最简单、最常用的就是失重法。即取一定量的土样准确称重M,然后将土样烘干至恒重[恒重的判定法则:前后两次烘干后的重量相等,即保持恒定不变]时,减少的重量就是水分的重量W,含水量=W/M×100%。土壤水分的测定方法 (1) 烘干法(失重法) 烘干法是测量土壤水分的是最普遍的方法,也是标准方法,它用来测定土壤质量含水量。通常将从野外取来的原状土柱中称出已知重量的潮湿土壤样品,放在温度105℃的烘箱中烘干后再称重。加热而失去的水分代表潮湿样品中的土壤水分。 (2) 电阻法 电阻法是利用某些多孔性物质如石膏、尼龙、玻璃纤维等的电阻和它们的含水量有关系这一事实而采用的一种方法。当这些嵌有电极的块状组件放置在潮湿的土壤中时,它们吸收土壤水分一直达到平衡状态。块状组件的电阻由它们的含水量决定的,并依次由附近土壤水分张力或的吸力所决定。电阻读数和土壤水分百分数之间的关系可以用标定方法(calibration)来确定。这些块状组件在一段时间内用来测定田间选定位置的含水量。在1~15大气压吸力范围内它们给出相当准确的水分读数。 (3) 中子散射(neutron scattering)中子散射法是测定野外土壤水分的独特方法。中子水分计的有效性是基于这一原则,即氢在急剧减低快中子的速度并把它们散射开的能力方面是比较独特的。在图6-3中说明了中子水分计的原理。中子水分计虽然昂贵,但是它具有多方面的优点,并且能相当准确地测定矿质土壤中作为化合氢的主要来源的水的含量。这一方法对于有机质土壤有明显的限制,因为有机质中许多化合氢是以水以外的其他形式存在。此外它不适宜测定表层0-15厘米的土壤水含量。 (4) TDR法 TDR法是20世纪80年代初发展起来的一种测定方法它首先发现可用于土壤容积含水量的测定,继而又发现其可用于土壤含盐量的测定。TDR英文全称是Time-Domain-Reflectometry,简写为TDR,中文译为时域反射仪。TDR法在国外已较普遍使用,在国内也有些研究机构开始引进和开发TDR。 TDR系统类似一个短波雷达系统,可以直接、快速、方便、实地监测土壤水盐状况,与其它测定方法相比,TDR具有较强的独立性,测定结果几乎与土壤类型、密度、温度等无关。将TDR技术应用于结冰条件下土壤水分状况的测定,可得到满意的结果,而其它测定方法则是比较困难的。TDR另一个特点是可同时监测土壤水盐含量,在同一地点同时测定,测定结果具有一致性。而二者测定是完全独立的,互不影响。
土中的水分结晶水、结合水及自由水。测量土的含水率试验方法有烘干法、酒精燃烧法、和比重法烘干法是测定含水的标准方法,适用黏质土、粉土、砂类土、砂砾土、有机土和冻土类。酒精燃烧法适用快速简易测定细粒土(含有机质的除外)的含水率。比重法是通过测定湿土体积,估计土粒比重,间接计算土的含水率,由于试验时没考虑温度影响所以结果准确度差,适用于砂类土。
1. 陆锦文,龚元石等. 1989. 黄淮海平原盐渍化土壤在有限水源下小麦节水灌溉方案的研究. 见: 国际盐渍土动态学术讨论会论文集, . 中国, 南京. . Gong Y. S., Lu J. W., van der Ploeg. 1990. An optimum irrigation scheme for wheat grown on the salt-affected soils of the Huang-Huai-Hai River Plain in China. Trans of 14th ICSS, Vol VI, . 陆锦文,龚元石等. 1990. 土壤水调节和利用潜力的研究. 见: 七o五国家科技攻关第57页, 农业节水的研究, . 陆锦文,张和平,吴海洋,龚元石等. 1991. 土壤水分动态预报. 见: 石元春等著, 区域水盐运动监测预报,河北科学技术出版社. 61~. 龚元石,陆锦文,等. 1993. 华北平原主要农作物灌溉需水量的估算. 北京农业大学学报, 19(增刊),. 张福锁,张爱民,龚元石等. 1992. 《德汉农业词典》. 北京农业大学出版社.7. Gong Y. S. and Li B. G., 1993. Estimation and Evaluation of Irrigation Water Requirements in North China Plain. International Conference on Integrated Resource Management for Sustainable Agriculture. In Section I, Beijing, PR . 龚元石,李保国. 1993. 华北平原农田灌溉需水量的估算及其评价,持续农业的资源综合管理国际学术会议文集, 第一部分, 北京, 中国.9. Gong Yuanshi. 1993. 《Abschaetzung des Bewaesserungsbarfs fuer landwirtschaftliche. Nutzflaechen in der Huabei-Ebene der VR China》. ISSN 0942-0754,Heft . 由振国,张福锁,龚元石等. 1994. 《汉德农业词汇》. 科学出版社.11. 龚元石,李保国,陆锦文. 1994. 土壤水分胁迫条件下蒸散量的计算方法. 见: 李韵珠等著, 土壤水和养分的有效利用, 北京农业大学出版社, . 龚元石,Huwe B., Allison, B. 1994. 华北平原作物灌溉需水量与土壤最大有效水量关系的研究. 同上, . 石元春,刘昌明,龚元石主编. 1995. 节水农业应用基础研究进展. 中国农业出版社.14. 张福锁,龚元石,李晓林主编. 1995. 土壤与植物营养研究新动态(第三卷). 中国农业出版社.15. 龚元石. 1995. 冬小麦和夏玉米农田土壤分层水分平衡模型. 北京农业大学学报. 21(1),. 龚元石. 1995. Penman-Monteith公式与FAO-PPP-17Penman修正式计算参考作物蒸散量的比较. 北京农业大学学报. 21(1),. 龚元石,李保国. 1995. 应用农田水量平衡模型估算土壤渗漏量. 水科学进展. 6(1),. 龚元石,廖超子. 1995. 测定土壤含水量的新技术-时域反射仪. 见: 石元春,刘昌明,龚元石主编, 节水农业应用基础研究进展, 中国农业出版社. . 龚元石,李保国. 1995. 华北平原节水农业应用基础研究战略. 见: 同上. . 龚元石,李子忠. 1995. 土壤水分管理原理与农田水分利用率. 同上. . 龚元石. 1995. 土壤-植物-大气连续体水分传输研究现状与展望. 见: 张福锁,龚元石,李晓林主编, 土壤与植物营养研究新动态(第三卷),中国农业出版社. . 龚元石. 1995.联邦德国农业与环境特殊研究项目183研究思路和进展. 同上, . 龚元石,李保国.1996. 蒸散量变化的随机模型. 中国农业大学学报,1(1),. 龚元石,李保国. 1996. 农田水量平衡模型对作物根系吸水函数及蒸散公式的敏感性. 水土保持研究, 3(3),. 龚元石,陆锦文. 1996. 应用土壤分层水分平衡模型研究冬小麦夏玉米农田水分转化特征. 第六次全国水文会议文集, 科学出版社, . 龚元石,李春友,李子忠. 1997. 农田土壤水分三种测定方法的比较. 中国农业大学学报, 2(3),53~. 龚元石,李子忠,廖超子,李春友. 1997. 应用时域反射仪测定农田土壤水分. 水科学进展, 8(4),. 龚元石. 1997. 时域反射仪测定土壤水分研究进展. 灌溉排水, 16(1),40~. 龚元石,李子忠,李春友. 1997. 应用时域反射仪测定土壤水分来估算农田蒸散量. 应用气象学报. 9(1), . 龚元石,李子忠. 1997. TDR探针两种埋设方式下土壤水分的测定及其比较. 农业工程学报, 13(2): . 龚元石. 1997. 提高灌溉水利用率和农田水分利用效率的途径. 见: 国家科学技术委员会编, 中国农业科学技术政策. 中国农业出版社,. 李春友,龚元石,陆光明. 1997. 土壤水分运动与作物生长过程耦合机理模型初探.中国农业大学学报, 2(增刊):. 李子忠,龚元石. 1997. 冬小麦农田土壤水分循环规律及节水调控机理.中国农业大学学报, 2(增刊):. 罗文邃,龚元石. 1997. 土壤结构改良剂的研究进展及其应用. 中国农业大学学报, 2(增刊):. 龚元石,李子忠,李春友. 1998. 应用时域反射仪测定作物需水量和作物系数,中国农业大学学报, 3(5):. 龚元石,李子忠,杨晓路. 1998.时域反射法测定粮食含水量的标定研究. 见: 李玉忠主编,第七届全国湿度与水分学术交流会论文集. 内蒙古大学出版社, . 龚元石,廖超子,李保国. 1998. 农田土壤水分空间变异及分形特征研究. 土壤学报, 35(1):. 龚元石,曹巧红,黄满湘. 1999. 土壤容重和温度对时域反射仪测定土壤水分的影响. 土壤学报, 36(2):. 龚元石,曹巧红. 1999. 土壤因子对时域反射仪测定含水量的影响. 中国土壤学会第五次全国会员代表大会论文集. .南京, . 龚元石. 2000. 中国水资源及其可持续利用. 见: 张凤荣等编著, 中国土地资源及其可持续利用, 第七章,. 李保国,龚元石,左强等著. 2000. 农田土壤水的动态模型及应用,科学出版社.42. 侯振安,李品芳,龚元石.2000.盐渍条件下苜蓿和羊草生长与营养吸收的比较研究。草业学报,9(4):68-7343. 李子忠,龚元石.2000.农田土壤水分和电导率空间变异分析与确定合理取样数目的方法比较.中国农业大学学报,5(5):. Gong Yuanshi. 2000. Improvement and utilization of saline soil in China. US/China Conference on Cooperation in Agriculture. University of California, Riverside, Sept. 25-26,. 李品芳,侯振安,龚元石.胁迫下苜蓿和羊草苗期生长与养分吸收特性研究.植物营养与肥料学报.7(2):. 李子忠,龚元石.2001.不同采样尺度的田间土壤水分和混合电导率空间变异性及其套合结构模型. 植物营养与肥料学报. 7(3):. 曹巧红,龚元石.2001.土壤电导率对时域反射仪测定土壤水分的影响.土壤学报.38(4):. 齐述华,李子忠,龚元石.2002.应用水量平衡原理计算三种蔬菜的需水量和作物系数. 中国农业大学学报,7(1):. Gong Yuanshi and Cao Qiaohong. A Laboratory experiment of time domain reflectometry for soil water measurement including effects of bulk density and temperature. 17th WCSS commission I-04, . 曹巧红,龚元石.2003.降水影响冬小麦灌溉农田水分渗漏和氮淋失模拟分析. 中国农业大学学报. 8(1): . 曹巧红,龚元石.2003.应用Hydrus-1D模型模拟分析冬小麦农田水分氮素运移特征. 植物营养与肥料学报. 9(2):. 马军花,任理,龚元石,Karl Stahr。冬小麦生长条件下土壤氮素运移动态的数值模拟。水利学报,2004,3:103-110。54. 于红梅,龚元石,李子忠,张小兰。不同水氮管理对苋菜和菠菜的产量及硝态氮含量的影响。植物营养与肥料学报。2004,10(3):302-305。55. 白玉华,陈阜,龚元石。红河国家农业科技园区发展模式与运行机制的探讨。中国农业大学学报。2005,10(1),72-75。56. 赵爱琴,李子忠,龚元石。 生物降解地膜对玉米生长的影响及其田间降解状况。中国农业大学学报。2005,10(2),74-78。57. Yuanshi Gong, Qiaohong Cao and Zongjia Sun. 2003. The effects of bulk density, clay content and temperature on soil water content measurement using time-domain reflectometry. Hydrological Processes. 17, . Ulrich Dieter Mack, Karl-Heinz Feger, Yuanshi Gong, and Karl . Soil water balance and nitrate leaching in winter wheat – summer maize double-cropping systems with different irrigation and N fertilization in the North China Plain. Journal of Plant Nutrition and Soil , . Tusheng Ren, Zhaoqiang Ju, Yuanshi Gong, and Robert Horton. 2005. Comparing Heat-Pulse and Time Domain Reflectometry Soil Water Contents from Thermo- Time Domain Reflectometry Probes. Vadose Zone Journal. 4:. Hong-mei Yu, Zi-zhong Li, Yuan-shi Gong, Ulrich Mack, Karl-Heinz Feger, and Karl Stahr. 2006. Water drainage and nitrate leaching under traditional and improved management of vegetable cropping systems in the North China Plain. Journal of Plant Nutrition and Soil , . Jianying Gao, Tusheng Ren, and Yuanshi Gong. 2006. Correcting Wall Flow Effect Improves the Heat Pulse Technique for Determining Water Flux in Saturated Sci. Soc. Am. J. 70:. Sen Lu, Tusheng Ren, Yuanshi Gong, and Robert Horton. 2007. An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature. Soil Sci. Soc. Am. J. 71:. 于红梅, 李子忠, 龚元石. 2007. 传统和优化水氮管理对蔬菜地土壤氮素损失与利用效率的影响. 农业工程学报.23(2):. Lu Sen, Tusheng Ren, Yuanshi Gong, and Robert Horton. 2008. Evaluation of three models that describe soil water retention curves from saturation to oven dryness. Soil Sci. Soc. Am. J. 72(6):. Chen H., Bai ., Wang ., Chen F., Gao ., , , Li ., Gong . 2008. Traffic and tillage effects in wheat production on the Loess Plateau of China:I. Crop yield and SOM. Australian Journal of Soil Research. 46:. Bai ., Chen F., Li ., Chen H., He J., Wang ., , Gong . 2008. Traffic and tillage effects in wheat production on the Loess Plateau of China: II. Soil physical properties. Australian Journal of Soil Research. 46:. S. Lu, . Ren, . Gong, R. Horton. 2008. Evaluation of Three Models that Describe Soil Water Retention Curves from Saturation to Oven Dryness. Soil Sci. Soc. Am. J. 72(6):. Bai ., He J., Li ., Wang ., Chen H., Kuhn ., Hikel H., Chen F. Gong . 2009. Soil Structure and Crop Performance after 10 Years of Controlled Traffic and Traditonal Tillage Cropping in the Dryland Loess Plateau in China. Soil Sci. 174(2):. Xinrui Lu,Tusheng Ren, Yuanshi Gong. 2009. Experimental Investigation of Thermal Dispersion in Saturated Soils with One Dimensional Water Flow. Soil Sci. Soc. Am. J. 73(6):. . Chen, . Hou, . . . Fan, . Kuzyakov. 2009. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil & Tillage Research. 106:. H. Wang, . Li., . Gong, . Wang and D. Huang. 2009. Single Irrigation Can Achieve Relatively High Production and Water Use Efficiency of Siberian Wildrye Grass in the Semiarid Agropastoral Ecotone of North China. Agronomy Journal. 101(4):. 郑茹梅, 李子忠, 龚元石. 2009. 运用时域传输技术测定不同类型土壤的含水率. 农业工程学报. 25(8):. H. Wang, . Li, . Gong, . Zhang. 2010. Forage mass and water use response to irrigation time in North China. Agronomy Journal. 102:. Rumei Zheng, Zizhong Li, Yuanshi Gong. 2011. A Coated Helical Transmission Line Time Domain Transmission Sensor for Measuring Water Content in Saline Soils. Soil Sci. Soc. Am. J. 75(2) 1.国家重点科技攻关项目75-57-03-03农业节水的研究获水利部科技教育司荣誉证书()。2.中国农业大学资源与环境学院优秀教师(1995,1996)3.中国农业大学优秀研究生导师(1996)4.第三届中国农业大学优秀科技论文二等奖()。5.北京土壤学会青年科技论文一等奖()。6.灌溉农田土壤水分高效利用的调控机理,农业部科技进步甲类二等奖()。7.中国农业大学新世纪人才工程(2000)8.教育部优秀青年教师资助计划(2000)。9.教育部跨世纪人才培养计划(2003)。10. 退化草地植被恢复关键技术研究与应用。中华农业科技奖三等奖(第3完成人)(2009)
土壤水分测定法1 适用范围 本标准用于测定除石膏性土壤和有机土(含有机质20%以上的土壤)以外的各类土壤的水分含量。2 测定原理 土壤样品在105±2℃烘至恒重时的失重,即为土壤样品所含水分的质量。 3 仪器、设备 土钻; 土壤筛:孔径1mm; 铝盒:小型的直径约40mm,高约20mm; 大型的直径约55mm,高约28mm; 分析天平:感量为和; 小型电热恒温烘箱; 干燥器:内盛变色硅胶或无水氯化钙。4 试样的选取和制备 风干土样:选取有代表性的风干土壤样品,压碎,通过1mm筛,混合均匀后备用。 新鲜土样:在田间用土钻取有代表性的新鲜土样,刮去土钻中的上部浮土,将土钻中部所需深度处的土壤约20g,捏碎后迅速装入已知准确质量的大型铝盒内,盖紧,装入木箱或其他容器,带回室内,将铝盒外表擦拭干净,立即称重,尽早测定水分。5 测定步骤 风干土样水分的测定 取小型铝盒在105℃恒温箱中烘烤约2h,移入干燥器内冷却至室温,称重,准确至。用角勺将风干土样拌匀,舀取约5g,均匀地平铺在铝盒中,盖好,称重,准确至。将铝盒盖揭开,放在盒底下,置于已预热至105±2℃的烘箱中烘烤6h。取出,盖好,移入干燥器内冷却至室温(约需20min),立即称重。风干土样水分的测定应做两份平行测定。 新鲜土样水分的测定 将盛有新鲜土样的大型铝盒在分析天平上称重,准确至。揭开盒盖,放在盒底下,置于已预热至105±2℃的烘烤箱中烘烤12h。取出,盖好,在干燥器中冷却至室温(约需30min),立即称重。新鲜土样水分的测定应做三份平行测定。 注:烘烤规定时间后一次称重,即达“恒重”。6 测定结果的计算 计算公式水分(分析基),%=〔(m1-m2)/(m1-m0)〕×100………………………………(1)水分(干基),%=〔(m1-m2)/(m2-m0)〕×100………………………………(2)式中:m0—— 烘干空铝盒质量,g;m1—— 烘干前铝盒及土样质量,g;m2—— 烘干后铝盒及土样质量,g。 平行测定的结果用算术平均值表示,保留小数后一位。 平行测定结果的相差,水分小于5%的风干土样不得超过%,水分为5~25%的潮湿土样不得超过%,水分大于15%的大粒(粒径约10mm)粘重潮湿土样不得超过%(相当于相对相差不大于5%)。++++++++++++++++++++++++++++++++++++++++++++++++++++++土壤水分测定方法 来源: 类别:技术文章 更新时间:2007-3-14 15:40:56 阅读182次 1 适用范围 本标准用于测定除石膏性土壤和有机土(含有机质20%以上的土壤)以外的各类土壤的水分含量。2 测定原理 土壤样品在105±2℃烘至恒重时的失重,即为土壤样品所含水分的质量。 3 仪器、设备 土钻; 土壤筛:孔径1mm; 铝盒:小型的直径约40mm,高约20mm; 大型的直径约55mm,高约28mm; 分析天平:感量为和; 小型电热恒温烘箱; 干燥器:内盛变色硅胶或无水氯化钙。4 试样的选取和制备 风干土样:选取有代表性的风干土壤样品,压碎,通过1mm筛,混合均匀后备用。 新鲜土样:在田间用土钻取有代表性的新鲜土样,刮去土钻中的上部浮土,将土钻中部所需深度处的土壤约20g,捏碎后迅速装入已知准确质量的大型铝盒内,盖紧,装入木箱或其他容器,带回室内,将铝盒外表擦拭干净,立即称重,尽早测定水分。5 测定步骤 风干土样水分的测定 取小型铝盒在105℃恒温箱中烘烤约2h,移入干燥器内冷却至室温,称重,准确至。用角勺将风干土样拌匀,舀取约5g,均匀地平铺在铝盒中,盖好,称重,准确至。将铝盒盖揭开,放在盒底下,置于已预热至105±2℃的烘箱中烘烤6h。取出,盖好,移入干燥器内冷却至室温(约需20min),立即称重。风干土样水分的测定应做两份平行测定。 新鲜土样水分的测定 将盛有新鲜土样的大型铝盒在分析天平上称重,准确至。揭开盒盖,放在盒底下,置于已预热至105±2℃的烘烤箱中烘烤12h。取出,盖好,在干燥器中冷却至室温(约需30min),立即称重。新鲜土样水分的测定应做三份平行测定。 注:烘烤规定时间后一次称重,即达“恒重”。6 测定结果的计算 计算公式水分(分析基),%=〔(m1-m2)/(m1-m0)〕×100………………………………(1)水分(干基),%=〔(m1-m2)/(m2-m0)〕×100………………………………(2)式中:m0—— 烘干空铝盒质量,g;m1—— 烘干前铝盒及土样质量,g;m2—— 烘干后铝盒及土样质量,g。 平行测定的结果用算术平均值表示,保留小数后一位。 平行测定结果的相差,水分小于5%的风干土样不得超过%,水分为5~25%的潮湿土样不得超过%,水分大于15%的大粒(粒径约10mm)粘重潮湿土样不得超过%(相当于相对相差不大于5%)。
meiyou
前言:水文地质资源勘察的工作目的就是为了利用专业科学技术寻找追资源,从而达到满足人们生活、工作需求的目的。而在实际的水文地质资源勘察工作中,经常会需要很多问题,因此就需要工作人员根据自身专业知识去解决,并为后续开展的工作打下坚实的基础。水文地质资源勘察工作其实是属于工程地质探查类的技术工作,如果完善勘察工作的技术操作,能够有效的解决工作中存在的问题,并在一定程度上保障了水文地质勘察的工作质量。所以说,在实际的工作过程中,应当将技术原理与实际操作相结合,才能从根本上确保水文地质资源勘察的顺利进行。 一、水文地质资源勘察的工作内容与类型 水文地质资源勘察的工作内容主要体现在:地球的物理探测、水文地质的测绘、水文地质实验、水文地质资源钻探、地下水资源的监测。而其中的物理检测就是通过探测地表物质,并且根据得到的数据寻找钻空位置以及实验地点[1]。最常使用的方法就是浅层地震法与自然电场法。希望通过该实验获得有关地下水资源质量的相关数据,并且为获取实验结论提供精确的数据参考。在进行水文地质资源的钻探是经常采用的钻孔有:水文地质资源勘察孔、地质资源检查孔、探查与采收相结合的孔以及地热孔。而对于地下水资源的监测则是为了有利于后续的水文地质资源的实验计算。因此为了方便后续勘察工作能够顺利进行,需要在进行水文地质资源的实验与钻探时,提前预留出很多的钻孔。 二、水文地质资源的勘察在工程地质勘察中的重要性 水文地质资源的勘察工作不仅是寻找水资源的重要办法,同时与工程地质勘察工作息息相关。所以说,在水文地质的探测工作中出现的问题对于工程地质探查工作具有重要的参考依据。在实际的工程地质勘察工作中,并且工作范围较广,相关的地质研究工作难度较大,所以需要将专业知识与实际操作进行结合,然后解决工作中出现的问题。所以说水文地质资源勘察工作中出现的问题在工程地质勘察的工作中可以起到非常重要的作用。具体体现在: 第一,水文地质资源勘察的目的就是为了能够找到地下水,解决城市水资源困难等问题,而岩体特性能够为寻找地下水资源提供精确的依据,确保地下水资源位置的正确[2]。而工程地质勘察的工作内容则是对岩上物体的成分以及组成结构等进行综合性的分析。所以说水文资源的勘察能够在一定程度上影响到工程地质勘察工作。 第二,地下水资源的分布区域能够直接的影响工程建筑物的使用寿命。因此说明了对于水文地质资源的勘察工作对于工程地质勘察工作来说是非常重要的。 三、水文地质资源勘察中需要明白的相关问题 1、地下水资源的动态类型 地下水资源可以根据存储介质的性质不同进行区分: 第一,岩类水。指的是具有较大流动范围的,流过岩石中的某一缝隙的地下水。其中缝隙中的岩石特性能够影响到地下水的水质。 第二,因火山活动造成的地下水。这类地下水中含有丰富的碳酸盐。 第三,流过基性岩石缝隙的地下水。因为基性岩石形成的年代很早,所以流过的地下水的水质也较好,其中含有丰富的微量物质。想要探测出不同类型的地下水,需要通过水资源周边的物质进行详细的分析。 2、在进行预测工作时引起的不良地质反映 根据相关数据表明,地质作用力能够影响到地下水的分布。所以在进行实际的水文地质资源勘查工作时,应当对地质结构进行科学、详细的分析,从而获得更为精确的数据。这样一方面可以作为水资源勘察的依据,另一方面还可以在一定程度上减少安全事故的发生,避免出现不必要的损失。另外,不良的地质能够引起海水的含盐量过高、地面坍塌等问题,影响人类的正常生活。 四、水文地质资源勘察工作的必要性 1、避免因地下水升降导致的地面工程受到危害 如果出现土质稀松、土壤呈现沼泽化等问题,都可能会危害到地面工程。尽管不同区域的地下水位变化不同,但是都会对人们的正常生活造成一定的影响[3]。例如,在人口分布较为密集的地区,地下水位发生变化就会对整个地区的居民的生命安全造成影响。所以说,在进行水文地质资源勘察工作之前,应当做好探测地区周边的地下水位升降的准备,避免危害到地上工程以及人们的生命安全。 2、避免因地下水的动水压导致地面工程受到危害 因为地下中存在着各种作用力,这些作用力相互制约,所以在自然的状态下地下水的动水压的作用力是可以忽略的。但是如果受到了人为因素的干烧,就会突出地下水的动水压力,从而导致地面工程受到威胁。这是因为受到人为操作的影响,打破了原先地下水之间的压力平衡,使得地下水周边的土壤结构发生了变化。所以在进行水文地质资源勘察时,还应当重视相关的保护及预防工作。 3、避免因地下水位升降导致地面物理力学的性质受到影响 地面物理的力学性质能够直接的影响地下水的分布与形成,所以在进行水文地质资源的勘察工作时,应当详细的分析地面物理力学性质。其中主要的工作内容包括:对岩上物质进行特性分析、确定物理力学整体性质与工程质量之间的关系。因此也可以说,地下水位能够影响地面物理的力学性质。 结论:综上所述,我国进入改革开放后,在经济建设进程不断加快的同时,科学技术也飞速的发展,所以在一定程度上促进了社会各个行业的发展与进步。所以为了确保水文地质资源勘察的工程质量,需要对项目中各个环节的技术数据进行综合性的分析,从而避免勘察工作中出现安全事故,影响水文地质资源的勘察结果。望采纳谢谢
谈净土洁食问题“万物土中生,食以土为本”, 土壤是人类生存的基本资源,是农业发展的重要基础。据统计,2000年世界粮食总产量约为22亿吨,其中我国粮食产量约5亿吨。这些粮食均是在全球17亿公顷(我国占 1.2亿公顷)耕种土壤上生产的。正是因为这些土壤能提供作物生长的养分和水分,也就是具有土壤“肥力”,才能使粮食获得稳定的产量,才能维系人类的生存和繁衍。然而,事物总有两面性,一方面,土壤中如果没有充分的养分和水分,没有“肥力”,就不可能使作物正常生长,更谈不上获得稳定的产量,而另一方面,土壤中的养分元素含量,对作物生长讲,经常是供需不平衡的,必须注意调节,特别是人们有意无意地向土壤中加入了不利于作物生长的各种“有害”元素,使土壤及水体发生污染,就会导致农产品品质恶化,影响人体健康。因此,土壤质量的好坏,直接关系到人类生存质量的好坏。当前我国农产品质量与安全问题,越来越引起社会广泛关注。引发农产品质量不良的因素,包括自然与人为两个方面,其中生态环境,即水、土、气、生等方面的污染,是导致农产品品质不良的重要根源。以往人们关注的是“蓝天、碧水”,认为只要天蓝,水碧,就能保证农业环境及其产品质量安全。岂不知,除了“蓝天、碧水”外,更重要的是保证土壤质量的安全,只有保证了“净土”、才能保证“洁食”,才能保证人类生命的健康与安全,最终才能保障整个社会的稳定与发展。相反,如果没有“净土”,土壤中的有害气体将影响大气,土壤中的有毒物质也会影响到水体,致使天不再蓝,水不再碧,即使天蓝、水碧,也会有毒害物质飘在空中,溶在水中,或进入土中。因此,对农产品质量安全而言,“净土、洁食”比“蓝天、碧水”更加重要,都是同等重要的战略性安全问题。土壤污染是农产品不安全的源头不洁净的土壤是指遭受不良物质污染的土壤。土壤污染包括重金属污染、农药和持久性有机化合物污染、化肥施用污染等多方面。随着人口增加及经济发展,我国面临的土壤环境安全问题越加突出。据统计,我国重金属污染的土壤面积达2000万公顷,占总耕地面积的1/6。因工业“三废”污染的农田近700万公顷,使粮食每年减产100亿公斤。其中,在一些污灌区土壤镉的污染超标面积,近20年来增加了14.6%,在东南地区,汞、砷、铜、锌等元素的超标面积占污染总面积的45.5%。有资料报道,华南地区有的城市有50%的农地遭受镉、砷、汞等有毒重金属和石油类的污染。长江三角洲地区有的城市有万亩连片农田受镉、铅、砷、铜、锌等多种重金属污染,致使10%的土壤基本丧失生产力,也曾发生千亩稻田受铜污染及水稻中毒事件,一些主要蔬菜基地土壤镉污染普遍,其中有的市郊大型设施蔬菜园艺场中,土壤中锌含量高达517毫克/千克,超标5倍之多。其次,我国农药总施用量达131.2万吨(成药),平均每亩施用931.3克,比发达国家高出一倍。特别是随着种植结构的改制,蔬菜和瓜果的播种面积大幅度增长,这些作物的农药用量可超过100公斤/公顷,甚至高达219公斤/公顷,较粮食作物高出1~2倍。农药施用后在土壤中的残留量为50%~60%,已经长期停用的六六六、滴滴涕目前在土壤中的可检出率仍然很高。据调查,一些名特优农副产品中,有机磷检出率100%,六六六检出率95%,超标2.4%。另在全国16个省的检查结果,蔬菜、水果中农药总检出率为20%~60%,总超标率为20%~45%;因蔬菜、水果农药残留引起人畜中毒死亡事件时有发生。据不完全统计,华南地区的中心城市自1997年至2001年共发生因蔬菜农药残留引发的食物中毒事件28起,中毒415人,个别地市高毒、高残留农药每年造成急性中毒5~7宗,受害人数约300人。类似的急性中毒事故在长江三角洲地区也有发生。值得注意的是,近年来沿海大部分地区的大田耕地土壤中持久性毒害物质大量积累,2000年太湖流域农田土壤中,15种多氯联苯同系物检出率为100%,六六六、滴滴涕超标率为28%和24%。令人不安的是,许多低浓度有毒污染物的影响是慢性的和长期的,可能长达数十年乃至数代人。第三,过量施用化肥也会造成土壤污染。90年代,全世界氮肥使用量为8000万吨氮,其中我国用量达1726吨氮,占世界用量的21.6%。我国耕地平均施用化肥氮量为224.8公斤/公顷,其中有17个省的平均施用量超过了国际公认的上限225公斤/公顷,有4个省达到了400公斤/公顷。据31个省、市、自治区的调查,目前在农业结构改制后的蔬菜、瓜果地里,单季作物化肥(折合纯养分)用量通常可达569~2000公斤/公顷以上,如一些蔬果种植大县的化肥平均用量已达1146公斤/公顷;滇池区蔬菜花卉基地,一季作物氮磷肥用量(纯养分)达687公斤/公顷,最高可达3300公斤/公顷;其化肥用量远高于全国平均水平(390公斤/公顷),较之世界用化肥首户的荷兰还高出一倍多;每年农田使用化肥氮进入环境的氮素达1000万吨左右,有些地区饮用水及农产品中,硝态氮和亚硝态氮的含量均明显超标。2000年下半年,华南地区有的城市监测到菜地土壤硝酸盐含量超标率为33.1%;据中国农科院对某地32种主要蔬菜调查,蔬菜硝酸盐含量比80年代初增加了1~4倍,其中有17种蔬菜硝酸盐含量超过欧盟提出的最低量标准;2001年长江三角洲的个别省份农产品出口由于监测不合格而损失数亿美元。综上所述,近年来我国的土壤污染正在向不同尺度的区域性发展,并对各种农产品品质产生严重影响。特别是我国东南沿海经济快速发展地区,土壤及环境污染问题严重。主要表现为:1.持久性微量毒害污染物已成为新的、长期潜在的区域性土、水环境污染问题;2.大气中有害气体细粒子和痕量毒害污染物构成了土壤与大气的复合污染,城市光化学烟雾频繁并加重;3.农田与菜地土壤受农药/重金属等污染突出,硝酸盐积累显著,已严重影响农产品安全质量及其市场竞争力;4.珠江三角洲和太湖流域土壤和沉积物中有机氯农药残留普遍,已发现一些多环芳烃和多氯联苯等有害污染物的潜在高风险区。造成如此严重的污染,除了自然原因外,人为活动是产生土壤与环境污染的主要原因,尤其是近20年来,随着工业化、城市化、农业集约化的快速发展,人们对农业资源高强度的开发利用,使大量未经处理的固体废弃物向农田转移,过量的化肥与农药大量在土壤与水体中残留,造成我国大面积农田土壤环境发生显性或潜性污染,成为影响我国农业与社会经济可持续发展的严重问题。应当指出,由于土壤污染具有隐蔽性,潜伏性和长期性,其严重后果仅能通过食物给动物和人类健康造成危害,因而不易被人们察觉。因此,改善生态环境,保护土壤质量,控制与修复土壤污染,才能实现农业安全,保证人畜健康。值得商榷的几种认识针对当前农产品质量安全问题,社会上有各种提法。如�建立“无公害农业”、“绿色农业”、“有机农业”、“绿色食品”、“生态农业”等。的确,21世纪的农业应该建立以“生态农业”为标志的现代化农业,但生态农业并不等于或不能完全保证农产品是安全的。如果不能从本质上实施生态农业的基本原则,杜绝有害物质的介入,不能通过整个农业生产体系与全程质量控制来保证农产品质量安全,则上述的这些提法均是无济于事的。下面就相关问题进行商榷。1.“有机”不能替代“无机”,有机肥并非是最“洁净”的人们一般认为有机肥培肥土壤是最安全的。这种认识是不全面的。第一,农业增产的实践证明,1公斤化肥,可增产5公斤~10公斤粮食。我国粮食的增产,有30%~35%是靠施用化肥取得的,化肥的贡献不容忽视。正确地说,化肥和有机肥的配合施用才是最有效的增产措施。第二,从对环境的污染看,无论是化肥还是有机肥,只要施用不当,均会出现污染。过量施用化肥是有害的,但有机肥若用量过大,腐熟不全,施用季节不当,也会对水圈、生物圈与大气圈产生污染。特别应注意的是,当前农村中的有机肥有不少是来自含化学激素或重金属等饲料饲养的畜禽排泄物,不少企业制造的商品有机肥的原料也不纯净。因此,有机肥也会变成引发土壤污染的根源。第三,目前社会上提出的“无公害”、“绿色”、“有机食品”以及A级、AA级“绿色食品”等,是以不使用或少用化学合成物质(化肥、农药、食品添加剂等)为主要标准的,其中以有机食品为最高等级。然而,这些标准还有待于国家对土壤与农产品质量标准与监测体系全面建立和完善后才能真正做到。对此,我们必须要有清醒的认识。2. “无土栽培”不能代替“净土”种植随着农业经济的不断发展,各地已广泛建立了农业科技示范园或基地,并以高度集约的方式,进行无土栽培,取得了可喜的成绩,解决了部分城市的蔬菜、瓜果供给,获得了很好的经济、社会效益。但从国家的粮食总体需求来看,至少在近阶段(几十年甚至几个世纪)仍然不能取代广阔的农业耕地。因此,必须在发展无土栽培蔬菜、瓜果的同时,继续强化全国耕地土壤肥力的培育与土壤污染防治,用“净土”生产粮食,造福于人民。3.目前的“生态农业”并非等于安全农业所谓“生态农业”是以生态理论为基础,以现代生态农业技术为手段,以农业可持续发展为核心,通过农业与环境,生态与经济的平衡,达到农业安全与人类健康的最终目标。在建设生态农业过程中,必须注意贯彻生态学原理,做到生态系统的良性循环,保持系统功能的稳定性与持续性;将农业安全与人类健康列为首位,建立多层次的持续高效的农业生态系统,并按区域特点建立生态区域模式。从而使现代生态农业在促进地区与国家经济发展方面起重要推动作用。生态农业是综合复杂的系统工程,需要与国家及地区的农业现代化建设相结合,核心是农业安全与人类健康。其中土壤与环境质量是农业生态工程的重要内容。这是一项需要投入实力,坚持不懈,科学实施的宏大工程。而目前多数地方多只是停留在口号和概念上,尤其不注意农业安全与人类健康。大家应对此有清醒认识。4.“净土”不等于“洁食”的确,洁净的土壤只是生产质量安全农产品的基本保证。事实上,洁净基地生产出的清洁农产品,还需经过储存、运输、深加工、市场流通直至餐桌等诸多过程。只有经过了这些全过程质量控制,最后到达餐桌仍是清洁的,才算农产品的真正安全。因此,在农业安全生产中,除了从防治土壤污染这个源头抓起外,还必须注意防治产地环境、生产过程、流通环节中所产生的污染问题,并通过建立与制定国家与地方一系列的农产品规范,完善质量认证、监测、管理、法制等体系建设,严格控制农产品的“全程清洁”生产,才能使农业安全得到可靠保障。保护和治理土壤与环境质量的建议1.开展全国土壤质量本底调查,建立全国土壤质量监测网络,为实现农产品的安全生产提供保障我国土壤资源丰富,土壤类型复杂多样,不同利用方式、不同投入水平、不同管理模式均对土壤质量产生影响。虽然已经进行过两次全国性的土壤普查,但最近的一次已经过去了20多年,当时所获得的有关土壤环境质量的信息甚少,不能满足当今农业生产,特别是农产品质量安全生产的需要。如最近在太湖地区进行的土壤质量调查,其结果表明土壤质量的空间变异很大,环境质量状况令人担忧。如果不全面摸清各地土壤质量本底情况,针对不同质量土壤进行农业清洁生产,就根本不能保障农产品的质量安全。因此,在全国范围内进行土壤质量的本底调查十分紧迫。目前,国家有关部门也正在推动全国性的与土壤质量有关的调查,如国土资源部的农业环境地球化学调查;国家环境保护总局的土壤污染调查;农业部的耕地质量调查与评价以及中国科学院的土壤质量研究等。但从目前的进展来看,各部门的侧重点均有所不同,缺乏必要的统一与整合,造成工作重复和资源浪费。因此,建议国务院组织、协调有关部门,加强资源和技术的整合,逐步、分区、分阶段地开展基于农产品质量安全的全国性耕地土壤环境质量调查与评价工作,并建立长期的动态监测体系。2. 尽快修订土壤环境质量标准,加强土壤有机与激素类污染物质的监测和研究,并尽快与国际接轨目前,就农业生产中污染物而言,FAO(联合国粮农组织)迄今已公布了相关限制标准共2522项,美国则多达4000多项,其它发达国家的控制标准达数百项甚至上千项,而我国农产品质量标准中仅涉及62种化学污染物,所颁布的无公害农产品标准中,也仅规定了农药残留、重金属和硝酸盐含量控制标准,这与发达国家的限制标准不相适应。此外,美国、德国、英国、荷兰等西方国家对PCBs(多氯联苯)、PAHs(多环芳烃)、PCDD/PCDFs(二恶英类)等与人体健康威胁最大的有机污染物(环境激素)也制订了有关的质量控制标准。而我国新近颁布的无公害农产品产地土壤环境质量标准仍是引用现行土壤环境质量标准,且重金属仅限5种,农药仅限六六六和滴滴涕,其它有机污染物未涉及。因此,建议加强土壤中环境激素类物质的监测和研究,尽快修订有关土壤环境质量标准和农产品质量标准,尽快与国际接轨。3.大力开展农业清洁生产,加强土地质量保护和修复的研究开展农业清洁生产是解决农产品品质的根本措施。据江苏的经验,必须在摸清土壤与环境质量本底,抓好“净土”这个源头的基础上,选好主要农产品,明确技术规程,通过试验示范抓好并建立五大体系,即农产品质量安全生产技术规范体系;农产品质量安全标准体系;农产品质量安全监管监测与认证体系;质量安全农产品管理与市场信息体系;农产品质量安全法规与执法体系。对大面积遭受污染的土壤,必须开发行之有效的污染土壤修复技术,并对有关环境技术基础与原理,如土壤污染形成机制与农产品质量安全措施;持久性微量毒害物的环境行为、生态毒理及人体健康危害;污染土壤、地表水和地下水的环境生物修复;农业面源污染及水体富营养化的修复过程与机理;痕量气体污染、细粒子污染及酸雨的形成、危害机制与防治等进行深入研究,以恢复和提高其土壤与环境质量水平。与此同时,应发展具有我国自主知识产权的环保技术与产业。此外,应将生态环境资产损失计入生产成本,以绿色GDP指标来衡量和考核地区经济发展成就。4.制订土地质量修复和保护规划,加强规模化和标准化农产品生产示范基地的建设应利用土壤环境质量调查与评价的结果,制订土地质量修复和保护规划,包括质量安全农产品发展的生产基地布局、结构调整、污染防治、污染土壤修复、农业清洁生产规划等,加强污染土地整治与修复的资金投入。同时在长江三角洲、珠江三角洲、胶东半岛、京津塘和东北等地区进行规模化和标准化农产品生产示范基地建设,逐步在全国建成一批安全、优质(营养、保健)、特色农产品生产基地,不断提升市场竞争力和出口创汇能力。此外,应加强环保法规建设,健全管理体制和机制,制定更严格的环境标准。在保证国家现行环境法规的基础上,制定区域性新法规。在控制农业和农村面源污染的工作中,重点应该包括制定合理的土壤质量保护条例、湖泊和近海养殖规划,实施规模化畜禽养殖和生态养殖,建设农村集中居住社区和污水废物集中处理,合理使用有机肥,推广使用绿色农药,推广精准施肥技术,严禁使用高毒、高残留农药等。重视土壤、水体和大气持久性有毒物质及其长期危害效应的监测。5.加强土壤与环境质量的宣传与科普工作,进一步提高全民生态环保意识农田土壤环境质量的不断恶化,必将严重影响到我国农田生态系统的生物多样性、食物链安全、人体健康和经济、社会的可持续发展,也必将影响到我国农业在世界上的地位和命运。因此,土壤环境质量的健康和安全是我国农产品质量安全及人民健康安全的重要基础,也是我国人口-资源-环境-经济-社会协调、可持续发展的根本保证。要大力开展土壤与环境质量的宣传与科普工作,让全社会都知道只有“净土”才有“洁食”,只有“洁食”才能“健康”,只有“健康”才能“稳定”,只有“稳定”才能保证全社会的“可持续发展”。可见,“净土、洁食”与“蓝天、碧水”是同等重要的国家生态与环境安全发展的长远战略。因此,我们建议国家要像治理沙尘暴,治理长江、黄河与水土保持一样,刻不容缓地对待和解决我国当前面临的土壤与环境污染问题。希望全社会共同努力,使我们的天空更蓝,水更清,土壤更洁净,食物更安全。
矿山过度开采造成水土流失对地下水资源的影响论文
人口、资源和环境是当今世界面临的三大问题,而水资源是各种资源中不可替代的一种重要资源。因此,从一定程度上来说,节约水资源非常重要。目前我国矿山资源过度开采,对地下水资源有直接影响,而且开采过程中也会造成水资源的浪费,使地表产生塌陷,破坏了水质、水循环,效果是不堪设想的。
1.矿山过度开采破坏生物群落的生态平衡
我国矿产资源近年来的高强度开采带来了一系列的环境问题,造成了地面的大面积破坏和塌陷,导致矿区地下水资源枯竭和矿区严重的大气、水源污染。由于矿业废弃地具有众多不良的理化性质,尤其是重金属含量过高,而有毒重金属在土壤系统中的污染过程又有隐蔽性、长期性和不可逆性,因此常给周边地区的水资源生态环境造成重大的影响。如破坏土地资源,导致生态环境恶化,破坏水平衡,加剧了水资源危机,危害人体健康,破坏生物群落的生态平衡和生物多样性等。
我国水资源总量仍不丰富,区域分布也不平衡,随着人口的增多,水资源的人均占有量较小。尤其是在西北地区一些地区缺水严重,不仅造成人们生活的不便,在一定程度上对当地经济发展造成影响。因此,节约水资源非常重要,我国矿山资源的过度开采对水资源具有重要的影响,加强对矿山开采对地下水资源、水循环、水位、水质等影响进行研究分析,对矿区开采水资源保护具有一定的实用意义。
2.矿山开采对地下水资源的影响
矿山在开采过程中对地水资源的影响十分巨大,如今水资源日益减少,我们更要重视矿山开采对地下水资源的影响,找出存在的问题及相应的处理方法,对保证当地人民生产生活用水和区域农业用水都具有重要意义。
矿山开采对水资源与水资源循环的影响
矿山开采对水资源量的影响
矿山开采过程中,对开采区的表结构会产生影响,会造成其地表面下陷或因开采过度出现裂缝。在这种情况下,会对当地的水资源造成严重的影响,对其循环系统的影响极大,造成地下水资源自我更新困难,其影响主要体现在两方面:①由于矿山开采产生地表裂缝,会使地表水转变为地下水,并且会加快这种转变的速度,在一些开采区,雨季大量的雨水会随着地表裂缝渗入到地下,造成地表储水减少,而且矿山开采时也会不断地向外排水、疏干,这就造成了当地水资源不断流失。②矿山开采时由于矿坑需要排水,而且其地表开采产生的变化,会加剧地表水资源与地下水资源的流失,对开采区的水平衡造成影响,这时开矿区域内的地表水资源与地下水资源都在不断地减少,降低了水资源的利用率和水资源的存储量。
矿山开采对水资源循环的影响
矿山开采时对当地水资源循环的.影响,主要体现在对水资源自我更新的影响上,水资源具有自我更新能力,矿山开采破坏了这种能力。矿山开采过程中对水资源的循环系统形
成了再造,重建了一个更为快速,也更为复杂,违背自然规律的水循环系统。①在矿山开采前会对地下水进行排干,这在一定程度上减少了地下水资源的存储量,而且会造成地表水向地下渗入,使水平衡系统被打破,导致地表水资源不断减少,也减少了地表水的蒸发消耗量。②矿山在开采过程中也会造成其地表的结构变化,加剧地表水向地下渗入,进一步减少了地表水存储量。以上因素对地下水循环系统造成了严重破坏。③因矿山矿坑的排水也会对地下水的径流产生影响,这会使得矿区内的水资源循环系统变得更加复杂。
矿山开采对当地含水层水位以及地下水水质的影响
矿山开采对当地含水层水位的影响
矿山在开采过程中会造成地表结构变化,会对原本的力学平衡造成影响,在这种情况下,当地质结构出现不稳定情况时,就会使上覆岩层移位或是产生断裂,其含水层中所存储的水会产生流动,矿区地下水位会下降。这种带动的反应是连锁性的,会直接对该地区的水井水位造成影响,其水井中的水位会下降,这对当地农业与生活用水的影响是巨大的。矿山开采中,相关人员应该使用专业知识对下水位变化进行控制,减少因矿山开采对当地人民生活所造成的影响。
矿山开采对当地地下水质的影响
我国近年来的环境问题所受到的关注越来越多,特别是一些矿山的开采对水资源造成污染与影响,相关部门一直非常重视。这种染污不仅对当地居民的生活造成了不可逆转的影响,也会对当地的经济建设造成影响,并且也严重违背了节能减排发展趋势。
矿山开采对于水资源的污染主要体现在开采过程中所排放的废石与尾矿等,这些具有污染与影响。而这些情况的发生,是因为当地决策部门一味地追求地区内的利益,无视资源破坏的后果意识,并且矿区管理也相对落后,使矿区污染物随意排放,造成了对水资源的污染,对当地居民的人身健康造成了损害。水资源污染是大问题,我们对此必须高度重视。
一般来讲,矿山开采过程中对于水资源的污染主要体现在以下两个方面:①采矿废弃物排放对当地的水资源造成污染。矿山开采的废石,因受到雨水或是其他水源的长期浸泡,会产生氧化反应,分解出许多酸性物质,如果这种物质混入到当地水资源系统中,会对当地居民造成伤害。②矿山开采产生的矿坑水也会对水资源造成污染,矿坑水中含有大量的有机物,其细菌与矿物质有些呈碱性,有些呈酸性,无论哪一种状态,如果排放到地表或地下水中,都会造成污染。而自然生态系统中的水资源自循环会加剧这种污染。因此,矿山开采时必须对水资源污染进行控制,减少污染的产生。
3.优化矿山开采对地下水资源不良影响的对策
认真贯彻法律法规
各级地方政府主管部门,严格执行环境与水资源保护法规规定。在矿山开采过程中,采各级地方政府主管部门,严格执行环境与水资源保护法规规定。在矿山开采过程中,采取措施避免对水资源造成污染。煤炭、有色金属采矿等相关审批部门,在项目审批过程中,应该将矿山开采的环境质量报告作为重点审查对象,将矿山开采时对水资源的影响降到最低,保证水资源自身循环系统不会遭到破坏,也不会因矿山开采产生污染。
提升地下水资源综合利用率
在矿山开采时,为了减少开采对地下水资源造成的影响,应采取严格的水资源保护措施。通过科学的方式提高采矿用水利用率,对矿山开采过程中产生的大量废水与污水,以及一些矿坑的排水,应进行处理,提高废水利用率。
建立水资源影响补偿机制
《中华人民共和国水法》对于矿藏开采以及一些地下工程建设中所造成的地下水枯竭、水位下降、地下塌陷等都有详细的说明与规定。矿山企业在矿山开采时,发生以上问题,必须采取相应的措施进行补救。各级政府部门必须严格按照相关规定对开采行为进行控制,并且根据当地矿山开采的实际情况,建立建全矿山开采的地下水资源产生影响的补偿机制。
利用地下水资源保护性的开采技术
这种方法是指开采矿藏时,只开采部分的矿藏,剩余矿藏用于控制其顶板岩层运动。这样可降低导水裂带高度实现对水资源的保护。常用的技术有房式开采法、条带开采法、柱式开采法和限厚开采法等。
矿山开采后的水土保持生态治理,彻实达到保护好地下水资源
大规模矿山开采后必然留下裸露山体,由于土壤贫瘠,经过雨水冲刷后山体会造成垮塌、土壤沙化,所以必须进行生态治理。尤其注意的是,有些本地植物种类在开采后,土壤条件发生变化而不会成活,而治理的目的是在建立能达到原来地植被功能的自然生态,如果是这种情况就必须引进采矿之外地区的植物种类与原植物相似,能在与被绿化地的土壤类型、水分状况和物种合适等成活,以治理恢复矿山植被,进一步保护好地下水资源。
4.结语
综上所述,对矿山开采进行严格监测管理,防止过度开采破坏地下水资源是一项长期的系统性工作,必须引起政府和社会的足够重视,科学有序地管理好矿山过度开采,有效地保护地下水资源是构建社会可持续发展的根本保障。
参考文献
[1]颜文珠.矿山开采对地下水影响的数值拟研究[D].青岛:山东科技大学,2011
[2]吴玉生,赵亚平,杨亚静.煤矿开采对地下水资源的影响[J]. 能源环境保护,2004(6):1-3
[3]何纯田.浅析煤矿开采对地下水的影响[J]. 资源节约与环保,2013(7):29
土壤全磷的测定标准土壤全磷量即磷的总贮量,包括有机磷和无机磷两大类。土壤中的磷素大部分是以迟效性状态存在,因此土壤全磷含量并不能作为土壤磷素供应的指标,全磷含量高时并不意味着磷素供应充足,而全磷含量低于某一水平时,却可能意味着磷素供应不足。因此了解土壤磷总贮量,对生产实践仅有一定的参考价值。 土壤全磷测定的待测液制备,一般分为碱熔法和酸溶法两类。在碱熔法中以Na2CO3熔融分解最为完全,准确度较高,但熔融时需要铂坩埚,不适宜用于常规分析。在酸溶法中以 H2SO4———HCLO4法较好。此法对钙质土壤分解率较高,但对酸性土壤分解不易十分完全,结果往往稍微偏低。 待测液中磷的测定,一般都采用钼蓝比色法,所用的显色剂有“钼锑抗”(钼酸铵—酒石酸锑钾—抗坏血酸试剂的简称),氯化亚锡,抗坏血酸和1,2,4—氨基萘酚磺酸等。其中钼锑抗法有手续简便,颜色稳定,干扰离子允许量大等优点,目前国内应用较广。 1.酸溶—钼锑抗比色法: (1)方法要点: 在高温条件下,土壤中含磷矿物和有机磷化合物与高沸点的H2SO4和强氧化剂HCLO4作用,使之完全分解,全部转化为正磷盐而进入溶液,然后用钼锑抗 比色法测定。 (2)主要仪器:分光光度计,2KVA方电炉,3KVA调压变压器。 (3)试剂: A.浓H2SO4(二级)。 B.HCLO4(二级,70-72%)。 C.钼锑贮存液。浓H2SO4(二级)153毫升缓慢倒入约400毫升水中,搅拌,冷却。10克钼酸铵(二级)溶解于约60。C的300毫升水中,冷却。然后将H2SO4溶液缓缓倒入钼酸铵溶液中,再加入100毫升酒石酸锑钾溶液,最后用水移释至1升,避光贮存。此贮存液含1%钼酸铵,摩尔/升1/2 H2SO4。 D.钼锑抗显色剂。克抗坏血酸溶液于100毫升钼锑贮存液中。此液须随配随用,有效期一天。 E.二硝基酚指示剂。克2,6-二硝基酚或2,4二硝基酚溶于1000毫升水中。 F.5ppmP标准溶液。克KH2PO4(二级,105。C烘过2小时)溶于200毫升水中,加入5毫升浓H2SO4,转入1升容量瓶中,用水定容。此为100ppmP标准溶液,可以长期保存。取此溶液准确稀释20倍,即为5ppmP标准溶液,此溶液不宜久存。 (4)操作步骤:A.待测液的制备:称取通过100目的烘干土壤样品1克(精确到克)置于50毫克三角瓶中,以少量水湿润,加入浓H2SO48毫升,摇动后(最好放置过夜)再加入70-72%的HCLO410滴,摇匀,再加热消煮。缓慢升温,HCLO4烟雾消失后,再提高温度,使H2SO4发烟回流,待瓶内溶液开始转白后继续消煮20分钟,全部消煮时间为45-60分钟。将冷却后的消煮液用水小心地冲入100毫升容量瓶中,冲洗时用水应量少次多,轻轻摇动容量瓶,待完全冷却后,以水定容,用干燥漏斗和无磷滤纸将溶液滤入干燥的100毫升三角瓶中。同时做空白试验。B.测定:取上述待测液2-10毫升(含5-25微克P)于50毫升容量瓶中,用水稀释至约30毫升,加二硝基酚指示剂2滴,用稀NaOH溶液和稀H2SO4溶液调节pH值至溶液刚呈微黄色。然后加入钼锑抗显色剂5毫升,摇匀,用水定容,。在室温高于15。C的条件下放置30分钟后,在分光光度计上用波长700纳米比色,以空白试验溶液为参比液调零点,读取吸假值。在工作曲线上查出显色液的Pppm数。颜色在8小时内可保持稳定。C.工作曲线的绘制:分别吸取5ppm标准溶液0,1,2,3,4,5,6毫升于50毫升容量瓶中,加水稀释至约30毫升,加入钼锑抗显色剂5毫升,摇匀,定容。即得0,,,,,,标准毓溶液,与待测液同时比色,读取吸收值。在方格坐标纸上以吸收值为纵坐标,Pppm数为横坐标纸上以吸收值为纵坐标,Pppm数为横坐标,绘制成工作曲线。 2.碱熔—钼锑抗比色法 (1)方法要点:样品用Na2CO3高温熔融,使难溶性的磷酸盐及有机态磷分解成可溶性正磷酸盐,以稀H2SO4溶解熔融物,制备成待测液,用钼锑抗比色法测定。 (2)主要仪器:铂坩埚,高温电炉,分光光度计。 (3)试剂: A:无水Na2CO3(二级),磨细,通过250微米(60目)。 B:6摩尔/升1/2 H2SO4 其余试剂同酸溶一钼锑抗比色法。 (4)操作步骤;称取通过100目的烘干土样品(精确到克)置于铂坩埚中,另外称取研细的无水Na2CO32克,将其中的克小心地用平头玻璃棒与样品充分搅拌混匀,其余的铺于混合物表面,并轻轻敲动坩埚,铺平。将坩埚放入高温电炉中,升温至900-920。C熔融,20分钟后取出后趁热时揭盖观察熔块状态:倘若表面成凹形颜色均一而气泡时,则熔融已完全。取出熔块,放入100毫升高型烧杯中,盖上表面皿,小心地加入约10毫升6摩尔/升1/2 H2SO4溶解熔块,并用热水洗净坩埚。将烧杯中的内溶物洗入100毫升容量瓶中,用热水及带橡皮帚玻璃棒将烧杯洗净,洗涤液均倒入上述容量瓶中,冷却后定容,用干燥漏斗及无磷滤纸过滤于三角瓶中。 吸取滤液5-10毫升(含5-25微克P)于50毫升容量瓶中加水稀释至约30毫升,用钼锑抗比色法测定磷量(同酸溶—钼锑抗比色法)。在整个操作过程中,同时作试剂空白试验。 (5)结果计算:同酸溶—钼锑抗比色法。
土壤有效磷的测定:
1、奥逊法(摩尔/升NaHCO3浸提——钼锑抗比色法)
方法原理:石灰性土壤中的磷主要是以Ca-P(磷酸钙盐)的形态存在,中性土壤中则Ca-P、Al-P(磷酸铝盐)、Fe-P(磷酸铁盐)都占有一定比例。
摩尔/升NaHCO3可以抑制Ca2+的活性,使某些活性较大的Ca-P被浸提出来;同时,也使比较活性的Fe-P和Al-P起水解作用而浸出。浸出液中的磷用钼锑抗比色法测定。
2、摩尔/升摩尔/升HCl浸提——钼锑抗比色法
方法原理:酸性土壤中的磷主要是以Fe-P和Al-P的形态存在,利用F-在酸性溶液中络合Fe3+和Al3+的能力,可使这类土壤中比较活性的磷酸铁铝盐被陆续活化释放,同时由于H+的作用也能溶解出部分活性较大的Ca-P。
土壤的成分:
土壤是矿物质、有机质和活的有机体以及水分和空气等的混合体;按重量计,矿物质占到固相部分,即土壤干重的九成或更多,有机质约占一成,可见土壤成分以矿物质为主;土壤有机质就是土壤中以各种形态存在的有机化合物。
土壤有效磷的测定如下:
土壤速效磷的测定中,浸提剂的选择主要是根据土壤的类型和性质测定。浸提剂是否适用,必须通过田间试验来验证。浸提剂的种类很多,近20年各国渐趋于使用少数几种浸提剂,以利于测定结果的比较和交流。
我国目前使用最广学的浸提剂是溶液(Olsen法),测定结果与作物反应有良好的相关性[注1],适用于石灰性土壤、中性土壤及酸性水稻土。此外还使用溶液(BrayⅠ法)为浸提剂,适用于酸性土壤和中性土壤。
同一土壤用不同的方法测得的有效磷含量可以有很大差异,即使用同一浸提剂,而浸提时的土液比、温度、时间、振荡方式和强度等条件的变化,对测定结果也会产生很大的影响。所以有效磷含量只是一个相对的指标。只有用同一方法,在严格控制的相同条件下,测得的结果才有相对比较的意义。在报告有效磷测定的结果时,必须同时说明所使用的测定方法。
试剂配制:
(1)()浸提剂:(化学纯)溶于约800ml水中,稀释至1L,用浓NaOH调节至(用pH计测定),贮于聚乙稀瓶或玻璃瓶中,用塞塞紧。该溶液久置因失去CO2而使pH升高,所以如贮存期超过20天,在使用前必须检查并校准pH值。
(2)无磷的活性碳粉和滤纸:须做空白试验,证明无磷存在。如含磷较多,须先用2molL-1HCl浸泡过液,用水冲洗多次后再用浸泡过液,在布氏漏斗上抽滤,用水冲洗几次,最后用蒸馏水淋洗三次,烘干备用。如含磷较少,则直接用 NaHCO3处理。
(3)钼锑抗试剂:钼酸铵[(NH4)6Mo7O24×4H2O](分析纯)溶于300ml约60℃的水中,冷却。另取181ml浓H2SO4(分析纯)慢慢注入约800ml水中,搅匀,冷却。然后将稀H2SO4液入钼酸铵溶液中,随时搅匀,再加入100ml (m/v)酒石酸氧锑钾[K(SbO) C4H4O6×1/2H2O]溶液;最后用水稀释至2升,盛于棕色瓶中,此为钼锑贮备液。
临用前(当天)称取抗坏血酸(分析纯)溶于100ml钼锑贮备液中,此为钼锑抗试剂,在室温下有效期为24h,在2~8℃冰箱中可贮存7天。
(4)磷标准贮备液(Cp = 100mgL-1):称取105℃烘干2h的KH2PO4(分析纯)溶于200ml水中,加入5ml浓H2SO4(分析纯)转入1L容量瓶中,用水定容,该贮备液可长期保存。
(5)磷标准工作液(Cp = 5mgL-1):将一定量的磷标准贮备液用溶液准确稀释20倍,该标准工作液不宜久存。
四、操作步骤
称取风干土样(1mm)置于干燥的150ml三角瓶中,加入25±1℃的液温下[注3],于往复振荡机[注3]上振荡30±1min,立即用无磷干滤纸过滤到干燥的150ml三角瓶中。如果发现滤液的颜色较深,则应向土壤悬浊液中加入约活性碳粉,摇匀后立即过滤。
在浸提土样的当天,吸取滤出液[注4](含1~25mgp)放入干燥的50ml三角瓶中,加入钼锑抗显色剂,慢慢摇动,使CO2逸出。再加入水,充分摇匀,逐尽CO2。
在室温高于15℃处放置30min后,用1cm光径比色杯[注5]在660~720nm波长(或红色滤光片)[注6]处测读吸光度,以空白溶液( 溶液代替土壤滤出液,同上处理)为参比液,调节分光光度计的零点。
校准曲线或直线回归方程:在测定土样的同时,准确吸取磷标准工作溶液0、、、、、、、,分别放入50ml容量瓶中,并用溶液定容。该标准系列溶液中磷的浓度依次为0、、、、、、、。
吸取该标准系列溶液各同上处理显色,测读系列溶液的吸光度,然后以上述标准系列溶液的磷浓度为横坐标,相应的吸光度为纵坐标绘制校准曲线,或计算两个变量的直线回归方程。
土壤重金属污染治理的策略与技术论文
在学习、工作生活中,大家都不可避免地会接触到论文吧,论文是学术界进行成果交流的工具。相信许多人会觉得论文很难写吧,以下是我为大家收集的土壤重金属污染治理的策略与技术论文,欢迎大家分享。
摘要:
在我国社会经济快速发展的背景下,土壤污染问题十分严重,严重影响了人民群众的生命健康安全。为此在新时期要高度重视土壤重金属污染的有效治理,避免土壤结构被大量破坏造成土壤中的矿物质流失。通过对土壤重金属污染治理的原因和问题进行分析,制定科学高效的应对措施,保证土壤重金属污染治理的整体水平全面提高,确保土壤重金属污染治理的效率大幅度提高,保护土壤生态,为社会经济可持续发展做出重要贡献。
关键词:
士壤重金属污染;治理问题:对策
引言:
土壤作为社会发展重要基础,必须要高度重视对土壤生态环境的妥善保护与科学处理。重金属作为土壤环境最重要的指标,由于受到工业农业的快速发展,土壤中的重金属物质含量显着超标,对于整个土壤的破坏十分明显,严重影响了土壤安全,在新时期需要重点关注土壤重金属物质,并采取有效的处理措施,减少土壤重金属造成的破坏与损伤,确保土壤重金属得到有效控制。
1、土壤重金属危害
重金属是指通过自然环境难以有效降解的各种物质。包括铅汞等,这些重金属物质如果进入到人体会引发重金属中毒,对人体造成明显损伤,而在土壤和水源中会大量淤积,也会导致水生动物和植物的生长发育受限,不利于生态环境土壤污染的农田,如果种植农作物也会造成大量的重金属进入农作物内部,植物中含有大量重金属就会通过饮食进入人体而导致食品安全问题[1]。土壤重金属污染越来越严重,对人们的生活造成巨大的威胁。为此要有效处理重金属污染,降低土壤中重金属含量。
2、土壤重金属污染主要成因
目前对于土壤重金属污染的成因主要包括自然因素和人为因素两方面,其中自然因素是指在自然环境中发生的火山爆发和土壤自身形成的因素,而人为因素则涉及工业农业交通等多个领域,也是造成土壤重金属污染的关键因素。例如在干旱地区为了提高农作物的产量解决缺水问题,往往会采取大面积灌溉的方式造成土壤养分流失,或者在灌溉中所使用的水资源受到污染,导致金属含量超标等,必然会使土壤出现金属污染问题,此外在工业领域不断发展的背景下,金属冶炼对社会发展具有十分重要的作用,但在冶炼过程中也会产生大量的重金属废水,如果没有对重金属进行妥善无害化处理,而直接排放到自然环境中,会造成土壤的重金属污染[2]。在城市发展中人们的生活水平日益提高,汽车保有量显着增多,而车辆也会生成大量汽车尾气,这些汽车尾气会直接污染大气,经过雨水冲刷会导致重金属污染物渗入到土壤内部。
还有部分有机肥料来自城市建筑垃圾、河道淤泥等,这些原材料本身富含大量重金属元素。在进入到土壤后也会造成土壤重金属含量显着升高,对土壤结构造成破坏。我国地形复杂,面积范围广大,土壤种类丰富,这也使得土壤污染问题存在明显的区域性差异,在农业发达的西北地区具有良好的土壤环境,而在中南地区由于工业密集,所以土壤污染问题严重。在发达地区为了提高农作物,往往会使用大量的化肥农药,这样就会造成农业用地日积月累受到严重的污染,致使蔬菜粮食存在农药残留,而且农业用地污染问题大部分都以有机或无机复合为主,造成土壤无法复原。当土壤受到重金属污染以后,基本无法恢复,土壤之中也会富含大量的胶体致使重金属物质不断富集,长此以往重金属污染也会日益严重,在人类正常的生活与工作中,耕地的酸碱值会发生明显变化,而且化学反应也会使重金属的离子价态和形态会发生明显的变化,而且大多数的土壤重金属污染,无法通过人类的感官进行准确识别,往往需要经过长时间的沉淀以后才能发现,这样也就造成土壤重金属污染难治理难度不断增加。
3、土壤重金属污染的主要治理策略
目前在土壤污染防治中,需要高度重视对土壤环境的妥善监测,通过对土壤中的重金属指标进行快速准确监测,能够判断土壤内部重金属富集的具体情况,为此有关部门要高度重视。建设土壤监测监管机制,采取相应的设备,对土壤的组成成分进行全面分析,提高土壤检测数据的科学性,例如成立土壤监测部门,按照专业的监管机制,安排专业人员对土壤相关数据进行全方面检测,确保土壤环境得到妥善处理,在土壤数据监测完毕后,还要将有关数据上传至监管部门,明确各个地区土壤的重金属含量,确保土壤重金属污染得到有效控制,一旦发现异常超标情况,则需要采取科学的解决,确保土壤重金属物质处理的效率全面提升,满足土壤重金属污染监测的实际需求。由于我国对土壤污染防治工作开展的时间比较晚,为此在新时期要积极加强土壤污染的有效预防,制定高效目标,坚持以预防为主,保护优先,树立完善的风险监管意识,从而确保土壤污染治理的.整体水平全面提升[3]。
要主动采取分级风险管控措施探索土壤重金属污染治理的全新方案,提高控制管理的水平,同时要做好技术调查,在全国范围内对土壤污染的具体状况进行准确的排查,保证土壤污染问题得到清晰有效的控制与解决,建立土壤重金属污染相关信息化平台(表1),实现资源共享,通过设立全国规模的土壤污染监测管理网络,保证对土壤污染监测点覆盖到市县级,做到监管数据实时更新。确保土壤管理的效率全面提升。要逐步建立污染土地目录或者土地使用污染目录,严格控制土壤的实际使用途径。加强监管存量,对源头严格防控,有效提高农业污染的监督管理力度。要坚决从源头加强土壤保护,避免土地随意滥用。
表1基于GIS系统土壤环境风险控制管理体系
4、土壤重金属污染治理的主要技术
、生物治理
当前的土壤生物治理可以通过植物微生物等手段减少土壤重金属含量或降低其毒性。在植物治理中,需要积极培育能够吸附重金属物质的植物,有效去除土壤中的大量重金属物质。这种方案成本低廉,技艺简单,具有大范围推广应用的实际意义。另外可以通过微生物对土壤进行改良,但这种技术对微生物要求比较高,而且治理周期比较长,还会存在一定的风险问题[4]。
、化学防治
化学防治可以通过重金属改良剂,根据不同的金属特点采取相应的化学反应,确保对重金属进行有效抑制,使这些潜藏在土壤中的重金属能够快速凝聚,减轻土壤对重金属吸收,避免造成恶劣影响。还可以直接使用金属拮抗剂,因为金属之间存在许多的相互作用,金属的特性也并不会对人体造成明显的伤害,通过化学防治可以通过有益金属对重金属相互作用产生拮抗性,减轻重金属的活跃度[5]。
、生态修复技术
在农业生态修复中通过农艺修复或生态修复等不同的方法,可以保证土壤中的水分含量,耕作制度得到有效控制,技术人员可以通过对土壤中的水分进行控制,有效改善土壤的pH,而且有部分重金属在氧化还原下会不断迁移发生变化,此外造成土壤氧化还原的主要因素在于水含量增多,所以在修复的过程中要加强对水含量的有效调控,增强氧化还原整体效能,避免重金属的快速迁移,促进土壤修复的整体质量水平全面提高。生态修复能够对土壤的水分肥力进行快速还原,改善当地的环境气候条件,有效控制重金属污染物所处的环境介质。在土壤重金属污染治理时,生态修复技术的效率比较缓慢,在短时间内并不能看到显着的效果。
、工程治理技术
工程治理技术能够通过工程机械理论,加强对污染土地治理。目前常用工程治理技术包括换土法、克土法以及深耕翻土法等,是指被污染的土壤中增加干净土壤,并且快速将被污染土壤与外界隔离,减少土壤中的重金属污染物浓度。换土法则是直接将被污染的土壤快速挖掘,并搬运别处进行妥善处置,换上干净土壤。深耕翻地法是利用机械,使上部重金属污染物迅速向下部翻转,保证表土表面重金属污染浓度降低。在运用工程治理技术中,需要根据不同的技术要求选择科学的治理方法,通常污染程度比较轻的土地可以采用深耕翻土法,污染程度比较重的则需要采用换土法以及克土法,需要注意的是,在采用换土法时对被挖出的污染土壤要及时进行处理,避免对环境造成二次污染。
、联合修复技术
由于土壤重金属污染物的成分多样化,不同地区的污染类型,污染程度也各不相同,凭借单一的技术很难达到预期的修复效果,为此要积极针对土壤重金属污染的具体情况,采取联合修复的方式,通过对植物和微生物联合物理和化学联合等多样化的修复手段,能够促进土壤恢复效果,减轻土壤受污染的程度[6]。
、改良剂改性修复
改良剂改性修复,主要是在重金属污染土壤中加入固定配方的改良剂,使改良剂与重金属之间出现明显的吸附作用、抗结作用以及氧化还原作用,但这样的技术最终造成土壤重金属污染物活性显着下降。石灰石、碳酸钙、硅酸盐等各种改良剂相互作用还能够促进土壤的养分得到显着变化。
5、结束语
我国目前土壤重金属污染问题十分严重,而且防治工作起步晚、技术落后,给土壤重金属污染防控造成严峻挑战。针对污染物有效防治采取相应的措施加以治理,确保土壤重金属污染物的改良效果全面提高,促进我国土壤资源的安全。
参考文献
[1]赵瑞芬,程滨,滑小赞,等忻州市灌区土壤重金属污染评价及分布特征分析[J].北方园艺,2021(6):81-88.
[2]马叶,赵国梁,王晓凤,等添加螯合剂诱导栽培红叶荞菜(.)修复铅和镉污染土壤效果的研究[J].土壤通报,2021(2):416-424.
[3]薄录吉,李冰,张荣全,等.金乡县大蒜产区土壤重金属特征及潜在生态风险评价[J].土壤通报,2021(2):434-442.
[4]张启,吴明洲.某疑似污染农用地地块土壤调查布点及评价方法[J].安徽农业科学,2018(20)117-119.
[5]王海东,方凤满,谢宏芳,等芜湖市区土壤重金属污染评价及来源分析[J]2010(4):36-40.
[6]张仕军土壤中重金属污染治理存在的问题及对策研究[J]资源节约与环保,2020(9):93-94.
陆地生态系统碳循环、碳源汇格局及其驱动机制,以及陆地生态系统的固碳潜力及其可持续性是当前国际气候变化科学界广泛关注的前沿科学问题。目前,国际上关于生态系统碳固持潜力及其维持机制认识明显不足,尤其是对土壤系统的关键碳过程及其稳定性变化,导致陆地生态系统碳汇潜力的评估结果存在着极大的不确定性。因此,迫切需要深入开展陆地生态系统碳循环机制、关键过程和碳源汇格局及其驱动力机制的研究,藉以增强对全球气候变化和生态系统管理对陆地生态系统固碳潜力及其不确定性的科学认识。过去几十年,生态学家们在全球范围内针对气候变化、土地利用对碳循环时空动态的影响开展了大量的研究,认为陆地生态系统在调节全球碳平衡和减缓全球气候变化中起着重要作用。20世纪80—90年代,全球陆地生态系统每年净吸收1—4Pg (1Pg =1015g)的碳,这抵消掉了约10%—60%的化石燃料燃烧释放的碳。但仍不能确切解释碳排放与碳吸收的收支不平衡的现象,这中间存在一个巨大的未知汇。陆地生态系统碳汇的时空分布及其不确定性,主要缘于陆地生态系统类型的多样性、结构复杂性、时空分布的异质性,以及陆地生态系统和气候变化之间相互作用的关系复杂性和人类活动对陆地生态系统的干扰,还有碳储量、碳汇的监测与评估的方法学等等,造成了陆地生态系统碳汇及其变化的不确定性。关于陆地生态系统最大碳汇的阈值尚未科学定论。经典生态学理论认为与非成熟森林相比,成熟森林作为碳汇的功能较弱,甚至接近于零,“成熟森林碳循环趋于平衡”是现今大量生态学模型的基础。而我国中科院华南植物园周国逸博士研究团队通过25年持续观测, 发表在2006年《科学》杂志的研究成果,揭示我国南亚热带成熟的老林龄在1979-2003年SOM浓度平均每年增加,SOM储量增加吨/年/公顷,即成熟森林土壤可持续积累有机碳。国际著名期刊《科学》和《自然》认为该研究奠定了成熟森林作为新的碳汇的理论基础,有力地冲击了成熟森林土壤有机碳平衡理论的传统观念,将从根本上改变学术界对现有生态系统碳循环过程的看法。这一发现有可能将从根本上颠覆学术界对现有生态系统碳循环过程的理论,对全球碳循环研究产生深远影响。北京大学城市与环境学院朴世龙与方精云研究小组及合作者在2009年《自然》杂志上发表的研究成果,采用土地利用和资源清查数据、大气CO2浓度观测数据、遥感数据以及气象数据,并结合大气反演模型和基于过程的生态系统碳循环模型,综合研究了中国陆地碳汇/源的时空格局及其机制,得出中国陆地生态系统是个碳汇。但是,我国中高纬度的北方地区并不是陆地碳汇,而陆地碳汇却发现主要分布在南部,主要缘于大规模造林和灌丛植被的恢复重建形成的碳汇。这一结论与国际社会普遍认为北半球中高纬度地区是陆地生态系统的碳汇的结论并不一致,再次表明了陆地生态系统碳汇的时空变异性及不确定性。上述两项标志性的研究成果,显示出我国生态学研究对全球变化科学的贡献,科学阐述了中国陆地生态系统在中国乃至全球碳平衡中的巨大作用,也得到了国际社会的普遍赞誉。中国还将继续推进生态建设和加强陆地生态系统的有效管理,以扩大和增强陆地生态系统的碳汇潜力。在中国应对气候变化的国家方案中,确定了继续实施林业生态建设工程,扩大森林面积,力争实现森林碳汇数量比2005年增加约亿吨二氧化碳的目标。胡锦涛主席代表中国政府在2009年联合国大会上庄严承诺,中国将在2020年前,再净增森林面积4000万公顷,增加林木蓄积13亿立方米,藉以实现中国对增加全球碳汇的贡献(初步估计可增加碳吸收亿吨亿吨,折合二氧化碳亿吨亿吨)。然而,大规模植被建设需要相应匹配的水资源支持,水资源的有效性与时空变化的异质性必然影响陆地生态系统的固碳潜力,以及产生固碳能力的不确定性。因此,区域植被建设的水、碳平衡及其调控将成为关注的核心问题。包括IPCC报告在内的相关研究显示,陆地生态系统碳收支的最大不确定性在于土壤碳储量和变率的科学估算。Johnston et al. (2004) 发表在《生态环境前沿》的文章将土壤系统的研究面临的挑战概述为两个主要方面:1)土壤系统的结构和过程我们无法直接观察到,地上系统的研究方法(遥感方法等)无法直接应用到土壤系统;2)土壤是一个动态系统,随地下环境的改变而变化。土壤系统是由植物、微生物和动物的残体和代谢产物共同构成的一个复杂的混合体,并且土壤系统包含了固体、液体和气体三种基质。对土壤系统这个复杂的“黑箱”的各个组分分解研究的同时,它的功能也会发生变化。土壤碳储量和动态变化的科学估算的准确性受限于研究者对关键的土壤过程理解程度和土壤系统和全球变化之间相互作用的复杂性。因此,研究者需要清楚掌握控制土壤有机碳化学性质、形成过程和稳定固持的关键机制,并且包括增加土壤固碳潜力和持续固碳能力的技术和方法。Johnston et al. (2004) 总结了当前土壤碳研究需要重视的几大关键问题:1)目前受土壤容重测定方法的限制,土壤容重测定的准确度较低,导致目前对土壤碳储量的计算误差;2)准确计算源于根系的土壤碳库需要深入了解根系生命周期的动态过程,而目前的方法尚需改进和提高;3)考虑根系、土壤微生物和土壤动物在历史过程中的协同进化效应,有助于理解当前的土壤碳循环过程;4)土壤动物是调控土壤碳动态的关键因子。需加强在全球变化背景下,土壤动物入侵对土壤碳动态影响的研究;5)随城镇化的加快和湿地面积的减少,土地利用方式的改变对土壤碳过程的影响需要考虑;6)需要获取更全面的有关全球变化造成的极端气候,如干旱、火灾和土壤侵蚀等,对土壤碳储量和碳动态产生影响的数据和信息。基于上述陆地生态系统土壤碳关键过程和机制研究面对的挑战和问题,未来的研究需要改进现有的测定技术,如采用地面穿透雷达、激光分解波谱、13C核磁共振和热解质谱测量等土壤原位和非破坏性分析的技术和手段。综合人工调查数据、网络长期监测数据和建模等研究方法,并且整合生态学、地球化学和化学等领域的技术和资源,以减少对陆地生态系统土壤碳储量和变率的科学估算的不确定性,建立与人类经济社会发展相协调的土壤持续固碳的管理体系。人类活动已经明显的改变了全球碳循环。森林作为陆地上最大的生态系统,在调节全球碳循环的过程中具有重要的作用。如何通过森林经营管理增强森林减缓和适应气候变化的能力是当前国际上关注的焦点。土壤是陆地生态系统最大的碳库,土壤碳储存与释放的平衡发生微小变化即会对温室气体产生很大影响。森林保护、恢复、造林再造林等经营管理措施可以直接影响森林生物量碳库,并且能够通过改变凋落物数量和化学性质及土壤有机质分解影响土壤碳库。综合已有的研究结果,维持森林的高生产力带来的碳输入,并且避免由于土壤干扰等造成的碳释放是提高土壤碳储量和土壤持续固碳能力的有效森林经营管理方式。但是,土壤有机碳是由不同有机组分构成的高异质性混合体,结构的差异决定了性质的不同,并且碳稳定地固持在土壤中是一个漫长而又复杂的过程,关于森林经营管理对土壤固碳潜力和持续固碳能力的影响仍有很多不确定性。目前的研究较多的关注了森林生态系统管理对土壤有机碳储量的影响,而对土壤碳是否能稳定并持续的固持及其维持机制的研究较少。综合研究森林经营管理对土壤有机碳储量、化学组成及其稳定性的影响有助于更全面地评价森林生态系统的可持续固碳潜力。我国人工林发展十分迅速,人工林面积居世界第一,已经逐渐成为世界森林资源的重要组成部分。提高人工林的碳汇功能和持续固持能力是林业减缓气候变化的重要途径之一,并在京都议定书中予以肯定。目前,国内外人工林均存在树种单一,特别是人工针叶纯林所占比例较大,生态稳定性较差和生态服务功能低等亟待解决的问题。欧洲国家近年来主要通过增加阔叶树比例和采用近自然林经营模式改造人工林藉以提高人工林的多样性和生态稳定性。世界范围内热带地区也正通过造林再造林及可持续森林管理恢复退化的土地。因而,如何通过合理的森林经营模式,包括造林树种的选择、林分抚育和采伐措施等,提高人工林的经济、社会效益并且获得最大化的固碳潜力成为国内外关注的焦点。在中国广西,我们选择了树龄25a的马尾松、红锥、火力楠和米老排4类主要的亚热带人工林类型,研究了不同造林树种对土壤碳储量,碳库稳定性和温室气体排放的影响。预期从森林土壤固碳潜力和持续固持能力考虑,为在亚热带地区筛选造林树种提供科学依据。研究结果表明:(1)不同树种对土壤碳储量的影响仅表现在土壤表层(0-10 cm);(2)马尾松林土壤碳储量比红锥、火力楠和米老排林分别低11%、19%和18%;(3)13C核磁共振波谱显示马尾松林土壤碳的稳定性高的组分比例明显高于红锥、火力楠和米老排林;(4)马尾松林比其他三种阔叶林具有较低的土壤CO2和N2O排放速率,并且具有较高的土壤CH4吸收速率。以上结果说明红锥、火力楠和米老排3种阔叶林虽然比马尾松林有较高的土壤碳储量,但土壤碳的稳定性较低并且土壤温室气体排放较高。因此,在我国亚热带地区,从森林土壤的固碳潜力和持续固持能力考虑,马尾松等人工针叶林应该与人工阔叶林均衡发展,空间上合理配置森林类型,维持适宜的森林景观多样性,森林的经营管理需要综合考虑树种对土壤碳储量及其稳定性的影响。很多研究表明随林龄升高,土壤表面碳通量随之改变。事实上,在研究林龄与土壤呼吸的关系时,大多数研究只测定了总的土壤呼吸通量,而较少研究区分了自氧和异氧呼吸对土壤总呼吸的贡献。然而,根呼吸占土壤呼吸的比例是不可忽视的,占到了土壤呼吸总量的10-90%。另外,目前大多数的土壤呼吸模拟模型并未分别估计土壤呼吸中的自氧和异氧组分,而近来有研究表明,土壤呼吸中自氧和异氧呼吸具有不同的温度敏感性,也就是两个组分对气候变化的响应是有差异的,因而有必要对两种组分进行区分研究。通过区分土壤呼吸不同组分,不仅可以阐明土壤呼吸随林龄的变化规律,还可以进一步阐明土壤呼吸随林龄的变化规律是由土壤呼吸中哪个组分的贡献起到了更关键的作用。因此,了解不同林龄土壤呼吸的控制因素对于估计中国森林碳收支具有重要意义。通过暖温带地区典型群落锐齿栎年龄序列(幼林,中龄林,成熟林,过熟林)土壤自氧和异氧呼吸研究发现:1) 各林龄根系呼吸的时间变异同异氧呼吸一样,可以很好的被土壤温度所解释。但不同林龄根系呼吸的季节格局存在差异,即不同林龄间物候特征可能存在差异;2) 不同林龄土壤自氧,异氧呼吸存在显著差异。土壤总呼吸随林龄增加而增加。土壤异氧呼吸也随林龄增加而增加;3)土壤表层的轻组有机碳库很大程度上解释了土壤异氧呼吸的空间变异。我们没有发现细根生物量与根系呼吸很好的相关性,但土壤基础呼吸很大程度上依赖于细根生物量,表明根际对土壤呼吸的影响;4)异氧呼吸表面温度敏感性高于自氧呼吸,表明该地区土壤微生物呼吸对未来气候变化将更加敏感;5)林龄增加造成了成熟林和过熟林土壤毛管空隙度的降低,一定程度上解释了这两种林龄较高的土壤呼吸通量,尤其在土壤水分含量较高时解释程度更高。以上结果表明,组分分离在评价林龄对土壤呼吸影响时的重要性;该区土壤异氧呼吸对未来全球变暖响应较自氧呼吸更加敏感。通过以上研究,了解了部分典型的森林管理模式下土壤固碳潜力和持续固碳能力的变化规律,增强了对我国陆地生态系统固碳潜力评估的不确定性的理解。但是,对我国陆地生态系统管理影响土壤碳截获的关键科学问题仍需进一步地深入探讨专家简介:中国林业科学研究院副院长、研究员,森林生态学首席专家,博士生导师,长期从事森林生态系统与森林景观生态学研究,涉及生产力生态学、养分循环、恢复生态学、生态水文学和全球变化对森林影响机制等方面研究。国家级垮世纪学术技术带头人,国家杰出青年基金获得者。曾取得过国家科技进步二等奖二项、省部级科技进步三等奖三项,获第四届中国林业青年科技奖,主编或参编的学术专著有10部,在国内外发表学术论文120余篇。
我在土壤科学这本学术期刊上看到,有分析土壤有机质分布及其与土壤理化性质的关系,有的写修复技术,有的分析土壤有机质分析技术和应用……这些你都可以参考学习下
我在土壤科学这本学术期刊上看到,有分析土壤有机质分布及其与土壤理化性质的关系,有的写修复技术,有的分析土壤有机质分析技术和应用……这些你都可以参考学习下
meiyou
土壤污染隐患排查工作问题和关键技术论文
从小学、初中、高中到大学乃至工作,大家都写过论文,肯定对各类论文都很熟悉吧,借助论文可以达到探讨问题进行学术研究的目的。一篇什么样的论文才能称为优秀论文呢?以下是我帮大家整理的土壤污染隐患排查工作问题和关键技术论文,仅供参考,希望能够帮助到大家。
摘要:
本文通过阐述开展土壤污染隐患排查工作的意义,分析土壤污染隐患排查工作要点,提出当前隐患排查工作存在的问题并列举实例,建立隐患排查台账和整改问题清单,督促企业整改落实,使隐患排查成果得以应用发挥效果。
关键词:
意义;重点及方法;实例;应用;
1、对开展土壤污染隐患调查的重要意义
土壤是生态系统的基本要素之一,是人类生存的物质基础,是人类社会不可缺少的丰富资源,土壤污染具有累积性、隐蔽性、长期性的特点,且污染成分复杂、污染含量高,其空间变异性、不确定性因素较大,导致后期修复治理周期长、费用很高。“十四五”要深入打好污染防治攻坚战,其中就包括净土保卫战,其中一点就是要重点深化土壤污染重点监管单位监管,持续开展土壤污染隐患排查整治工作。隐患排查是一项有效的土壤污染预防措施,企业通过实施土壤污染隐患排查,可以及时发现土壤污染隐患或者土壤污染,及时采取措施消除隐患,提高风险管控,防止污染扩散对土壤和地下水造成的`不良后果,降低后期土壤和地下水修复的成本。土壤和地下水污染的预防和控制直接关系农产品的质量和安全、人民的健康以及经济和社会的可持续发展[1]。
2、当前隐患排查工作存在的问题
个别土壤污染重点监管单位未高度重视,排查工作停留在表面,敷衍了事,排查问题数量不仅少,而且质量不高,不能深层次地发现、挖掘存在的问题,导致对造成污染的生产设施、设备、工艺管线、储罐等做不到及时修复、管控、治理,日积月累加剧土壤和地下水污染,影响人们的身体健康。
3、排查工作要点
、排查原则
根据土壤和地下水隐患排查的内容及管理要求及企业实际情况,隐患排查工作遵循以下几点原则:
(1)针对性原则,针对厂区涉及的特征和潜在污染物特性进行排查,为场地的环境管理提供依据;
(2)规范性原则,采用程序化和系统化的方式规范场地调查过程,保证调查过程的科学性和客观性;
(3)可操作性原则,综合考虑调查方法、时间和经费等因素,结合当前科技发展和专业技术水平使调查过程切实可行。
、排查重点及方法
首先区分行业类别,再规范企业排查重点。一般从企业原始资料、管理制度等软环境着手,同时注重企业自行监测报告成果应用,综合分析确定排查重点场所、重点设施,形成排查清单;再从企业现场就重点场所、重点设施等内容,逐一开展全面排查。
、从企业原始资料下手开展隐患排查
重点从企业环评、生产工艺设计、项目建设工程验收、工程监理、生产设备、污水治理设施及地下管道、储罐、构筑物清单及其主要场所防渗、防腐设计等原始资料,开展书面资料全面检查核实,排查是否存在土壤污染隐患,并通过使用、涉及年限、寿命剖析、明确隐患排查方向和重点。以焦化行业为例,其焦炉生产区、熄焦塔、煤气净化的冷鼓区、初冷区、电扑焦油区、脱硫工段区、硫磺工区、硫氨工段区、粗苯工段区、成品罐区、脱硫废液提盐工段区、各类围堰、污水处理站、熄焦塔冷却池、厂区事故水池、厂区初期雨水收集池、煤气净化各工段地下槽水泥池、雨水收集沟等重点区域是否有防渗设计图纸、施工监理、工程验收等;地下管道、储罐是否有防腐设计以及截至目前使用年限;地上储罐是否防腐或双层罐、各储罐是否配齐围堰。逐一建立排查清单,根据原始资料排查出的缺陷,确定隐患重点。在此基础上,通过进一步资料收集、人员访谈,确定重点场所和重点设施设备,即可能或易发生有毒有害物质渗漏、流失、扬散的场所和设施设备,建立原始资料发现问题清单和整改台账。
、注重企业自行监测报告成果应用
紧紧结合上年度企业土壤和地下水自行监测报告,根据检测结果及结论分析,确定现场排查重点,将检测点位出现的污染趋势或超标情况,追根溯源到生产设备、设施、工艺管线和储罐,作为现场排查重点,建立自行监测发现问题清单和整改台账。
、现场排查重点场所、重点设施,形成排查清单
根据每个生产工艺确定的排查清单,全面开展现场排查,按照有毒有害物质产生、贮存、转运、处置等环节,逐点位确认企业是否存在土壤污染隐患。对现场排查出的问题,逐个建立问题整改清单和整改台账。
(1)肉眼可见隐患现象排查:现场检查各类设备、设施、地上地下储槽、储罐、地上地下管道、阀门以及各类泵体、风机等是否存在跑冒滴漏渗问题,现场地面是否有明显污染痕迹,防渗地面是否有肉眼可见裂纹、裂缝及破损、老化现象。
(2)制度建设方面排查:车间班组是否建立定期巡查、巡检制度;是否以车间班组为单位,建立相应土壤污染防治方面的岗位操作规程、岗位管理制度、相关奖惩制度、岗位责任制、月考核制度等。
(3)土壤污染防治措施方面排查:检查每个车间班组是否建立和完善日常运行、管理、设备巡检、维修活动及岗位操作,预防土壤污染的跑、冒、滴、漏、渗、洒、溅落等相关措施和配备了相关设施(如设备、设施的防止机油、液体物料洒落滴溅的底座托盘、检修托盘、接油桶、围堰等)。
(4)应急方面的排查:检查各车间班组是否建立应对突发泄漏、流失、扬散等紧急事故情况下的应急预案,是否配备相应应急物资及设施等。
(5)培训方面的排查。现场检查各车间班组是否对岗位工人建立和实施岗位操作、巡检、巡查、维修、事故应急方面,开展防止造成土壤污染的专业技能、专业知识培训,是否有培训记录、培训照片,培训内容是否翔实、实际、可操作性强。
(6)排查设备、管道、储罐等检漏、报警设施配备情况及是否运行有效,地下储罐、储槽、地下管线等是否按要求配备了泄漏检测及报警装置,是否能正常有效发挥作用。
4、列举现场排查问题实例
针对重点场所和重点设施设备,通过土壤污染预防设施设备(硬件)和管理措施(软件)的组合排查,排查土壤污染预防设施设备的配备和运行情况,有关预防土壤污染管理制度建立和执行情况,综合分析是否能有效防止和及时发现有毒有害物质渗漏、流失、扬散,并形成隐患排查台账。对现场排查出的问题,逐个建立问题整改清单和整改台账。
实例1:现场检查各类设备、设施、地上地下储槽、储罐、阀门以及各类泵体、风机是否存在液体、油类或油污水跑、冒、滴、漏问题,现场地面是否存有明显污染痕迹,防渗地面是否有肉眼可见的裂纹、裂缝及破损、老坏现象。如某生产区为砖沏地面,无防渗措施;某一区域现场可见混凝土地面存在较大缝隙,防渗效果无法保证,某液体泵和阀门日常滴漏无托盘等污染防治措施。
实例2:检查车间班组是否建立定期巡查、巡检制度;是否以车间班组为单位,建立相应土壤污染防治方面的岗位操作规程、岗位管理制度、相关奖惩制度、岗位责任制、月考核制度等。最大的隐患来源于制度、责任缺失。如,个别企业未建立定期巡查、巡检制度,日常漏油未及时采取防治措施;个别企业未建立土壤污染防治岗位操作规程及管理制度;无土壤污染防治奖惩制度、月考核制度等,对日常存在的污染隐患不重视,视而不见。部分企业在岗位操作、巡检、巡查、维修、事故应急方面,无土壤污染防治专业技能、专业知识培训内容,导致现场管理不到位。
实例3:检查应急预案及应急措施落实情况。如,个别企业应对突发泄漏、流失、扬散等紧急事故情况下的应急预案及相应应急物资及设施不完善;预案内容流于形式,无实际可操作内容,为了应付而应付;无相应的应急物质储备;部分企业地下储罐、储槽未配备泄漏检测设施等问题十分普遍。
5、编制问题清单和整改记录表,督促企业实施整改
(1)根据隐患排查台账,制定整改方案,针对每个隐患提出具体整改措施,以及计划完成时间。整改方案应包括必要的设施设备提标改造或者管理整改措施。重点监管单位应按照整改方案进行隐患整改,形成隐患整改台账。
(2)针对隐患问题,逐项建立整改制度,明确专人负责,建立长效整改管理机制。
(3)制定隐患排查整治计划,定期向属地生态环境部门报送开展情况,确保按时按质完成土壤污染隐患排查整治。
(4)实施销账管理,每个问题明确到责任车间班组、具体负责人员,明确整改措施、完成时限,完成一个,销号一个[2]。
6、加强隐患排查成果应用
(1)隐患排查活动结束后,建立隐患排查档案并存档备查。隐患排查成果用于指导重点监管单位优化、加强土壤和地下水污染防治日常管理、制度建立、污染防治措施落实、每年自行监测点位布设等相关工作。
(2)完善重点环节土壤污染防治管理制度和预防措施,如加强土壤污染防治岗位责任及岗位技能、土壤污染防治知识培训。
(3)通过定期开展土壤污染隐患排查,不断提高土壤污染重点监管点位土壤污染防治管理水平。
7、结语
土壤污染已成为我国突出的环境问题,因此土壤污染治理已经迫在眉睫。本文在落实土壤污染治理预防排查中,如何履行职责,对排查工作进行举例概括,分析土壤污染隐患排查工作要点,希望加以细化完善后期对土壤污染的治理。
参考文献
[1]刘小彬某垃圾焚烧厂土壤自行监测与污染隐患排查分析[J].广东化工,2021,48(7)-137-139.
[2]杨月犁构建现代化土壤污染防治体系守护黑土地的探讨[J].环境保护与循环经济,202040(11):1-3.
[3]孙新宗浅析土壤污染防治的难点与对策[J]环境与可持续发展,(3):140-142.