首页 > 学术期刊知识库 > 电磁学的毕业论文题目

电磁学的毕业论文题目

发布时间:

电磁学的毕业论文题目

电磁学计算方法的研究进展和状态摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组:其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合:其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,…此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件:其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复杂目标的处理。5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。参考文献〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69.〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991.〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18.〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991.〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143.〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74.〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339.〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994.〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

其实吧,网上这些论文都循环了,建议你图书馆找本书来看看。兄弟同不同意??

电磁学毕业论文题目

你看看这个吧!!

最好在网上下载吧

我过十岁生日时,妈妈送给我一套迪宝乐电子积木。它采用正规ABS塑料制成,全铜纽扣连接,电路图全是彩色立体显示,有太空大战、无线电收音机、门铃、电扇、闪光灯等1300多种玩法,而且拼装快捷。我爱不释手,一有空就在上面拼拼拆拆,从中获得了无穷的乐趣。通过亲身实践和仔细观察,我明白了许多电学知识,其中,电磁现象最令我感兴趣。一、吸铁石与磁控来自:作文大全有一次,我用电子积木拼了一台电扇。后来,我把电键换成了干簧管,拿起磁铁靠近干簧管。当磁铁接近干簧管时,电扇便开始转动;再离远一点,电扇停了;再靠近,电扇又转起来。哈哈!电扇成了磁控电扇。我觉得很有趣又迷惑不解,立即将指导手册翻到“原理解释”这一页。原来,干簧管在磁铁的引力下,可以当开关用。干簧管是一个密封的玻璃管,内有两块互不相连的铁片。当磁铁靠近干簧管时,铁片被磁化,两块铁片就吸合在一起,电路接通,让电流通过,所以干簧管可作为磁性开关使用。 二、电动机与磁力飞碟游戏也挺有趣。飞碟底端安装着一个小电动机 ,接通电源,电动机立刻转动起来,带动飞碟旋转。电动玩具汽车里也安装了电动机。电动机为什么能够转动呢?原来电动机里有磁铁和线圈,转动电动机的小轴时,磁铁和线圈发生相对运动,线圈里的磁场会发生变化,产生磁力;同时在线圈内产生微小的电流,利用这个微小的电流能够带动小轴连续不断地转动,不停地产生磁力,电动机就不停地工作。 三、磁场与喇叭自从有了电子积木,我们家就热闹极了。时而上演太空大战,时而警铃大作,一会儿消防车来了,一会儿炮声隆隆。原来设计师把事先录制好的太空大战声、警车声、消防车声、机关枪声、坦克声、音乐等几种声音储存到集成电路内,并封装好,只需要外接电池、导线、喇叭和开关就能将声音播放出来。生产电子积木的叔叔阿姨们真是聪明!那么,喇叭是怎么回事呢?我逐一将喇叭换成了发动机、电容器、导线等,都没播放出任何声音来。为什么播放声音就必须使用喇叭?妈妈告诉我,没有它,就不能将电信号转换成声音信号。喇叭又叫扬声器,是一种典型的将电信号转换为声音信号的换能元件。当有电流通过喇叭内部的小线圈时,小线圈产生随音频电流而变化的磁场。这一变化磁场与永久磁铁的磁场产生相吸和相斥作用,导致小线圈产生机械振动并且带动纸盆振动,从而发出声音。

毕业论文题目电磁学

麦克斯韦是19世纪伟大的英国物理学家、数学家。1831年11月13日生于苏格兰的爱丁堡,自幼聪颖,父亲是个知识渊博的律师,使麦克斯韦从小受到良好的教育。10岁时进入爱丁堡中学学习14岁就在爱丁堡皇家学会会刊上发表了一篇关于二次曲线作图问题的论文,已显露出出众的才华。1847年进入爱丁堡大学学习数学和物理。1850年转入剑桥大学三一学院数学系学习,1854年以第二名的成绩获史密斯奖学金,毕业留校任职两年。1856年在苏格兰阿伯丁的马里沙耳任自然哲学教授。1860年到伦敦国王学院任自然哲学和天文学教授。1861年选为伦敦皇家学会会员。1865年春辞去教职回到家乡系统地总结他的关于电磁学的研究成果,完成了电磁场理论的经典巨著《论电和磁》,并于1873年出版,1871年受聘为剑桥大学新设立的卡文迪什试验物理学教授,负责筹建著名的卡文迪什实验室,1874年建成后担任这个实验室的第一任主任,直到1879年11月5日在剑桥逝世。 麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、力学、弹性理论方面的研究。尤其是他建立的电磁场理论,将电学、磁学、光学统一起来,是19世纪物理学发展的最光辉的成果,是科学史上最伟大的综合之一。 麦克斯韦大约于1855年开始研究电磁学,在潜心研究了法拉第关于电磁学方面的新理论和思想之后,坚信法拉第的新理论包含着真理。于是他抱着给法拉第的理论“提供数学方法基础”的愿望,决心把法拉第的天才思想以清晰准确的数学形式表示出来。他在前人成就的基础上,对整个电磁现象作了系统、全面的研究,凭借他高深的数学造诣和丰富的想象力接连发表了电磁场理论的三篇论文:《论法拉第的力线》(1855年12 月至1856年2月);《论物理的力线》(1861至1862年);《电磁场的动力学理论》(1864年12月8日)。对前人和他自己的工作进行了综合概括,将电磁场理论用简洁、对称、完美数学形式表示出来,经后人整理和改写,成为经典电动力学主要基础的麦克斯韦方程组。据此,1865年他预言了电磁波的存在,电磁波只可能是横波,并计算了电磁波的传播速度等于光速,同时得出结论:光是电磁波的一种形式,揭示了光现象和电磁现象之间的联系。1888年德国物理学家赫兹用实验验证了电磁波的存在。麦克斯韦于1873年出版了科学名著《电磁理论》。系统、全面、完美地阐述了电磁场理论。这一理论成为经典物理学的重要支柱之一。在热力学与统计物理学方面麦克斯韦也作出了重要贡献,他是气体动理论的创始人之一。1859年他首次用统计规律得出麦克斯韦速度分布律,从而找到了由微观两求统计平均值的更确切的途径。1866年他给出了分子按速度的分布函数的新推导方法,这种方法是以分析正向和反向碰撞为基础的。他引入了驰豫时间的概念,发展了一般形式的输运理论,并把它应用于扩散、热传导和气体内摩擦过程。1867年引入了“统计力学”这个术语。麦克斯韦是运用数学工具分析物理问题和精确地表述科学思想的大师,他非常重视实验,由他负责建立起来的卡文迪什实验室,在他和以后几位主任的领导下,发展成为举世闻名的学术中心之一。他善于从实验出发,经过敏锐的观察思考,应用娴熟的数学技巧,从缜密的分析和推理,大胆地提出有实验基础的假设,建立新的理论,再使理论及其预言的结论接受实验检验,逐渐完善,形成系统、完整的理论。特别是汤姆孙W卓有成效地运用类比的方法使麦克斯韦深受启示,使他成为建立各种模型来类比研究不同物理现象的能手。在他的电磁场理论的三篇论文中多次使用了类比研究方法,寻找到了不同现象之间的联系,从而逐步揭示了科学真理。 麦克斯韦严谨的科学态度和科学研究方法是人类极其宝贵的精神财富。 麦克斯韦 父亲的影响 在科学史上,一些重大的理论,常常要靠许多人的前赴后继、不辞劳苦的努力,才能创立起来。19世纪,导致物理学爆发一场革命的电磁理论的创立,就是这样的。从奥斯特、安培发现电流的磁效应开始,经过法拉第的奠基,到理论的完成,前后经历了半个多世纪。最后完成这个理论的人,是英国杰出的数学家物理学家詹姆斯·克拉克·麦克斯韦。 麦克斯韦比法拉第小40岁。1831年11月13日,他生在苏格兰古都爱丁堡,跟电话发明家贝尔(1847~1922)是同乡。法拉第发现电磁感应恰好也在1831年。这一年就成了电学史上值得纪念的一年。 麦克斯韦的父亲约翰·克拉克·麦克斯韦,是个热衷于技术和建筑设计的律师,对麦克斯韦的一生影响很大。约翰·克拉克·麦克斯韦思想开通,讲究实际,非常能干。家里的大小事情,从修缮房屋、剪裁衣服到制作玩具,他样样都会做。他在爱丁堡附近的乡下有座庄园,麦克斯韦的童年就是在这座庄园里度过的。这个孩子从小喜欢思考问题,很受父母宠爱。小家伙跟着父母出去玩,一张小嘴总要不停地提出各种各样的问题。沿途所见,从路边的桑树、脚下的石块,直到行人的穿着表情,都成了他发问的内容。有些幼稚可笑的问题,常常把过路人也逗乐了。一次他们看见路旁停着一辆空马车,两岁的麦克斯韦突然问父亲:“爸爸,你看那辆马车为什么不走呢?”父亲信口回答:“它在休息。”“它为什么要休息呢?”“大约累了吧,”父亲敷衍说。“不,”儿子纠正说,“它是肚子痛!”“不是肚子痛,是累了。” “不是累了,是肚子痛!”儿子一口咬定。父亲忍不住笑了起来。后来,麦克斯韦稍大一点,提的问题更有意思了,比如“树木为什么向天上长”呀, “蚂蚁会不会说话”呀。有一天,麦克斯韦的姨妈给他带来一篮苹果。小家伙缠住她问:“苹果为什么是红的?”姨妈被这个突然的问题难住了,一时不知道怎样回答才好。为了摆脱窘境,她就叫麦克斯韦去吹肥皂泡玩,谁知道个主意更糟了。肥皂泡在阳光下呈现出美丽的五颜六色,使得麦克斯韦又惊又喜,向她提出了更多的关于颜色的问题。父亲见儿子对自然感兴趣,非常高兴,后来就带他去听爱丁堡皇家学会的科学讲座,当时他的个头还没有讲台高呢!约翰·克拉克·麦克斯韦本人是皇家学会的活跃分子,儿子跟随他经常出入科学界,受到不少熏陶。 麦克斯韦童年的欢乐是短暂的。他八岁那年,母亲患肺结核不幸去世。这种病在今天是不难治好的,但是在一个世纪以前的当时,却是不治之症。因为那时没有特效药,一个人得了肺病,就等于判了死刑。和麦克斯韦同时代的英国女作家夏洛蒂·勃朗特 (《简·爱》作者)三姊妹,贝尔的两个兄弟,都是因为患肺病夭折的。 母亲去世以后,麦克斯韦的父亲挑起了哺养、教育儿子的全部担子。他既是父亲,又兼做母亲,操了不少心。幼年丧母本来是不幸的,麦克斯韦失去母爱,性情渐渐变得孤僻、内向。他最大的快乐,是形影不离地跟着父亲走,给父亲当个小小的帮手。父子两人朝夕相处,相依为命,关系非常亲密。 麦克斯韦 10岁那年,进了爱丁堡中学。中学的生活充满了喧闹和戏剧性。他是在学期中间插班的,第一天上课就受到全班的嘲笑。几个调皮学生看到这个新来的同伴怯生、腼腆,直向他扮鬼脸。由于麦克斯韦童年一直在父亲乡下的庄园里生活,讲话有很重的乡土音。当老师点名叫他回答问题的时候,他刚一开口就引起哄堂大笑。有一次,大约因为发音太怪,连一位文质彬彬的女教帅都忍不住笑出泪来。从此老师就很少提问他了。更糟的是,他的衣服全是父亲做的,与众不同。19世纪英国的服装很讲究。妇女把华丽当做时髦。男人却讲究戴高筒礼帽,不论老少,脖子上还要围一条紧绷绷的硬领。麦克斯韦的父亲认为这不但系起来不方便,而且也不卫生。他不顾习俗,给儿子来了个小小的服装改革。这个多才多艺的律师亲自设计、亲手剪裁,替麦克斯韦做了一套简便的紧身服,可以不用穿外套,并且甩掉硬领的累赘。麦克斯韦的皮鞋也是父亲做的,大约是为了缝合的方便,皮鞋头是方的,鞋帮上还有金属纽扣。没料到,这些“奇装异服”却给麦克斯韦招来了许多屈辱。他在班上成了一只名副其实的“丑小鸭”,处处被排挤,受讥笑。每次放学回家,他不是紧身服被人扯破,就是腰带不翼而飞。父亲看到这种情景,痛惜地摇摇头,决定取消这不走运的“服装改革”,儿子尽管眼泪汪汪,却顽强地要坚持穿到底,因为他相信父亲的设计是无可非议的,他不愿向暴力屈服。 数学才华 麦克斯韦照样穿着父亲做的衣服进出课堂。他为了保持服装的整洁,常常要用拳头自卫。 同学们发现这个新生并不是可以随便欺侮的,就有意孤立他。麦克斯韦本来就怕羞,现在更不愿意和大家往来了。在班里,面对着同学们的热嘲冷讽,他沉默着,但是却从来没有低过头。在忍无可忍的时候,他就用尖刻、辛辣的话来进行回击。下课以后,他总爱独自坐在树下读歌谣,画一些只有他自己才看得懂的图画。要不,他就一个人躲在教室的角落里,专心致志地演算父亲给他出的数学题。同班同学都不理解他,老师也认为他是个古怪的孩子。大家暗中给他取了个外号,叫他“瓜娃”。整个爱丁堡中学,只有低年级的两个学生跟他很友好。那两个学生在班上大约也是受气的,可以说是同病相怜。 就这样,麦克斯韦在冷眼中度过了中学的最初时光。 谁也没有想到,到了中年级的时候,出现了奇迹。一次学校里举行数学和诗歌比赛,评选揭晓的时候,爆了个大冷门:两个科目的一等奖都由同一个人获得。这个出类拔萃的少年不是别人,而是一向不被人看在眼里的麦克斯韦!这不但使全班同学惊奇得睁大了眼睛,连级任老师也感到意外。他们这才发现,这只灰色的“丑小鸭”原来是一只白天鹅。 这次比赛改变了麦克斯韦在班里的地位。优等生总是受崇拜的,再也没有谁取笑他的服装和说话的声音了,同学们开始尊敬他,向他请教疑难问题。麦克斯韦成为全校拔尖的学生,获得了许多奖励。他的光彩,看起来有些像彗星那样突然出现,实际上却是刻苦学习的结果。麦克斯韦对数学、物理学有浓厚的兴趣,尤其喜欢数学。他的数学天赋,最早是父亲在无意中发现的。在麦克斯韦还只有几岁的时候,有一天,父亲叫他画插满金菊的花瓶。麦克斯韦画完交卷的时候,父亲拿过他的画,边看边笑了起来。因为满纸涂的都是几何图形:花瓶是梯形,菊花成了大大小小一簇圆圈,还有一些奇奇怪怪的三角,大概是表示叶子的。从这以后,父亲就开始教他几何学,过后又教他代数。于是,他和数学结下了不解之缘。后来,他在数学竞赛中夺得了冠军,决不是偶然的。 麦克斯韦的数学才华,使他很快突破了课本的界限。他还没满15岁,就写了一篇数学论文,发表在《爱丁堡皇家学会学报》上。一个最高学术机构的学报刊登孩子的论文,是罕见的,麦克斯韦的父亲为这件事感到自豪。论文的题目,是讨论二次曲线的几何作图。据说这个问题,当时只有大数学家笛卡尔 (1596~1650)曾经研究过。麦克斯韦的方法同笛卡尔的方法不但不雷同,而且还要简便些。当审定论文的教授确证了这一点的时候,都感到非常吃惊。1846年4月,这篇论文在皇家学会上宣读。通常宣读论文的都是作者本人,这一次却不是。因为考虑到麦克斯韦实在太年轻了,论文是由一位教授代读的。 麦克斯韦不但是个少年科学家,而且还是个小诗人。有趣的是,历史上不少著名的科学家都能做诗。罗蒙诺索夫常常把写诗当做消遣,他的颂歌很受叶卡德琳娜女皇青睐。因为这个缘故,罗蒙诺索夫几次幸免于政治迫害。化学大师戴维也是一位诗歌高手,只是因为他在科学方面的成就非常大,他的诗歌创作的光华才被掩盖了。麦克斯韦的诗歌,成就虽然不及罗蒙诺索夫,却也自成一格。他的诗常被同学传抄、朗诵。麦克斯韦一生都没有放弃过写诗的爱好,不过,他却从来没有想过要当一个诗人。他的诗多半是即兴的作品,他常常在亲友们欢聚的时候给他们朗读自己的诗。诗的内容,有不少是科学题材。 麦克斯韦在中学时代,还喜欢玩陀螺。它类似我国儿童玩的那种陀螺,玩的时候用绳子不断地抽打,陀螺就不停地在地上旋转。据说他一生都爱玩陀螺,还教他的许多朋友玩过。另外,对一种叫做活动画筒的玩具,他也有强烈的兴趣。麦克斯韦的这两种爱好,不单纯是为了娱乐,主要还是为了探索科学的道理。这两种玩具的原理,后来都被他应用到科学上去了。 1847年秋天,16岁的麦克斯韦中学毕业以后,考进了苏格兰最高学府爱丁堡大学,专门攻读数学和物理学。他是班上年纪最小的学生,坐位在最前排,站队总是在最后,书包里揣着陀螺和诗集。这个前额饱满、两眼炯炯有神的小伙子,很快就引起了全班的注意。他不但考试名列前茅,而且经常对老师的讲课提出问题。有一次,他指出一位讲师讲的公式有错误。那个讲师起初不相信,回答说:“如果你的对了,我就把它称做麦氏公式!”讲师晚上回家一验算,果然是自己讲错了。 到大学二年级的时候,麦克斯韦掌握的知识已相当广泛了。除了学习必修的功课,他还开始自己搞研究,选题范围涉及光学、电化学和分子物理学三个领域。这对锻炼他独立思考的能力起了很好的作用。不久,他在《爱丁堡皇家学会学报》上又发表了两篇论文。一位赏识他的物理教授,还特许他单独在实验室做实验。 爱丁堡大学给麦克斯韦留下了良好的回忆。在这里,他获得了登上科学舞台所必需的基本训练。但是,三年以后,对麦克斯韦说来,这个摇篮显得狭小了。为了进一步深造,1850年他在征得父亲的同意以后,离开了爱丁堡。转到人才辈出的剑桥大学学习。 利器在手 剑桥大学创立在1209年,是英国首屈一指的高等学府,有优良的科学传统。牛顿曾经在这里工作过30多年,达尔文(1809~1882)也是在这里毕业的。19岁的麦克斯韦初到剑桥大学,一切都觉得新鲜,他几乎每天都和父亲通信,报告自己的见闻、感想和学习收获。第二年,他由于考试成绩优异,获得了奖学金。当时,大学生大多数都是自费,获得奖学金的总是最勤奋的学生。按照规定,获得奖学金的学生都在一起吃饭,因此,麦克斯韦结识了一群有为的年轻人,他逐渐克服了少年时代的孤僻,活跃起来。不久,他被吸收加入了一个叫做“使徒社”的学术团体。这个团体又叫做“精选论文俱乐部”,专门评选学生中最优秀的论文。有意思是,“使徒社”的名称是根据《圣经》取的。因为耶稣只有12个门徒,“使徒社”也只能由12个成员组成,所以整个剑桥大学每届只能有12个学生属于这个团体。这个团体实际上是一个小小的“皇家学会”,必须是最出类拔萃的学生才有资格参加。 这个时期,麦克斯韦专攻数学,读了大量的专著。他的学习方法,不像法拉第那样循序渐进,井井有条。他读书不大讲究系统性,有时为了钻研一个问题,他可以接连几周其他什么都不管;而另一个时候,他又可能碰到什么就读什么,漫无边际,像一个性急的猎手,在数学领域里纵马驰骋。 课后,“使徒社”的成员们常在一起讨论各种问题。他们很欣赏麦克斯韦即兴创作的诗,但是要和他对话却很困难,因为麦克斯韦说起话来,和他读书一样,常常是天马行空,前言不搭后语,一个题目还没有讲完,他跳到另一个题目上去了。他的思路过于敏捷,让人难以捉摸。再加上他还保持着小时候的习惯,喜欢突然提一此奇怪的问题,比如“死甲虫为什么不导电呢?”“活猫和活狗摩擦可以生电吗?”就更使人反应不过来了。有一次,一位朋友同他到郊外散步。整个傍晚,大约都在讨论对某道难题的解法,麦克斯韦不停地说着,对方生怕不能领会,听得很仔细,但是最后还是一句都没有听懂。麦克斯韦这种机枪式讲授法,给他后来当教授带来不少困难。他一生都不被人理解。中学时候他的服装不被同学理解;大学时候他的语言不被人理解;到后来,他的学说也是很长时间不被人理解。尽管“话不投机”,社友们还是把他看做他们中间独一无二的人。麦克斯韦惊人的想象、闪电般的思维能力、讥诮的诗句,把他们征服了。 这是一个奇才,需要名师指点,才能放出异彩。幸运的是,有个偶然的机会,麦克斯韦果然遇上了伯乐,那就是剑桥大学的教授、著名数学家霍普金斯。一天,霍普金斯到图书馆借书,他要的一本数学专著恰被人先借去了。一般学生是不可能读懂那本书的,教授有些诧异,向管理员询问借书人的名字,管理员回答说:“麦克斯韦”。数学家找到麦克斯韦,看见年轻人正埋头作摘抄,笔记上涂得乱七八糟,毫无秩序。霍普金斯不由得对这个青年发生了兴趣,诙谐地说:“小伙子,如果没有秩序,你永远成不了优秀的数学物理学家!”霍普金斯所说的数学物理学家,是指善于运用数学方法解决理论问题的物理学家,通常也称做理论物理学家,需要在数学和物理学上都有很高的造诣。从这以后,麦克斯韦成了霍普金斯的研究生。 霍普金斯学问渊博,培养出了不少人才。有多方面成就的威廉·汤姆生 (就是著名的开尔文勋爵)和数学家斯托克斯(1819~1903),都是他的门下。麦克斯韦在导师的指导下,首先克服了杂乱无章的学习方法。霍普金斯对他的每一个选题,每一步运算都要求得很严格。那时,麦克斯韦还参加了剑桥大学的斯托克斯讲座。斯托克斯比他大12岁,在数学和流体力学上都有建树,他在数学上的重要发现在科学史上曾经有记载。经过两位优秀数学家的指教,麦克斯韦进步很快,不出三年就掌握了当时所有先进的数学方法,成了有为的青年数学家。霍普金斯对他的评价是:“在我教过的全部学生中,毫无疑问,这是最杰出的一个!” 尤其重要的是,麦克斯韦不是一个抽象的数学家。这一点也要归功于他的老师。历来的数学家有两派,一派以古希腊的毕达哥拉斯(约前580~约前500)为鼻祖,认为世界的本原就是抽象的数,数学决定一切;另一派以17世纪的笛卡尔为代表,他指出数学是客观事物的定量反映,也是一种知识工具。这位解析几何的创始人,曾经针对那些纯粹的数学家说:“没有什么比埋头到空洞的数学和抽象的图形中更无聊的了。”这两种对立的态度,导致人们对数学持有两种不同的看法。一种把数学看成纯粹的符号,为数学而数学;另一种却把生动的物理学概念同数学结合起来了,把数学当成研究物理学的手段。霍普金斯和斯托克斯都属于笛卡尔派。 麦克斯韦受到他们的直接影响,很重视数学的作用。他一开始就把数学和物理学结合起来。这一点对他以后完成电磁理论,是重要的。 1854年,23岁的麦克斯韦参加了数学学位考试。主考人是斯托克斯,题目涉及曲面积分和线积分,难度很大。事后大家才知道,那是斯托克斯刚发现的一个定理。这个定理后来对麦克斯韦的电学研究大有帮助。考试结果,麦克斯韦获得了甲等数学优等生第二名。也就是这一年,他对电磁学产生了浓厚的兴趣。法国浪漫主义作家乔治·桑 (1804~1876)说过:“在抽剑向敌以前,必须练好剑术。”麦克斯韦现在掌握了过硬的数学本领,他是利器在手,只等冲锋了。 继续着法拉第的事业 麦克斯韦毕业以后留在学校工作。起初,他研究的课题是光学里的色彩论。不久他读到了法拉第的《电学实验研究》,马上被书中新颖的实验和见解吸引住了。当时学术界对法拉第的学说看法不一致,有不少非议。主要原因是“超距作用”的传统观念影响还很深,旧的大厦动摇了,但是并没有倒塌;同时,也因为法拉第的学说在理论上还不够严谨。作为实验大师,法拉第有许多过人的地方,唯独数学功夫不够,他的创见都是用直观形式表达的。一般的理论物理学家都不承认法拉第的学说,认为它不过是一些实验记录。有个天文学家就公开宣称:“谁要是在精确的超距作用和模糊不清的力线观念之间有所迟疑,谁就是对牛顿的亵渎!”在剑桥大学,学者们也有分歧意见。其中最有见识的,要算威廉·汤姆生了。这位青年教授对电学很有研究,曾经多次向法拉第请教。在麦克斯韦毕业前一年,汤姆生发表了一篇题目是 《瞬变电流》的论文,指出莱顿瓶的放电有振荡性质。麦克斯韦见到论文十分佩服,他特地写信给汤姆生,请求他告诉一些研究电学的门路。汤姆生比麦克斯韦大七岁,他后来没有能够把电磁研究坚持到底。但是,他对麦克斯韦却有不少帮助。麦克斯韦在给父亲的信里曾经高兴地谈到,汤姆生很乐意指教他。 麦克斯韦受这位先行者的启示,相信法拉第的学说中包含着真理。他在认真研究了法拉第的著作以后,省悟出力线思想的宝贵价值,也看到了法拉第定性表述的弱点。这个初出茅庐的青年科学家决心用数学来弥补这一点。 一年以后,24岁的麦克斯韦麦表《论法拉第的力线》,这是他第一篇关于电磁学的论文。在论文中,麦克斯韦通过数学方法,把电流周围存在力线这个现象,概括做一个高等数学里的矢量微分方程。根据这个方程,每一股电流都产生一条环状磁力线。这一年(1855),恰好法拉第结束了长达30多年的电学研究,他在科学笔记里写下了最后一个编号:5430。正是“芳林新叶催陈叶,流水前波让后波”,麦克斯韦接过了这位伟大先驱者的火炬,开始向电磁领域的纵深挺进。 《论法拉第的力线》这篇论文,虽然基本上是对法拉第力线概念的数学 “翻译”,却是十分重要的一步。因为麦克斯韦一开始就使用了数学方法,而且选定了法拉第学说的精髓——力线思想,当做自己研究的起点。这表明麦克斯韦的科学洞察力确实是不同来凡响的。他认准了主攻方向,就坚定不移地研究下去。他后来的一系列论文,步步深入,都是沿着这条正确道路走的。这一点,是他比汤姆生高明的地方。汤姆生已经走到真理的边缘,却迟疑不前;麦克斯韦抓住了真理,就锲而不舍。所以麦克斯韦尽管起步比较迟,却第一个登上了光辉的顶峰。 科学的道路总是不平坦的。正当麦克斯韦的研究很有希望的时候,一桩不幸的事情打断了他的计划。一天,他正在埋头研究几篇新近的电学资料,邮递员送来一封家信。他拿到信,一眼看出不是父亲的笔迹,心头不由一惊。他许久以来担心的事情终于发生了。父亲年老体弱,健康恶化,突然病倒在床。那封信是父亲请别人代写的。麦克斯韦读完信,心里十分焦虑和难过。他对父亲的感情是非常深的。从幼年起,父亲就是他的良师益友,也是整个家庭的支柱。十几年来,他们朝夕相处,十分融洽。麦克斯韦离家求学以后,他们几乎每天通信,交换各种科学思想和对社会的见解,也畅谈有趣的日常生活。 为了照顾父亲,麦克斯韦只得离开剑桥大学,到离家比较近的阿伯丁工作。阿伯丁是英国北部的一个海港,那里的一所学院答应让麦克斯韦担任自然哲学讲师,可是需要等一段时间。麦克斯韦整夜守在父亲床前,尽力减轻老人的病痛。但是不论他怎样小心伺候,还是没有挡住死神的降临。1856年春天快要到来的时候,父亲终于离开了人间。这在麦克斯韦生活中,无疑是不可弥补的损失。他悲痛的心情久久不能平息。 不久,阿伯丁的马锐斯凯尔学院正式聘请他当自然哲学教授。麦克斯韦在就职以前,回到剑桥大学办理一些事务,停留了好几个月。他当时的心情很矛盾。对于母校,他是留恋的,而且父亲已经去世,他留在阿伯丁的意义也不大了,更主要的是他的电磁研究刚刚开始,他不知道在阿伯丁有没有合适的研究条件。但是,马锐斯凯尔学院已经给他下了聘书,据说院长很赏识他,他不好推脱,只得上任了。这一去,他的电磁研究竟推迟了四年。 法拉第的启发 1860年初夏,马锐斯凯尔学院的物理学讲座由于某种原因停办了。28的麦克斯韦离开阿伯丁港,到伦敦皇家学院去任教。他的妻子也随同前往。这次工作调动,是麦克斯韦一生事业的转折点。 在这以前,还有一段小小的插曲。麦克斯韦最初的母校爱丁堡大学,也要聘请一个自然哲学教授。他开始是准备去那里的。应选的一共有三个人,另外两个是他在剑桥大学的同学,其中一个还是中学的同学。三个人里究竟应该取谁,当局决定通过考试来决定。要是论学问,麦克斯韦稳拿第一,但是比口才,他吃亏了。考试结果,麦克斯韦名列最后,连主考人对他的讲课能力都表示怀疑。当时一家爱丁堡杂志评论这件事,也很替他惋惜。俗话说: “塞翁失马,安知非福”,麦克斯韦没有被爱丁堡大学选中,自然是件憾事,但是他却因为这个转到了皇家学院,完成了一生中最重要的贡献。 麦克斯韦在阿伯丁的四年时间里,一直怀着一桩心事,就是想用数学工具表达法拉第的学说。他的这个愿望,1855年只开了个头就搁下了。就是在研究土星的苦战中,只要见到有关电磁学方面的文章,也都会引起他密切的关注。他经常给法拉第写信,探索电磁的奥秘。他的案头一直摆着《电学实验研究》。每次打开这部辉煌的巨著,他的情绪就十分激动。法拉第,这位他当时还没有见过的伟人,给物理学描绘了一幅多么形象的图画啊!电、磁、光、力线、波动……在它们背后隐藏着什么规律呢? 麦克斯韦到伦敦以后特地拜访法拉第。这是一次难忘的会晤。青年物理学家递上名片,不一会儿,法拉第面带微笑地走了出来。这位实验大师已经年近七旬,两鬓斑白。他同麦克斯韦一见如故,亲切地交谈起来。 这两位伟人,他们不但在年龄上相差40岁,而且在性格、爱好、特长等方面也迥然不同,可是他们对物质世界的看法却产生了共鸣。这真是奇妙的结合:法拉第快活、和蔼,麦克斯韦严肃、机智。老师是一团温暖的火,学生像一把锋利的剑。麦克斯韦不善于辞令,法拉第演讲起来却是娓娓动听。一个不精通数学,另一个却对数学运用自如。两个人的科学方法也恰好相反:法拉第主要是实验探索,麦克斯韦擅长理论

自己上百度找,不过最好自己写,这里有一参考: 摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。 3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组: 其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合: 其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,… 此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件: 其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。 4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复 杂目标的处理。 5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。 参考文献 〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69. 〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991. 〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18. 〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991. 〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143. 〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74. 〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339. 〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994. 〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell 1831--1879) 詹姆斯·克拉克·麦克斯韦是19世纪伟大的英国物理学家、数学家。1831年11月13日生于苏格兰的爱丁堡,自幼聪颖,父亲是个知识渊博的律师,使麦克斯韦从小受到良好的教育。10岁时进入爱丁堡中学学习14岁就在爱丁堡皇家学会会刊上发表了一篇关于二次曲线作图问题的论文,已显露出出众的才华。1847年进入爱丁堡大学学习数学和物理。1850年转入剑桥大学三一学院数学系学习,1854年以第二名的成绩获史密斯奖学金,毕业留校任职两年。1856年在苏格兰阿伯丁的马里沙耳任自然哲学教授。1860年到伦敦国王学院任自然哲学和天文学教授。1861年选为伦敦皇家学会会员。1865年春辞去教职回到家乡系统地总结他的关于电磁学的研究成果,完成了电磁场理论的经典巨著《论电和磁》,并于1873年出版,1871年受聘为剑桥大学新设立的卡文迪什试验物理学教授,负责筹建著名的卡文迪什实验室,1874年建成后担任这个实验室的第一任主任,直到1879年11月5日在剑桥逝世。 麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、力学、弹性理论方面的研究。尤其是他建立的电磁场理论,将电学、磁学、光学统一起来,是19世纪物理学发展的最光辉的成果,是科学史上最伟大的综合之一。他预言了电磁波的存在。这种理论遇见后来得到了充分的实验验证。他为物理学树起了一座丰碑。造福于人类的无线电技术,就是以电磁场理论为基础发展起来的。 麦克斯韦大约于1855年开始研究电磁学,在潜心研究了法拉第关于电磁学方面的新理论和思想之后,坚信法拉第的新理论包含着真理。于是他抱着给法拉第的理论“提供数学方法基础”的愿望,决心把法拉第的天才思想以清晰准确的数学形式表示出来。他在前人成就的基础上,对整个电磁现象作了系统、全面的研究,凭借他高深的数学造诣和丰富的想象力接连发表了电磁场理论的三篇论文:《论法拉第的力线》(1855年12 月至1856年2月);《论物理的力线》(1861至1862年);《电磁场的动力学理论》(1864年12月8日)。对前人和他自己的工作进行了综合概括,将电磁场理论用简洁、对称、完美数学形式表示出来,经后人整理和改写,成为经典电动力学主要基础的麦克斯韦方程组。据此,1865年他预言了电磁波的存在,电磁波只可能是横波,并计算了电磁波的传播速度等于光速,同时得出结论:光是电磁波的一种形式,揭示了光现象和电磁现象之间的联系。1888年德国物理学家赫兹用实验验证了电磁波的存在。麦克斯韦于1873年出版了科学名著《电磁理论》。系统、全面、完美地阐述了电磁场理论。这一理论成为经典物理学的重要支柱之一。在热力学与统计物理学方面麦克斯韦也作出了重要贡献,他是气体动理论的创始人之一。1859年他首次用统计规律得出麦克斯韦速度分布律,从而找到了由微观两求统计平均值的更确切的途径。1866年他给出了分子按速度的分布函数的新推导方法,这种方法是以分析正向和反向碰撞为基础的。他引入了驰豫时间的概念,发展了一般形式的输运理论,并把它应用于扩散、热传导和气体内摩擦过程。1867年引入了“统计力学”这个术语。麦克斯韦是运用数学工具分析物理问题和精确地表述科学思想的大师,他非常重视实验,由他负责建立起来的卡文迪什实验室,在他和以后几位主任的领导下,发展成为举世闻名的学术中心之一。他善于从实验出发,经过敏锐的观察思考,应用娴熟的数学技巧,从缜密的分析和推理,大胆地提出有实验基础的假设,建立新的理论,再使理论及其预言的结论接受实验检验,逐渐完善,形成系统、完整的理论。特别是汤姆孙W卓有成效地运用类比的方法使麦克斯韦深受启示,使他成为建立各种模型来类比研究不同物理现象的能手。在他的电磁场理论的三篇论文中多次使用了类比研究方法,寻找到了不同现象之间的联系,从而逐步揭示了科学真理。超过1万字

1、强电磁环境干扰下的数据通讯问题。2、强电磁环境脉冲破坏下的电子设备的防护问题。3、强电磁环境下的人的防护问题。

电磁学课程论文题目

电磁场与微波技术,是电子信息类学科的一门非常重要的专业理论课,目的是满足学生以后从事微波天线以及射频类的相关工作需求。我整理了电磁场微波技术论文,有兴趣的亲可以来阅读一下!

“电磁场与微波技术”课程的改革与实践

摘要:在对“电磁场与微波技术”课程的改革与实践中,分析了目前该课程的教学中存在的主要问题,结合课程特点和“三本院校”学生的实际情况,整合了电磁场与电磁波、微波技术和天线理论三门课程的主要内容,加强了该课程与工程实际的结合,适应了三本学校的应用型人才的目标,并通过教学方式和考核方式等方面的具体改革措施,提高了该课程的教学质量,尤其是提高了学生对该课程的相关知识和技术的实际应用能力。

关键词:电磁场与微波技术;工程实际;考核制度

作者简介:张具琴(1980-),女,河南信阳人,黄河科技学院电子信息工程学院,讲师;贾洁(1982-),女,河南安阳人,黄河科技学院电子信息工程学院,助教。(河南郑州450063)

中图分类号:     文献标识码:A     文章编号:1007-0079(2012)17-0054-02

随着信息时代的发展,作为信息主要载体发展方向的高频电磁波—微波,不仅在卫星通信、计算机通信、移动通信、雷达等高科技领域得到了广泛的应用,而且已经深入到了各行各业中,在人们的日常生活也扮演着重要角色。因此对于电子信息专业的学生来说,电磁场、微波技术与天线类课程在目前及今后都是不可缺少的主干专业课程。[1,2]但由于该课程的自身特点及对于该课程教学的一些传统认识,使得学生对该课程的知识和技能的学习和掌握不能满足国内对电磁场与微波技术及其相关专业人才的需求。为提高该课程教学质量和人才培养质量,尤其是针对三本院校的应用型人才培养目标,笔者认真分析了该课程教学中的问题,结合课程特点和“三本院校”学生的实际情况,对该课程进行了一系列的改革和实践探索,并取得了一定的成果。

一、“教”“学”中的主要问题

该课程传统的教学方法是以事实性知识传授为教学目标,即课程内容是介绍“是什么”“为什么”,而缺乏“怎么做”“怎么用”,过分强调理论,而缺乏对知识的实际应用。

目前该类课程所用教材多为一本学校编著,这些教材整体突出课程内容的完整性和理论分析的严密性。对于理论基础一般也较为薄弱、更注重实际应用能力的三本学生来说算是“天书一部”,学习起来也“味同嚼蜡”,教师授课也是事倍功半,教学效果很不理想,很多三本学校对该课程的开设是“形同虚设”。

该类课程的教学模式仍是以理论教学为主的,教学方法和内容很少涉及该课程的实际知识应用和人才就业的方向指导,结果学生学完后除了知道有很多公式推导外,对该课程其他方面相关内容知之甚少,所以缺乏学习动力,教学效果不佳。

对于该课程的考核制度多为“一刀切”模式,即“考试分数定高低”,未能考虑学生的个体差异,忽视学生学习能力、学习过程、学习方式差别,不能很好调动学生的积极性和主动性。

二、改革方法和措施

1.改革传统的事实性知识传授的教学目标,更注重对实际应用能力的培养

在教学内容中,增加具体理论的应用实例分析,[3]使学生对电磁场和微波的实用性有较好的认识;增加微波技术在新科技和社会生产生活中的实际应用的一些例子,使学生有更强的学习兴趣和学习动力;课程中很多知识点的引入,都以思考题和小的科研课题的形式提出,使学生应用所学的理论知识分析解决实际问题的能力与创新、研究能力得到相应的锻炼。

增开相应的微波实验项目,使学生的实际动手能力得到很好提高,考虑到实验室建设的成本的问题,可以通过先引入微波的仿真实验项目或者引入与现有的大学物理实验、通信原理实验等成熟实验项目相结合的实验项目。[4]

2.突破传统的一本院校所编教材的限制,使学生在有限的时间内掌握具有生命力的知识基础和必要技能,以满足高素质应用人才知识结构和素质结构的需求

在实际授课过程中注重将“电磁场与电磁波”、“微波技术”和“天线理论”有机结合,采用电磁场与微波技术结合的自编的简本教材为授课教材,把天线及应用作为扩展补充教材,将三者精要贯穿于教学中。这大大节约了理论教学时间,使学生有更多的时间参与到实践中去,有利于培养学生应具有的实践能力。

具体教学内容方面:加强了该课程中的最基本的电磁场的概念、定理的讲解,力求夯实该门课程的基础;增加了微波在新科技中的应用和微波的发展前景的介绍和大量的网络理论应用实例分析等,有利于学生学习目标、学习兴趣的建立和实际应用能力的提高;针对该门课程涉及知识面广、理论性较强的特点,对于只是涉及而非重点内容大胆删减或者采用增加附录的形式直接给出,这样有利于学生有针对性地学习;对于课程中的概念采用“量纲分析法”,使学生对概念的物理意义有更深地理解,应用起来能够更加娴熟;对于其他新知识的引入采用“概念—方程—新概念”教学模式,顺着学生的理解思路,水到渠成;更加注重了理论与实践的结合,每个具体的理论讲完后,立即有相应的实例分析,既有利于提高学生的实际分析问题的能力又有利于提高其学习兴趣。

3.改革传统的理论教学为主的教学方法,开展“以应用为基本出发点”的理论教学方法研究

(1)以应用为本,确定理论教学的研究方法。在教学大纲和简本教材中,弱化理论讲解,重视实际解决问题能力的提高,主要采用“用什么理论,讲什么理论”和选学、自学内容相结合的模式,即让大多数学生学到了本课程的主要内容,又让学有富余的学生得到更深层次的提高。

(2)注重对学生进行思维能力与应用能力的训练。改变传统的纯理论讲解、缺少实际应用实例的情况,在教学过程中注重理论讲解、实例分析、习题课相结合;以思考题和小的科研课题的形式,对学生进行有效的思维能力与应用能力训练。

(3)具体教学方法中,采用多种方法相结合,尤其是板书和多媒体相结合教学。对于主要理论、公式的推导,以板书教学为主,有利于学生的理解和接受;而对于一些介绍性知识、实例讲解和仿真实验方面,可辅以多媒体教学和动画演示,丰富学生的感性认识和知识量。

(4)注重案例教学。例如,以往年学生的毕业设计为案例,阐明微波是如何用来解决实际问题的;提出目前理论应用于实际的方向和技术瓶颈,鼓励同学们探索和研究,力争做到理论与实践相互联系,相互穿插,相辅相成,使学生真正从这门课程中学到“实惠”,即掌握了具体知识的应用,也为其以后的就业指明了方向。

(5)开设“第二课堂”教学法。针对学生层次的差异,可以采用课堂教学与网络教学相结合的方式、给出小型科研调研题目等方式,[5,6]使每个学生的潜能都能得到最大的发挥。充分利用黄河科技学院(以下简称“我校”)的校企业合作平台,让学生利用半年左右的时间充分参与到微波天线企业一线的科研和生产中,在理解整机工作原理的基础上,研究实际的产品部件;通过在学生与学生之间、学生与老师之间、工程技术人员之间对出现问题的讨论,使学生更全面地思考和理解问题,另一方面也能使学生掌握和了解最新的知识,适应科技高速发展的需要,实现与时俱进。

4.改革传统的考核制度“一刀切”模式,开辟“多样化的柔性”考核制度

结合“因材施教”的指导方针,认真考虑学生的个体差异,增强“第二课堂”的作用,开设“老生研讨课”,加重过程考核,提出开卷考试制度等方案,极大地调动了学生的积极性和主动性,提高了教学效果。传统的终结性考核以理论知识、标准答案、闭卷形式为主。改革后的考核方式更加注重过程考核,加入调研报告成绩,课程小结成绩实,实践环节成绩;考试试卷上增设选做题目、课程设想等,给学生充足的学习空间,有利于激发学生的学习自主性,提高学习的自觉性和自学能力;考试采用开卷形式,重视知识的应用而弱化死记硬背,加强学生的应用能力的考核。

另外,本课程的教学中也广泛利用网上电子教案、习题库等教学资源,为学生的自学和课后复习提供了一定的空间,随着课程网络资源的建设,教学中可利用校园网实现网络教学、在线测试、在线答疑。

三、改革实践的效果

课程教学目标和教学内容的调整,理顺并抓住了根本,节省了时间,避免了枯燥繁冗的数学推导过程,使学生接触更多的工程实践,适应了三本学校的应用型人才目标;教学方法、教学手段的改革,加强了理论与实际的联系,避免了学生对该课程中一些难而无用的知识纠结,侧重工程实际应用,使他们的实践能力大大提高;考核方式的改革,使学生的学习积极性得到了全面地调动,学生能够主动参与到学习过程中,学习方式灵活、学习兴趣也有了很大的提高。

改革后学生能够积极主动地参与到“电磁场与微波技术”的学习中,通过亲身体验和相关内容的学习,积累和丰富直接经验,促进学生掌握了该课程的基本知识和基本技能,培养了学生的创新精神、实践能力和终身学习的能力。具体表现在以下几个方面:本课程的合格率达到了95%以上,优秀率将近40%;有近50%的学生投入到该课程的研讨式学习和科研课题研究中,6名同学在科技期刊上发表了科研论文;三届毕业设计有13名学生做了该方向的课题,[7]其中3名同学取得了优秀毕业设计的成绩;在两届全国大学生电子设计大赛中,2名同学选择了该方向的创新设计并取得了优异成绩;该方向的就业率和考研率都有很大提高,2005级以来三届近400名毕业生中就有15名学生从事该方向工作,实现了我校该方向就业的零的突破,有近30名毕业生选择该方向为研究生报考方向。

四、结束语

该课程的教学改革和实践在教学质量和人才培养方面取得了一定的成绩,但教学改革任重道远,要培养出既具有理论知识基础又具有较强实践能力的适应时代的高素质应用人才,必须与时俱进地调整和充实教学的各个环节,协调和配合好教学体制和机制的多方面才能达到最佳效果。

参考文献:

[1]盛振华.电磁场微波技术与天线[M].西安:西安电子科技大学出版社1995.

[2]李丽华.论三本院校电磁场与微波技术课程教学[J].投资与合作(学术版),2010,(9):64-65.

[3]陈帝伊,刘淑琴,许景辉,等.“电磁场理论”课程的教学改革探讨[J].电气电子教学学报,2009,(4):116-117.

[4]杨再旺,张淑娥.谈《电磁场与微波技术》实验方法改革[J].中国电力教育,2005,(S1):147-150.

[5]陈宏,费跃农,郑三元,等.研究性学习在“模拟电子技术”课程教学中的应用[J].电气电子教学学报,2009,(5):108-110.

[6]刘云.浅谈“微波技术与天线”课程中的创造力培养[J].电气电子教学学报,2011,(2):8-9.

[7]郑娟,蒋军.电磁场与微波技术方向毕业设计指导[J].黄山学院学报,2009,(3):125-127.

高中物理一共分为5个模块,力学与运动学,电磁学,光学,热学,近代物理与前沿科学。电学和热学一样,这些题目要求你理解他们讲了什么,一般高中做不到深入,即使竞赛也一样,但是要对要求的概念理解精确,不仅仅是准确,并且要求点与点的知识联系,形成网状知识结构,举一反三,才能面对题目不慌不忙,在高考时,这些题是不能错的,且要反应快!电学中,包括静电学中点电荷,电场,电势,以及他们的性质,计算(电势标量计算,电场矢量计算),电路分析,等等。对于光学和近代物理,都是概念题,而且概念深度大,所以很多东西就不用细究了,几种典型题会做,到时候出来的题不会难的。跟力学扯上关系,就麻烦了,难题也是从这里出的。所以单单电学概念好,但做不好题,并且经常是计算题错,那就是你的力学部分没学好了。不行回去练习受力分析,运动分析,结合电学、热学的概念。这种题记住电学热学概念只是形式,实质都是力学运动学分析。推荐学电学的方法:首先,你要做好预习,了解基本的概念,如电流的意义,特别是电路图要多看几遍。上课的时候要认真听课,特别是老师做实验的时候,你要认真地学习,你平时下课也可以叫老师借实验仪器给你做一下实验,增强你的实践能力。多做习题,虽然不提倡题海战术,但是理科就得多练,这样才能更加灵活。记住,预习和总结很重要,预习之后自己做题,然后总结一些方法。只要你时时做好预习,经常总结就没有那么难了,你最好能领先老师一两个课程。

要写好教研论文,首先要选好题目,其次要尽量多地获得这一选题的相关资料,还要实实在在地进行教学研究,做到理论与实践相结合。下面我收集了一些关于初中物理教学论文题目,希望对你有帮助

1、 在物理教学中培养学生创新能力的探讨

2、谈谈中学物理课堂教学艺术

3、兴趣——学生学习物理最好的老师

4、物理习题隐含条件的探讨

5、中学物理教学中的研究性学习探讨

6、高中“课题研究”教学案例总结

7、中学物理课程的基本理念分析

8、论物理教育中的科学素养培养

9、新的中学物理课程目标分析(择其某一项)

10、中学物理教学中的美育素材研究

11、物理教学中的创造人格培养

12、物理教学中学生自学能力培养探究

13、试论物理教学中的科学探究

14、对高考“理科综合”科目的改革的思考

15、未来中学物理教师素质结构之设想

16、现行物理教学大纲及教材的有关评价

17、对高中某一物理概念或物理规律的教学研究(电磁学,光学方面)

18、中学物理教师继续教育问题的思考

19、高一物理新教材的比较与评价

20、论非智力品质在物理学习中的形成与作用

1、缠态与量子通信述评

2、光折变材料的光信息存储研究进展

3、纳米结构ZnO研究状况

4、纳米尺度中的量子力学

5、由相对论的创立看物理学的思想方法

6、从经典力学到量子力学的思想体系探讨

7、光电子技术的发展现状及其应用前景分析

8、用麦克斯韦方程组讨论晶体双折射现象(电磁学,光学)

9、计算半径为R的球的热传导现象(热学及统计物理学)

10、用麦克斯韦方程组讨论晶体双折射现象(电磁学,光学)

11、用傅里叶变换计算(单缝、圆孔)衍射的光强分布(光学)

12、论物理学中的理想模型

13、多媒体课件的制作(Flash/Authorware)

14、激光全息实验的设计(光学)

15、物理学中的美学问题探讨(物理学史)

16、四层楼电梯自动控制系统的设计

17、简易稳压直流电源设计

1、复摆实验仪的研究

2、杨摸量实验仪研究

3、落球法液体粘滞系数测定仪的改进

4、浅议氦氖激光器在光学实验教学中的应用

5、全息照相实验技巧探讨

6、实验数据的处理和测量不确定度计算

7、标准不确定度合成中应注意的问题及讨论

8、钢丝的切变模量与扭转角度关系的研究

9、物理实验测量和分析的基本方法

10、向心力实验装置研究

11、重力加速度测量实验装置研究

12、液体表面张力实验装置研究

13、MATLAB在声学实验中的应用

14、非线性电阻特性的实验研究

15、简易万用表的设计制作及校准

16、体效应管负阻特性的测量研究

17、微波光学实验研究

18、组合测量在物理实验中的应用

19、用电阻应变片测量微小形变实验方法的改进与研究

电磁学方面的毕业论文选题

呵呵我也是科大的

电磁感应(Electromagnetic induction)现象是指放在变化磁通量中的导体,会产生电动势.这是我为大家整理的初二电磁感应科学论文,仅供参考! AAA篇一 拓展电磁感应定律 摘要:电磁感应现象是电磁学中最重大的发现之一,它揭示了电、磁现象之间的相互联系。法拉第电磁感应定律的重要意义在于,一方面,依据电磁感应的原理,人们制造出了发电机,电能的大规模生产和远距离输送成为可能;另一方面,电磁感应现象在电工技术、电子技术以及电磁测量等方面都有广泛的应用。本文就几种拓展式进行了理解应用。 关键词:电磁感应定律拓展式理解应用 Abstract: the electromagnetic induction phenomenon in electromagnetics is one of the most important discoveries, it reveals the phenomenon of electric and magnetic between each other. Faraday law on electromagnetic induction of important significance is, on the one hand, based on the principle of electromagnetic induction, people made out of the generator, the power of mass production and long-distance transmission become possible; On the other hand, the electromagnetic induction phenomenon in electrical technology, electronic technology and electromagnetic measurement methods are widely used. This paper will expand the understanding of several applications. Keywords: law on electromagnetic induction and expand application of understanding 中图分类号: 文献标识码:A 文章编号: 法拉第电磁感应定律的内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,要想回路中产生感应电动势,回路的磁通量一定要发生变化。回路中原磁场的磁感应强度的变化、回路面积的变化、原磁场和面积同时发生变化都会引起磁通量的变化,产生感应电动势,下面通过具体实例来谈对法拉第电磁感应定律的几种拓展式的理解和应用。 一、磁通量变化仅由原磁场随时间的变化引起,产生的感应电动势 例1.如图所示,边长为L的正方形金属线框,质量为m、电阻为R,用细线把它悬挂于一个有界的匀强磁场边缘,金属框的上半部处于磁场内,下半部处于磁场外,磁场随时间的变化规律为B = kt.已知细线所能承受的最大拉力为2mg,则从t=0开始,经多长时间细线会被拉断? 解: 感应电动势 线框中的感应电流为: 线断时有解得: 二、磁通量变化仅由原磁场随空间位置变化引起,产生的感应电动势 例2.一个质量为m、直径为d、电阻为R的金属圆环,在范围很大的磁场中沿竖直方向下落,磁场的分布情况如图所示,已知磁感应强度竖直方向的分量By的大小只随高度变化,其随高度y变化关系为By = B0(1 + ky)(此处k为比例常数,且k>0),其中沿圆环轴线的磁场方向始终竖直向上,在下落过程中金属圆环所在的平面始终保持水平,速度越来越大,最终稳定为某一数值,称为收尾速度。求 圆环中的感应电流方向; (2)圆环的收尾速度的大小。 解:(1)根据楞次定律可知,感应电流的方向为顺时针(俯视观察)(2)圆环下落高度为y时的磁通量为 设收尾速度为vm,以此速度运动Δt时间内磁通量的变化为 根据法拉第电磁感应定律有 圆环中感应电流的电功率为 重力做功的功率为 根据能的转化和和守恒定律有 解得 三、磁通量的变化仅由面积变化引起,产生的感应电动势 例3.半径为a的圆形区域内有均匀磁场,磁感强度为B=,磁场方向垂直纸面向里,半径为b的金属圆环与磁场同心地放置,磁场与环面垂直,其中a=,b=,金属环上分别接有灯L1、L2,两灯的电阻均为R0=2Ω,不计导线电阻, 今以MN为轴将右面的半圆环OL2O’向上翻转90º,若翻转的角速度为,求L1的平均功率。 解:转过90º角所用的时间 回路产生的平均感应电动势 L1的平均功率 四、磁通量变化仅由导体切割磁感应线引起。产生的感应电动势 例4.两根相距d=的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=Ω,回路中其余部分的电阻可不计.已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=,如图所示.不计导轨上的摩擦,求作用于每条金属细杆的拉力的大小. 解析:当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为: 由闭合电路的欧姆定律,回路中的电流强度大小为: 因拉力与安培力平衡,作用于每根金属杆的拉力的大小为 由以上各式并代入数据得N 五、磁通量变化由原磁场和面积共同引起,产生的感应电动势 例5.如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r0=Ω/m,导轨的端点P、Q用电阻可以忽略的导线相连,两导轨间的距离l=。有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B与时间t的关系为B=kt,比例系数k=。一电阻不计的金属杆可在导轨上无摩擦低滑动,在滑动过程中保持与导轨垂直。在t=0时刻,金属杆紧靠在P、Q端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t=时金属杆所受的安培力。 解:以a表示金属杆的加速度,在t时刻,金属杆与初始位置的距离为,此时杆的速度 这时,杆与导轨构成的回路的面积,回路中的感应电动势, 而=,回路中的总电阻R=2Lr0 ,回路中的感应电流 作用于的安培力,解得F=,代入数据为F=×10-3N。 注:文章内所有公式及图表请以PDF形式查看。 AAA篇二 电磁感应中的力学问题 摘 要: 信息化时代开展探究性学习,符合新课标的要求,能培养学生解决问题的能力。在高中物理教学当中,自主探究性学生尤为重要。作者针对电磁感应中的力学问题,对自主探究性学习做了一定的阐述。 关键词: 电磁感应 力学问题 自主探究性学习 21世纪是信息化时代,是网络的时代,是知识不断创新的时代。教育的根本意义和价值在于培养学生的创新精神、培养学生的探究能力、培养学生解决问题的能力,从而塑造学生积极的、健康向上的、适合时代要求的人格。探究性学习正好满足了这样的教育要求,自主学习、合作探究使学生亲身经历解决问题的过程,有利于学生对知识获得深层的理解,同时有助于学生对所学概念、定律的发展、延伸、转变和掌握。 1.根据高中学生的年龄特点开展自主探究性学习 在进入青年时期的高中生,不再事事依赖父母,他们已经能够分辨是非,独立意识已经开始觉醒。在情绪的表达上逐渐趋于独立,认知能力的发展已接近成熟,逻辑、抽象思维能力不断增强和完善,在思考和解决问题的时候能自主性地运用逻辑思维。因此,他们的好奇心、求知欲,以及成功感就变得更加强烈。 2.具体问题中开展探究性学习 新课程标准要求:让学生领悟物理学的研究思维和方法,培养独立思考的学习习惯和能力,注重概念和规律教学。科学的自主探究能力和对科学探究的理解是在学生探究性学习过程中形成的,这就需要组织学生进行探究性学习。教师在课堂上要最有效地利用时间创设情境,给学生营造思维的空间和时间,让学生积极主动地参与到自主探究的学习中来。 学习过程是学习者自己的活动,只有自己参与到学习中去,获得的知识才能更牢固。高中阶段,学生自主学习的意识已经很强,自主学习能力已初步具备,但还有待于教师去进一步提高,自学的效果还取决于教师的引导。教师要引导学生在学习新课之前就先接触新知识,并动用已有的知识储备去进行探究,亲自揭开知识那神秘的面纱,提前占领学习这块主阵地。这样使师生共同进入学习过程中时,学生不再有陌生的感觉,更能融入到课堂教学之中,更能轻松愉快地接受知识,更能形成师生双方和谐的、平等、合作的关系。 下面我从高考题入手,选取有针对性的例题,通过对例题进行分析探究,让学生感知高考命题的意图,剖析学生分析问题的思路,培养解决问题的能力。 电磁感应中的力学问题 命题意图:考查理解能力、推理能力,以及分析综合能力。 例1.如图1所示,两根平行金属导端点P、Q用电阻可忽略的导线相连,两导轨间的距离l=.有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B与时间t的关系为B=kt,比例系数k=.一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.在t=0时刻,轨固定在水平桌面上,每根导轨每m的电阻为r=Ω/m,导轨的金属杆紧靠在P、Q端,在外力作用下,杆恒定的加速度从静止开始向导轨的另一端滑动,求在t=时金属杆所受的安培力. 自主探究: 【解题思路】以a示金属杆运动的加速度,在t时刻,金属杆与初始位置的距离L=at. 此时杆的速度v=at, 杆与导轨构成的回路的面积S=Ll, 回路中的感应电动势E=S+Blv. 而B=kt . ==k 回路的总电阻R=2Lr, 回路中的感应电流I=, 作用于杆的安培力F=BlI, 解得F=t, 代入数据得F=×10N. 总结规律: (1)方法:从运动和力的关系着手,运用牛顿第二定律和电磁感应规律求解。 (2)基本思路:受力分析→运动分析→变化趋向→确定运动过程和最终的稳定状态→由牛顿第二定律列方程求解。 (3)注意安培力的特点: 实际上,纯力学问题中只有重力、弹力、摩擦力,电磁感应中多一个安培力,安培力随速度变化,部分弹力及相应的摩擦力也随之而变,导致物体的运动状态发生变化,在分析问题时要注意上述联系。 导体棒切割磁感线问题 导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动,等等。现以在恒力作用下的运动举例分析。 例2.如图2所示,一对平行光滑R轨道放置在水平地面上,两轨道间距L=,电阻R=Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆与轨道的电阻皆可忽略不计,整个装置处于磁感强度B=的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F沿轨道方向拉杆,使之做匀加速运动.测得力F与时间t的关系如图3所示.求杆的质量m和加速度a. 自主探究: 解析:导体杆在轨道上做匀加速直线运动,用v表示其速度,t表示时间,则有v=at. ① 杆切割磁感线,将产生感应电动势E=BLv ② 在杆、轨道和电阻的闭合回路中产生电流I=E/R③ 杆受到的安培力为F=IBL ④ 根据牛顿第二定律,有F-F=ma⑤ 联立以上各式,得F=maat ⑥ 由图线上各点代入⑥式,可解得a=10m/s,m=. 总结规律: 导体棒在恒定外力的作用下由静止开始运动,速度增大,感应电动势不断增大,安培力、加速度均与速度有关,当安培力等于恒力时加速度等于零,导体棒最终匀速运动。整个过程加速度是变量,不能应用运动学公式。 电磁感应与电路规律的综合应用 例3.匀强磁场磁感应强度B=,磁场宽度L=3rn,一正方形金属框边长ab=1m,每边电阻r=Ω,金属框以v=10m/s的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图4所示,求: (1)画出金属框穿过磁场区的过程中,金属框内感应电流的I-t图线; (2)画出ab两端电压的U-t图线. 自主探究: 解析:线框进人磁场区时E=BLv=2V,I==, 方向沿逆时针,如图实线abcd所示,感应电流持续的时间t=. 线框在磁场中运动时:E=0,I=0, 无电流的持续时间:t==, 线框穿出磁场区时:E=BLv=2V,I==. 此电流的方向为顺时针,如图4虚线abcd所示,规定电流方向逆时针为正,得I-t图线如图5所示. (2)线框进入磁场区ab两端电压:U=Ir=×. 线框在磁场中运动时,b两端电压等于感应电动势: U=BLv=2V. 线框出磁场时ab两端电压:U=E-Ir=. 由此得U-t图线如图6所示. (1)电路问题 ①确定电源:首先判断产生电磁感应现象的那一部分导体(电源),其次利用E=n或E=BLvsinθ求感应电动势的大小,利用右手定则或楞次定律判断电流方向。 ②分析电路结构,画等效电路图。 ③利用电路规律求解,主要有欧姆定律,串并联规律等。 (2)图像问题 ①定性或定量地表示出所研究问题的函数关系。 ②在图像中E、I、B等物理量的方向是通过正负值来反映。 ③画图像时要注意横、纵坐标的单位长度定义或表达。 将线框的运动过程分为三个阶段,第一阶段ab为外电路,第二阶段ab相当于开路时的电源,第三阶段ab是接上外电路的电源。 总而言之,在高中物理教学中教师应引导学生开展自主探究性学习,从高考题入手,让学生自主分析探究例题,加以引导总结出规律,使学生感知高考命题的意图,剖析学生分析问题的思路,进而培养学生的能力。

试论三相交直流指示仪表在电磁学计量校验的应用摘要:现代社会对于电能的使用越来越广泛,越来越多的家用电器,工业机械都在依靠电能来进行驱动。作为电磁学计量的重要工具,电能表的校验对于我国电力企业有着重要的意义。三相交直流指示仪表作为电磁学计量校验的重要工具,其在电能表计量校验中的应用对于电磁学计量校验有着重要意义。文中就三相交直流指示仪表在电磁学计量校验中的应用进行了简要的论述。 关键词:三相交直流指示仪表;电磁学;计量校验;应用;电能表 现代社会对于电能的需求不断增加,电能表作为电力计量的重要仪表,其计量校验对于电力企业有着重要的作用。加快电磁学计量仪表的校验,加强电磁学计量仪表校验精度,对于我国电力系统的健康发展以及试用人员都有着重要的意义。 1.常用电磁学计量仪表分析 常用电磁学计量仪表中,常用的计量仪表主要兆欧表、万能表、钳形电流表。针对不同型号的仪表,其测量校验范围也不相同。在使用过程中首先要针对测量条件选用等级相同仪表或档位进行测量。电能表作为电能计量的基础工具,其良好的校验对于电力企业有着重要的意义。三相电能表校验装置是电能表的标准校验仪器设备,它对于我国电能计量有着重要的作用,是电力部门、电能表生产厂家和标准计量部门不可缺少的标准仪器设备之一。目前,这种装置的设计与生产,在原理和技术上都是成熟的,同时其自动化水平和验表的精确度也正在不断提高中。 2.三相交直流指示仪表在电磁计量校验中的应用 本文以电能表校验作为基础,对三相交直流指示仪表在电磁学计量仪表校验的应用进行了简要的论述与分析。 传统校验仪器在电能表校验分析 三相交直流指示仪表在电磁计量校验应用最具代表性的是三相交直流指示仪表在电能表的校验。电能表的校验对于电力部门、电能表生产厂家以及计量部门是一向非常重要的工作,校验准确与否直接关系到这些部门与用电户的切身利益。为了更好的分析其运用,首先对电能表的校验原理与三相交直流指示仪表的工作原理等进行分析。对电能表的校验是在被校表加上一定的电压、电流,根据被测表的读数与实际消耗电能相比从而得出被测表的误差。不同等级的电能表校验装置对标准表有不同的要求,其中国家标准《交流电能表检定装置检定规程JJG597一89》列出了各级电能表校验装置对标准表的要求。程控式三相校表台的流行结构是由原有的半自动化的校表台演变而来的。在这种结构中,系统的整个控制主要由主控单片机来完成。由控制单片机来负责获取各种数据,并对其进行运算,并向各个受控对象发送指令,整个系统的工作的运行由它进行协调。后台计算机主要起数据存取、打印的功能。这种设计方案具有从原有系统升级简单,可以保证原有研究成果的最大利用;同时台体可以在脱离计算机的情况下单独工作。但这种工作方式也有着其较大的缺陷:由于整个系统的协调、运算、控制等工作都在单片机的控制下进行,此方案对单片机的要求较高,会导致系统的故障率提高;同时这个方案又浪费了后台计算机的强大计算能力,使其闲置;另外一方面,这个方案中控制单片机与后台计算机都对系统有一定的控制能力,这样容易产生控制实施时的语义不清,从而使系统发生故障。因此,采用新技术生产的三相交直流指示仪表对电能表进行校验可以有效的避免传统校验仪的弊端,减少校验误差的几率三相交直流指示仪表组成及其各组建功能分析 目前较为先进且成熟的程控式三相交直流指示仪表一般由由后台控制计算机、通讯控制单片机、三相程控数字信号源、标准表、光电头和误差显示模块组成。采用标准表法对三相电能表进行校验。通过对被测表和标准表加相同的电压电流值,然后根据标准表记录的电能数和被测表所记录的电能数进行比对,从而得出被测表的误差数。其各模块的功能分别为:标准表是采用标准表法进行校验,标准表等级要满足装置的等级要求。可以选一个具有三个功率元件的三相电能表,也可选择三个只具有一个功率元件的单相电能表。具有三个功率元件的三相电能表,三个功率元件产生三路模拟输出相加后经I用变换产生标准表功率脉冲和。因此标准表在任一相为负功率而三相总功率为正时均可准确测量。标准表具有四个电压量程:60V、100V、200V、400V和至少一个电流程:SA。在进行校验时它的接线方式与被校表相同。标准表电压回路接线及电压量程的转换由通讯控制单片机控制继电器自动完成转换。三相程控数字信号源的主要功能是在通讯控制单片机的控制之下,根据不同的要求产生精确的三相电压和电流信号。光电头用以监视被测表的运行情况。每当被测表转一圈后,光电头发出一个脉冲送给通讯控制单片机,当被测表转到用户设定的圈数之后,后台控制计算机开始计算被测表误差。通讯单片机主要为后台控制计算机和前台可控器件提供通信通道。即将由串口发来的指令进行相应的解码后发给前台;另一方面,将前台的数据进行相应的编码后发给后台。通讯控制单片机主要根据后台管理计算机发出的指令控制三相程控数字信号源的开始及停止工作。并根据后台管理计算机发出的指令控制三相程控数字信号源的接线方式及电压电流量程的自动转换。将A一D采样后的数据传输到后台控制计算机,并根据后台控制计算机运算后的结果对电压、电流源进行调控。接收光电头及标准表功率脉冲,并将数据传送到后台控制计算机进行计算。将误差数据送到到显示模块。后台控制计算机主要是负责控制整个校表装置的工作和测试结果数据的存储、查询和打印。 3.三相交直流指示仪表对于电能表校验的特点分析 三相交直流多功能校验装置,是集电能表、交直流指示仪表和交直流电测量变送器三大检定校验功能于一体的,集目前先进技术于一身技术,功能齐全的校验装置。一般采用大规模集成电路,其程控信号源采用数字合成技术和以多组高性能单片机为核心的微机控制系统。通过操作键盘,电压、电流、相位、频率数字化粗细调,对单、三相交直流有功无功功率表、电流、电压、频率、相位表、电测量变送器和各式电能表,实现规程、选点、单点校验。其具有数字合成技术和单片机控制系统;数码显示;配套采用国际先进的双磁芯零误差电流互感器的多功能标准表。数字化粗细调,电流、电压、频率、相位一键到位,并且键盘显示。专用程控键盘校表,无需计算机可实现规程、选点、单点校验。进入单点校验状态时可随时改变校验点。宽量程,无须互感器,确保精度;档位齐全,可自动切换量程。可自动或手动校验交流电压、电流、有功功率、无功功率、频率、相位表和直流仪表及交直流电测量变送器;兼校一块电能表。具有自我保护功能,对电压短路、电流开路实现保护并报警。可与计算机连接进行校验、数据处理、存储、查询、打印及管理。 结论 由于三相交直流指示仪表具有的多种特性,使其在电磁学校验中的应用越来越广,已经成为了电磁学校验仪器发展的重要方向,相信在未来几年里更加严格的校验要求将为三相交直流指示仪表提供更加广阔的发展空间。 参考文献 [1]孙明玮.三相交直流指示仪表的开发与设计[J].精密仪器,2007,11. [2]李晓理.电能表校验装置基本原理[J].电气仪表开发,2007,6. [3]李志明.校验仪表数据采集与过程控制[J].计算机工程与应用,2008,1. [4]郭航.电能表智能校验台[J].电测与仪表,2000,3. [5]赵宇飞.电磁学基础校验[J].仪表仪器,2006,7. 这是网上的资料

  • 索引序列
  • 电磁学的毕业论文题目
  • 电磁学毕业论文题目
  • 毕业论文题目电磁学
  • 电磁学课程论文题目
  • 电磁学方面的毕业论文选题
  • 返回顶部