数学在人类文明的发展中起着非常重要的作用,数学推动了重大的科学技术进步。但在历史上, 限于技术条件,依据数学推理和推算所作的预见,往往要多年之后才能实现。数学为人类生产和生活 带来的效益容易被忽视。进入二十世纪,尤其是到了二十世纪中叶以后,科学技术发展到这一步:数 学理论研究与实际应用之间的时间差已大大缩短,特别是当前,随着电脑应用的普及,信息的数字化 和信息通道的大规模联网,依据数学所作的创造设想已经达到可即时试验、即时实施的地步。数学技 术将是一种应用最广泛、最直接、最及时、最富创造力和重要的实用技术, 一、数学与科学技术进步 二十世纪科学技术进步给人类生产和生活带来的巨大变化确实令人赞叹不已。从远古时代 起一直是人们幻想的“顺风耳”,“千里眼”,“空中飞行”和“飞向太空”都在这一世纪成为现实。回 顾二十世纪的重大科学技术进步,以下几个项目元疑是影响最大的,而数学的预见和推动作用是 非常关键。 (1)先有了麦克斯韦方程人们从数学上论证了电磁波,其后赫兹才有可能做发射电磁波的实 验,接着才会有电磁波声光信息传递技术的发展。 (2)爱因斯但相对论的质能公式首先从数学上论证了原子反应将释放出的巨大能量,预示了 原子能时代的来临.随后人们才在技术上实现了这一预见,到了今天,原子能已成为发达国家电 力能源的主要组成部分。 (3)牛顿当年已经通过数学计算预见了发射人造天体的可能性,差不多过了将近三个世纪, 人们才实现了这一预见。 (4)电子数字计算机的诞生和发展完全是在数学理论的指导下进行的。数学家图灵和冯诺依 曼的研究对这一重大科学技术进步起了关键性的推动作用。 (5)遗传与变异现象虽然早就为人们所注意。生产和生活中也曾培养过动植物新品种。遗传 的机制却很长时间得不到合理解释,十九世纪60年代,孟德尔以组合数学模型来解释他通过长 达8年的实验观察得到的遗传统计资料,从而预见了遗传基因的存在性。多年以后,人们才发现 了遗传基因的实际承载体,到了本世纪50年代沃森和克里发现了DNA分子的双螺旋结构。这以 后,数学更深刻地进入遗传密码的破译研究。 数学是人类理性思维的重要方式,数学模型,数学研究和数学推断往往能作出先于具体经验 的预见。这种预见并非出于幻想而是出于对以数学方式表现出来的自然规律和必然性的认识,随 着科学技术的发展,数学、预见的精确性和可检验性日益显示其重意义。 二、时代大潮的潮头 我们面临一个科学技术迅猛发展的时代。信息的数字化和信息的数学处理已经成为几乎所 有高科技项目共同的核心技术。从事先设计、制定方案,到试验探索、不断改进,到指挥控制、具体 操作,处处倚重于数学技术。众多新闻报道反映出这一时代大潮汹涌澎湃的势头。下面列举的仅 仅是其中一小部分。 (1)数学技术已经成为工业新产品研制设计的重要关键技术。1994年4月9日,被称为“百 分之百数字化确定”的波音777型飞机举行盛大隆重的出厂典礼.在过去,进行新机型设计,必须 对模型构件和样机反复作强度试验和空气动力学性。:试验。稍有不妥,就必须改变设计再来一轮 试验。新机种的研制周期长达十余年,消耗大量原材料和能源,采用了数学技术以后,所有的试验 可以通过精确设定的数学模型在计算机中进行,探索和修改都可以通过数学指令去实现。新机种 的研制周期从十多年缩短到三年半,大幅度节约了原材料和能源。 (2)许多国家认识到,发展高清晰度电视是未来经济技术竞争的主战场之一。日本和美国都 投入大量资金和人力进行有关研究,日本起步最早,但所研究的是模拟式的;美国虽然起步稍晚, 但所研究的是数字式的。经过多年的较量,数字式研究以其高度优越性取得关键性胜利。1994年 2月24日《人民日报》报道:日本政府正式宣布,转向研究数字式高清晰度电视,承认数字式因其 优越性而得到世界多数国家赞同,很可能成为未来的国际标准。 应该指出,电视屏幕不仅是现代人们日常生活所不可缺少的,而且可能通过联网成为信息传 递处理的工作面。几乎所有重要的工作岗位都将与之有关。数学技术在如此重要项目的激烈较量 中起了决定作用。 (3)199=年的海湾战争是一场现代高科技战争,其核心技术竟然也是数学技术。这一事实引 起人们不小的惊讶。美国总结海湾战争经验得出结论是:“未来的战场是数字化的战争”。干扰和失真是电磁波通信的一大难题。早在六十年代太空开发竞争的初期,美国施行。‘阿波罗登登月计划时,就已经意识到:由于太空中过强的干扰,无论依靠怎样精密的电子硬件设备 ,也 无法收到任何有用的信息,更不用说操纵控制了,采用了信息数字化、纠错编码、数字滤波等一整套数学通讯技术和数学控制技术之后,送人登月的计划才得以顺利完成,二十年后,在海湾战争 中,多国部队方面使用这一套技术把对方干扰得既聋又瞎,却能让自己方面的信息畅通无阻。采 用精密酌数学技术,可以在短短数十秒的时间内准确拦截对方发射的导弹,又可以引导对方发射 导弹准确击中对方的目标。也正是这一套信息数字化的数学技术,在开发高清晰度电视的竞争中 取得压倒性的胜利。开发一种数学技术可以在,。此众多方面施展效用,足见数学的广泛适用性。 (4)1995年1月,在贩神大地震之后,美国利用数学模型进行地震预测,预告本世纪末加州南部可能发生大地震。 (5)1995年3月,我国中央人民广播电台宣布启用数字式转播方式,指出以前的模拟式转播 方式效果差,所以改用新的转播方式。 (6)1995年6月,欧州联盟开会研讨未来数字化通信的统一制式。 (7)1996年2月,我国电子工业部宣布“九五计划”开发重点:数字化信息技术。所订的两个重 点研制项目是:数字式高清晰度电视接受机样机和数字式激光盘。 (8)1996年4月,我国国家科委发布招标公告,正式宣布数字式高清晰度电视开发项目。 三、当代与未来的发展倚重数学 仅以几件事为例就能清楚地看到数学对当代人们的生产和生活所起的重要作用。当代的生 产和生活离不开石油,石油勘探和生产需要了解地层结构。多年以来已经发展了一整套数学模型 和数学程序。人们发射地震波,然后将各个层面反射回来的信息收集起来力。以数学处理,就能将 地层各个剖面的图像和地层结构的全貌展现出来。这已是目前石油勘探与生产普遍采用的数学 技术。无独有偶,涉及到人的生命也有类似的情况,医生需要了解病人躯体内部和器官内部的状 况与变异,以前的调光片将骨骼和各种器官全都重叠在一起,往往难以辨认)现在也有了一整套 数学方案。借助了精密设备收集射线穿透人体或核磁共振带出的信息力。以数学处理就能将人体各个削面的状况清晰地层现出来,需要了解哪个层面就可以调出哪个层面的图片来,关系到人们 的生产与生活,这样的例证很多很多。在涉及生存与发展的关键时刻,特别是在涉及人类命运的紧要关头,数学也起着非常重要的 作用。在进入本世纪最后十年的时候,美国国家研究委员会公布了两份重要报告《人人关心数学 教育的未来》和《振兴美国数学—— 90 年代的计划》.两份报告都提到:近半个世纪以来,有三个时 期数学的应用受到特别重视,促进了数学的爆炸性发展,“第二次世界大战促成了许多新的强有 力数学方法的发展……“由于苏联人造卫星发射的刺激,美国政府增加投入促进了数学研究与数 学教育的发展”,“计算机的使用扩大了对数学的需求”.在二次世界大战太平洋战场的关键时刻, 由于采用数学方法破译日军密码,美国海军才能在舰只力量对比绝对劣势的情况下,赢得中途岛 海战的胜利,歼灭日本联合舰队的主力,扭转整个太平洋战局。在关系人类命运的二次世界大战 中,美国几乎是整个反法西斯战线的后勤补给基地。到了反攻阶段,要组织跨越两个大洋的大规 模行动,物资调运和后勤支援成了非常关键的问题,这刺激了有关数学方法的迅速发展。这期间 发展起来并且在战后迅速普及到各个方面的线性规划实用数学技术,为人类带来了数以千亿计 的巨大效益。到了1957年,苏联将第一颗人造卫星迭人太空,震撼了美国朝野。意识到有关数学 应用方面的差距,美国政府加大投入,促进了数学研究与数学教育的迅速发展,随着计算机的发 展,对数学有了空前的需求,刺激数学进入了第三个大发展的时期。 已经有了很多很多极有说服力的例证,说明无论在日常的生产和生活中,还是在涉及生存和 发展的关键时刻,数学都起着非常重要的作用,在新世纪即将到来之前科学技术和生产的发展对 数学提出了空前的需求,我们必须把握时机增大投入,加强数学研究与数学教育,提高全民族的 数学素质,才能更好地迎接未来的挑战。
1640年,帕斯卡发表了《略论圆锥曲线》的论文,引出了400多条推论,提出了被笛沙格称为神秘的六边形的射影几何基本定理,作出了自阿波罗尼以来关于圆锥曲线的最重要研究。这个以帕斯卡的名字命名的几何定理很简洁;若一个六边形内接于一圆(更一般是圆锥曲线),则每两条对边相交而得到三个点,它们在同一条直线上。也可以说,如果圆内接六边形的三对对边所在直线分别相交,那么三个交点必定共线。数学史家认定,单就这一个定理,就足以让帕斯卡流芳百世。的确,这时的帕斯卡不过刚刚十六七岁。当时著名的大数学家笛卡尔读到论文时,不敢相信这么重要的定理竟然出自一个少年,他摇头说:“17岁的少年不会发现这个定理!”
1,高斯(1777—1855年)德国数学家、物理学家和天文学家.高斯在童年时代就表现出非凡的数学天才.年仅三岁,就学会了算术,八岁因发现等差数列求和公式而深得老师和同学的钦佩.大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件.解决了两千年来悬而未决的难题,1799年以代数基本定理的四个漂亮证明获博士学位.高斯的数学成就遍及各个领域,在数学许多方面的贡献都有着划时代的意义.并在天文学,大地测量学和磁学的研究中都有杰出的贡献.1801年发表的《算术研究》是数学史上为数不多的经典著作之一,它开辟了数论研究的全新时代.非欧几里得几何是高斯的又一重大发现,他的遗稿表明,他是非欧几何的创立者之一.高斯致力于天文学研究前后约20年,在这领域内的伟大著作之一是1809年发表的《天体运动理论》.高斯对物理学也有杰出贡献,麦克斯韦称高斯的磁学研究改造了整个科学.高斯的一生中,还培养了不少杰出的数学家. 2,苏菲娅•柯瓦列夫斯卡娅苏菲娅出生在沙皇俄国立陶宛边界的一座贵族庄园里,他父亲是退役的炮兵团团长.她很小就对数学很痴迷,经常对着墙壁上的数学公式和符号,一看就是好半天,原来,她房间里的糊墙纸是用高等数学的讲义做成的.苏菲娅14岁时便能够独立推导出三角公式,被称为“新巴斯卡”.随着时间的流逝,苏菲娅逐渐长大成人,她对数学的兴趣也与日俱增.但那时正处于沙皇时代,妇女是不允许注册高等学校学习的.而她的父亲又一心想让她像别的贵族姑娘一样,步人社交界,对她想学数学的心愿横加阻拦.于是,苏菲娅不顾父母的反对,与年轻的古生物学家柯瓦列夫斯基“假结婚”,来到德国的海德尔堡.但在那里,妇女听课要有一个专门的委员会认可才行.经过努力,她被允许旁听基础课.在此期间,她勤奋好学,掌握了深奥的数学知识,轰动了整个海德尔堡,成为人们谈论的话题.可她只被允许听了三个学期的课,便不得不离开了那里.苏菲娅深造心切,又慕名前往柏林工学院,打算去听著名数学家维尔斯特拉斯的课.但遗憾的是,柏林的大学不允许妇女听教授的课,苏菲娅到处吃闭门羹,最后,只好抱一线希望登门到维尔斯特拉斯家求教.维尔斯特拉斯(1815—1899)是一位德高望重的老数学家,他接见了苏菲娅,并向他提了一些超椭圆方面的问题,这些问题在当时都很新颖,没想到这位貌不惊人的女青年,解题技巧娴熟,思维方法独特,给老教授留下了深刻的印象.于是,维尔斯特拉斯破例答应苏菲娅每星期日在家里给她上课,每周还另抽一日到她的寓所登门授课.这样,苏菲娅在维尔斯特拉斯的悉心指导下学习了4年.她回忆这段经历时说:“这样的学习,对我整个数学生涯影响至深,它最终决定了我以后的科学研究方向.” 苏菲娅得到了维尔斯特拉斯的鼓励和指点.更加有了攀登科学高峰的勇气.她经过了4年的刻苦努力.写出了三篇出色的论文,引起了强烈的反响.这是史无前例的开创性工作.1874年,在维尔斯特拉斯的推荐下,24岁的苏菲娅荣获了德国第一流学府——哥廷根大学博士学位,成为世界上首屈一指的女数学家. 获得博士学位的苏菲娅,怀若一颗赤子之心回到了祖国,可俄国还是同她出国之前一样黑暗.她在祖国无法立足,只好又回到柏林.她根据维尔斯特拉斯的建议,研究光线在晶体中的折线问题.在1883年奥德赛科学大会上,她以出色的研究成果作了报告.可命运偏偏与她作对,当年春天.她丈夫因破产而自杀.听到这个不幸的消息,肝肠寸断.她把自己关在房间里,四天不吃不喝,第五天昏迷过去.不幸的遭遇,并没有打跨苏菲娅的斗志,第六天苏醒过后又开始顽强的工作.在瑞典数学家米达•列佛勒的帮助下,经过一番周折,苏菲娅才得以担任斯德哥尔摩大学的讲师,但当地报纸公然对她攻击:“一个女人当教授是有害和不愉快的现象——甚至,可以说那种人是一个怪物.”但苏菲娅无所畏惧,像男人那样走上了讲台.以生动的讲课,赢得了学生的热爱,击败了“男人样样胜过女人”的偏见.一年后,她被正式聘为高等分析教授,后来又兼聘为力学教授.苏菲娅在瑞典的任期满了,她一心想回国任教,可没能成功,只好在国外继续任教. 1891年,苏菲娅患肺炎因误诊导致病情恶化,与世长辞.她为争取妇女的自由斗争做出了艰苦努力,是妇女攀登科学高峰的光辉榜样.3,女数学家诺德1933年1月,希特勒一上台,就发布第一号法令,把犹太人比作“恶魔”,叫嚣着要粉碎“恶魔的权利”.不久,哥廷根大学接到命令,要学校辞退所有从事教育工作的纯犹太血统的人.在被驱赶的学者中,有一名妇女叫爱米•诺德(A.E.Noether 1882—1935),她是这所大学的教授,时年5l岁.她主持的讲座被迫停止,就连微薄的薪金也被取消.这位学术上很有造诣的女性,面对困境,却心地坦然,因为她一生都是在逆境中度过的.诺德生长在犹太籍数学教授的家庭里,从小就喜欢数学.1903年,21岁的诺德考进哥廷根大学,在那里,她听了克莱因、希尔伯特、闽可夫斯基等人的课,与数学解下了不解之缘.她学生时代就发表了几篇高质量的论文,25岁便成了世界上屈指可数的女数学博士.诺德在微分不等式、环和理想子群等的研究方面做出了杰出的贡献.但由于当时妇女地位低下,她连讲师都评不上,在大数学家希尔伯特的强烈支持下,诺德才由希尔伯特的“私人讲师”成为哥廷根大学第一名女讲师.接下来,由于她科研成果显著,又是在希尔伯特的推荐下,取得了“编外副教授”的资格,虽然她比起很多“教授”更有实力.诺德热爱数学教育事业,善于启发学生思考.她终生未婚,却有许许多多“孩子”.她与学生交往密切,和蔼可亲,人们亲切地把她周围的学生称为“诺德的孩子们”.我国代数学家曾炯之就是诺德“孩子”们中的一个.在希特勒的淫威下,诺德被迫离开哥廷根大学,去了美国工作.在美国,她同样受到学生们的尊敬和爱戴,同样有她的“孩子们”.1934年9月,美国设立了以诺德命名的博士后奖学金.不幸的是,诺德在美国工作不到两年,便死于外科手术,终年53岁.她的逝世,令很多数学同僚无限悲痛.爱因斯坦在《纽约时报》发表悼文说:“根据现在的权威数学家们的判断,诺德女士是自妇女受高等教育以来最重要的富于创造性数学天才.”4,欧几里德我们现在学习的几何学,是由古希腊数学家欧几里德(公无前330—前275)创立的。他在公元前300年编写的《几何原本》,2000多年来都被看作学习几何的标准课本,所以称欧几里德为几何之父。欧几里德生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。欧几里德汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。《原本》问世后,它的手抄本流传了1800多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。13世纪时曾传入中国,不久就失传了,1607年重新翻译了前六卷,1857年又翻译了后九卷。欧几里德善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度。”欧几里德是位温良敦厚的教育家。欧几里得也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。尽管欧几里德简化了他的几何学,国王(托勒密王)还是不理解,希望找一条学习几何的捷径。欧几里德说:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。一次,他的一个学生问他,学会几何学有什么好处?他幽默地对仆人说:“给他三个钱币,因为他想从学习中获取实利。”20世纪最杰出的数学家之一的冯•诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯•诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯•诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯•诺依曼还不到18岁. 5,塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
数学家的故事——苏步青 苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。 那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。 杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。 17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!” 这就是老一辈数学家那颗爱国的赤子之心
『壹』 数学家的故事70字 华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。 1930年,19岁的华罗内庚到清华大学读书容。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。 记者在一次采访时问他:“你最大的愿望是什么?” 他不加思索地回答:“工作到最后一天。” 『贰』 数学家的小故事简短 1、陈景润: 陈景润是我国有名的数学家。他不爱逛公园,不爱遛马路,就爱学习。他学习起来,常常忘记了吃饭睡觉。 有一天,陈景润在吃中饭的时候,摸摸脑袋发现头发太长了,应该快去理一理,要不,人家看见了,还当他是个大姑娘呢。于是,他放下饭碗,就跑到理发店去了。在青年时代,他便对刘歆、张衡、王蕃、刘徽等人的工作进行了深入细致的研究,驳正了他们的错误.以后他继续钻研,在科学技术方面作出极有价值的贡献.精确到小数点后第六位数的圆周率,便是他其中最杰出的成就之一.在天文历法方面,他曾将自古代到他生活年代为止所有可以搜罗到的文献资料,全部整理了一遍,并且通过亲自观测和推算,做了深切的验证.他指出当时所流行的何承天(公元370-447年)编定的历法有许多严重的错误.因此他便开始编制另一种新的历法。『叁』 数学家的故事500字 《数学家的故事》是2009年四川大学出版社出版的图书,作者是孙剑。本书通过感人、有趣的数学家的历史事例,以及一些数学史上的重大事件,让学生了解历史上中外杰出的数学家的生平和数学成就,感受前辈大师严谨治学、锲而不舍的探索精神。 『肆』 数学家的名人轶事读后感600字! 你雅中的吧,我也是 这是我提问的得到的答案 我读了一本书,书的名字叫《数学家的故事》,讲述了许多数学名人的故事。比如毕达哥拉斯、阿基米德、高斯……其中,我最感兴趣的是关于祖冲之的故事。 祖冲之是我国南北朝时期一位伟大的科学家,他对圆周率的计算得出了非常精确的结果。这篇文章讲的是祖冲之经过很长时间的编写,终于写成了《大明历》,他上书皇帝,请求颁布实行。皇帝命令主管天文历法的宠臣戴法兴进行审查。但是戴法兴思想保守,是个腐朽势力的卫道士,他极力反对新历法。面对戴法兴的刁难、攻击,祖冲之寸步不让,和他唇枪舌剑的辩论。最终,《大明历》没有通过,后来在祖冲之去世后10年,《大明历》才颁布实行。 读了这个故事,使我对祖冲之坚贞不屈的精神非常敬佩。正因为他有这样的精神,才能持之以恒地坚持。是啊,任何事情要取得成功,都离不开“坚持”两个字。不由地,我想到了许多人,有文化名人、爱国将士,他们何尝没有这样的精神呢! 读《数学家的故事》让我更加喜欢数学,更让我懂得了许多道理。其实,学习数学并不难,数学王子高斯曾有三大秘诀:1.善于观察 2.善于动手 3.善于思考。其实,只要我们喜爱数学,就一定能学好数学!如果我们像数学先辈们那样努力,数学一定又能有新的突破! 行不? 『伍』 十个数学家的小故事 说一个重量级的人物,他叫做冯·诺依曼,曾经参加过原子弹的制造,构筑了现代计算机的架构,进行了第一次可靠的现代数值气象预报。他也是二十世纪最杰出的数学家之一,他记忆力超群,可以一字不差地张口引用15年前度过的《大英网络全书》或《双城记》,同时他的心算能力也很厉害,下面我们通过几个故事来更进一步地了解他。 但这样有趣并且对世界有重要贡献的人,却英年早逝,与1957年在美国去世,享年54岁。我们如今在使用计算机,看天气预报时,一定要记得背后是这些数学家和科学家的贡献,他们让世界更美好。 『陆』 6个数学家的故事(最好不超过50个字) 数学陈景润的小故事 数学家陈景润边思考问题边走路,撞到一棵树干上,头也不抬说:“对不起、对不起。”继续思考。数学家鲁道夫的小故事 16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上。数学家雅谷伯努利的小故事 瑞士数学家雅谷伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。 阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。 数学家雅谷伯努利的小故事 瑞士数学家雅谷伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。 - 『柒』 急求数学家故事、数学史!!!!!一篇不少于600字,需要五篇 阿基米德(前287年—前212年),伟大的古希腊哲学家、数学家、物理学 阿基米德 家。出生于西西里岛的叙拉古。阿基米德到过亚历山大里亚,据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机,今天在埃及仍旧使用着。第二次布匿战争时期,罗马大军围攻叙拉古,最后阿基米德不幸死在罗马士兵之手。 阿基米德出生在希腊西西里岛东南端的叙拉古城。在当时古希腊的辉煌文化已经逐渐衰退,经济、文化中心逐渐转移到埃及的亚历山大城;但是另一方面,意大利半岛上新兴的罗马帝国,也正不断的扩张势力;北非也有新的国家迦太基兴起。阿基米德就是生长在这种新旧势力交替的时代,而叙拉古城也就成为许多势力的角力场所。 阿基米德的父亲是天文学家和数学家,所以他从小受家庭影响,十分喜爱数学。大概在他九岁时,父亲送他到埃及的亚历山大城念书,亚历山大城是当时世界的知识、文化中心,学者云集,举凡文学、数学、天文学、医学的研究都很发达,阿基米德在这里跟随许多著名的数学家学习,包括有名的几何学大师—欧几里德,因此奠定了他日后从事科学研究的基础。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 芝诺生活在古代希腊的埃利亚城邦.他是埃利亚学派的著名哲学家巴门尼德(Parmenides)的学生和朋友.关于他的生平,缺少可靠的文字记载.柏拉图在他的对话《巴门尼德》篇中,记叙了芝诺和巴门尼德于公元前5世纪中叶去雅典的一次访问.其中说:“巴门尼德年事已高,约65岁;头发很白,但仪表堂堂.那时芝诺约40岁,身材魁梧而美观,人家说他已变成巴门尼德所钟爱的了。”按照以后的 芝诺 希腊著作家们的意见,这次访问乃是柏拉图的虚构.然而柏拉图在书中记述的芝诺的观点,却被普遍认为是相当准确的.据信芝诺为巴门尼德的“存在论”辩护.但是不象他的老师那样企图从正面去证明存在是“一”不是“多”,是“静”不是“动”,他常常用归谬法从反面去证明:“如果事物是多数的,将要比是‘一’的假设得出更可笑的结果。”他用同样的方法,巧妙地构想出一些关于运动的论点.他的这些议论,就是所谓“芝诺悖论”.芝诺有一本著作《论自然》.在柏拉图的《巴门尼德》篇中,当芝诺谈到自己的著作时说:“由于青年时的好胜著成此篇,著成后,人即将它窃去,以致我不能决断,是否应当让它问世.”公元5世纪的评论家普罗克洛斯(Proclus)在给这段话写的评注中说,芝诺从“多”和运动的假设出发,一共推出了40个各不相同的悖论.芝诺的著作久已失传,亚里士多德的《物理学》和辛普里西奥斯(Simplici-us)为《物理学》作的注释是了解芝诺悖论的主要依据,此外还有少量零星残篇可提供佐证.现存的芝诺悖论至少有 8个,其中关于运动的4个悖论尤为著名. 关于芝诺之死,有一则广为流传但情节说法不一的故事说,芝诺因蓄谋反对埃利亚(另一说为叙拉古)的僭主,而被拘捕、拷打,直至处死. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 伯特兰·亚瑟·威廉·罗素(1872—1970),英国哲学家、数学家、逻辑学家。英国剑桥大学三一学院毕业后留校任教。1920年曾来中国讲学。1938—1944年在美国芝加哥大学、加利福尼亚大学讲学。1950年获诺贝尔文学奖。在哲学上,早期为新实在论者,20世纪初提出逻辑原子主义和中元一元论学说。在数学上,从事过数理逻辑和数学基础的研究。以他命名的“罗素悖论”曾对20世纪的数学基础发生过重大影响,其与怀特海的巨著《数学原理》中提出的逻辑类型论成功的解决了包括罗素悖论在内的不少悖论,并且成为人类数学和数理逻辑历史上里程碑式的著作,正是这本巨著使罗素获得了崇高的声誉。在教育上,主张自由教育,认为教育的基本目的应该是培养“活力、勇气、敏感、智慧”四种品质。在政治上,反对侵略战争,倡导和平主义。重要著作有《哲学原理》、《哲学问题》、《心的分析》、《物的分析》、《西方哲学史》、《论教育》等。 人物生平 伯特兰·亚瑟·威廉·罗素(1872年——1970年),20世纪著名的资产阶级思想家和社会活动家,一生著作达40余部,论文或其他文章更多。他在多方面的建树深刻地影响了西方哲学。 孤独的童年 1872年5月18日,罗素出生于英国蒙茅斯郡特雷莱克一个贵族家庭。他的祖父约翰·罗素伯爵两次出任首相,是争取1832年英国改革法案通过的领导人。罗素两岁时他的母亲死去,大约一年后他的父亲和姐姐也谢世了。祖父祖母自愿承担了抚养孩子的责任。罗素的祖母具有自由主义政治观点,常教导罗素要反思自己的思想和行为。祖母是一个虔诚的清教徒,严格简朴的家教使得罗素备受压抑,他每天早上要用冷水沐浴,大人从来不给水果,也从来喝不到啤酒,因此少年时代的罗素性格内向,他没有被送到学校读书,从小由外籍保姆和家庭教师照顾,学习德文,法文,意大利文。罗素的祖父有一个藏书极为丰富的图书馆,他经常藏身其中广泛吸收文学、历史、地理等方面的知识,他有勤于思考的习惯,这无疑受其祖母的影响。他自己也承认,从五岁起他就感到生活的无聊而常常独步于园中,有时还因厌倦而有自杀的念头,罗素的童年生活为他的孤僻、高傲、多疑、易变的性格以及特有的依赖性思想形成提供了孽生的神经因子和原始土壤。 罗素11岁时,跟着他的哥哥学习欧氏几何学,当时他只能接受定义,却怀疑公理的可靠性。这种怀疑决定了罗素哲学生涯的风格和目标,即以怀疑主义和谨慎的风格,探求“我们能知道多少以及具有何种程度”的确定性和可疑性。 1890年10月,罗素考入剑桥大学三一学院,从而进入空气清新、思想活跃的教育园地。然而老师对他影响不大,倒是与同学的交往使他受益颇深。不久,他同学校的著名人物怀特海、莫尔、麦克塔格特、经济学家凯恩斯等人结识,很快他便成为他们中间最受欢迎的一员。在第三学年时,罗素虽以优异成绩通过学位考试,却发誓再也不念这种只注重技巧而不重视基础理论证明的数学了,改学哲学。他立志要像黑格尔那样,建立一套哲学体系,献身于哲学事业。 罗素大学刚毕业时,深信黑格尔、康德的哲学。1893年他写了数学哲学论文《论几何学基础》,试图修补康德所谓的时空形式是先天综合判断的理论。这使他获得了剑桥大学研究员的资格。 当时德国的数学理论非常先进,正酝酿着一次根本性的变革。当罗素深入掌握了这些理论之后,他断然放弃自己推崇已久的唯心主义观点,转向实在论,决心寻求一种正确的数学理论。 1900年7月,遇到象征逻辑创始人皮诺。罗素读了皮诺的著作,他感到许多问题突然都有了答案。同年10月,他同怀特海合写《数学原理》,并于1910年、1911年、1912年分三大卷出版。这部书在逻辑发展史上是划时代的。从此,逻辑脱离哲学而独立,后来德国的大学就把数理逻辑归入数学系。凡此都证明了罗素的特殊地位。 罗素发现人们力图用逻辑学为数学奠定理论基础的过程中,有一个常常用来说明其他概念的基础概念“总类”是自相矛盾的,由此他建立了“悖论”学说,又称“罗素悖论”。为了证实“罗素悖论”,许多数学家和逻辑学家提出各种理论方案,都解释不通。罗素本人也中断《数学原理》的写作,对此作进一步研究。后来他提出“类型论”来解释这种现象。“类型论”的影响也很大,它促使数学家认识某些词语和语义研究的重要性,也孕育着罗素本人的另一种哲学思想,即逻辑原子主义的原理。 罗素的逻辑原子主义的基本论点是,世界是由一些简单的特殊事实构成的,它们只有简单的性质和相互之间的简单的关系,因此了解任何事物或主题的实质的途径是分析,直到无可再分析的“逻辑原子”为止。逻辑原子并不是小粒的物质,而是构成事物的所谓观念。罗素的这一套理论,对20年代中叶出现的维也纳学派以及30年代出现的逻辑语义学有着巨大的影响。 罗素哲学思想中比较重要的,是他的“中立一元论”。大意是构成世界的材料既不是纯粹的心,又不是纯粹的物,也不是心物的二元对立,而是一种非心非物、对于心物都取中立态度的东西。这种中立的事物有时指事件,有时又指感官和材料,这种“世界材料”是构成心物最原始的东西。这些观点都体现在他1921年完成的《物的分析》和《心的分析》两部著作中。 罗素一向热衷于政治理论的探讨,并积极参与各种政治活动。早在1895年,他第一次结婚之后,同妻子一起旅游了欧洲大陆,他研究了经济和德国社会的民主,并盛赞《 *** 宣言》和三大卷《资本论》都是极富文采的伟大名著。当时他与社会民主党领袖、马克思主义者倍倍尔、李卜克内西都有往来。第一次世界大战期间,他积极从事反战活动。他参加了禁止征兵协会,发表了一系列呼吁和平的演讲,对拒绝参加罪恶战争的人给予真诚帮助。1916年因为撰写反战传单被罚款100英镑,由于其拒付,法庭就拍卖了他在剑桥大学的图书作抵押。随后三一学院也解除了他的教职。1918年,他又给反战报纸写社论,因“侮辱同盟国”而被监禁6个月。鉴于其名声,他被判决在布里克斯顿监狱中的一个小屋中写作和研究。战争结束后,罗素访问了苏联,会见了列宁、托洛茨基和高尔基,他对共产主义者信仰的目标表示同情,但也对苏联的政治和社会生活方式表示忧虑。1920年8月,罗素访问了中国。他一贯同情被压迫民族。在英布战争中,他站在布尔人一边,为此他在英国贵族中极为孤立 波恩哈德·黎曼德国数学家,物理学家 。1826年9月17日生于汉诺威布列斯伦茨,1866年7月20日卒于意大利塞那斯加 。1846年入格丁根大学读神学与哲学,后来转学数学,在大学期间有两年去柏林大学就读 ,受到 .雅可比和.狄利克雷的影响。1849年回格丁根。1851 年获博士学位 。1854 年成为格丁根大学的讲师,1859年接替狄利克雷成为教授。 1851 年论证 了复变 函数 可导的 必要充分 条件( 即柯西-黎曼方程) 。借助狄利克雷原理阐述了黎曼映射定理 ,成为函数的几何理论的基础。1853年定义了黎曼积分并研究了三角级数收敛的准则。1854年发扬了高斯关于曲面的微分几何研究,提出用流形的概念理解空间的实质,用微分弧长度的平方所确定的正定二次型理解度量,建立了黎曼空间的概念,把欧氏几何、非欧几何包进了他的体系之中。1857年发表的关于阿贝尔函数的研究论文,引出黎曼曲面的概念 ,将阿贝尔积分与阿贝尔函数的理论带到新的转折点并做系统的研究。其中对黎曼曲面从拓扑、分析、代数几何各角度作了深入研究。创造了一系列对代数拓扑发展影响深远的概念,阐明了后来为G.罗赫所补足的黎曼-罗赫定理。 编辑本段主要成果 在1858年发表的关于素数分布的论文中,研究了黎曼ζ函数,给出了ζ函数的积分表示与它满足的函数方程,他提出著名的黎曼猜想至今仍未解决。另外,他对偏微分方程及其在物理学中的应用有重大贡献。甚至对物理学本身,如对热学、电磁非超距作用和激波理论等也作出重要贡献。黎曼的工作直接影响了19世纪后半期的数学发展,许多杰出的数学家重新论证黎曼断言过的定理,在黎曼思想的影响下数学许多分支取得了辉煌成就。黎曼首先提出用复变函数论特别是用ζ函数研究数论的新思想和新方法,开创了解析数论的新时期,并对单复变函数论的发展有深刻的影响 。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Brook Taylor 18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor),于1685 年8月18日在米德尔塞克斯的埃德蒙顿出生。1709年后移居伦敦,获法学硕士学位。他在1712年当选为英国皇家学会会员,并于两年后获法学博士学位。同年(即1714年)出任英国皇家学会秘书,四年后因健康理由辞退职务。1717年,他以泰勒定理求解了数值方程。 最后在1731年12月29日于伦敦逝世。 泰勒的主要著作 泰勒的主要著作是1715年出版的《正的和反的增量方法》,书内以下列形式陈述出他已于1712年7月给其老师梅钦(数学家 、天文学家)信中首先提出的著名定理--泰勒定理:式内v为独立变量的增量, 及 为流数。他假定z随时间均匀变化,则 为常数。上述公式以现代形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成的,当x=0时便称作麦克劳林定理。1772年 ,拉格朗日强调了此公式之重要性,而且称之为微分学基本定理,但泰勒于证明当中并没有考虑级数的收敛性,因而使证明不严谨, 这工作直至十九世纪二十年代才由柯西完成。 泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程 导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。 1715年,他出版了另一名著《线性透视论》,更发表了再版的《线性透视原理》(1719)。他以极严密之形式展开其线性透 视学体系,其中最突出之贡献是提出和使用“没影点”概念, 这对摄影测量制图学之发展有一定影响。另外,还撰有哲学遗作,发表于1793年 『捌』 求5个数学家的故事,一个故事100字左右,不用太长。 ①蒲丰:一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。 蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。 ②数学魔术家:1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。 工作人员写出一个201位的大数,让求这个数的23次方根。 运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。 ③工作到最后一天的华罗庚:华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。 他对数论有很深的研究,得出了著名的华氏定理。记者在一次采访时问他:“你最大的愿望是什么?” 他不加思索地回答:“工作到最后一天。”他的确为科学辛劳工作的最后一天,实现了自己的诺言。④笛卡儿:法国哲学家,数学家,物理学家,解析几何学奠基人之一。他认为数学是其他一切科学的理论和模型,提出了数学为基础,以演绎为核心的方法论。《几何学》确定了笛卡儿在数学史上的地位。 ⑤韦达:法国数学家。年青时学习法律当过律师,后从事政治活动,当过议会议员,在西班牙的战争中曾为 *** 破译敌军密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示 已知数、未知数及其乘幂,带来了代数理论研究的重大进步。 韦达讨论了方程根的多种有理变换,发现了方程根与分数的关系,韦达在欧洲被尊称为“代数学之父”。1579年,韦达出版《应用于三角形的数学定律》,同时还发现,这是π的第一个分析表达式。 ⑥高斯 :高斯在小学二年级的时候,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,所以老师觉得出了他的题目,学生肯定是要算很久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情。 但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55。老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、…… 又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。
1,高斯(1777—1855年)德国数学家、物理学家和天文学家.高斯在童年时代就表现出非凡的数学天才.年仅三岁,就学会了算术,八岁因发现等差数列求和公式而深得老师和同学的钦佩.大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件.解决了两千年来悬而未决的难题,1799年以代数基本定理的四个漂亮证明获博士学位.高斯的数学成就遍及各个领域,在数学许多方面的贡献都有着划时代的意义.并在天文学,大地测量学和磁学的研究中都有杰出的贡献.1801年发表的《算术研究》是数学史上为数不多的经典著作之一,它开辟了数论研究的全新时代.非欧几里得几何是高斯的又一重大发现,他的遗稿表明,他是非欧几何的创立者之一.高斯致力于天文学研究前后约20年,在这领域内的伟大著作之一是1809年发表的《天体运动理论》.高斯对物理学也有杰出贡献,麦克斯韦称高斯的磁学研究改造了整个科学.高斯的一生中,还培养了不少杰出的数学家. 2,苏菲娅•柯瓦列夫斯卡娅苏菲娅出生在沙皇俄国立陶宛边界的一座贵族庄园里,他父亲是退役的炮兵团团长.她很小就对数学很痴迷,经常对着墙壁上的数学公式和符号,一看就是好半天,原来,她房间里的糊墙纸是用高等数学的讲义做成的.苏菲娅14岁时便能够独立推导出三角公式,被称为“新巴斯卡”.随着时间的流逝,苏菲娅逐渐长大成人,她对数学的兴趣也与日俱增.但那时正处于沙皇时代,妇女是不允许注册高等学校学习的.而她的父亲又一心想让她像别的贵族姑娘一样,步人社交界,对她想学数学的心愿横加阻拦.于是,苏菲娅不顾父母的反对,与年轻的古生物学家柯瓦列夫斯基“假结婚”,来到德国的海德尔堡.但在那里,妇女听课要有一个专门的委员会认可才行.经过努力,她被允许旁听基础课.在此期间,她勤奋好学,掌握了深奥的数学知识,轰动了整个海德尔堡,成为人们谈论的话题.可她只被允许听了三个学期的课,便不得不离开了那里.苏菲娅深造心切,又慕名前往柏林工学院,打算去听著名数学家维尔斯特拉斯的课.但遗憾的是,柏林的大学不允许妇女听教授的课,苏菲娅到处吃闭门羹,最后,只好抱一线希望登门到维尔斯特拉斯家求教.维尔斯特拉斯(1815—1899)是一位德高望重的老数学家,他接见了苏菲娅,并向他提了一些超椭圆方面的问题,这些问题在当时都很新颖,没想到这位貌不惊人的女青年,解题技巧娴熟,思维方法独特,给老教授留下了深刻的印象.于是,维尔斯特拉斯破例答应苏菲娅每星期日在家里给她上课,每周还另抽一日到她的寓所登门授课.这样,苏菲娅在维尔斯特拉斯的悉心指导下学习了4年.她回忆这段经历时说:“这样的学习,对我整个数学生涯影响至深,它最终决定了我以后的科学研究方向.” 苏菲娅得到了维尔斯特拉斯的鼓励和指点.更加有了攀登科学高峰的勇气.她经过了4年的刻苦努力.写出了三篇出色的论文,引起了强烈的反响.这是史无前例的开创性工作.1874年,在维尔斯特拉斯的推荐下,24岁的苏菲娅荣获了德国第一流学府——哥廷根大学博士学位,成为世界上首屈一指的女数学家. 获得博士学位的苏菲娅,怀若一颗赤子之心回到了祖国,可俄国还是同她出国之前一样黑暗.她在祖国无法立足,只好又回到柏林.她根据维尔斯特拉斯的建议,研究光线在晶体中的折线问题.在1883年奥德赛科学大会上,她以出色的研究成果作了报告.可命运偏偏与她作对,当年春天.她丈夫因破产而自杀.听到这个不幸的消息,肝肠寸断.她把自己关在房间里,四天不吃不喝,第五天昏迷过去.不幸的遭遇,并没有打跨苏菲娅的斗志,第六天苏醒过后又开始顽强的工作.在瑞典数学家米达•列佛勒的帮助下,经过一番周折,苏菲娅才得以担任斯德哥尔摩大学的讲师,但当地报纸公然对她攻击:“一个女人当教授是有害和不愉快的现象——甚至,可以说那种人是一个怪物.”但苏菲娅无所畏惧,像男人那样走上了讲台.以生动的讲课,赢得了学生的热爱,击败了“男人样样胜过女人”的偏见.一年后,她被正式聘为高等分析教授,后来又兼聘为力学教授.苏菲娅在瑞典的任期满了,她一心想回国任教,可没能成功,只好在国外继续任教. 1891年,苏菲娅患肺炎因误诊导致病情恶化,与世长辞.她为争取妇女的自由斗争做出了艰苦努力,是妇女攀登科学高峰的光辉榜样.3,女数学家诺德1933年1月,希特勒一上台,就发布第一号法令,把犹太人比作“恶魔”,叫嚣着要粉碎“恶魔的权利”.不久,哥廷根大学接到命令,要学校辞退所有从事教育工作的纯犹太血统的人.在被驱赶的学者中,有一名妇女叫爱米•诺德(A.E.Noether 1882—1935),她是这所大学的教授,时年5l岁.她主持的讲座被迫停止,就连微薄的薪金也被取消.这位学术上很有造诣的女性,面对困境,却心地坦然,因为她一生都是在逆境中度过的.诺德生长在犹太籍数学教授的家庭里,从小就喜欢数学.1903年,21岁的诺德考进哥廷根大学,在那里,她听了克莱因、希尔伯特、闽可夫斯基等人的课,与数学解下了不解之缘.她学生时代就发表了几篇高质量的论文,25岁便成了世界上屈指可数的女数学博士.诺德在微分不等式、环和理想子群等的研究方面做出了杰出的贡献.但由于当时妇女地位低下,她连讲师都评不上,在大数学家希尔伯特的强烈支持下,诺德才由希尔伯特的“私人讲师”成为哥廷根大学第一名女讲师.接下来,由于她科研成果显著,又是在希尔伯特的推荐下,取得了“编外副教授”的资格,虽然她比起很多“教授”更有实力.诺德热爱数学教育事业,善于启发学生思考.她终生未婚,却有许许多多“孩子”.她与学生交往密切,和蔼可亲,人们亲切地把她周围的学生称为“诺德的孩子们”.我国代数学家曾炯之就是诺德“孩子”们中的一个.在希特勒的淫威下,诺德被迫离开哥廷根大学,去了美国工作.在美国,她同样受到学生们的尊敬和爱戴,同样有她的“孩子们”.1934年9月,美国设立了以诺德命名的博士后奖学金.不幸的是,诺德在美国工作不到两年,便死于外科手术,终年53岁.她的逝世,令很多数学同僚无限悲痛.爱因斯坦在《纽约时报》发表悼文说:“根据现在的权威数学家们的判断,诺德女士是自妇女受高等教育以来最重要的富于创造性数学天才.”4,欧几里德我们现在学习的几何学,是由古希腊数学家欧几里德(公无前330—前275)创立的。他在公元前300年编写的《几何原本》,2000多年来都被看作学习几何的标准课本,所以称欧几里德为几何之父。欧几里德生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。欧几里德汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。《原本》问世后,它的手抄本流传了1800多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。13世纪时曾传入中国,不久就失传了,1607年重新翻译了前六卷,1857年又翻译了后九卷。欧几里德善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度。”欧几里德是位温良敦厚的教育家。欧几里得也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。尽管欧几里德简化了他的几何学,国王(托勒密王)还是不理解,希望找一条学习几何的捷径。欧几里德说:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。一次,他的一个学生问他,学会几何学有什么好处?他幽默地对仆人说:“给他三个钱币,因为他想从学习中获取实利。”20世纪最杰出的数学家之一的冯•诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯•诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯•诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯•诺依曼还不到18岁. 5,塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
十八九世纪之交,德国产生了一位伟大的数学家,他就是人称“数学王子”的高斯。对数学的痴迷,加上勤奋的学习,18岁时高斯发明了用圆规和直尺作正17边形的方法,从而解决了2000年来悬而未解的难题。他21岁大学毕业,22岁获博士学位。他在博士论文中证明了代数基本定理,即一元n次议程在复数范围内一定有根。在几何方面,高斯是非欧几何的发明人之一。高斯最重要的贡献还是在数论上,他的伟大著作《算术研究》标志着数论成为独立的数学分支学科的开始,而且这本书所讨论的内容成为直到20世纪数论研究的方向。高斯首先使用了同余记号,并系统而深入地阐述了同余式的理论;他证明了数论中的重要结果二次互反律等。高斯去世后,人们建立了以正17边形棱柱为基座的高斯像,以纪念这位伟大的数学家。 1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于格丁根 幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。高斯是近代数学奠基者之一,在历史上影响之大, 可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。高斯长期从事于数学并将数学应用于物理、天文学和大地测得学等领域的研究,著述丰富,成就甚多。他一生中共发表323篇(种)著作,提出404项科学创见(发表178项),完成4项意义重大的发明:(日光)、回照器(1820)、光度计(1821)、电报(1832)和磁强计(1837)。在各领域的主要成就有:1.物理学和地磁学中,关于静电学(如高斯定理)、温差电和摩擦电的研究、利用绝对单位(长度、质量和时间)法则量度非力学量(如磁场强度)以及地磁场分布的理论研究(如把地面上任一点的磁势进行球谐分析)。2.利用几何学知识研究光学系统近轴光线行为和成像,建立高斯光学。3.天文学和大地测量学中,如小行星轨道的计算,地球大小和形状的理论研究等。4.结合实验数据的测算,发展了概率统计理论和误差理论,发明了最小二乘法,引入高斯误差曲线。此外在纯数学方面,他对数论、代数、几何学的若干基本定理作出严格证明,如自然数为素数乘积定理、二项式定理、散度定理等。 职业生涯他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。 他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。 高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。 1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星”智神星”方面也获得类似的成功。 数学神童 历史上间或出现神童。神童常常出现在数学、音乐、棋艺等方面。卡尔·弗雷德里希·高斯,一位数学神童,是各式各样的天才里最出色的一个。就像狮子号称万兽之王,高斯在数学家之林中称王,他有一个美号——数学王子。高斯不仅被公认为是十九世纪最伟大的数学家,并且与阿基米德、牛顿并称为历史上三个最伟大的数学家。现在阿基米德和牛顿的名字早已进入了中学的教科书,他们的工作或多或少成为大众的常识,而高斯和他的数学仍遥不可及,甚至于在大学的基础课程中也不出现。但高斯的肖像画却赫然印在10马克——流通最广泛的德国纸上,相应地出现在美元和英镑上的分别是乔治·华盛顿和伊丽莎白二世。1777年4月30日,高斯出生在德国下萨克森洲的不伦瑞克(Braunscheig),他的祖先里没有一个人可以说明为什么会产生高斯这样的天才。高斯的父亲是个普通的劳动者,做过石匠、纤夫、花农,母亲是他父亲的第二个妻子,当过女仆,没有受过什么教育,但她聪明善良,有幽默感,并且个性很强,她以97岁高寿仙逝,高斯是她的独养儿子。据说高斯3岁时就发现父亲帐簿上的一处错误。高斯9岁那年在公立小学读书,一次他的老师为了让学生们有事干,叫他们把从1到100这些数加起来,高斯几乎立刻就把写好结果的石板面朝下放在自己的桌子上,当所有的石板最终被翻过时,这位老师惊讶地发现只有高斯得出了正确的答案:5050,但是没有演算过程。高斯已经在脑子里对这个算术级数求了和,他注意到了1+100=101,2+99=101,3+98=101……这么一来,就等于50个101相加,从而答案是5050。高斯在晚年常幽默地宣称,在他会说话之前就会计算,还说他问了大人字母如何发音,就自己学着读起书来。高斯的早熟引起了不伦瑞克公爵的注意,这位公爵是个热心肠的赞助人。高斯14岁进不伦瑞克学院,18岁入哥廷根大学。当时的哥廷根仍默默无闻,由于高斯的到来,才使得这所日后享誉世界的大学变得重要起来。起初,高斯在做个语言学家抑或数学家之间犹豫不决,他决心献身数学是1796年3月30日的事了。当他差一个月满19岁时,他对正多边形的欧几里德作图理论(只用圆规和没有刻度的直尺)做出了惊人的贡献,尤其是,发现了作正十七边形的方法,这是一个有着二千多年历史的数学悬案。高斯初出茅庐,就已经炉火纯青了,而且以后的五十年间他一直维持这样的水准。高斯所处的时代,正是德国浪漫主义盛行的时代。高斯受时尚的影响,在其私函和讲述中,充满了美丽的词藻。高斯说过:“数学是科学的皇后,而数论是数学的女王。”那个时代的人也都称高斯为“数学王子”。事实上,纵观高斯整个一生的工作,似乎也带有浪漫主义的色彩 在高斯的时代,几乎找不到什么人能够分享他的想法或向他提供新的观念。每当他发现新的理论时,他没有人可以讨论。这种孤独的感觉,经年累月积存下来,就造成他高高在上、冷若冰霜的心境了。这种智慧上的孤独,在历史上只有很少几个伟人感受过。高斯从不参加公开争论,他对辩论一向深恶痛绝,他认为那很容易演变成愚蠢的喊叫,这或许是他从小对粗暴专制的父亲一种心理上的反抗。高斯成名后很少离开过哥廷根,他曾多次拒绝柏林、圣彼德堡等地科学院的邀请。高斯甚至厌恶教学,也不热衷于培养和发现年轻人,自然就谈不上创立什么学派,这主要是由于高斯天赋之优异,因而心灵上离群索居。可这不等于说高斯没有出类拔萃的学生,黎曼、狄里克雷都堪称伟大的数学家,戴特金和艾森斯坦也对数学作出了杰出贡献。但是由于高斯的登峰造极,在这几个人中,也只有黎曼(在狄里克雷死后继承了高斯的职位)被认为和高斯比较亲近。和高斯同时代的伟大数学家雅可比和阿贝尔都抱怨高斯漠视了他们的成就。雅可比是个很有思想的人,他有一句流传至今的名言:“科学的唯一目的是为人类的精神增光”。他是高斯的同胞,又是狄里克雷的丈人,但他一直没能和高斯攀上亲密的友情。在1849年哥廷根那次庆祝会上,从柏林赶来的雅可比坐在高斯身旁的荣誉席上,当他想找话题谈数学时,高斯不予理睬,这可能是时机不对,当时高斯几杯甜酒下肚,有点不能自制;但即使换个场合,结果恐怕也是一样。在给他兄弟论及该宴会的一封信中,雅克比写到,“你要知道,在这二十年里,他(高斯)从未提及我和狄里克雷……”阿贝尔的命运很惨,他与后来的同胞易卜生、格里格和蒙克一样,是在自己领域里唯一取得世界性成就的挪威人。他是一个伟大的天才,却过着贫穷的生活,毫无同时代人的了解。阿贝尔20岁时,解决了数学史上的一个大问题,即证明了用根式解一般五次方程的不可能性,他将短短六页“不可解”的证明寄给欧洲一些著名的数学家,高斯自然也收到了一份。阿贝尔在引言中满怀信心,以为数学家们会亲切地接受这篇论文。不久,乡村牧师的儿子阿贝尔开始了他一生唯一的一次远足,当时他想以这篇文章作敲门砖。阿贝尔此行最大的愿望就是拜访高斯,但高斯高不可攀,只是将论文瞄了几行,便把它丢在一旁,仍然专心于自己的研究工作。阿贝尔只得在从巴黎去往柏林的旅途中,以渐增的痛苦绕过哥廷根。高斯虽然孤傲,但令人惊奇的是,他春风得意地度过了中产阶级的一生,而没有遭受到冷酷现实的打击;这种打击常无情地加诸于每个脱离现实环境生活的人。或许高斯讲求实效和追求完美的性格,有助于让他抓住生活中的简单现实。高斯22岁获博士学位,25岁当选圣彼德堡科学院外籍院士,30岁任哥廷根大学数学教授兼天文台台长。虽说高斯不喜欢浮华荣耀,但在他成名后的五十年间,这些东西就像雨点似的落在他身上,几乎整个欧洲都卷入了这场授奖的风潮,他一生共获得75种形形色色的荣誉,包括1818年英王乔治三世赐封的“参议员”,1845年又被赐封为“首席参议员”。高斯的两次婚姻也都非常幸福,第一个妻子死于难产后,不到十个月,高斯又娶了第二个妻子。心理学和生理学上有一个常见的现象,婚姻生活过得幸福的人,常在丧偶之后很快再婚,一生赤贫的音乐家约翰·塞巴斯蒂安·巴赫也是这样。
莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士数学家、自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国圣彼得堡去世。欧拉出生于牧师家庭,自幼受父亲的影响。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。欧拉对数学的研究如此之广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。此外欧拉还涉及建筑学、弹道学、航海学等领域。瑞士教育与研究国务秘书Charles Kleiber曾表示:“没有欧拉的众多科学发现,今天的我们将过着完全不一样的生活。”法国数学家拉普拉斯则认为:读读欧拉,他是所有人的老师。2007年,为庆祝欧拉诞辰300周年,瑞士政府、中国科学院及中国教育部于2007年4月23日下午在北京的中国科学院文献情报中心共同举办纪念活动,回顾欧拉的生平、工作以及对现代生活的影响。采纳!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
八岁的高斯发现了数学定理德国高斯(1777~1855) 是当代最杰出的天文学家、数学家,在物理的电磁学方面也有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们称呼他为“数学王子”。出生在一个贫穷的家庭,是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误。他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发地拿起一本小说坐在椅子上看去了。教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。小欧拉智改羊圈欧拉,瑞士人,是世界数学史上与高斯、阿基米德、牛顿齐名的四大著名数学家之一,被誉为“数学界的莎士比亚”,在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。事情是因为星星而引起的。当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。"欧拉感到很奇怪:"天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到天幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?他向老师提出了心中的疑问,老师又一次被问住了。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:"那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。"小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。" 父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。
1,高斯(1777—1855年)德国数学家、物理学家和天文学家.高斯在童年时代就表现出非凡的数学天才.年仅三岁,就学会了算术,八岁因发现等差数列求和公式而深得老师和同学的钦佩.大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件.解决了两千年来悬而未决的难题,1799年以代数基本定理的四个漂亮证明获博士学位.高斯的数学成就遍及各个领域,在数学许多方面的贡献都有着划时代的意义.并在天文学,大地测量学和磁学的研究中都有杰出的贡献.1801年发表的《算术研究》是数学史上为数不多的经典著作之一,它开辟了数论研究的全新时代.非欧几里得几何是高斯的又一重大发现,他的遗稿表明,他是非欧几何的创立者之一.高斯致力于天文学研究前后约20年,在这领域内的伟大著作之一是1809年发表的《天体运动理论》.高斯对物理学也有杰出贡献,麦克斯韦称高斯的磁学研究改造了整个科学.高斯的一生中,还培养了不少杰出的数学家. 2,苏菲娅•柯瓦列夫斯卡娅苏菲娅出生在沙皇俄国立陶宛边界的一座贵族庄园里,他父亲是退役的炮兵团团长.她很小就对数学很痴迷,经常对着墙壁上的数学公式和符号,一看就是好半天,原来,她房间里的糊墙纸是用高等数学的讲义做成的.苏菲娅14岁时便能够独立推导出三角公式,被称为“新巴斯卡”.随着时间的流逝,苏菲娅逐渐长大成人,她对数学的兴趣也与日俱增.但那时正处于沙皇时代,妇女是不允许注册高等学校学习的.而她的父亲又一心想让她像别的贵族姑娘一样,步人社交界,对她想学数学的心愿横加阻拦.于是,苏菲娅不顾父母的反对,与年轻的古生物学家柯瓦列夫斯基“假结婚”,来到德国的海德尔堡.但在那里,妇女听课要有一个专门的委员会认可才行.经过努力,她被允许旁听基础课.在此期间,她勤奋好学,掌握了深奥的数学知识,轰动了整个海德尔堡,成为人们谈论的话题.可她只被允许听了三个学期的课,便不得不离开了那里.苏菲娅深造心切,又慕名前往柏林工学院,打算去听著名数学家维尔斯特拉斯的课.但遗憾的是,柏林的大学不允许妇女听教授的课,苏菲娅到处吃闭门羹,最后,只好抱一线希望登门到维尔斯特拉斯家求教.维尔斯特拉斯(1815—1899)是一位德高望重的老数学家,他接见了苏菲娅,并向他提了一些超椭圆方面的问题,这些问题在当时都很新颖,没想到这位貌不惊人的女青年,解题技巧娴熟,思维方法独特,给老教授留下了深刻的印象.于是,维尔斯特拉斯破例答应苏菲娅每星期日在家里给她上课,每周还另抽一日到她的寓所登门授课.这样,苏菲娅在维尔斯特拉斯的悉心指导下学习了4年.她回忆这段经历时说:“这样的学习,对我整个数学生涯影响至深,它最终决定了我以后的科学研究方向.” 苏菲娅得到了维尔斯特拉斯的鼓励和指点.更加有了攀登科学高峰的勇气.她经过了4年的刻苦努力.写出了三篇出色的论文,引起了强烈的反响.这是史无前例的开创性工作.1874年,在维尔斯特拉斯的推荐下,24岁的苏菲娅荣获了德国第一流学府——哥廷根大学博士学位,成为世界上首屈一指的女数学家. 获得博士学位的苏菲娅,怀若一颗赤子之心回到了祖国,可俄国还是同她出国之前一样黑暗.她在祖国无法立足,只好又回到柏林.她根据维尔斯特拉斯的建议,研究光线在晶体中的折线问题.在1883年奥德赛科学大会上,她以出色的研究成果作了报告.可命运偏偏与她作对,当年春天.她丈夫因破产而自杀.听到这个不幸的消息,肝肠寸断.她把自己关在房间里,四天不吃不喝,第五天昏迷过去.不幸的遭遇,并没有打跨苏菲娅的斗志,第六天苏醒过后又开始顽强的工作.在瑞典数学家米达•列佛勒的帮助下,经过一番周折,苏菲娅才得以担任斯德哥尔摩大学的讲师,但当地报纸公然对她攻击:“一个女人当教授是有害和不愉快的现象——甚至,可以说那种人是一个怪物.”但苏菲娅无所畏惧,像男人那样走上了讲台.以生动的讲课,赢得了学生的热爱,击败了“男人样样胜过女人”的偏见.一年后,她被正式聘为高等分析教授,后来又兼聘为力学教授.苏菲娅在瑞典的任期满了,她一心想回国任教,可没能成功,只好在国外继续任教. 1891年,苏菲娅患肺炎因误诊导致病情恶化,与世长辞.她为争取妇女的自由斗争做出了艰苦努力,是妇女攀登科学高峰的光辉榜样.3,女数学家诺德1933年1月,希特勒一上台,就发布第一号法令,把犹太人比作“恶魔”,叫嚣着要粉碎“恶魔的权利”.不久,哥廷根大学接到命令,要学校辞退所有从事教育工作的纯犹太血统的人.在被驱赶的学者中,有一名妇女叫爱米•诺德(A.E.Noether 1882—1935),她是这所大学的教授,时年5l岁.她主持的讲座被迫停止,就连微薄的薪金也被取消.这位学术上很有造诣的女性,面对困境,却心地坦然,因为她一生都是在逆境中度过的.诺德生长在犹太籍数学教授的家庭里,从小就喜欢数学.1903年,21岁的诺德考进哥廷根大学,在那里,她听了克莱因、希尔伯特、闽可夫斯基等人的课,与数学解下了不解之缘.她学生时代就发表了几篇高质量的论文,25岁便成了世界上屈指可数的女数学博士.诺德在微分不等式、环和理想子群等的研究方面做出了杰出的贡献.但由于当时妇女地位低下,她连讲师都评不上,在大数学家希尔伯特的强烈支持下,诺德才由希尔伯特的“私人讲师”成为哥廷根大学第一名女讲师.接下来,由于她科研成果显著,又是在希尔伯特的推荐下,取得了“编外副教授”的资格,虽然她比起很多“教授”更有实力.诺德热爱数学教育事业,善于启发学生思考.她终生未婚,却有许许多多“孩子”.她与学生交往密切,和蔼可亲,人们亲切地把她周围的学生称为“诺德的孩子们”.我国代数学家曾炯之就是诺德“孩子”们中的一个.在希特勒的淫威下,诺德被迫离开哥廷根大学,去了美国工作.在美国,她同样受到学生们的尊敬和爱戴,同样有她的“孩子们”.1934年9月,美国设立了以诺德命名的博士后奖学金.不幸的是,诺德在美国工作不到两年,便死于外科手术,终年53岁.她的逝世,令很多数学同僚无限悲痛.爱因斯坦在《纽约时报》发表悼文说:“根据现在的权威数学家们的判断,诺德女士是自妇女受高等教育以来最重要的富于创造性数学天才.”4,欧几里德我们现在学习的几何学,是由古希腊数学家欧几里德(公无前330—前275)创立的。他在公元前300年编写的《几何原本》,2000多年来都被看作学习几何的标准课本,所以称欧几里德为几何之父。欧几里德生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。欧几里德汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。《原本》问世后,它的手抄本流传了1800多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。13世纪时曾传入中国,不久就失传了,1607年重新翻译了前六卷,1857年又翻译了后九卷。欧几里德善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度。”欧几里德是位温良敦厚的教育家。欧几里得也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。尽管欧几里德简化了他的几何学,国王(托勒密王)还是不理解,希望找一条学习几何的捷径。欧几里德说:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。一次,他的一个学生问他,学会几何学有什么好处?他幽默地对仆人说:“给他三个钱币,因为他想从学习中获取实利。”20世纪最杰出的数学家之一的冯•诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯•诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯•诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯•诺依曼还不到18岁. 5,塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
1,高斯(1777—1855年)德国数学家、物理学家和天文学家.高斯在童年时代就表现出非凡的数学天才.年仅三岁,就学会了算术,八岁因发现等差数列求和公式而深得老师和同学的钦佩.大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件.解决了两千年来悬而未决的难题,1799年以代数基本定理的四个漂亮证明获博士学位.高斯的数学成就遍及各个领域,在数学许多方面的贡献都有着划时代的意义.并在天文学,大地测量学和磁学的研究中都有杰出的贡献.1801年发表的《算术研究》是数学史上为数不多的经典著作之一,它开辟了数论研究的全新时代.非欧几里得几何是高斯的又一重大发现,他的遗稿表明,他是非欧几何的创立者之一.高斯致力于天文学研究前后约20年,在这领域内的伟大著作之一是1809年发表的《天体运动理论》.高斯对物理学也有杰出贡献,麦克斯韦称高斯的磁学研究改造了整个科学.高斯的一生中,还培养了不少杰出的数学家. 2,苏菲娅•柯瓦列夫斯卡娅苏菲娅出生在沙皇俄国立陶宛边界的一座贵族庄园里,他父亲是退役的炮兵团团长.她很小就对数学很痴迷,经常对着墙壁上的数学公式和符号,一看就是好半天,原来,她房间里的糊墙纸是用高等数学的讲义做成的.苏菲娅14岁时便能够独立推导出三角公式,被称为“新巴斯卡”.随着时间的流逝,苏菲娅逐渐长大成人,她对数学的兴趣也与日俱增.但那时正处于沙皇时代,妇女是不允许注册高等学校学习的.而她的父亲又一心想让她像别的贵族姑娘一样,步人社交界,对她想学数学的心愿横加阻拦.于是,苏菲娅不顾父母的反对,与年轻的古生物学家柯瓦列夫斯基“假结婚”,来到德国的海德尔堡.但在那里,妇女听课要有一个专门的委员会认可才行.经过努力,她被允许旁听基础课.在此期间,她勤奋好学,掌握了深奥的数学知识,轰动了整个海德尔堡,成为人们谈论的话题.可她只被允许听了三个学期的课,便不得不离开了那里.苏菲娅深造心切,又慕名前往柏林工学院,打算去听著名数学家维尔斯特拉斯的课.但遗憾的是,柏林的大学不允许妇女听教授的课,苏菲娅到处吃闭门羹,最后,只好抱一线希望登门到维尔斯特拉斯家求教.维尔斯特拉斯(1815—1899)是一位德高望重的老数学家,他接见了苏菲娅,并向他提了一些超椭圆方面的问题,这些问题在当时都很新颖,没想到这位貌不惊人的女青年,解题技巧娴熟,思维方法独特,给老教授留下了深刻的印象.于是,维尔斯特拉斯破例答应苏菲娅每星期日在家里给她上课,每周还另抽一日到她的寓所登门授课.这样,苏菲娅在维尔斯特拉斯的悉心指导下学习了4年.她回忆这段经历时说:“这样的学习,对我整个数学生涯影响至深,它最终决定了我以后的科学研究方向.” 苏菲娅得到了维尔斯特拉斯的鼓励和指点.更加有了攀登科学高峰的勇气.她经过了4年的刻苦努力.写出了三篇出色的论文,引起了强烈的反响.这是史无前例的开创性工作.1874年,在维尔斯特拉斯的推荐下,24岁的苏菲娅荣获了德国第一流学府——哥廷根大学博士学位,成为世界上首屈一指的女数学家. 获得博士学位的苏菲娅,怀若一颗赤子之心回到了祖国,可俄国还是同她出国之前一样黑暗.她在祖国无法立足,只好又回到柏林.她根据维尔斯特拉斯的建议,研究光线在晶体中的折线问题.在1883年奥德赛科学大会上,她以出色的研究成果作了报告.可命运偏偏与她作对,当年春天.她丈夫因破产而自杀.听到这个不幸的消息,肝肠寸断.她把自己关在房间里,四天不吃不喝,第五天昏迷过去.不幸的遭遇,并没有打跨苏菲娅的斗志,第六天苏醒过后又开始顽强的工作.在瑞典数学家米达•列佛勒的帮助下,经过一番周折,苏菲娅才得以担任斯德哥尔摩大学的讲师,但当地报纸公然对她攻击:“一个女人当教授是有害和不愉快的现象——甚至,可以说那种人是一个怪物.”但苏菲娅无所畏惧,像男人那样走上了讲台.以生动的讲课,赢得了学生的热爱,击败了“男人样样胜过女人”的偏见.一年后,她被正式聘为高等分析教授,后来又兼聘为力学教授.苏菲娅在瑞典的任期满了,她一心想回国任教,可没能成功,只好在国外继续任教. 1891年,苏菲娅患肺炎因误诊导致病情恶化,与世长辞.她为争取妇女的自由斗争做出了艰苦努力,是妇女攀登科学高峰的光辉榜样.3,女数学家诺德1933年1月,希特勒一上台,就发布第一号法令,把犹太人比作“恶魔”,叫嚣着要粉碎“恶魔的权利”.不久,哥廷根大学接到命令,要学校辞退所有从事教育工作的纯犹太血统的人.在被驱赶的学者中,有一名妇女叫爱米•诺德(A.E.Noether 1882—1935),她是这所大学的教授,时年5l岁.她主持的讲座被迫停止,就连微薄的薪金也被取消.这位学术上很有造诣的女性,面对困境,却心地坦然,因为她一生都是在逆境中度过的.诺德生长在犹太籍数学教授的家庭里,从小就喜欢数学.1903年,21岁的诺德考进哥廷根大学,在那里,她听了克莱因、希尔伯特、闽可夫斯基等人的课,与数学解下了不解之缘.她学生时代就发表了几篇高质量的论文,25岁便成了世界上屈指可数的女数学博士.诺德在微分不等式、环和理想子群等的研究方面做出了杰出的贡献.但由于当时妇女地位低下,她连讲师都评不上,在大数学家希尔伯特的强烈支持下,诺德才由希尔伯特的“私人讲师”成为哥廷根大学第一名女讲师.接下来,由于她科研成果显著,又是在希尔伯特的推荐下,取得了“编外副教授”的资格,虽然她比起很多“教授”更有实力.诺德热爱数学教育事业,善于启发学生思考.她终生未婚,却有许许多多“孩子”.她与学生交往密切,和蔼可亲,人们亲切地把她周围的学生称为“诺德的孩子们”.我国代数学家曾炯之就是诺德“孩子”们中的一个.在希特勒的淫威下,诺德被迫离开哥廷根大学,去了美国工作.在美国,她同样受到学生们的尊敬和爱戴,同样有她的“孩子们”.1934年9月,美国设立了以诺德命名的博士后奖学金.不幸的是,诺德在美国工作不到两年,便死于外科手术,终年53岁.她的逝世,令很多数学同僚无限悲痛.爱因斯坦在《纽约时报》发表悼文说:“根据现在的权威数学家们的判断,诺德女士是自妇女受高等教育以来最重要的富于创造性数学天才.”4,欧几里德我们现在学习的几何学,是由古希腊数学家欧几里德(公无前330—前275)创立的。他在公元前300年编写的《几何原本》,2000多年来都被看作学习几何的标准课本,所以称欧几里德为几何之父。欧几里德生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。欧几里德汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。《原本》问世后,它的手抄本流传了1800多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。13世纪时曾传入中国,不久就失传了,1607年重新翻译了前六卷,1857年又翻译了后九卷。欧几里德善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度。”欧几里德是位温良敦厚的教育家。欧几里得也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。尽管欧几里德简化了他的几何学,国王(托勒密王)还是不理解,希望找一条学习几何的捷径。欧几里德说:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。一次,他的一个学生问他,学会几何学有什么好处?他幽默地对仆人说:“给他三个钱币,因为他想从学习中获取实利。”20世纪最杰出的数学家之一的冯•诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯•诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯•诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯•诺依曼还不到18岁. 5,塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
大学期间,庞加莱对数学更加痴迷,身体虚弱的他全身心地投入到美妙而神奇的数学海洋中。通过勤奋的思索钻研,1878年,他的一篇“异乎寻常”的关于微分方程一般解的论文,下面是我为大家带来的数学家的 故事 ,希望你们喜欢。
数学家的故事1
在进入都灵皇家炮兵学院学习后,拉格朗日开始有计划地自学数学。由于勤奋刻苦,他的进步很快,尚未 毕业 就担任了该校的数学教学工作。20岁时就被正式聘任为该校的数学副教授。从这一年起,拉格朗日开始研究“极大和极小”的问题。他采用的是纯分析的 方法 。1758年8月,他把自己的研究方法写信告诉了欧拉,欧拉对此给予了极高的评价。从此,两位大师开始频繁通信,就在这一来一往中,诞生了数学的一个新的分支——变分法。
1759年,在欧拉的推荐下,拉格朗日被提名为柏林科学院的通讯院士。接着,他又当选为该院的外国院士。
1762年,法国科学院悬赏征解有关月球何以自转,以及自转时总是以同一面对着地球的难题。拉格朗日写出一篇出色的论文,成功地解决了这一问题,并获得了科学院的大奖。拉格朗日的名字因此传遍了整个欧洲,引起世人的瞩目。两年之后,法国科学院又提出了木星的4个卫星和太阳之间的摄动问题的所谓“六体问题”。面对这一难题,拉格朗日毫不畏惧,经过数个不眠之夜,他终于用近似解法找到了答案,从而再度获奖。这次获奖,使他赢得了世界性的声誉。
1766年,拉格朗日接替欧拉担任柏林科学院物理数学所所长。在担任所长的20年中,拉格朗日发表了许多论文,并多次获得法国科学院的大奖:1722年,其论文《论三体问题》获奖;1773年,其论文《论月球的长期方程》再次获奖;1779年,拉格朗日又因论文《由行星活动的试验来研究彗星的摄动理论》而获得双倍奖金。
在柏林科学院工作期间,拉格朗日对代数、数论、微分方程、变分法和力学等方面进行了广泛而深入的研究。他最有价值的贡献之一是在方程论方面。他的“用代数运算解一般n次方程(n>4)是不能的”结论,可以说是伽罗华建立群论的基础。
最值得一提的是,拉格朗日完成了自牛顿以后最伟大的经典著作——《论不定分析》。此书是他历经37个春秋用心血写成的,出版时,他已50多岁。在这部著作中,拉格朗日把宇宙谱写成由数字和方程组成的有节奏的旋律,把动力学发展到登峰造极的地步,并把固体力学和流体力学这两个分支统一起来。他利用变分原理,建立起了优美而和谐的力学体系,可以说,这是整个现代力学的基础。伟大的科学家哈密顿把这本巨著誉为“科学诗篇”。
1813年4月10日,拉格朗日因病逝世,走完了他光辉灿烂的科学旅程。他那严谨的科学态度,精益求精的工作作风影响着每一位科学家。而他的学术成果也为高斯、阿贝尔等世界著名数学家的成长提供了丰富的营养。可以说,在此后100多年的时间里,数学中的很多重大发现几乎都与他的研究有关。
数学家的故事2
中国 留学 生报考了著名的仙台东北帝国大学数学系,并以第一名的成绩被录取。帝国大学是日本知名的大学,苏步青年年拿第一名,自己还有一些研究课题在进行,自然成了学校的名人。
这时,他对学校的另一位名人松本米子产生了一种特别的关注。米子是帝国大学松本教授的女儿,她不仅相貌才华出众,而且精通插花、书法与茶道,还 爱好 音乐,尤其是弹得一手好古筝。在一次晚会结束后,苏步青与米子认识了。米子对苏步青其实一直是很仰慕的,他的睿智与赤诚尤其让她感动。后来两个人经常花前月下携手而行。
1927年,东北帝国大学数学系聘请正在攻读研究生的苏步青担任代数课讲师,这使他成为该校历史上第一个兼任过讲师的外国留学生。两个人的恋情成了学校里公开的秘密,不少人为他们祝福;而那些平素追求米子的人则怀有一种嫉妒心理,对米子说:“苏步青是个中国乡巴佬,家里很穷,再说学习好的人不一定将来就会有出息。你跟了他是不会有好日子过的。”但米子不为所动。苏步青受不了一些男生的敌意,他也不想让米子再被别人纠缠,经过商量,他们决定尽快结婚。
米子的母亲是一位善良的日本家庭主妇,她认为苏步青是一个可以托付终身的人。松本教授虽然也很喜欢苏步青,却觉得他毕竟是中国人,出身又低微,所以对这段婚姻一直很不赞同。在米子的坚持下,最终松本教授还是妥协了。1928年,这对异国青年终于走到了一起,在仙台市喜结连理。松本米子自此改从夫姓成为苏米子。
米子全身心地当起了家庭主妇。为了不影响苏步青,她甚至把自己的古筝、书法等特长都荒废了,只留下了茶道和插花,因为这两种爱好有益苏步青的身体和精神。婚后一年,即1929年,米子生了个女孩。1931年初苏步青已有41 篇仿射微分几何和有关方面的研究论文出现在日本、美国和意大利等国的数学刊物上,成了日本乃至国际数学界榜上有名的人物。松本一家都希望苏步青留在日本工作,东北帝国大学也向他发出聘书。苏步青有自己的难处。 出国 之前,他曾与学长陈建功相约,学成归国,在故乡建设一流的数学系。现在陈建功已先期学成回国,自己是去是留,成了困扰他心灵的难题。
细心的米子早就发现他整天唉声叹气,茶饭不思。一天吃过晚饭,从不吸烟的苏步青在抽闷烟,米子便问他有什么心事。苏步青把心里话和盘托出,他不想因一己之私,留在东瀛。令他想不到的是,米子听到了他的打算,并没有阻止,反而鼓励说:“青,我支持你的决定。首先我是爱你的,而你是爱中国的,所以我也爱中国。我支持你回到我们都爱的地方去,不论你到哪我都会跟着你的。”短短数语,使苏步青格外感动:米子是一个识大体的女人!有了妻子的支持,苏步青一人先回杭州。浙江大学的条件远比他想象的差,不但聘书上写明的月薪比燕京大学聘任他为教授的待遇相去甚远,而且由于学校经费紧张,他虽然名为副教授,却连续四个月没有拿到一分钱。幸亏还有在上海兵工厂当工程师的哥哥及时帮助,否则苏步青就要靠当东西维持生计了。为了养家,苏步青打算再回到日本去。
数学家的故事3
索菲·科瓦列夫斯卡娅从小就对数学怀有特殊的感情,并有着极大的好奇心和强烈的求知欲望。在她8岁的时候,全家搬到了波里宾诺田庄。由于带去的糊墙纸不够用,父母就在她的房间里用著名的数学家奥斯特洛格拉得斯基所著的微积分讲义来裱糊墙壁。那时,索菲·科瓦列夫斯卡娅常常独自坐在卧室的墙前,望着糊墙纸上奇妙的数字和神秘的符号出神,一坐就是好几个小时。后来,索菲·科瓦列夫斯卡娅在自传中写道:“我常常坐在那神秘的墙前,企图解释某些词句,找出这些书页的正确次序。通过反复阅读,书页上那些奇怪的公式,甚至有些文字的表述,都在我的脑海里留下了深刻的印象,尽管当时我对它们还是一窍不通。”
索菲·科瓦列夫斯卡娅的祖父和外祖父都是出色的数学家,这或许有助于形成她的数学天赋,但她的成功主要还是源于她不懈的努力。她在学习数学时,注意力总是非常集中,能很快理解和掌握老师所讲的内容。有一次,数学老师让索菲·科瓦列夫斯卡娅重复上次课上所讲的内容,索菲·科瓦列夫斯卡娅没有按老师讲的方法去讲,而是换成了自己的思路方法。当她讲完后,老师立即竖起大拇指夸她了不起。由此可见,索菲·科瓦列夫斯卡娅善于独立思考问题,善于积极寻找自己的思路方法,使自己的思维不局限于某一特定的方式,这对她日后的数学研究非常重要。
高中毕业之后,索菲·科瓦列夫斯卡娅想继续学习高深的数学知识,但当时俄国有一种普遍轻视妇女的风气,妇女无权接受高等 教育 。对索菲·科瓦列夫斯卡娅来说,继续深造只有出国求学了。索菲·科瓦列夫斯卡娅把想要出国求学的愿望告诉家人,遭到了家人的强烈反对。为了争取上大学的权利,索菲·科瓦列夫斯卡娅冲破了种.种阻力,终于如愿以偿来到了德国的海德堡大学求学,在陌生的异国城市过起了紧张而简朴的学习生活。
在海德堡大学求学的过程中,索菲·科瓦列夫斯卡娅为了取得更大的进步,到被誉为“现代分析之父”的数学大师魏尔斯特拉斯教授家中拜师求教。这位数学大师被索菲·科瓦列夫斯卡娅的诚恳态度打动,经过多次测试,满意地收下了这位勤奋好学的女学生。在魏尔斯特拉斯的悉心指导下,索菲·科瓦列夫斯卡娅更加刻苦地钻研数学。经过一段时间的学习与实践,索菲·科瓦列夫斯卡娅写就了三篇重要的数学学术论文,不久,又成功地解决了困扰数学家们一百多年的“数学水妖”问题,并因此获得了著名的“鲍廷奖金”。
索菲·科瓦列夫斯卡娅一生获得了很多荣誉,为数学的发展做出了巨大贡献,但她从没有自满过。不幸的是,她在一次旅途中染上了风寒,由于没能及时休息,以致卧床不起,不久便与世长辞,终年只有41岁。
数学家的故事4
多布林随身携带着他的研究论文和即将完成的定理上了前线,驻守马其诺防线。在战争最初的几个月中,上司特许他利用一切空闲时间继续数学研究。1940年夏,德军粉碎了法军的抵抗,多布林所在的步兵团也面临着灭顶之灾。当其他士兵纷纷后撤时,多布林自愿与两名战友留下,抵抗即将到来的德军。6月21日,当德军马上就要占领阵地时,多布林开枪自杀,宁死不当俘虏,年仅25岁。他弟弟克劳德回忆道:“幸运的是,多布林在德军攻占阵地之前,焚烧了身上所有的研究论文,以免落入德军之手。他不能容忍德国人剽窃他的思想。”
战后,多布林的名字很快便被人们遗忘了。然而在他英勇捐躯半个世纪后,法国科学院的一位官员偶然发现多布林早在1940年2月,就依据一种可追溯到路易十四时期的密藏规则,将自己的研究成果悉心保存了起来。他用一个信封把自己演绎数学理论的手稿密封,藏在了科学院的地下室中。按照密藏规则,该信封必须经过作者本人许可方能拆封,万一作者本人辞世,就必须在自 收藏 之日起100年后方能开启。这样,多布林的论文手稿要到2040年才能公之于众。但在法国科学院院士和世界各国数学家多年的游说下,其弟克劳德终于在2000年夏天,同意打破这一陈规。
于是,多布林在阿登省作战时所写下的数学手稿,就此重见天日。这确立了这位年轻士兵作为现代数学界最重要的人物之一和当代概率理论的创始人的地位。这在法国知识界引起了一场轰动。法国科学院为此出了一期特刊,刊载了多布林手稿的全文,“以示对天才的敬意”。
据法国杰出的数学历史学家伯纳德·布鲁说,多布林的论文弥补了二战前的《数学分析》和日本人20世纪50年代在概率理论方面的进展所留下的空白。多布林的研究涉及到应用数学最重要的一个领域,他预见到那些易受无规律干扰的事物的运动规律,例如粒子在诸如水这样的流体中的运动等。
约尔教授是第一个见到多布林手稿的人。他说;“我相信多布林知道,他在这场战争中将在劫难逃。你会注意到,他尽可能少地留下书面的东西。他清楚地知道,他所从事的是那个时代最有前景的数学研究工作,但可惜来日无多,但他记下了自己所思索的尚未完全成形的数学方面的成果。”
数学家的故事5
庞加莱1854年4月出生于法国,他的童年极为不幸,医术精湛的父亲并不能带给他健康。他自幼就患有一种奇怪的运动神经系统疾病,写字绘画都很困难。在5岁时,他又患上了严重的白喉病,致使他的语言能力发展缓慢,视力也受到严重损害。所幸的是,他有一个有才华有教养的母亲,使他从小受到良好的 家庭教育 ,由此庞加莱的天资通过家庭教育和自我锻炼开始显露出来。上课时看不清老师的板书,无法记录,他就全神贯注地听讲,用心记在脑子里。下面的这则小故事就能充分体现这位传奇人物的学习特点:
1864年的秋天,在法国一所中学的一间教室里,当地一位小有名气的天文学家给学生们讲行星的运动过程。对天文学缺乏兴趣的学生们大都心不在焉,不是面无表情就是哈欠连天,这显然让吃力不讨好的老师有些恼火。这时,他再次发现后排的一个小个子男孩低着头始终没有注视过黑板,看起来在开小差,于是他大步流星走了过去。
“同学,你在干什么?怎么不看着黑板,难道你都听懂了吗?”老师很生气地问。“我习惯用耳朵听,而且我听懂了,谢谢!”小个子男生站起来恭敬地回答。“真的么?那请你讲给大家听听!”不怎么相信的老师有意刁难道。“行星的运行……”小个子男生把老师刚才讲的内容完整地复述了一遍。“天哪!你居然能过耳不忘,真是太了不起了!”老师瞠目结舌,觉得不可思议:“那你为什么不看黑板上的内容,这样理解起来更方便啊!”老师仍有些不解。
“老师,他眼睛严重近视,看不清黑板上的字。”旁边的同学赶忙解释道。“哦,是这样。看起来上帝是公平的,你的聚精会神已经弥补了视力上的缺陷,你已经拥有了一双最好的‘内在之眼’!”
这个拥有超常 记忆力 的少年就是后来的数学大师庞加莱。由于视力上的障碍,庞加莱听课只能靠听和记忆,这就意味着他要付出比常人更多的努力和艰辛,但他同时收获的是大脑出奇地发达,尤其是理解能力和记忆能力超众。他对事物的记忆具有迅速、准确、持久的特点,而且他思索问题时思想高度集中,特别是数学方面,他可以在头脑里完成复杂的运算和推理。那种高度集中的注意力,不论外界干扰有多大,都不能使他的思维中断,而这些特征正是一个数学家所必须具备的。那时候,经常有高年级的学生考他数学题,结果庞加莱几乎都是瞬间给出答案,反而考他的人却需要花很长时间来验证他给出的解答,因此,他获得了一个“数学魔怪”的绰号。
1873年,19岁的庞加莱参加了巴黎综合工科学校的入学考试,那是一所以刻板的考试而闻名世界的学校。这时的庞加莱的数学才能已崭露头角,考官们为了试探一下他的能力,有意把考试时间推延了45分钟,他们用这段时间专门为他精心设计了几道数学难题,这个貌不惊人的年轻人没有动笔,在脑袋里就轻松地完成了运算,当他报出答案时,时间之短暂,方法之巧妙,令主考老师们在瞠目结舌之余欣喜若狂。尽管庞加莱的绘画能力很差,在几何作图题上得了零分,但惜才的主考官们经过激烈讨论,最终打破惯例,破格给出了第一名的成绩录取了他。
数学家的故事5篇600字相关 文章 :
★ 关于数学家的小故事5篇
★ 数学家的故事精选5篇
★ 关于我国数学家的小故事5篇
★ 关于数学家华罗庚的小故事5篇
★ 数学名人故事600字左右
★ 科学家的故事作文5篇
★ 数学名人故事分享5篇
★ 数学名人故事集锦5篇
★ 中国数学名人故事5篇
★ 数学家的故事总结【5则】
我国著名的数学家陈景润叔叔在攻克数学难题——‘哥德巴赫猜想’中取得了世界领先的成绩.因此, 他的名字就和‘哥德巴赫猜想’紧紧地联系在一起了.什么叫‘哥德巴赫猜想’呢? 1732 年德国的数学家哥德巴赫发现的一个规律: 凡是大于2 的偶数, 都可以表示为两个素数 (质数) 的和, 即‘1+1 问题’.例如, 12=7+5, 28=11+17, 等等.哥德巴赫对许多偶数进行的检验都说明这个猜想是正确的.后来有人验算到三亿三千万这样大的偶数都说明是正确的.但是对更大更大的偶数呢? 哥德巴赫猜想也是正确的.不过猜想应该证明.但是要证明这个猜想却很难.哥德巴赫把这个猜想告诉了大数学家欧拉, 请他来帮忙, 但是欧拉一直到死都没有证明出来.这个难题传遍了世界, 吸引了成千上万的数学家.两百多年过去了, ‘哥德巴赫猜想’仍没有被证明. 解放前陈景润叔叔还在中学读书的时候, 就听到了曾经在清华大学教过书的沈先生说: ‘自然科学的皇后是数学, 数学皇冠是数论, 哥德巴赫猜想是皇冠上的明珠.’沈先生讲了以后, 有的同学嘁嘁喳喳地讨论.陈景润叔叔呢? 他没有笑也没有说, 却把摘下皇冠上的明珠的美好愿望埋在心窝里了.从此, 他学习更加勤奋, 1953 年陈景润叔叔以优异的成绩在厦门大学毕业了.他先在北京当中学教师, 后来又调到厦门大学研究著名数学家华罗庚的的数学名著, 写出了质量很高的数学论文.他的论文得到了许多老前辈数学家的称赞.特别是华罗庚教授对他的研究成果更为赞赏, 鼓励他继续前进.在华罗庚教授的建议下, 陈景润叔叔调到了中国科学院搞研究工作.他在精通英语、俄语的基础上, 又自学了法语、德语.他在打好了扎实的基础后, 开始向‘哥德巴赫猜想’的高峰进军了.就在这时候陈景润叔叔忽然病倒了, 医生给他开了一张又一张的病假条要他休息.可是他不肯休息, 仍然在埋头钻研.每天从早到晚, 甚至连节日、假日也不停地工作.他的手总是握着笔在一页又一页的草稿纸上计算. ‘文化大革命’中, 他被指责为走白专道路的人, 不准他进办公室, 他只得躲在只有六平方米的自己的宿舍里工作.有人连电灯都不给他, 他就点上煤油灯在床板上演算.到1972 年陈景润叔叔终于在研究‘哥德巴赫猜想’方面攻破了‘1+2 问题’的难关, 并发表了重要论文《大偶数表为一个质数及不超过两个质数乘积之和》.例如: 3124<121= 11× 11 这篇论文很快传到了国外, 被国外数学家称为陈氏定理.陈景润叔叔在‘哥德巴赫猜想’的研究方面攀上了前人没攀上的高峰, 取得了世界领先的地位, 为国争了光.现在离‘哥德巴赫猜想 1+1 问题’的证明只有一步之远了.我们要像陈景润叔叔那样从小认真学习数学, 打好扎实基础, 长大了当个数学家.争取登上‘哥德巴赫猜想’的顶峰, 摘下这颗明珠.(
数学教学绝不是简单的知识传授,教师要认识到教学过程是一个创造过程,每个教师都要研究教与学的相互作用,将教学过程视为师生共在的探索真理的过程。本文是我为大家整理的数学教研论文 范文 ,欢迎阅读! 数学教研论文范文篇一:中专数学教学的研究与思考 一、中专数学教学的现状分析 由于中专 教育 主要是面向社会为社会培养人才,因此,在实际的教学中,教师需要对学生进行实践教学,但是,在中专数学教学中,教师主要进行理论知识的教学,实践教学课非常的少,这样就导致学生虽然具备一定的数学理论知识,但是却不能很好的进行实际的应用.由此可见,中专数学理论教学与实际操作的脱节,不利于学生的长远发展. 二、进一步优化数学教学的 措施 分析 1.明确教学目标 在中专数学教学中,教师应该明确教学的目标.教师进行数学教学的主要目的就是通过对学生进行系统的数学教育,使学生具有一定的数学能力,使学生通过数学的学习,能够解决生活中的实际问题,提高学生的生活能力.另外,在生活中,很多生活中的问题都需要数学知识进行解决,因此,教师对学生进行数学的教学,主要就是为了更好的培养学生的生活能力,促进学生的不断发展[2].例如,在进行函数教学的时候,教师在课堂教学的开始,就应该告知学生学习函数能够解决生活中的哪些问题,函数在生活中用途非常的广泛,函数能够解决纳税问题,票价问题,销售利润问题等. 2.更新教材内容 随着社会经济的发展和科学技术的不断进步,数学知识也在不断的发展,很多前沿的知识学生在中专数学课堂的学习中无法学到,由于中专教材不是一年一更新,需要五年到十年左右更新一次[3].因此,很多前沿的知识无法在教材上体现,因此,教师应该不断的对教材内容进行更新,将最先进的数学知识加入到教材中去,使学生能够学习到最前沿的知识,促进学生的不断发展和进步. 3.提高教师教学水平 在中专数学教学中,应该不断的提高教师的教学水平,不断的加强师资队伍建设,中专学校应该拥有一批专业知识过硬,专业技能扎实,教学水平高,具有创新精神的数学教师,教师在教学中能够及时的发现教学中不适于学生发展的因素,并且通过创新,提出合理化的建议,不断的促进学生学习上的进步.另外,中专数学教师还应该多参加培训和学习,提高自身的专业素质,为学生的学习提供最好的师资保证. 4.教学中注重激发学生的学习兴趣 教师只有在教学中不断的激发学生的学习兴趣,才能够收到最好的教学效果.传统的 教学 方法 主要就是教师在课堂上对学生进行提问,学生通过思考完成教师的提问,在这个过程中,由于学生无法提起学习的兴趣,在课堂上的暂时性记忆也随着时间淡忘,无法收到满意的教学效果,课堂教学效率不高,学生的学习水平也无法全面的提高.因此,教师应该采取相应的教学策略,激发学生的学习兴趣,使学生能够主动去学习,爱上学习,进而收获知识.在数学教学课堂上,教师可以从学生的兴趣出发,在列举教学案例的时候,教师可以列举一些学生感兴趣的教学案例,激发起学生学习的积极性,提高学生的课堂效率,促进学生学习上的进步.例如,在进行函数教学的时候,由于函数及其图象在高中数学中占有很重要的位置.如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心.因此,教师在教学中,学生在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式.并且在教学过程中努力做到生生对话、师生对话,在对话之后重视体会、 总结 、 反思 ,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法,并且不断的激发学生的学习兴趣.总之,在教学中,教师应该树立正确的教学目标,掌握有效的教学方法,并且在教学中注意运用多种教学策略,才能够不断的提高学生的学习水平,培养学生的学习能力,促进学生的全面进步. 作者:张丽 工作单位:南京市玄武中等专业学校 数学教研论文范文篇二:高校数学信息技术整合方法研究 一、高校数学教学中使用多媒体的优势 有利于促使高校数学课堂教学实现因材施教。多媒体辅助高校数学教学过程中所使用的课件与传统教学中所使用的板书有本质的区别,在高校数学教学中以板书为核心的教学需要学生花费很大的精力做笔记,而多媒体辅助高校数学教学中的课件通过下载就能够查阅和利用,并且不会出现传统教学中因为笔记不全而难以顺利巩固和复习知识的情况。在此过程中,教师也可以根据实际的教学效果对课件进行进一步的合理化与完善化并提供给学生,学生可以完全摆脱课程设置的限制并按照自身数学实际水平找出学习侧重点并自主安排学习进度,所以多媒体辅助高校数学教学与传统高校数学教学相比具有更强的教学针对性,对落实因材施教的教学理念具有重要的意义。 二、现代教育技术与高校数学教学整合的方法 与传统的高校数学课堂教学相比,多媒体辅助高校数学教学拥有很大的优势,但是如果在高校数学课堂教学中不能对多媒体进行合理利用,则容易产生事倍功半的效果,所以在多媒体辅助高校数学教学的优化过程中,教师要处理好多媒体辅助高校数学教学中的几种关系,从而在正确利用多媒体技术开展高校数学教学的基础上最大限度地发挥多媒体技术对高校数学教学质量提高所具有的推动作用。 1.确保教学手段与教学目的关系的协调。新课程理念下的高校数学教学的目的在于通过高校数学教育使学生具备良好的人文素质、创新精神、科学素养、思维能力等,所以多媒体辅助高校数学教学活动的目的在于通过对多媒体辅助教学技术的利用,使学生的智力以及思维能力得到良好的发展并实现高校数学教学的目标。在此目的的指导下,教师必须在多媒体辅助高校数学教学的过程中,以新课程教学目标为核心开展教学过程。而在实际教学中,一些教师由于不能做到合理使用多媒体教学技术而导致了事倍功半的效果,针对这一问题,教师首先要突出教学目的在教学过程中的主线作用,让多媒体辅助教学技术为教学目标的实现服务,如果二者存在冲突则应当舍弃这种教学手段;其次教师要以教学和学生的需求为依据对多媒体的表现手段做合理选择。如多媒体的表现手段包括声音、动画等,在高校数学教学中需要有针对性地选取高效率的表现手段,这里所说的针对性包括教学内容的针对性以及教学目标的针对性。 2.确保多媒体演示与教师讲授关系的协调。在高校数学课堂教学中,多媒体辅助教学有明显的优势,它能够提高学生自主学习、合作学习、探究性学习等方面的能力,同时也有利于课堂情境的塑造。但是在高校数学课堂教学过程中,师生之间的互动以及学生与学生之间的互动是不能舍弃的,所以有必要将多媒体演示和教师讲授良好地结合起来,让多媒体辅助教学技术发挥辅助教师授课的作用。在现代的教学理论中,高校数学教师被认为是高校数学教学活动中的主导,学生是高校数学教学活动中的主体,而多媒体是高校数学教学活动中的辅助工具,其中教师本身主导地位不容忽视的原因主要体现在两个方面:一是高校数学教学活动开展的过程也是学生与教师交流的过程,通过这种交流,教师可以向学生传授高校数学知识,也可以利用自身人格魅力影响学生以提高学生的综合素质,尤其是道德品质素质,教师的这一作用是多媒体教学技术不可取代的;二是多媒体辅助高校数学教学活动的开展依赖教师的操作,无论是可见设计,还是教学演示,都需要教师进行,所以教师的主导地位实质上没有变化。 3.确保情感交流与知识传授关系的协调。在高校数学课堂教学中,学生和教师的交流是双向的互动关系,这个过程既是传授知识和反馈信息的过程,也是情感交流的过程,而教师、学生与多媒体之间是单向的没有情感的交流,所以人际之间的交流是无法发挥与师生交流同等作用的。这就要求在多媒体辅助高校数学教学中教师首先要控制多媒体辅助教学技术的使用时间,从而突出教师在知识传授中的主导地位;其次要选择合理的多媒体辅助教学技术使用的时机和方式,从而突出学生在整个教学过程中的主体地位;最后教师要善于利用自身的激情调动学生学习的热情,通过充满情感的体态和话语将自己的情感体验传达给学生,在关注学生情绪变化的基础上对学生在体验教学内容中的情感和思想进行合理地引导。 作者:朱彦生 工作单位:吉林农业工程职业技术学院 数学教研论文范文篇三:高等数学教学现状探讨 1高等数学教学中渗透数学史的提出 数学史研究的任务在于,弄清数学发展过程中的基本史实,再现其本来面貌,同时透过这些历史现象对数学成就、理论体系与发展模式作出科学、合理的解释、说明与评价,进而探究数学科学发展的规律与 文化 本质。作为数学史研究的基本方法与手段,常有历史考证、数理分析、比较研究等方法。 高等数学教学中渗透数学史的提出背景 数学史主要是对数学概念、数学方法和数学思想的起源与发展进行研究,并且与社会政治、经济和一般文化相联系的一门科学。数学史首先对于揭示数学知识的现实来源和应用有一定的意义;其次,对于引导学生体会真正的数学思维过程,激发学生对数学的兴趣,培养探索精神有一定的意义;最后,对于揭示数学在文化史和科学进步史上的地位与影响,进而揭示其人文价值也有重要意义。对于高等数学教师来说,在教学过程中渗透数学史的内容,是一种极有意义的方法。数学史有很强的教育功能,将数学史融入高等数学的教学过程是必然的趋势。 高等数学教学中渗透数学史的存在意义 渗透数学史的科学意义 数学史既有其历史性又有其现实性。其现实性首先表现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发展,因此我们无法割裂科学现实与科学史之间的联系。诸如费尔马猜想、哥德巴赫猜想等历史上的难题,长期以来一直是现代数论领域中的研究 热点 ,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用。总之,数学传统与数学史材料可以在现实的数学研究中获得发展。 数学史的文化意义 美国数学史家M.克莱因曾经说过:“一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显。”[1]毫不夸张地说,数学史可以从一个侧面反映人类的文化史。许多历史学家通过数学这面镜子,了解古代其他主要文化的特征与价值取向。例如,罗马数学史告诉我们,罗马文化是外来的,罗马人缺乏独创精神而注重实用。而古希腊数学家则强调严密的推理并由此得出的结论,这就十分容易理解,古希腊具有很难为后世超越的优美文学、极端理性化的哲学[2]。 数学史的教育意义 了解数学史的人,自然会有这样的感觉:数学发展的实际情况与我们今日所学的数学书不是很一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学学习的大部分内容则是17—18世纪的高等数学。这些数学课本已经过千锤百炼,它们是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、演化历程以及导致其发展的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,而弥补这方面不足的最好途径就是进行数学史的学习。 2高等数学教学中渗透数学史的几点做法 通过数学史的渗透加深学生对数学的理解 数学史的渗入可以丰富我们的教学内容,为学生提供新的学习途径。因为历史上的问题是真实的,因而更有趣;历史知识的介绍一般都非常自然,它或者揭示了实质性的数学思想方法,或者直接提供了相应数学内容的现实背景,这对于学生理解数学内容和方法都是重要的,所以在教学上要有所创新。在教学中,适时结合数学史内容进行教学,可以帮助学生了解数学知识是怎样形成的,可以极大地调动学生学习数学的积极性,有的同学甚至自己去找数学家的 故事 书看;有的同学通过对数学史的了解,不仅更好地理解了数学知识,而且转变了学习数学的态度,对问题的探讨由不耐烦到独立解决,喜欢对问题追根究底。 通过数学史的渗透培养学生正确的数学 思维方式 首先,将数学家们获得重大发现的思想活动的历史记录以及经历的百感交集的体验引入课堂,是培养学生思维能力的最好教材;其次,还可以结合历史环境介绍一些数学史中的反例,让学生了解数学的发展并不是一帆风顺的,历史上任何一项数学成果的取得都是经历了重重曲折的;介绍数学的发展史,让学生了解数学家的思维方式,以此影响自己的思维方式。 通过数学史的渗透激发学生学习数学的兴趣 高等数学以其抽象的内容、广泛的应用、严谨的结构、连续的发展而别于其他学科;实际教学中,学生在学习高等数学时只注重字母、公式的记忆,对概念、定理的产生缺乏正确的认识,知识死记硬背,因而,乏味、枯燥、难理解成为学生对数学这门学科的印象,看不到活的数学,更不用说对这门学科产生浓厚的兴趣了,再加上学习过程中随着对理解和接受数学知识要求的不断提高,从而也加大了学生学习高数的难度,学习兴趣不可避免会受到影响,学习效果当然会大打折扣。如果教师在教学过程中能够把抽象的概念同具体的 历史故事 、数学人物有机结合起来,适时地穿插一些学生感兴趣又有知识性的历史事件或名人故事,充分调节课堂气氛、诱发学生学习兴致,增强数学的吸引力,就可以使枯燥的教学变得生动,消除学生对数学的恐惧感,从而有助于提高学生学习的兴趣和积极性。 通过数学史的渗透使学生以史为鉴 目前,德育教育不仅是政治、语文、历史学科的事了,数学史内容的加入使数学具有更强大的德育教育功能,通过介绍数学史让学生们以史为鉴。首先,通过数学史可以对学生进行爱国主义教育。现行的教材既有国外的数学成就,也有我国在数学史上的贡献,比如数学书中有:刘徽的“割圆术”、鸡兔同笼问题、秦九韶算法、更相减损之术等数学问题,还有我国的祖冲之、祖暅、秦九韶等一批优秀的数学家[3],还有很多具有世界影响力的数学成就,在我国很多问题的研究甚至比国外早很多年。在课程的要求下,除了增强学生的民族自豪感外,还可以培养学生的“国际意识”,了解更多的世界名家,就是让学生认识到爱国主义不是“以己之长,说人之短”,而是全人类互相借鉴、互 相学 习、共同提高。其次,通过介绍著名数学家的成长史和研究史,让学生学习数学家的优秀品质。数学家们的精神令人钦佩,他们坚持真理、不畏权威、努力追求的精神,很多人甚至付出毕生的精力。数学家的可贵精神对那些在平时学习中遇到稍微烦琐的计算和稍微复杂的证明就打退堂鼓的学生来说,是一个很好的榜样,对他们养成良好的数学品质有积极的作用。 3对高等数学教学过程中渗透数学史的启示 因为在高等数学中渗透数学史,有如此重大的意义,所以要求教师应加强数学史的学习与研究。然而,经研究发现大部分教师的实践效果并不是很好,原因并不是教师们不接受新的教育理念,也不是不愿意承认数学史的融入、落实文化渗透的理念,而是由于数学史的知识匮乏导致理念难以落实,因此数学教师应注意多方学习数学史知识,多方研究数学史。在数学史融入高等数学教学的行动研究中,发现对数学史的学习研究可以分为以下三个层次:了解性学习、掌握性学习、研究性学习。第一层次要求知道数学史的发展概况,了解起过重要作用的数学家,影响深远的数学思想、方法等。第二层次可以从数学史中适当提取相关内容,用于数学研究、教学、学习之中。第三个层次以文献资料为线索,研究不同时期的数学发展,数学家活动,数学思想、方法的进展等,并对数学的发展趋势提出预见性分析。 4结束语 总而言之,数学史在中学数学教学中的作用是非常重要的。因此我们需要把数学史融入高等数学教学中,并将文化理念落实于课堂教学。所以要把数学史融入课堂教学看成一种教学现象,用行动研究的理论来研究这种教育现象。在研究的过程中,要坚持学习行动研究的理论,并用行动研究的理论指导对数学史融入课堂教学的实践,在实践的过程,积累大量的问题,通过这些问题的解决,促进对行动研究理论的重新认识,提高对教育理论的应用。 作者:刘菊芬 吴芳 工作单位:铜仁学院教育科学系
莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士数学家、自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国圣彼得堡去世。欧拉出生于牧师家庭,自幼受父亲的影响。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。欧拉对数学的研究如此之广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。此外欧拉还涉及建筑学、弹道学、航海学等领域。瑞士教育与研究国务秘书Charles Kleiber曾表示:“没有欧拉的众多科学发现,今天的我们将过着完全不一样的生活。”法国数学家拉普拉斯则认为:读读欧拉,他是所有人的老师。2007年,为庆祝欧拉诞辰300周年,瑞士政府、中国科学院及中国教育部于2007年4月23日下午在北京的中国科学院文献情报中心共同举办纪念活动,回顾欧拉的生平、工作以及对现代生活的影响。采纳!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
你首先要确定要选哪一位数学家,然后结合他的具体事例去写启发。数学家总是以推理论证的形式发表论文,没有也不可能写出他在证明之前所做的大量试探性、试验性的工作.但是数学家在证明一个定理之前,必须经历大量的具体计算,进行各种试验或检验,才能形成证明的思路和方法.只有在这个时候,才能在逻辑上进行综合,表达为一系列的推理论证,即证明.由此可见,“演”中有“算”.另一方面“算”中有“演”充分表现在算术和代数中.因此数学研究中存在着两个阶段:实验和证明.《实验数学》杂志的创办人、几何学家爱泼斯坦(Epstein, D.)和列维(Levy, S.)则从词源学的角度考察“证明(prove)”一词含有“尝试”、“试验”和“证实”的意义.他们说:“英语‘证明(prove)’有两个基本意义,一是尝试或试验,二是证实.”当然,数学中的实验是一种抽象的思想实验,它不同于自然科学中的实物实验;数学实验只是提出猜想和假说的一种方法,它还必须经过逻辑证明,才能使猜想或假说变成定理.英国数学家、菲尔兹奖获得者M·F·阿蒂亚认为:与其它自然科学的情况一样,数学中的一些发现也要经过几个阶段才能实现,而形式证明只是最后一步.最初阶段在于鉴别出一些重要的事实,将它们排列成具体含义的模式,并由此提炼出看起来很有道理的定律或公式.接着,人们用新的经验事实来检验这种公式.只是到了此时,数学家才开始考虑证明问题.对哈代来说,证明只不过是数学大厦的门面而不是其结构中的支柱.开展数学实验活动激发他们潜在的学习能力,致力于高层次的学习状态.此时此刻学生的学习不仅仅是记忆定义、定理和公式,而是通过操作实验来建构知识,有效地领会数学知识结构中的思想方法.学生通过操作实验学习数学,可以获得更多的反馈信息,并且不断地改进他们对数学新知识的理解.开展数学实验活动可以进一步培养学生的动手能力、观察和分析问题的能力,能使学生进入主动探索状态、变被动的接受学习为主动的建构过程,同时培养学生的创新精神、意识和能力.