首页 > 毕业论文 > 毕业论文问卷分析数据

毕业论文问卷分析数据

发布时间:

毕业论文问卷分析数据

论文问卷数据怎么分析如下:

一、问卷类型

问卷调查分为两大类:即量表问卷和非量表问卷。

量表问卷通常更多用于学术研究,其特点在于更多的态度认知题项,体现样本人群对于某事物的态度看法态度情况等,通过对各研究变量的关系研究,找出其中内涵逻辑关系。

非量表问卷更多体现对某现状的事实情况和基本态度调研,比如样本进行网购的原因,不进行网购原因,网购平台的使用现状情况等。此类问卷更多在于分析思路的逻辑和现状情况的了解分析,以及样本的基本态度情况。

二、分析方法

从分析方法上,量表类问卷最大的特点是:非常多的量表题,而且量表题对应着‘变量’或者‘维度’。便于研究‘变量’间的关系情况。以及可以使用信度、效度、因子分析等方法。

非量表题其最大的特点为大部分为单选题、多选题或者排序填空题等,但很少 有出现量表题(是量表题是指类似答项为“非常不同意”,“比较不同意”,“中立”,“比较同意”和 “非常同意”之类的问题)更多是使用基本频数分析和交叉分析等,同时使用图形和表格进行多样化展示。

三、分析结果

问卷数据一般使用SPSS进行分析即可,分析基础比较薄弱,可使用SPSSAU进行分析。SPSSAU分析结果生成的是“类三线表”的格式,系统会自动生成指标解读报告。

今天的我总结几个毕业论文问卷分析的几点建议,希望能帮到各位看官 PS:此处的问卷分析,仅代表具有量表的问卷分析。 因为成熟量表往往经历了现实的考验,其信度和效度达标的概率比较大。 而自己设计的量表,很容易出现信度和效度检验结果惨不忍睹的情况。 这样我们在处理信度分析,探索性因子分析,甚至验证性因子分析的时候,都能游刃有余。 另外如果题目是2个,因子分析KMO值是一定等于的,而一般我们最低也得吧 为了信度和效度能出一个比较好的结果,在文字描述部分,同维度的各个题目,尽量能给一些心理暗示,或者描述上尽量相近,这样能使得维度内的题目的相关性较好,从而信度和效度也不至于太差 一般达到就可以了,以上更好。最好是把每个维度的信度都求一下,然后总体再求一个。这个一般没什么难度,也很容易通过。如果你的数据信度不行,那就进行下项目分析,将高低分样本中不具有区分度的样本删掉。 只求量表的KMO值和巴特利球形检验值。这可能是效度检验的最低要求了。除非导师认同,最好不要仅用这两个值 大部分的同学都会用到的,也是比较不容易通过的一个分析。 遇到最多的问题莫过于,假设题目的维度归属,跟实际出的结果不一致。 碰到这种情况,一般进行如下处理: ①只有少数题目不匹配 要么直接删掉,要么暂时保留 ②绝大多数题目不匹配 从新设计量表,重新收集数据,重新来过吧 若非特殊情况,不建议使用。因为实际收集的问卷数据要想探索性因子分析+验证性因子分析,各个指标均达到理想值,那几乎是不可能的。 如果你看到某某人的论文中用了这样的检验方法,指标非常漂亮,我可以负责任的告诉你,其大概率是改过数据了。 特殊情况1:模型验证阶段,使用AMOS结构方程,导师要求效度检验阶段使用验证性因子分析。 特殊情况2:模型验证阶段,未使用AMOS结构方程,导师也要求效度检验使用验证性因子分析。(导师傻x) 这里特别提一点,显著性的p值代表的是两者是否相关,皮尔逊或者斯皮尔曼系数代表的是相关性程度。 显著性检验通过了,皮尔逊或者斯皮尔曼系数大小才有意义,绝对值越大相关性越大,正负代表正相关与负相关。 显著性通过了,但是系数偏小,那相关性也是显著的,只是两者是存在显著的弱相关性,而不是系数小就代表不相关。 可能是最简单的模型了,将自变量和因变量放进,直接跑就行了。 ①要不要放控制变量 这个随意。 如果放控制变量,尽量放一些层级类的变量,不要放多分类变量。 层级变量比如学历(初中,高中,大学,硕士) 多分类变量比如职业 层级变量的赋值尽量与其题项对应。 如果放了多分类的变量,尽量删掉,如果想保留最好做成虚拟变量 ②用标准系数还是标准化系数 标准化系数。 ③要不要做VIF共线性检验 若非导师要求,那就不做。 ④r方多大算好 这个指标没有非常严格的标准,而且跟导师的价值观有非常深刻的影响。 对于现实收集的数据而言,个人认为,一般大于就好了。 不过我遇到过大于,导师也认为可以接受的情况。 这是一个仁者见仁的问题 从科学的角度来看,应该与你研究的场景有密切的关系。 但是,中介效应模型要比调节效应模型容易出通过,而且解释起来也不那么绕口。 所以,如果不是想给自己挖坑,那就用中介效应模型吧。 快捷验证中介效应模型的方式(快速确定是否存在中介,非正式使用) 条件1,中介变量,自变量和因变量,相关性都显著 条件2,自变量和中介变量关于因变量的回归模型,中介变量的系数显著 如果满足上述两个条件,中介效应一定显著,如果条件2中的自变量也显著,那么就是部分中介效应,如果不显著就是完全中介效应。 另外极少数情况是用sobel来检验中介效应的 如果不是导师要求amos验证中介效应,尽量用spss回归的方式检验中介效应。 快捷验证条件效应模型的方式(快速确定是否有调节效应,非正式使用) 先将调节因子计算处理(标准化后的自变量和中介变量相乘即可) 自变量,调节变量和调节因子关于因变量的回归模型,调节因子的系数显著。 公众号:alone5400

毕业论文问卷数据难分析

呵呵,改数据吧,一般很少有论文的数据是想要的结果

确实比较难,主要由3个原因:①模型即理论的问题,也就是说,模型本身是缺乏理论支撑的。这就是为什么量化论文要有严格的理论推导过程。②构念的操作化出现了问题,比如你要测量“品牌忠诚”(只是举一个简单的例子),真正测出来的是否就是品牌忠诚。测量的效度问题不能只看数据统计结果,测量的内容效度需要结合定性方法判断。引起测量效度低的原因可能包括:原始量表为英文量表时,翻译出现了问题,所以严谨的文献中要求用back-translation的方法;量表中遗漏了关键的要素,导致测量的充分性(measurementadequacy)不足。③数据收集过程中的问题。即便理论和测量都没有问题,数据收集过程仍然可能会导致“结果不理想”的情况。所以要对数据收集过程进行严格的控制。例如,针对谁调研,明确告知调研目的,匿名性保证,清晰的问卷填写说明,设置陷阱题,尽可能采用线下问卷调研,给予被调适当的激励,尽可能随机地发放问卷,等等。

论文问卷数据怎么分析如下:

一、问卷类型

问卷调查分为两大类:即量表问卷和非量表问卷。

量表问卷通常更多用于学术研究,其特点在于更多的态度认知题项,体现样本人群对于某事物的态度看法态度情况等,通过对各研究变量的关系研究,找出其中内涵逻辑关系。

非量表问卷更多体现对某现状的事实情况和基本态度调研,比如样本进行网购的原因,不进行网购原因,网购平台的使用现状情况等。此类问卷更多在于分析思路的逻辑和现状情况的了解分析,以及样本的基本态度情况。

二、分析方法

从分析方法上,量表类问卷最大的特点是:非常多的量表题,而且量表题对应着‘变量’或者‘维度’。便于研究‘变量’间的关系情况。以及可以使用信度、效度、因子分析等方法。

非量表题其最大的特点为大部分为单选题、多选题或者排序填空题等,但很少 有出现量表题(是量表题是指类似答项为“非常不同意”,“比较不同意”,“中立”,“比较同意”和 “非常同意”之类的问题)更多是使用基本频数分析和交叉分析等,同时使用图形和表格进行多样化展示。

三、分析结果

问卷数据一般使用SPSS进行分析即可,分析基础比较薄弱,可使用SPSSAU进行分析。SPSSAU分析结果生成的是“类三线表”的格式,系统会自动生成指标解读报告。

毕业论文中问卷数据分析

论文问卷数据怎么分析如下:

一、问卷类型

问卷调查分为两大类:即量表问卷和非量表问卷。

量表问卷通常更多用于学术研究,其特点在于更多的态度认知题项,体现样本人群对于某事物的态度看法态度情况等,通过对各研究变量的关系研究,找出其中内涵逻辑关系。

非量表问卷更多体现对某现状的事实情况和基本态度调研,比如样本进行网购的原因,不进行网购原因,网购平台的使用现状情况等。此类问卷更多在于分析思路的逻辑和现状情况的了解分析,以及样本的基本态度情况。

二、分析方法

从分析方法上,量表类问卷最大的特点是:非常多的量表题,而且量表题对应着‘变量’或者‘维度’。便于研究‘变量’间的关系情况。以及可以使用信度、效度、因子分析等方法。

非量表题其最大的特点为大部分为单选题、多选题或者排序填空题等,但很少 有出现量表题(是量表题是指类似答项为“非常不同意”,“比较不同意”,“中立”,“比较同意”和 “非常同意”之类的问题)更多是使用基本频数分析和交叉分析等,同时使用图形和表格进行多样化展示。

三、分析结果

问卷数据一般使用SPSS进行分析即可,分析基础比较薄弱,可使用SPSSAU进行分析。SPSSAU分析结果生成的是“类三线表”的格式,系统会自动生成指标解读报告。

如果你是做问卷调查类(发放问卷,收集数据<通常学营销的人会这样做>)的,那么就根据你的题项设置变量,并录入数据(通常是用SPSS分析,也有用其他工具比如说Eviews的)。然后做数据的信度和效度检验(此处KMO值是比较重要的),再做基本的描述性统计分析,然后是主成份提取(即因子分析),从多个变量中提取几大因子,结果主要看旋转成分矩阵,然后用几个因子跟因变量做回归,得出影响关系的回归方程。举个例子说,你的问卷中有30个题项(前提是你已经做过小规模问卷测试以验证题项设置的合理性),则对应30个变量X1,X2,......,X29,X30,录入这30个变量的数据,如果你收集了500份问卷,其中420份是有效问卷的话,则你有420条针对30个变量的有效数据。然后做信度效度检验,描述性统计分析,因子分析,假设通过因子分析提取出4个主成份(因子),分别为F1,F2,F3,F4,这个时候对因子命名并将其生成新的变量,然后再将F1,F2,F3,F4和Y做回归分析,得到回归方程,通过R方和系数检验表来判断方程和系数的有效性。这个时候你就能得到影响消费者态度的是哪些因素了。PS:你这里的因变量消费者态度需要量化,在设计问卷的时候要考虑如何量化才有利于后续的分析。

数据可以找找,非得要弄问卷调查吗

今天的我总结几个毕业论文问卷分析的几点建议,希望能帮到各位看官 PS:此处的问卷分析,仅代表具有量表的问卷分析。 因为成熟量表往往经历了现实的考验,其信度和效度达标的概率比较大。 而自己设计的量表,很容易出现信度和效度检验结果惨不忍睹的情况。 这样我们在处理信度分析,探索性因子分析,甚至验证性因子分析的时候,都能游刃有余。 另外如果题目是2个,因子分析KMO值是一定等于的,而一般我们最低也得吧 为了信度和效度能出一个比较好的结果,在文字描述部分,同维度的各个题目,尽量能给一些心理暗示,或者描述上尽量相近,这样能使得维度内的题目的相关性较好,从而信度和效度也不至于太差 一般达到就可以了,以上更好。最好是把每个维度的信度都求一下,然后总体再求一个。这个一般没什么难度,也很容易通过。如果你的数据信度不行,那就进行下项目分析,将高低分样本中不具有区分度的样本删掉。 只求量表的KMO值和巴特利球形检验值。这可能是效度检验的最低要求了。除非导师认同,最好不要仅用这两个值 大部分的同学都会用到的,也是比较不容易通过的一个分析。 遇到最多的问题莫过于,假设题目的维度归属,跟实际出的结果不一致。 碰到这种情况,一般进行如下处理: ①只有少数题目不匹配 要么直接删掉,要么暂时保留 ②绝大多数题目不匹配 从新设计量表,重新收集数据,重新来过吧 若非特殊情况,不建议使用。因为实际收集的问卷数据要想探索性因子分析+验证性因子分析,各个指标均达到理想值,那几乎是不可能的。 如果你看到某某人的论文中用了这样的检验方法,指标非常漂亮,我可以负责任的告诉你,其大概率是改过数据了。 特殊情况1:模型验证阶段,使用AMOS结构方程,导师要求效度检验阶段使用验证性因子分析。 特殊情况2:模型验证阶段,未使用AMOS结构方程,导师也要求效度检验使用验证性因子分析。(导师傻x) 这里特别提一点,显著性的p值代表的是两者是否相关,皮尔逊或者斯皮尔曼系数代表的是相关性程度。 显著性检验通过了,皮尔逊或者斯皮尔曼系数大小才有意义,绝对值越大相关性越大,正负代表正相关与负相关。 显著性通过了,但是系数偏小,那相关性也是显著的,只是两者是存在显著的弱相关性,而不是系数小就代表不相关。 可能是最简单的模型了,将自变量和因变量放进,直接跑就行了。 ①要不要放控制变量 这个随意。 如果放控制变量,尽量放一些层级类的变量,不要放多分类变量。 层级变量比如学历(初中,高中,大学,硕士) 多分类变量比如职业 层级变量的赋值尽量与其题项对应。 如果放了多分类的变量,尽量删掉,如果想保留最好做成虚拟变量 ②用标准系数还是标准化系数 标准化系数。 ③要不要做VIF共线性检验 若非导师要求,那就不做。 ④r方多大算好 这个指标没有非常严格的标准,而且跟导师的价值观有非常深刻的影响。 对于现实收集的数据而言,个人认为,一般大于就好了。 不过我遇到过大于,导师也认为可以接受的情况。 这是一个仁者见仁的问题 从科学的角度来看,应该与你研究的场景有密切的关系。 但是,中介效应模型要比调节效应模型容易出通过,而且解释起来也不那么绕口。 所以,如果不是想给自己挖坑,那就用中介效应模型吧。 快捷验证中介效应模型的方式(快速确定是否存在中介,非正式使用) 条件1,中介变量,自变量和因变量,相关性都显著 条件2,自变量和中介变量关于因变量的回归模型,中介变量的系数显著 如果满足上述两个条件,中介效应一定显著,如果条件2中的自变量也显著,那么就是部分中介效应,如果不显著就是完全中介效应。 另外极少数情况是用sobel来检验中介效应的 如果不是导师要求amos验证中介效应,尽量用spss回归的方式检验中介效应。 快捷验证条件效应模型的方式(快速确定是否有调节效应,非正式使用) 先将调节因子计算处理(标准化后的自变量和中介变量相乘即可) 自变量,调节变量和调节因子关于因变量的回归模型,调节因子的系数显著。 公众号:alone5400

毕业论文问卷数据分析用什么分析

毕业论文数据分析的做法如下:

首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。

另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。

接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。

那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。

在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。

给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。

在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。

去网题在线调查系统看看吧!你要的功能都是可以实现的!!!在线设计,在线分析,在线自动生成图标报告!

1.设计问卷问题条款不要太多,多则调查效果不好。与你调研目的关联不大的项目都可不考虑,如性别、职业、旅游偏好等。每条问题的选项要符合完整性,几项选择要不重复、不遗漏、同等级。根据你的需求,至少需要有年龄段划分、旅游消费、停留天数等项目,应当考虑从旅游六要素细分游客花费结构。2.实施调查设计抽样调查实施方式、实施场所、样本空间等问题,力求保证调查的时空分布随机性、样本空间代表性。3.数据录入建议用excel,简单实用,功能足够,不建议用spss,华而不实,操作繁琐,不够灵活。4.数据处理初等数学就差不多够用了,求和、求均值、求差求比,简单的侧重于市场份额和市场增长率两方面就能得出很多有用的结论,若精力、技术足够,建议用一些稍微高级一点点地数据模型算法等等,然后制成图表。5.调研分析根据数据结果,结合相关的宏观旅游数据,提出自己的观点,引用自己的数据论证。说的有点简单,实际上是一门学问,作好了很难,做简单了很容易,如果会用数理统计,数据前期预处理做点数据标准化、信度效度校验,初步建模后作个误差校验,即便不做误差反馈,估计应付个硕博论文什么的是没什么问题的。

看你问卷上面有哪些类型题目选择统计方法

文科毕业论文问卷数据分析

一、学习背景

本科学了四年文科专业,除了形式逻辑外几乎没再接触过与理科搭边的东西。想借着毕业论文学一点数据分析的东西,知网上找了几篇相关文献,以为数据分析很简单,于是跟导师定了题开始着手做。

二、问卷编制+数据分析类论文框架

(一)低阶版:非专业,要求低,不需要用spss,调研规模200+即可。

如果时间相对紧张,不想在毕业论文上花过多时间,建议采用低阶版即可,字数也绝对够。知网上“问卷编制+数据分析”类的文章除少部分期刊论文,大多数都是硕博论文,看看文献综述即可,不要用他们的数据分析框架,这是高阶版需要考虑的。

引言,研究背景写完,就写研究综述。把需要研究的变量列出来分别写研究综述,记得加上一些国外的研究,引用一些外文文献。接下来,简单地说一下自己如何编制的问卷,如何发放的问卷(线上/线下),回收问卷的情况。然后写样本情况,可以列一个大表格,内容包括哪类人有多少个,占百分之多少。接下来就是对数据结果的分析,用例如“A越...,B就越...”、“C的总体水平较低/高”、“D的....比E的....水平要高”的句式,找出一些规律即可。最后就可以写讨论、结论、总结对策建议了。

(二)高阶版:比较专业,要求高,不确定因素大(比如数据可能真的拟合不了模型),需要用spss statistics 和 amos。

采用高阶版不仅对人有要求,对数据也有要求。如果你没有把握自己能拿到样本较大的数据,也没有把握帮你填问卷的人是认真的,还是谨慎尝试为好,免得前面都做得很好,最后卡在模型拟合或者相关分析之类。大多数本科毕业论文的同学都是用问卷星,让小伙伴、家长等帮扩,这个样本量可能不会很大,而且如果题目比较多,不排除会出现开始东一个西一个乱填的情况。

以上内容就是青藤小编关于本科毕业论文做问卷和数据分析应该怎么着手的相关分享,希望对小伙伴们有所帮助,想要了解更多毕业论文相关内容,欢迎大家及时在本平台进行查看哦!

论文问卷数据的分析,看起来简单,好像每个人都会做。但是做起来还真的有点难度。很多初次使用问卷调查方法的人大多以为,问卷数据分析嘛,无外乎对单选题做做频率分析,看看选择不同的选项的人占比有多少。对于评分题目,看看均值是多少,不同性别,年龄段的人群均值是多少。对于一般的小调查,这样粗略的分析可能够了,但是对于学术论文中的问卷分析而言,以上所做的工作,只是其最简单的一部分,后面还有大量的工作要做。

51调查,让调查更简单方便!

毕业论文问卷调查制作方法:

1、设计问卷。首先你要知道自己研究的主体,比如你研究的主体是某小学的英语课堂学习情况,那么你最低需要设计两份问卷,问卷一针对老师,问卷二针对学生。同时你也可以采用对比分析法或者访谈法,在收集其他方面的数据跟资料。

2、问卷设计一般本科10-15道题,一份问卷,硕士一般15-25道题一份问卷,题不要多,不要重复提问,可以细分。

题目设计多为单选题,多选题尽力少一点,不然论文分析不好写,此外,还需要注意分数档位的设计,像是1-10分,这样其实你统计完了就是十个表格,而且相差不大,最好可以是不满意,一般,满意,非常满意。

3、问卷设计完成后发放收集数据。第一种就是打印出来,去你需要调研的地方发放,一般本科生在这个方面难度比较大,除非是平时就有这方面经验的同学,因为这个需要时间,而且很多人不愿意给陌生人填写问卷,因此收集起来比较困难。

第二种采用网上问卷统计方式,比如:问卷星,调查派等,在网上发放,然后回收,上面会显示调查结果。回头你把彩色表格改成三线格,可以直接用于论文中。也可以找其他好用的问卷软件。

4、当你的问卷回收率高于75%,那么你这个问卷就可以作为毕业论文的问卷分析使用了,如果低于75%则不能,一般学校要求回收率不低于90%。也就是十个人中,最低有九个给你填写了问卷。

5、应用于论文中,在统计数据与分析环节、问题凸显现状环节、常规类分析环节(比如根据这个问卷调查的结果你发现了哪些影响因素很重要等)、结果分析类环节(比如根据这个问卷调查的结果,你能给出什么建议)。

如果本科专业是文科性专业,本科毕业论文可以只对收集到的数据进行描述性分析。文科专业对毕业论文的数据分析要求不高,一般只要有调查问卷和调查结果分析就可以可,所以可以只对收集到的数据进行描述性分析。但理工科专业对数据的分析非常重视,需要详细描述数据的来源,及数据模型分析,不能只对收集到的数据进行描述性分析。

  • 索引序列
  • 毕业论文问卷分析数据
  • 毕业论文问卷数据难分析
  • 毕业论文中问卷数据分析
  • 毕业论文问卷数据分析用什么分析
  • 文科毕业论文问卷数据分析
  • 返回顶部