EnvironmentalGeochemistry and Health, 2013, 35:. YonghuaLi*,Biao Zhang, Linsheng Yang, Hairong Li. Blood mercury concentration amongresidents of a historic mercury mine and possible effects on renal function: across-sectional study in southwestern China. Environmental Monitoring and Assessment, 2013, 185:3049-3055. 8. Yonghua Li*, Biao Zhang, HairongLi, Linsheng Yang, Bixiong Ye, Wuyi Wang, Mark Rosenberg. Biomarkers of leadexposure among a population under environmental stress. Biological Trace Element Research,2013, 153:50-57. 9. Yuan Liu, Yonghua Li*, Yu Jiang, Hairong Li, Wuyi Wang, LinshengYang. Effects of soil trace elements on longevity population in China. Biological Trace Element Research,2013, 153:. Jing Wang, Hairong Li, Yonghua Li, Jiangping Yu, LinshengYang, Fujian Feng, Zhuo Chen. Speciation, Distribution and Bioavailability ofSoil Selenium in the Tibetan Plateau Kashin-Beck Disease Area-A Case Study inSongpan County, Sichuan Province, China. BiologicalTrace Element Research, 2013, 156:. Yonghua Li*, Xiuwu Zhang, Linsheng Yang, Hairong Li. Levels of Cd,Pb, As, Hg, and Se in hair of residents living in villages around Fenghuangpolymetallic mine, southwestern of Environmental Contamination andToxicology, 2012, 89:. Yonghua Li*, Xiaoyan Zou, Jinmei Lv, Linsheng Yang, Hairong Li,Wuyi Wang. Trace elements in fingernails of healthy Chinese centenarians. BiologicalTrace Element Research, 2012, 145: . Linsheng Yang, Xiuwu Zhang, Yonghua Li*, Hairong Li, Yi Wang, WuyiWang. Bioaccessibility and risk assessment of cadmium from uncooked rice usingan in vitro digestion model. Biological Trace Element Research,2012, 145: . Xiuwu Zhang, Linsheng Yang, Yonghua Li, Hairong Li Wuyi Wang,Bixiong Ye. Impacts of lead/zinc mining and smelting on the environment andhuman health in China. Environmental Monitoring and Assessment,2012, 184:. Yonghua Li*, Linsheng Yang, Wuyi Wang, Hairong Li Jinmei Lv,Xiaoyan Zou. Trace element concentrations in hair of healthy Chinesecentenarians. Science of the Total Environment. 2011, 409: . Yonghua Li*, Xiaoyan Zou, WuyiWang. Relationship between the longevous population and trace element in thesoils of Xiayi County, Magazine, 2011,75(3):. Linsheng Yang, Yonghua Li*, Hairong Li. Geochemical characteristics ofheavy metals in soil profile from an old metalliferous mining area in China. MineralogicalMagazine, 2011, 75(3):. Jinmei Lv, Wuyi Wang, Yonghua Li. Effect of environmentalfactors on the longevous people in China. Archives of Gerontology and Geriatrics,2011, 53:. Xiuwu Zhang, Linsheng Yang, Yonghua Li, Hairong Li Wuyi Wang,Guansheng Ge. Estimation of lead and zinc emissions from mineral exploitationbased on the characteristics of lead/zinc deposits in China. Transactionsof Nonferrous Metals Society of China, 2011, 21(11):. Baojun Zhang, Linsheng Yang, WuyiWang, Yonghua Li, Hairong Li. Environmentalselenium in the Kaschin–Beck disease area, Tibetan Plateau, China. EnvironmentalGeochemistry and Health, 2011, 33:. Jinmei Lv, Wuyi Wang, ThomasKrafft, Yonghua Li. Effect ofseveral environmental factors on longevity and health of human population ofZhongxiang, Hubei, China. Biological Trace Element Research,2011, 143:. Hongfei Sun, Yonghua Li*, Yanfang Ji, Linsheng Yang, Wuyi Wang, Hairong contamination and health hazard of lead/cadmium around theChatain mercury mining area, western Hunan province, China. Transactionsof Nonferrous Metals Society of China, 2010, 20(2):. Jia Lin, Wang Wuyi, Li Yonghua. Heavy metals in soils andcrops of an intensively farmed area: a case study in Yucheng city, Shangdongprovince, Journal of Environmental Research and Public Health,2010, 7, . Xiuwu Zhang,Yonghua Li*, Linsheng Yang, Hairong Li, Wuyi Wang. Determinationof five trace elements (Pb, Cd, Se, As and Hg) in human whole blood bytemperature-controllable wet digestion and ICP-MS technique. Spectroscopy and Spectral Analysis,2010, 30(7):. Wuyi Wang, Linsheng Yang, Yonghua Li, Hairong Li Bixiong Ye. Theenvironmental challenge and health security in China. Geography Environment Sustainability, 2010, 3:. Yonghua Li*, Linsheng Yang, Yanfang Ji, Hongfei Sun, Wuyi and fractionation of mercury in soils from the Chatian mercurymining deposit, Southwestern China. Environmental Geochemistry and Health,2009, 31:. Hairong Li, Qingbin Liu, Wuyi Wang,Linsheng Yang,Yonghua Li. Fluoridein drinking water, brick tea infusion and human urine in two counties in InnerMongolia, China. Journal of Hazardous Materials, 2009, 167(1-3):. Yonghua Li*, Wuyi Wang, Kunli Luo, Hairong Li. Environmentalbehaviors of selenium in soil of typical selenosis area, China. Journalof Environmental Sciences, 2008, 20: . Yonghua Li*, Linsheng Yang , Lizhen Wang, Wuyi Wang, Hairong characteristics analysis of Hg, Pb, As in soils of nonferrous metalmine coexisting area by the BCR and HG-ICP-AES technique. Spectroscopy and SpectralAnalysis, 2007, 27(9):. Yonghua Li*, Lizhen Wang, Wuyi Wang, Linsheng Yang, Hairong of trace mercury and arsenic in human hair of polymetallic miningarea by HG-ICP-AES. Spectroscopy and Spectral Analysis,2007, 27(4):. Wuyi Wang, Bixiong Ye, LinshengYang, Yonghua Li. Risk assessment ondisinfection by-products of drinking water of different water sources anddisinfection processes. Environment International, 2007,33: Li, Wuyi Wang, Linsheng Yang, Hairong Li, Jianan Tan. Environmentalepidemic characteristics of coal-burning endemic fluorosis and the safetythreshold of coal fluoride in China. Fluoride, 2003, 36(3):. 李永华*, 孙宏飞, 杨林生, 李海蓉. 湖南凤凰县茶田茶汞矿区土壤-水稻系统中汞的传输及其健康风险. 地理研究,2012, 31(1):. 李永华*. 凤凰铅锌矿区土壤铅的化学形态及污染特征. 农业环境科学学报,2012, 31(7):. 王利, 李永华*, 姬艳芳, 李海蓉, 张秀武. 羟基磷灰石和氯化钾联用修复铅锌矿区铅镉污染土壤的研究. 环境科学,2011, 32(7):. 邹晓燕, 李永华*, 杨林生, 吕金妹, 李海蓉, 虞江萍, 王五一. 河南夏邑县长寿现象与土壤环境的关系. 环境科学,2011, 32(5):. 张宝君, 杨林生, 王五一, 李永华, 李海蓉. 大骨节病区土壤元素分布特征及其与病情的关系. 土壤学报,2011, 48(2):. 孙宏飞, 李永华*, 姬艳芳, 杨林生, 王五一. 湘西汞矿区土壤中重金属的空间分布特征及其生态环境意义. 环境科学,2009, 30(4):. 姬艳芳, 李永华, 杨林生, 孙宏飞, 王五一. 湘西凤凰铅锌矿区典型土壤剖面中重金属分布特征及环境意义. 环境科学学报,2009, 29(5):. 李永华*, 杨林生, 姬艳芳, 李海蓉, 王五一. 铅锌矿区土壤-植物系统中植物吸收铅的研究. 环境科学,2008, 29(1):. 姬艳芳, 李永华*,孙宏飞, 杨林生, 王五一. 凤凰铅锌矿区土壤-水稻系统中重金属的行为特征分析. 农业环境科学学报, 2008, 27(6): . 李永华*, 杨林生, 李海蓉, 王五一, 唐登银. 湘黔汞矿区土壤汞的化学形态及污染特征. 环境科学,2007, 28(3):. 李永华*, 姬艳芳, 杨林生, 李顺江. 采选矿活动对铅锌矿区水体中重金属污染研究. 农业环境科学学报,2007, 26(1): . 李永华*, 王五一, 杨林生, 李海蓉. 湘西多金属矿区汞铅污染土壤的环境质量. 环境科学,2005, 26(5):. 李永华*, 王五一, 杨林生, 雒昆利, 李海蓉. 陕南土壤中水溶态硒氟的含量及其在生态环境的表征. 环境化学,2005, 24(3):. 李永华*, 王五一, 雒昆利, 杨林生. 大巴山区土壤中的硒和氟. 土壤学报, 2004, 41(1): . 李永华*, 王五一, 杨林生, 李海蓉. 汞的环境生物地球化学研究进展. 地理科学进展,2004, 23(6):33-4048. 李永华, 王五一, 雒昆利. 石煤暴露环境中发硒的含量分布及影响因素. 地球学报,2003, 24(增刊):. 李永华, 王五一. 干燥方式对粮食硒氟含量的影响. 中国地方病学杂志,2003, 22(2): . 王五一, 李永华, 雒昆利. 大巴山区土壤中硒、氟的地球化学特征. 地理研究,2003, 22(3): . 李永华, 王五一, 侯少范. 我国地方性氟中毒病区环境氟安全阈值研究. 环境科学,2002, 23(4):. 李永华, 王五一, 李海蓉, 杨林生, 雒昆利. 石煤暴露环境发氟分布规律及影响因子研究. 环境科学,2002, 23(6):. 李永华, 王五一. 燃煤污染型氟中毒地区人体氟通量的测定. 环境化学,2002,21(6): . 李永华, 王五一. 硒的土壤环境化学研究进展. 土壤通报,2002, 33(3): . 李永华, 王五一, 杨林生, 侯少范. 燃煤污染型氟中毒流行特点及氟安全阈值研究. 中国地方病学杂志,2002, 21(1): . 李永华, 王五一, 王丽珍. 碱熔电极法测定人发中微量氟的研究. 环境科学,2001, 22(增刊): . 李永华, 王五一, 谭文峰, 刘凡. 土壤铁锰结核中生命有关元素的化学地理特征. 地理研究,2001, 20(5):. 李永华, 王五一. 饮水型氟中毒病区氟的环境剂量-效应研究. 中国地方病防治杂志, 2001, 16(5): . 谭文峰, 刘凡, 李永华, 贺纪正, 李学垣. 我国几种土壤铁锰结核中锰矿物类型. 土壤学报,2000, 37(2):. 谭文峰, 刘凡, 李永华, 贺纪正, 李学垣. 土壤铁锰结核中锰矿物类型鉴定的探讨. 矿物学报,2000, 20(1):63-67.

碱性锌锰电池论文有关研究

废旧电池的回收利用论文2010年6月20日摘要:我国作为世界上最大的电池生产国和消费国,2001年生产电池180亿只,主要有干电池、碱性锌锰电池、锌汞电池、镍镉电池、氧化银电池、氢镍电池、锂离子电池等,占世界总产量的30%。2001年消耗电池80亿只,折合约40万吨。可想而知,其污染程度是多么巨大。这么多电池排放到环境中,直接影响环境而且间接通过各种途径对人身体产生有害影响。所以,废旧电池的回收势在必行。主题词:概况,回收,调查一、电池概述随着科学技术、社会经济的发展以及人们物质生活水平的不断提高,人们对能源的需求量越来越大,因此电池的使用量越来越大,相应世界电池的产量也正以每年20%的速度增长。据统计,2001年我国各类电池的生产总量达180亿只,2003年就猛增到262亿只,其中除少量出口发达国家的为高档无汞电池以外,大部分为低档有汞电池。电池的品种结构也已发展到目前的14个系列250多个品种,形成了较为完整的电池工业体系。但与此同时,大量的废旧电池也正通过各种渠道流入到环境中,对环境造成严重的污染,也必然通过直接或间接的渠道影响到人们的健康。在国家环境保护“十五”计划中,特别提到要建立废旧电池回收体系。2003年五部委发布了《废旧电池污染防治技术政策》。都表明了我国对废旧电池问题进行治理的迫切性。电池的品种繁多,按其用途可分为民用电池和工业电池两大类。目前工业电池以铅蓄电池为主,其主要污染物为铅和硫酸。民用电池按其是否可以充电又可分为一次性电池和可充电电池,一次性电池主要包括锌锰电池、锌汞电池、锌银电池及锂电池等,其中最主要的一次性电池为锌锰电池,2003年我国锌锰电池产量高大246亿只,占电池总产量的90%以上,其废弃物中除了汞以外,还含有锌、锰、铜等重金属。可充电电池使用较多的有镍镉电池、氢镍电池、锂电池等,镍镉电池中的镉是环保部门严格控制的重金属元素,锂电池中的有机电解质,镍镉电池、氢镍电池中的碱和制造电池的辅助材料铜等重金属,都会对环境造成严重的污染。(一)国内外电池的发展动态联想集团和中科院物理研究所强强联合,正在共同组建苏州星恒电源有限公司,该公司采用了中科院物理所的锂离子动力电源技术成果,在苏州组建锂离子动力电池生产基地。此外,中南大学在湖南晶鑫科技股份有限公司的资助下已将其研究出的锂离子动力电池中试技术产业化。另外,为推动我国光伏技术及其产业的发展,国家发展改革委员会和科技部制定出未来5年太阳能资源开发利用计划,国家“光明工程”将筹资百亿元用于太阳能光伏发电技术的应用。热光伏系统的主要优点有效率较高、噪声低、可便携、可靠性高、高体积比功率、可将热能利用与发电结合在一起等。近日,美国能源部与日本经贸部官员签署了合作研制氢燃料电池的协议。氢燃料电池不经过热功转化过程,按电化学方式直接将化学能转化为电能。它具有清洁、高效、灵活等优点。氢燃料电池若能研制成功将使人类不再依赖石油和煤炭,因此可以减少污染。目前,欧洲和美日等国家已有多家研究单位和企业在从事小型燃料电池的研究,为手机、笔记本电脑提供稳定的电力供应。另外还有很多厂家和科研单位正在开发电动车用燃料电池,也有一些科研单位正在从事镁燃料电池的研究。(二)废旧电池的污染与危害随着电池的生产、使用量越来越大,电池的应用遍及我们生活和工作的每一个方面。据调查,仅2001年,我国电池消费量就高达80亿节。每年产生如此多的废旧电池,如果处理不当将使之对环境的污染和人类的危害成为一个不容忽视的问题。从电池的化学组成可以看到,电池中含有多种重金属,酸,碱等物质。电池的危害主要集中在所含的少量重金属上,如铅,汞,镉等,这些有毒物质通过各种途径进入人体,长期积累难以排出体外,就会损害人的神经系统、造血功能和骨骼,甚至可以致癌。废电池经过长期机械磨损和腐蚀,使得内部的重金属和酸、碱等物质泄露出来,进入土壤和水源,就会通过各种途径进入人的食物链,当进入水体的重金属被水生生物摄取并经过食物链的放大作用而在生物中成千上万倍的富积后经过食物进入人体,在某些器官中积累造成慢性中毒。如40年前在日本发生的“村庄集体发疯事件”就是由于电池的污染造成的。因为废旧电池中的锌、镉、二氧化锰等成分长期埋在地下会与土壤中的化学物质发生作用,生成锌锰酸式盐等并渗入地下,污染该地区的饮用水,造成周围居民蓄积性中毒。据专家测试,一节小小的钮扣电池就能污染60万升水,相当于一个人一生的饮水量;一节一号电池烂在地里,它的溶出物能使出1平方米的土地失去利用价值,而我国每年要消耗钮扣电池400000粒;2002年全国干电池的产量达到了近160亿节,我们有多少水源、土地供其污染呢!因此,对废旧电池无污染的处理刻不容缓。二、废旧电池的回收(一)国内外电池的回收状况。我国作为世界上最大的电池生产国和消费国,2001年生产电池180亿只,主要有干电池、碱性锌锰电池、锌汞电池、镍镉电池、氧化银电池、氢镍电池、锂离子电池等,占世界总产量的30%。2001年消耗电池80亿只,折合约40万吨。可想而知,其污染程度是多么巨大。这么多电池排放到环境中,直接影响环境而且间接通过各种途径对人身体产生有害影响。所以,废旧电池的回收势在必行。而现在收还是不收——电池行业的激烈交锋针对电池回收,我国电池行业有两派观点正在激烈争论。一派认为集中回收一次性电池意义不大,在没有条件处理的情况下,集中回收会造成集中污染。一些专家认为,目前回收量最大的干电池,其主要成分是铁、锌、锰,还有微量的汞。这种电池汞含量不高,没有必要集中回收。铅酸蓄电池和对人体健康危害非常大的镍镉电池应该回收。高汞电池中的汞含量只有电池总量的千分之一,随垃圾填埋后,电池里的重金属进入填埋场渗液数量非常小,并不构成污染。而回收处理废旧电池成本过高,从经济角度看无利可图,何况在回收过程中还可能产生二次污染。中国电池协会有关负责人说,目前我国的一次性干电池已经基本做到低汞化,正在迈向无汞化,随垃圾分散处理不会对环境产生威胁。更应该做的是从生产龙头上消灭污染,即实现无汞化。由于回收一性电池的费用很高,没有经济杠杆刺激企业来回收利用一次性电池,事情很难办。需要回收的是那些对环境污染大的充电电池及铅酸电池。一些专家还举例说目前一些发达国家也不集中回收一次性电池。环保部门有关负责人认为,既然要达到无汞化,那么对一次性电池的回收不支持也不反对。这种观点,似乎是对目前我国民间回收电池巨大热情颇有意味的嘲讽。另一种观点认为,无论哪类电池,都必须坚持回收。这派观点的专家认为,虽然1997年我国轻工总会、国家经贸委等九部委联合发出《关于限制电池汞含量的规定》,要求电池制造企业逐步做到降低电池汞含量,2002年达到低汞水平,2005年达到无汞化。但我国的现状是,绝大部分民用电池是一次性电池,而且电池的无汞化进程并不乐观。据调查,目前我国1000多家电池生产企业中,在中国电池协会注册的仅300多家。虽然大电池企业生产的电池目前都做到了低汞化或无汞化,但大量小企业生产的电池还存在高汞现象。河北省干电池检验站高级工程师张虎说,目前我国电池含汞量参差不齐,有的质量非常好,小于百万分之一;有的极差,高于低汞电池标准的20倍,高于无汞电池标准一万倍。我们了解到,我国目前能批量生产低汞无汞的大电池厂家还不到15%。不久前国家工商局对电池的一项调查显示,我国市场上的电池有20%达不到标准。所以,用已实现电池无汞化的发达国家不回收一次性电池的经验来套我国现实,还不合国情。有关专家认为电池中不仅汞会造成污染,锌、锰、镉、铅等随生活垃圾腐烂渗入地下,超过一定的限值,也会造成污染。这些有害物质随着食物链进入人体,极大威胁着人的健康。目前我国垃圾处理方式水平较低,九五期间,我国垃圾年产生量为万吨,处理率为63%,但真正做到无害化处理的不到10%。我国大中城市的近千座垃圾填埋场中,90%仍是简易堆放,这种原始的处理方式极容易造成大面积污染。把废旧电池与生活垃圾一同处理后患无穷。专家认为,大量旧电池都随着垃圾到垃圾场,也是一种集中,怎么就不可能产生污染?北京市政管委会有关负责人郑先生说,把废旧电池集中起来,等有了条件再处理,这样比分散更安全。从资源利用的角度上,电池回收也得到许多专家的肯定。北京科技大学的曾平荣教授说,目前国内生产的电池中90%以上是干电池,不可能对环境无污染。而且,对这些电池不回收利用也是巨大的资源浪费。3000吨废旧电池可以回收杂锌锭141吨、冶金二氧化锰300吨、铁皮260吨、电解锌181吨、电解二氧化锰340吨、铁皮500吨,价值相当于国家开发两个中型矿山的费用,更何况这些都是不可再生的一次性资源。我国目前年消费电池80亿只左右,平均回收效率还不到2%,99%都随生活垃圾一起进入了垃圾填埋厂。就是这2%,已经让管理部门处于尴尬处境。 企业不愿干处理废旧电池的赔本事既然许多环保部门都认为应该谁污染谁治理,那么,从法理上应该承担废旧电池处理的企业怎么想呢?北京金普电池有限公司有关负责人曾经说,回收处理废旧电池,是赔本的事儿,因为技术设备都不配套,收回来不及时处理,也都烂了。而且,国家对回收处理电池也没有补贴,回收成本太高,现在是市场经济,企业怎么能干无效益的事儿?天津力神电池企业有关负责人说:“我们只卖电池,收电池不是我们的事。”大电池企业大都持以上观点,有的人甚至不知电池回收之事。当大电池企业都对处理废旧电池不感兴趣时,民营的北京东华鑫馨劳务服务有限公司却建立起了我国第一个,目前也是惟一的一个废旧电池处理厂。其董事长王自新有“环保狂人”之称。之所以“狂”,就是敢做别人不做之事。王自新在北京建立起了几百个废旧电池回收点,建立了废旧电池回收电话,以至于我们把电话一打到北京市环保局,人家立即就把王自新的电池回收热线电话告诉我们。王自新对我们说,为了对后人负责,他要在废旧电池的产业化上做一番事业,为此现在已经把自己的几百万财产全部投入进去。他说,只有建立废旧电池回收利用的产业链,才能把这个事业进行下去。王自新说:“大量一次性电池不回收,污染环境不说,还浪费了大量资源。每节电池中含有22%的锌、26%的锰、17%的铁,如果不处理就扔了,等于每年白白把几千万吨的有用原料都扔了,这可是从几万吨矿石中提炼出来的呀!这绝对是个朝阳产业,国营企业不做的事,我们民营企业要做!”王自新以前学医,深入研究过废旧电池对人体的伤害,后来改做化工企业,又研究过废电池的利用。1999年,他开始了废旧电池回收利用的事业。王自新走着一条布满荆棘的道路。他的废旧电池回收企业建立在河北易县,虽然技术设备都已经到位,却迟迟开不了工,原因是当地有关部门反对。当地有关部门认为,废旧电池处理企业肯定会产生污染。尽管这个企业的排放条件完全合乎国家标准,也不让生产。王自新曾想迁址,但到哪个地方,一说是废旧电池处理企业,人家就都不让进门了。王自新无奈地说:“不知道我的家到底能落在哪儿!”不过,他没有灰心,正在努力用最新的工艺让企业达到最严格的排放标准,然后争取得到国家环保部门的认证。他说要探索一条中国独特的处理废旧电池之路。有税务部门问王自新:“民营企业,没利的事能干长吗?”王自新说:“我把回收处理废旧电池当成事业。”他充满激情说:“我现在就是当代的唐吉诃德,举着长矛冲刺。”他所挑战的,除了复杂的社会环境,还有观念的壁垒。王自新对废旧电池产业链的每一个链条,都有详细的方案,力图做到让利益机制来运转电池的回收网络。他给北京市长写信说,到2008年,北京市的废旧电池回收率要达到50%。国外一些发达国家情况则相对较好。它们对失效电池的收集和处理大都制定了相当严格的法律法规。如日本规定生产商、销售商和消费者均必须交纳一定比例的回收处理费用,并联合多家公司成立了遍布全国的收集分支机构和网点,以方便废旧电池的收集,同时由政府资助建成了数个废旧电池的回收处理工厂,并享受很多优惠政策。这些措施对于废旧电池的回收都是相当有效的。目前对于废旧电池的处理,西方国家也存在一些问题,他们的处理方法大多采用岩洞封存待处理或用防渗水泥固化后填海造地的方法,绝大多数尚未无害化回收。只有日、德、美、韩等少数国家开发出了较成熟的处理工艺和技术设备。如:日本Sumitomo重工发明的高温挥发和还原熔炼工艺;瑞士Batrec公司建立了较为先进的生产线,年处理能力达3千吨;此外,德国Ald公司也开发出了真空冶金的办法处理废旧电池的应用技术。而我国北京矿治研究院提出的“一步法”处理废旧干电池的方法也是十分有效的。(二)废电池的回收工艺与技术。由于废旧电池的种类繁多,因此对它们的处理方法也各异。目前的处理方法有单类别废旧电池综合利用技术和混合废旧电池综合利用技术,但由于混合废旧电池综合利用技术尚未成熟,所以目前废旧电池的处理技术主要为单类别废旧电池综合利用技术。它包括湿法和火法两种处理方法。1湿法冶金处理方法。湿法冶金回收过程的原理是基于废旧电池中的金属及其化合物溶于酸的性质,先将废旧电池溶解,溶液经净化后电解生成锌、二氧化锰或生产其它化工产品(如:立德粉、氧化锌等)。其优点是设备投资少、操作费用低;缺点是产品纯度低、工艺流程长、可能会产生二次污染等。荷兰、德国等使用此法处理废旧电池。2火法冶金处理过程。火法冶金处理废干电池的原理是将废干电池破碎后在高温下将其中的金属及化合物氧化、还原、分解、挥发和冷凝的过程。火法又包括常压和真空两种方法常压冶金法所有作业均在大气中进行,而真空法则是在密闭的真空环境下进行。多数学者认为,真空法冶金是处理废电池的最佳方法,尤其对汞的处理回收最为有效。其优点是过程中不引进新的杂质、再生产品纯度较高、处汞效果较好等;缺点是耗能大、设备费用高等。目前,瑞士、日本、美国等国家采用此法处理废旧电池。目前,传统的处理废电池的方法一是在较低的温度下加热废电池,先使汞挥发,然后在较高的温度下回收少量烯和其他金属。二是将废旧电池在高温下培烧,使其中易挥发的金属及其氧化物挥发,残留物作为冶金中间产物或另行处理。由于常压冶金在空气中作业有污染重,流程长,高消耗和成本高等缺点。人们又研究出了真空法。真空法是基于组成废旧电池各组分在同一温度下不同的蒸汽压,通过在真空中蒸发与冷凝,使其分别在不同的温度下相互分离,从而实现综合回收利用。其处理过程为:蒸汽压高的组分进入蒸汽,蒸汽压低的组分则留在残液或残渣内;冷凝时蒸汽在温度较低处凝结为液体或固体。真空法的流程短,污染小,回收利用率高,具有较大的优越性,值得广泛地推广。(三)我国废电池的管理现状。针对废电池带来的一系列危害,我国颁布了《中华人民共和国固体废物污染环境防治法》。其中规定:对于危险废物应遵循分类管理,收集、储存、转移和处置等重点环节重点控制,集中处置的原则进行管理,但此法没有专门对电池管理作具体的规定。废电池的管理工作的具体开展还缺乏可操作的具体管理规定及实施细则。在电池行业管理中。1997年12月31日,中国轻工总会、国家经济贸易委员会等九部委联合发出《关于限制电池汞含量的规定》,要求自2000年1月1日起,禁止在国内生产各种汞含量大于的电池(实行电池低汞化),自2001年1月1日起,禁止在国内销售各种汞含量大于的电池,同时,进入市场销售的国内外电池产品均需标明汞含量。自2005年1月1日起,禁止在国内生产汞含量大于的碱性锌锰电池(实行电池无汞化),自2006年1月1日起,禁止在国内销售汞含量大于的碱性锌锰电池。在此文件中具体对各种类电池中的汞含量、具体控制办法、办法的监督执行等事项均作了较为详细的规定。但此法规对于其他类别废电池中的有害物质,如:镉、铅等还没有具体规定。在废电池生产,回收利用与环境无害化处置管理过程中,由于人们对于环境保护的有关知识缺乏了解,对废电池会对环境造成的危害认识不足,管理体系尚未健全,使得管理过程中遇到许多问题。我国废电池管理中存在的问题主要包括:1电池的生产者、使用者没有很好地履行在电池管理中的义务。2缺乏具体的管理法规。3管理体系不健全。4缺乏合理可行的管理运行机制。5缺乏先进的废旧电池再生利用,处理处置技术。6公众缺乏对废旧电池管理知识的正确了解。这些问题在今后的经济发展和环保方面急需有关部门来解决。(四)废旧电池回收中存在的问题我国废旧电池在回收过程中还存在着诸多问题:1由于公众对废旧电池的危害还缺乏足够的了解,大多数公众对废旧电池的处理方式为同生活垃圾一起丢弃,绝大部分废旧电池未实现回收。2由于我国没有建成完整的废旧电池回收网点,有些公众想把废旧电池交回电池回收站,可是却找不到一个电池回收站,迫于无奈只能将其丢弃。3由于我国没有对电池生产销售征收环境税,废旧电池回收、处理资金来源不足,严重的影响废旧电池的回收。4以前主要以锌锰电池为主的处理问题变成多种废旧电池共存,而现有的回收处理方法是建立在对电池分类的基础上的,所以我们要改进现有的废旧电池处理工艺及设备。(五)关于废旧电池回收的建议鉴于以上分析,结合实际情况,我们提出以下建议:1加强环境保护的宣传与教育,以便提高全民环境保护意识。2建立完整的电池回收、处理体系,使人们能方便的把废旧电池交到回收站。3对于毒性较大的铅蓄电池、含汞电池、镍镉电池等必须标有相应的再生利用标志。4强制淘汰部分厂家落后的电池生产工艺及其产品。5鼓励开展再生利用技术研究。对废旧电池再生利用技术的研究与开发,在政策及经济应有所倾向,以确保再生利用技术的经济技术指标及工艺水平达到国际先进水平,实现废旧电池有价成分的综合回收和无二次污染。6对电池生产商、销售商、进口商以及消费者等环节采取买新交旧、收取处理费和环境税等方法筹集资金,建立完整的废旧电池回收、处理体系,以确保废旧电池能够完全回收并得到妥善的处理。三、关于废旧电池的调查报告(一)本调查的主要目的1了解消费者使用电池的主要类型、数量、以及使用后废旧电池的处理方式。2了解消费者对目前市场所销售电池的建议与意见。3了解公众对废旧电池污染环境的认识程度。4加强环境保护宣传,提高全民的环境保护意识及资源危机意识。(二)本调查的主要对象1山东农业大学部分学生2泰安市部分市民(三)本调查问卷的设计方案本调查问卷共分4个方面10个问题。由于各种类型废旧电池所含主要危害成分及其对环境的危害程度不同,因此本调查问卷的第一个方面(包括问题1~4)主要是为了了解目前消费者使用电池的主要类型。由于本调查对象众多,每个人的文化层次及知识结构不同,因此本调查问卷中的问题3~4主要是为了对问题1~2的补充。南孚电池、双鹿电池、白象电池等主要为碱性电池,大公电池、牡丹电池、中华电池等主要为酸性电池。价格在1元以内的主要为酸性电池、在1元至元的主要为有汞碱性电池、在3元至5元的主要为无汞碱性电池、价格在5元以上的主要为可充电电池。目前市场上销售的电池在消费者心目中必然存在着某些方面的不足,这也就决定了未来电池的发展方向,因此本调查问卷的第二个方面(包括问题5~6)主要是为了了解消费者对目前市场销售的电池的不满。由于目前世界性的资源问题、能源问题、污染问题正阻碍着社会的发展与进步,因此加强环境保护及合理利用资源与能源的宣传迫在眉睫。本调查问卷的第三个方面(包括问题7~8)的主要目的是为了了解普通公众对废旧电池污染的认识及对废旧电池污染环境加以宣传。据有关资料表明,目前中国每年产生的废旧电池总量大约为80~90亿只,平均每人每年产生7只废旧电池,本调查问卷的第四个方面(包括问题9~10)主要是为了了解本调查范围内每人每月产生的废旧电池量以及其对废旧电池的主要处理方式。(四)本调查问卷的调查结果通过我们一周时间对西北大学部分学生及西安市部分市民的调查结果如下:(本调查过程中共发放调查问卷600份,收回有效问卷504份)略(五)问卷调查结果的讨论由于本调查的范围有限,所以其中的某些结果可能与总体情况略有出入,但是本调查必定反映了总体中一个地区的情况,因此还是有一定的参考价值。本调查从某种程度上反映了我国电池的消费量使用后对其处理方式以及存在的问题。(六)调查问卷的结论由以上调查问卷结果我们可以得到如下结论:1目前消费者使用的电池主要为一次性碱性电池。这种电池的各方面性能优于一次性酸性电池,但是由于无汞碱性电池的生产工艺尚不成熟及其造价要高于有汞碱性电池,因此目前市场上销售的碱性电池主要为有汞碱性电池,所以废旧电池如果同生活垃圾一同掩埋、焚烧、堆肥等仍然会对环境造成严重的污染。另外,由于碱性电池的外壳是由钢制成,因此废旧电池同生活垃圾一同处理更是对资源的严重浪费。2由问卷的调查结果我们看到消费者对目前市场上销售的电池仍然存在着很多的不满,比如电池的质量太差、不够环保、价格太高等。因此电池生产厂家及科研单位必须加强对电池生产工艺的研究,以便能尽快生产出高质量、低污染、低造价的新型环保电池。3由问卷的调查结果我们还可以发现,目前绝大部分公众对废旧电池若不妥善处理会污染环境已有一定的了解,但是缺乏更近一步的认识及实际行动,因此我们要加强环境保护的宣传与教育,以便提高全民的环保意识及资源危机意识。4由问卷的调查结果我们还可以发现,目前消费者每月使用的电池为两节左右,而绝大部分消费者对废旧电池处理方式为随生活垃圾一起丢弃,这样不仅会对环境造成严重的危害更是对资源的严重浪费。据有关资料表明,如果全国废旧电池全部得以回收利用,每年就可以回收1万吨锌、18~20万吨二氧化锰、2~万吨铜,这是多么大的一笔财富呀!(七)调查过程中发现的问题目前,我国部分消费者已具有一定的环保意识及资源危机意识,认识到废旧电池同生活垃圾一同丢弃不仅污染环境还是对资源的严重浪费。可是我们在调查过程中了解到,有些消费者把用完的电池收集在一起,并且有的收集了很多,可是苦于找不到废旧电池回收站,最终迫于无奈只能将辛辛苦苦积累下的废旧电池随生活垃圾一起丢了。另外,我们在《中国资源综合利用》中了解到北京某废旧电池处理厂却因原料供应不足而被迫破产。由此可见我国在废旧电池回收管理中存在很大的问题。望能引起有关部门的重视使问题得以解决。四结束语我国作为世界上最大的电池生产国和消费国,废旧电池的收集和处理还存在很多问题有待于解决。虽然2003年五部委发布了《废旧电池污染防治技术政策》,但是政策还有待于落实,公众的环保意识还有待于加强。另外,废旧电池的处理工艺及设备也有待于改进

废电池的危害:废弃在自然界电池中的汞会慢慢从电池中溢出来,进入土壤或水源,再通过农作物进入人体,损伤人的肾脏。在微生物的作用下,无机汞可以转化成甲基汞,聚集在鱼类的身体里,人食用了这种鱼后,甲基汞会进入人的大脑细胞,使人的神经系统受到严重破坏,重者会发疯致死。著名的日本水俣病就是甲基汞所致。镉渗出污染土地和水体,最终进入人体使人的肝和肾受损,也会引起骨质松软,重者造成骨骼变形。汽车废电池中含有酸和重金属铅泄漏到自然界可引起土壤和水源污染,最终对人造成危害。 废电池污染及其处理已经成为目前社会最为关注的环保焦点之一。国家环保总局科技标准司有关人士认为,随着我国电池的种类、生产量和使用量的不断扩大,废旧电池的数量和种类也在不断增加。废旧电池含有汞、铅、镉、镍等重金属及酸、碱等电解质溶液,对人体及生态环境有不同程度的危害。据了解,其中对人体健康和生态环境危害较大、列入危险废物控制名录的废电池主要有:含汞电池,主要是氧化汞电池;铅酸蓄电池;含镉电池,主要是镍镉电池。 湖南省动力化学电源工程技术研究中心杨毅夫博士告诉笔者,尽管我国一些大型电池生产企业已经开始生产无汞电池,但是大量中小企业生产的仍然是含汞电池,因其价格便宜,应用面广,销售量相当大。铅酸蓄电池主要应用在汽车、电动自行车、通讯备用电源和应急电源等方面。而镍镉电池则普遍用于手机、电动工具、电动玩具等方面,是一种可充电电池。 有关资料显示,一节一号电池烂在地里,能使1平方米的土壤永久失去利用价值;一粒纽扣电池可使600吨水受到污染,相当于一个人一生的饮水量。在对自然环境威胁最大的几种物质中,电池里就包含了汞、铅、镉等多种,若将废旧电池混入生活垃圾一起填埋,或者随手丢弃,渗出的汞及重金属物质就会渗透于土壤、污染地下水,进而进入鱼类、农作物中,破坏人类的生存环境,间接威胁到人类的健康。 人体一旦吸收这些重金属以后,会出现哪些病症呢?据有关专家介绍,汞是一种毒性很强的重金属,对人体中枢神经的破坏力很大,上世纪五十年代发生在日本的震惊中外的水俣病就是由于汞污染造成的。目前我国生产的含汞碱性干电池的汞含量达1%-5%,中性干电池的汞含量为0.025%,我国电池生产消耗的汞每年就达几十吨之多。镉在人体内极易引起慢性中毒,主要病症是肺气肿、骨质软化、贫血,很可能使人体瘫痪。而铅进入人体后最难排泄,它干扰肾功能、生殖功能。 专家们认为,由于电池污染具有周期长、隐蔽性大等特点,其潜在危害相当严重,处理不当还会造成二次污染。据杨毅夫博士介绍,我国沿海某省的一些农民在回收铅酸蓄电池中的铅时,因为回收处理不当,把含有铅和硫酸的废液倒掉,不仅造成了铅中毒,而且使当地农作物无法生长。

废旧电池的危害性 一粒纽扣电池可污染60万升水,等于一个人一生的饮水量。一节电池烂在地里,能够使一平方米的土地失去利用价值,所以把一节节的废旧电池说成是“污染小炸弹”一点也不过分。 我们日常所用的普通干电池,主要有酸性锌锰电池和碱性锌锰电池两类,它们都含有汞、锰、镉、铅、锌等各种金属物质,废旧电池被遗弃后,电池的外壳会慢慢腐蚀,其中的重金属物质会逐渐渗入水体和土壤,造成污染。重金属污染的最大特点是它在自然界是不能降解,只能通过净化作用,将污染消除。 废旧电池的危害主要集中在其中所含的少量的重金属上 金属种类 危害的表现 锰 过量的锰蓄积于体内引起神经性功能障碍,早期表现为综合性功能紊乱。较重者出现两腿发沉,语言单调,表情呆板,感情冷漠,常伴有精神症状。 锌 锌的盐类能使蛋白质沉淀,对皮膜粘膜有刺激作用。当在水中浓度超过10-50毫史/升时有致癌危险,可能引起化学性肺炎。铅:铅主要作用于神经系统、活血系统、消化系统和肝、肾等器官能抑制血红蛋白的合成代谢过程,还能直接作用于成熟红细胞,对婴幼儿影响甚大,它将导致儿童体格发育迟缓,慢性铅中毒可导致儿童的智力低下。 镍 镍粉溶解于血液,参加体内循环,有较强的毒性,能损害中枢神经,引起血管变异,严重者导致癌症。 汞 它在这些重金属污染物中是最值得一提的,这种重金属,对人类的危害,确实不浅,长期以来,我国在生产干电池时,要加入一种有毒的物质——汞或汞的化合物,我国的碱性干电池中的汞的含量达到1-5%,中性干电池为,全国每年用于生产干电池的汞具有明显的神经毒性,此外对内分泌系统、免疫系统等也有不良影响,1953年,发生在日本九州岛的震惊世界的水俣病事件,给人类敲响了汞污染的警钟。 重金属污染,威胁着人类的健康,人类如果忽视对重金属污染的控制,最终将吞下自酿的苦果,因此,加强废旧电池的回收就日显重要了。

化学电池化学电池将化学能直接转变为电能的装置。主要部分是电解质溶液、浸在溶液中的正、负电极和连接电极的导线。依据能否充 电复原,分为原电池和蓄电池两种 化学电池的种类 化学电池按工作性质可分为:一次电池(原电池);二次电池(可充电电池);铅酸蓄电池。其中:一次电池可分为:糊式锌锰电池、纸板锌锰电池、碱性锌锰电池、扣式锌银电池、扣式锂锰电池、扣式锌锰电池、锌空气电池、一次锂锰电池等。二次电池可分为:镉镍电池、氢镍电池、锂离子电池、二次碱性锌锰电池等。铅酸蓄电池可分为:开口式铅酸蓄电池、全密闭铅酸蓄电池。 1.锌锰电池 锌二氧化锰电池(简称锌锰电池) 又称勒兰社(Leclanche)电池,是法国科学家勒兰社(Leclanche,1839-1882)于1868年发明的由锌(Zn)作负极,二氧化锰(MnO2)为正极,电解质溶液采用中性氯化铵(NH4Cl)、氧化锌(ZnCl2)的水溶液,面淀粉或浆层纸作隔离层制成的电池称锌锰电池,由于其电解质溶液通常制成凝胶状或被吸附在其它载体上而呈现不流动状态,故又称锌锰干电池。按使用隔离层区分为糊式和板式电池两种,板式又按电解质液不同分铵型和锌型电池纸板电池两种。 干电池用锌制筒形外壳作负极,位于中央的顶盖上有铜帽的石墨棒作正极,在石墨棒的周围由内向外依次是A:二氧化锰粉末(黑色)------用于吸收在正极上生成的氢气(以防止产生极化现象);B:用饱和了氯化铵和氯化锌的淀粉糊作为电解质溶液。 电极反应式为:负极(锌筒):Zn +– 2e === Zn(NH3)2Cl2↙+2H+ 正极(石墨):2NH4+ === 2NH3 ↑+ H2↑ H2O + 2MnO2 + 2e === 2MnOOH+ 2OH- 总反应:Zn + 2NH4Cl + 2MnO2 === Zn(NH3)2Cl2↙+2MnOOH 干电池的电压大约为,不能充电再生。 2.碱性锌锰电池 20世纪中期在锌锰电池基础上发展起来的,是锌锰电池的改进型。电池使用氢氧化钾(KOH)或氢氧化钠(NaOH)的水溶液做电解质液,采用了与锌锰电池相反的负极结构,负极在内为膏状胶体,用铜钉做集流体,正极在外,活性物质和导电材料压成环状与电池外壳连接,正、负极用专用隔膜隔开制成的电池。 3.铅酸蓄电池 1859年法国普兰特(Plante)发现,由正极板、负极板、电解液、隔板、容器(电池槽)等5个基本部分组成。用二氧化铅作正极活性物质,铅作负极活性物质,硫酸作电解液,微孔橡胶、烧结式聚氯乙烯、玻璃纤维、聚丙烯等作隔板制成的电池。 铅蓄电池可放电也可以充电,一般用硬橡胶或透明塑料制成长方形外壳(防止酸液的泄漏);设有多层电极板,其中正极板上有一层棕褐色的二氧化铅,负极是海绵状的金属铅,正负电极之间用微孔橡胶或微孔塑料板隔开(以防止电极之间发生短路);两极均浸入到硫酸溶液中。放电时为原电池,其电极反应为: 负极:Pb + SO42-- 2e === PbSO4 正极:PbO2 + 4H+ + SO42- + 2e === PbSO4 + 2H2O 总反应式为:Pb + PbO2 + 2H2SO4 ====== 2PbSO4 + 2H2O 当放电进行时,硫酸溶液的的浓度将不断降低,当溶液的密度降到 时应停止使用进行充电,充电时为电解池,其电极反应如下: 阳极:PbSO4 + 2H2O- 2e === PbO2 + 4H+ + SO42- 阴极:PbSO4 + 2e === Pb + SO42- 总反应式为:2PbSO4 + 2H2O ====== Pb + PbO2 + 2H2SO4 当溶液的密度升到时,应停止充电。 上述过程的总反应式为: 放电 Pb + PbO2 + 2H2SO4 ====== 2PbSO4 + 2H2O 充电 4.锌银电池 一般用不锈钢制成小圆盒形,圆盒由正极壳和负极壳组成,形似纽扣(俗称纽扣电池)。盒内正极壳一端填充由氧化银和石墨组成的正极活性材料,负极盖一端填充锌汞合金组成的负极活性材料,电解质溶液为KOH浓溶液。电极反应式如下: 负极:Zn + 2OH- -2e=== ZnO + H2O 正极:Ag2O + H2O + 2e === 2Ag + 2OH- 电池的总反应式为:Ag2O + Zn ====== 2Ag + ZnO 电池的电压一般为,使用寿命较长。 5.镉镍电池和氢镍以及金属氢化物镍电池 二者均采用氧化镍或氢氧化镍作正极,以氢氧化钾或氢氧化钠的水溶液作电解质溶液,金属镉或金属氢化物作负极。金属氢化物电池为20世纪80年代末,利用吸氢合金和释放氢反应的电化学可逆性发明制成,是小型二次电池主导产品。 6.锂电池 锂电池是一类以金属锂或含锂物质作为负极材料的化学电源的总称通称锂电池,分为一次锂电池和二次锂电池。 7.锂离子电池 指能使锂离子嵌入和脱嵌的碳材料代替纯锂作负极,锂的化合物作正极,混合电解液作电解质液制成的电池。锂离子电池是1990年有日本索尼公司研制出并首先实现产品化。国内外已商品化的锂离子电池正极是LiCoO2,负极是层状石墨,电池的电化学表达式为(—) C6▏1mol/L LiPF6-EC+DEC▏LiCoO2(+) 8.氢氧燃料电池 这是一种高效、低污染的新型电池,主要用于航天领域。其电极材料一般为活化电极,具有很强的催化活性,如铂电极、活性碳电极等。电解质溶液一般为40%的KOH溶液。电极反应式如下: 负极:2H2 + 4OH- -4e=== 4H2O 正极:O2 + 2H2O + 4e=== 4OH- 总反应式:2H2 + O2 === 2H2O 9.熔融盐燃料电池 这是一种具有极高发电效率的大功率化学电池,在加拿大等少数发达国家己接近民用工业化水平。按其所用燃料或熔融盐的不同,有多个不同的品种,如天然气、CO、---熔融碳酸盐型、熔融磷酸盐型等等,一般要在一定的高温下(确保盐处于熔化状态)才能工作。 下面以CO---Li2CO3 + Na2CO3---空气与CO2型电池为例加以说明: 负极反应式:2CO + 2CO32--4e === 4CO2 正极反应式:O2 + 2CO2 + 4e=== 2CO32- 总反应式为:2CO + O2 === 2CO2 该电池的工作温度一般为6500C 10.海水电池 1991年,我国科学家首创以铝---空气---海水为材料组成的新型电池,用作航海标志灯。该电池以取之不尽的海水为电解质,靠空气中的氧气使铝不断氧化而产生电流。其电极反应式如下: 负极:4Al – 12e === 4Al3+ 正极:3O2 + 6H2O + 12e === 12OH- 总反应式为:4Al + 3O2 + 6H2O === 4Al(OH)3 这种电池的能量比普通干电池高20---50倍! 新型化学电池 (1碱性氢氧燃料电池 这种电池用30%-50%KOH为电解液,在100°C以下工作。燃料是氢气,氧化剂是氧气。其电池图示为 (―)C|H2|KOH|O2|C(+) 电池反应为 负极 2H2 + 4OH―4e=4H2O 正极 O2 + 2H2O + 4e=4OH 总反应 2H2 + O2=2H2O 碱性氢氧燃料电池早已于本世纪60年代就应用于美国载人宇宙飞船上,也曾用于叉车、牵引车等,但其作为民用产品的前景还评价不一。否定者认为电池所用的电解质KOH很容易与来自燃料气或空气中的CO2反应,生成导电性能较差的碳酸盐。另外,虽然燃料电池所需的贵金属催化剂载量较低,但实际寿命有限。肯定者则认为该燃料电池的材料较便宜,若使用天然气作燃料时,它比唯一已经商业化的磷酸型燃料电池的成本还要低。 (2) 磷酸型燃料电池 它采用磷酸为电解质,利用廉价的炭材料为骨架。它除以氢气为燃料外,现在还有可能直接利用甲醇、天然气、城市煤气等低廉燃料,与碱性氢氧燃料电池相比,最大的优点是它不需要CO2处理设备。磷酸型燃料电池已成为发展最快的,也是目前最成熟的燃料电池,它代表了燃料电池的主要发展方向。目前世界上最大容量的燃料电池发电厂是东京电能公司经营的11MW美日合作磷酸型燃料电池发电厂,该发电厂自1991年建成以来运行良好。近年来投入运行的100多个燃料电池发电系统中,90%是磷酸型的。市场上供应的磷酸型发电系统类型主要有日本富士电机公司的50KW或100KW和美国国际燃料电池公司提供的200KW。 富士电机已提供了70多座电站,现场寿命超过10万小时。 磷酸型燃料电池目前有待解决的问题是:如何防止催化剂结块而导致表面积收缩和催化剂活性的降低,以及如何进一步降低设备费用。 化学电源的重大意义: 化学能转换为电能的原理的发现和各式各样电池装置的发明,是贮能和供能技术的巨大进步,是化学对人类的一项重大贡献,极大地推进了现代化的进程,改变了人们的生活方式,提高了人们的生活质量。

氧化锌相关的论文研究

王雷,孙杰,安成强。粗糙度对彩色涂层与基体间附着力的影响。电镀与精饰,2010,32(5):41-43王丹,孙杰,邓丽,安成强。PSA镀锡液中Sn(Ⅳ)含量对镀层耐蚀性的影响。沈阳理工大学学报,2009,12(6):35-38谭玉琢,孟锦宏,孙杰,曹晓辉。化学沉淀-局部规整法制备棒状M型钡铁氧体的形成历程。无机化学学报,2008,24(12):1989-1993孙杰,刘建华,李松梅。纳米晶体的制备与电磁性能研究。稀有金属材料与工程,2005,34, (11):1814-1817孙杰,刘建华,李松梅。尖晶石型纳米晶体的制备及电磁性能研究。无机材料学报,2005, 20, (5):1077-1082刘建华,孙杰,李松梅,陈冬梅。不同形貌氧化锌的微波电磁性能研究。北京航空航天大学学报,2004,30(9):822-825

据外媒报道,像云等这样的漫射物体也会投射阴影,因为它们是分散光波的无序介质。但 现在,来自杜维恩大学和乌得勒支大学的研究人员发现了一种可以操纵光波通过从而在物体的另一边投射出清晰图像的方法,这就好像障碍物不存在一样。

无序介质本质上是一组随机排列的粒子如粉末、沙子、糖甚至是云。当光线进入这组微小的障碍物时,它会以一种难以置信的复杂方式散射。但从理论上讲,如果能弄清楚这种散射模式就有可能操纵光波让它们直接穿过而不发生散射。

现在,研究人员已经成功地做到了这点,他们使用氧化锌作为散射介质,然后将光源放在一边、探测器放在另一边。

第一步要做的是了解你的敌人,于是研究团队用了一种非常特殊的光信号穿过粉末,然后测量它们如何击中探测器。通过一些复杂的数学方法可以确定散射的模式--并且可以设计出一种不会改变波的形状的特定光波。唯一的变化是稍微变暗了一点。

这项研究的论文联合首席作者Stefan Rotter表示:“正如我们能够展示的那样,有一个非常特殊的类的光波--即所谓scattering-invariant光模式,它能在探测器上产生完全相同的波型,无论光波只是通过空气传播还是必须穿透复杂的氧化锌层。”

通过不受阻碍的屏障照射光线的想法非常有趣,该研究团队想要更进一步。他们通过以正确的方式组合出几个散射不变的光模式进而产生了一个用图像编码的光波并通过氧化锌将其投射到探测器上。

“通过这种方式,至少在一定的范围内,你可以自由地选择你想要通过物体发送的图像而不受干扰,”该研究的一位论文作者Jeroen Bosch说道。

这显然是一项令人着迷的工作,它将建立在该团队之前通过操纵光波来伪装像“隐形斗篷”一样的物体的实验基础上。这项新突破有望某天可能会带来新的成像技术,它或将可以像X射线一样安全地穿透人体。然而在实现这一技术之前还有很多工作要做。

法国轨道交通可靠性研究论文选题

1.开题报告的第一页就是封面,封面就是对你自己和老师以及论文题目等信息做一个说明。2.第一部分内容就是选题的目的和意义,说明这个论文研究工作会带来的实际价值。3国内外研究现状,就是对柜内外的研究做一个仔细的分析和总结。4.选题研究的内容,说明论文研究的框架组成部分。5.写作研究的方法和时间计划安排,研究方法就是你做研究的时候需要用到的研究工具和技术的阐述。6.参考文献就是你在论文的撰写过程中引用的或者参考他人的知识点或者原理的阐述。7.教师指导意见,就是指导你的论文的老师的意见签署。8.开题审查小组意见就是在你进行开题答辩的时候小组成员给予你的建议和意见。

城市轨道交通的论文

城市轨道交通是城市公共交通的骨干,具有节能、省地、运量大、全天候、无污染(或少污染)又安全等特点,属绿色环保交通体系,特别适应于大中城市。下面我们来讨论一下城市轨道交通的论文吧。

一、TD-LTE主要技术优势

目前,国内已建成的轨道交通信号系统车地通信和PIS车地通信采用标准的无线局域网传输技术。专用无线调度广泛应用窄带无线数字集群技术,TETRA就是典型的代表。TD-LTE技术相比WLAN+TETRA网络具有众多的优势,更适合轨道交通多业务宽带无线通信承载。

抗干扰能力强

从工作频段的情况来看,国内主流的WLAN采用的是、共计80MHz的带宽,每个信道的带宽为22MHz,完全不重叠的信号仅有3个。这意味着在隧道区间内AP有效的覆盖距离仅有200m左右,故地铁采用WLAN+TETRA技术实现CBTC、专用无线调度及PIS系统显然会对安全运营带来不确定的因素。相比WLAN网络,LTE有着完善的抗干扰技术,采用正交频分复用技术即OFDM具有完善的'编码、重传和IRC(干扰抑制合并)机制,拥有毫秒级的调度机制,可根据干扰情况动态调度资源。

传输速率较高

较高的传输速率,可满足高速移动及大容量网络传输的要求。采用频段,可支持11Mbit/s的共享接入速率;工作在频段,其速率高达54Mbit/s。但是,在快速移动下,系统需要很大的控制信息开销来克服由于移动带来的频移、衰落等,不能很好地满足移动的要求。TETRA满足语音通信和的无线数据传输需求,但是面对着越来越多的视频信息等传输需求,窄带无线集群技术已经不能胜任。LTE在20MHz频谱带宽上能够提供下行100Mbit/s、上行50Mbit/s的峰值速率,能够为350km/h高速移动用户提供接入服务,并同步支持语音、视频、数据传输,完全可与PIS、信号车地无线共享网络。

网络结构简单

LTE以分组域业务为主要目标,取消了电路交换域,趋近于典型的IP宽带网结构,意味着网络架构与目前WLAN类似。LTE结构简单,维护方便,系统时延较小。同时,无线融合技术方案取代了各系统分设的大量的区间设备,能够净化安装空间。

保证

WLAN二元安全架构对应3个物理实体,AP无独立身份,易受攻ji,无法保证安全。LTE拥有9级QoS算法,带宽基于业务需求按需分配,在与PIS、无线列调等系统共用网络时,可以最大程度地保证CBTC带宽需求。

技术日渐成熟,商业化程度也较高

LTE网络已经在全球应用,中国移动率先在中国部署LTE网络提供公众服务,国内主要LTE供货商均可提供成熟可靠的产品。采用LTE技术,尤其是采用具有完全知识产权的TD-LTE无线宽带集群技术,将是我国城市轨道交通车地无线系统融合的最重要选择。

二、轨道交通各系统的功能需求

专用无线调度系统

采用专用无线调度,实现了轨道交通固定用户与移动用户之间的语音、数据信息、视频信息及附属网管信息的传输和交换。专用无线调度分为了行车调度、维修调度、环控调度及车辆段/停车场无线调度4个部分。按照一个TD-LTE小区并发10路无线通话考虑,包括选呼、组呼、全叫和紧急呼叫的任何一种呼叫形式,每路呼叫带宽需要32Kbit/s,10路并发需要320Kbit/s,同时在一个小区内要有1~2路的视频通话,传输的带宽按照384Kbit/s考虑。

乘客信息系统

PIS车地无线通信主要指控制中心向运营车辆下发一些视频和各类文本信息等,为下行业务。在列车正常运营情况下,每列车可接收1路高清晰数字视频信息,视频编码采用MPEG-2、MPEG-4或格式,每路占用带宽一般为4~6Mbit/s。

列车视频监视

列车视频监视业务主要指运营车辆将列车内实时视频监控图像传输至控制中心,为上行业务。在列车正常运营情况下,轨道交通内的运营人员以及地铁公安分局人员,利用视频监视等设备接收、观看列车内实时视频监控图像,图像的压缩格式宜采用MPEG-4或等。一般情况下,每节车厢内设置2台摄像机,首尾司机室各设置1台摄像机。6辆编组列车共14路视监视频信息,控制中心根据需要可实时随意调看其中2~4路图像,每列车通过无线系统将图像信息上传至车站,再经主干网络传到控制中心。按每路视频图像占带宽考虑,视频业务需要6Mbit/s以上带宽。

信号系统车地通信

信号系统的车地通信可以保证列车和乘客安全,是实现列车运行高效、指挥管理有序的手段。信号系统具有安全性高、通过能力强、较好的抗干扰能力、可靠性高、自动化程度高、限界条件苛刻等特点,其车地通信主要为CBTC业务,系统需要占用100Kbit/s的上下行带宽。

车辆检测信息及列车FAS信息

能为传送列车车辆内部温度、烟度、有害气体浓度和列车轴温、实时车速等环境信息提供通道,以便中心对列车进行监控;信息传输需要带宽不超过200Kbit/s。提供列车FAS火灾告警信息的传输通道,满足中心对列车火灾信息的监控。信息传输需要带宽不超过100Kbit/s。各业务实时性及带宽需求。在列车高速运行的情况下,车地无线系统要保证无线网络的带宽(下行大于8Mbit/s、上行带宽大于7Mbit/s),以满足运营指挥的需要。基于目前主流LTE设备技术情况,需申请10MHz以上专用频段(含保护频段),才能满足上述车地无线业务的需要。此外,通过LTE系统提供的宽带无线环境,在带宽允许的情况下,还可支持未来各类无线业务的扩展。例如,实现各类专用移动终端的无线通信业务,包括维修系统的无线维修终端、综合监控系统的无线监控终端等,保证各类业务的终端灵活化,满足现场维修、监控、指挥等业务需求。

三、TD-LTE解决方案

基于TD-LTE技术的城市轨道交通无线通信系统融合解决方案应用网络架构。整个应用系统依场所设置分为3个子系统,分别为控制中心子系统、车站/车辆段及停车场子系统、车载子系统。下面分别简要论述3个子系统组成及功能。

控制中心子系统

控制中心子系统是该融合解决方案专用系统的核心,主要包括LTE核心网设备、无线调度业务服务器DSS,信号系统ATS服务器、CCTV和PIS等业务应用服务器、网络管理系统(含网管终端及打印机等)及TD-LTE基站设备等。TD-LTE基站设备用以实现控制中心的室内覆盖,TD-LTE核心网EPC向上和各类业务控制平台CCTV中心、PIS系统、信号系统等连接,无线调度业务服务器DSS可提供专业的无线集群调度业务。同时,在控制中心调度大厅,设置行车调度、防灾调度、维修调度台及录音设备等。

车站/车辆段及停车场子系统

车站内主要安装TD-LTE基站设备,包括BBU、RRU。基站设备可以实现本车站的站内覆盖,也可以通过漏泄同轴电缆对线路区间进行覆盖,并可以通过RRU实现拉远覆盖。在沿线各车站值班员处设置车站固定电台,给移动作业人员配备便携台。在车辆段及停车场通信机房内设BBU,RRU设备和天线均安装于机房楼顶的天线杆塔上,对于封闭空间等弱场区需增加RRU进行覆盖。在车辆段/停车场信号楼内设置行车调度台,在检修库内的运转排班室内设置运转调度台。另外,给车辆段/停车场的移动作业人员配备便携台。

车载子系统

车载子系统布置在每列车前后的司机车室内,为司机提供专业的无线集群调度通信。集群车载台采用与TAU共用车载天线的方式。TD-LTE车载终端(TAU)部署在列车编组的前后司机车厢内,其车载天线安装在司机车厢外侧,并尽量保证与泄漏保持视距,TAU通过以太网接口与车内交换机连接,实现TAU与车内数据业务的信息交互;车内采用以太网环形组网,各车厢通过车载交换机互联。车厢内的闭路电视监控信号通过TAU、经LTE上行回传到控制中心,PIS的流媒体信息则通过TAU、经LTE下行传送到车内的PIS车载服务器上。单列编组前后司机车厢各部署一套TAU,两套TAU以主备方式工作。

四、结语

城市轨道交通无线通信系统承载着语音、视频、数据等多种业务,随着线网和用户需求的增多,专网通信从窄带、独立设置的无线通信向着各业务融合一体的宽带无线通信网发展成为技术发展的趋势;TD-LTE技术方案作为城市轨道交通车地无线综合平台是可行的,将成为发展的主流方案。同时,为了保证轨道交通无线通信的安全性和可靠性,拟采用TD-LTE无线通信承载网的轨道交通建设城市需尽早进行专用无线频段的申请,以便为今后业务的实施及拓展创造有利条件。

  • 索引序列
  • 铅锌矿可选性研究论文
  • 铅锌矿体毕业论文
  • 碱性锌锰电池论文有关研究
  • 氧化锌相关的论文研究
  • 法国轨道交通可靠性研究论文选题
  • 返回顶部