积分环节 比例环节 微分环节
模糊PID控制器的设计与仿真研究摘 要:提出了一种模糊PID控制器的设计与仿真方法.该控制系统适用于碱回收炉的水位控制、火电厂锅炉水位控制以及其他领域的水位控制.其结构简单、参数调整方便、快捷.另外,借助于Matlab模糊控制工具箱和Simulink仿真工具进行的仿真试验,表明控制效果很好.关键词:模糊PID控制器;仿真;2-D控制表中图分类号: 文献标识码:A0 引言目前,模糊控制理论及模糊控制系统的应用发展很快,显示出模糊控制在控制领域具有广阔的前景.模糊控制已成为智能控制的重要组成部分.在工业过程控制中,因为PID控制器所涉及的设计算法和控制结构简单,不要求非常精确的受控对象的数学模型,且众多的过程控制软件都带有PID控制器的算法模块,而被广泛应用于工业过程控制中.但是,PID控制器参数的整定尚需工程技术人员才能完成,对于存在时滞、非线性等因素的系统更难整定,调试过程中经常出现超调、振荡等影响系统正常运行的现象.模糊控制器具有不依赖控制对象精确的数学模型,减弱超调、防止振荡等优点[1].由此本文合理结合两种控制算法的优点提出一种调整系统控制量的模糊PID控制器,这种控制器在大偏差范围内利用模糊推理的方法调整系统控制量U,而在小偏差范围内转化为PID控制,并以给定的偏差范围自动完成二者的转化[2].本文将讨论调整系统控制量的模糊PID控制器的设计与仿真.并以一个具体的水位对象为例给出该控制器的设计与仿真实例.1 模糊PID控制器的设计该控制器中主要包含二维的模糊控制器和PID控制器.在大偏差范围内通过模糊控制器实现过程控制.模糊控制通过模糊逻辑和近似推理方法,让计算机把人的经验形式化、模型化,根据给定的语言控制规则进行模糊推理,给出模糊输出判决,并将其转化为精确量,馈送到被控对象(或过程)的.其中所使用的模糊控制器为常用的二维模糊控制器.在实际应用中,一般是用系统输出的偏差E和输出偏差的变化率EC作为输入信息,而把控制量的变化作为控制器的输出量,以此确定模糊控制器的结构.Ke和Kec表示量化因子, Ku表示比例因子.并且在实际微机模糊控制中,一般先确定出模糊控制规则,然后将此表存入存储器中,这样在实际的过程控制中,微机根据采样到的E和EC通过查询控制规则表求得控制量U,馈送到控制对象实现过程的模糊控制.小偏差范围内通过传统的PID控制算法实现过程控制[3].二者通过系统的偏差E实现自动切换.这样既可以通过模糊控制器加快过程动态响应过程,减弱超调和振荡现象,减弱调试过程对正常工作运行的影响,又可以通过常用的PID控制器在小偏差范围内实现精确控制,减少纯模糊控制器带来的稳态误差.图1是某水位的调整系统控制量的模糊PID控制系统[4].选取某水位误差E及其误差变化率EC和控制量U的论域分别为:E={-6,-5,-4,-3,-2,-1,-0,+0,1,2,3,4,5,6};EC={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6};U={-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7}.选取某水位误差E及其误差变化率EC和控制量U的语言变量值分别为:E={NB,NM,NS,NZ,PZ,PS,PM,PB};第22卷第3期甘肃联合大学学报(自然科学版) 年5月Journal of Gansu Lianhe University (Natural Sciences) May 2008 EC={NB,NM,NS,Z,PS,PM,PB};U={NB,NM,NS,Z,PS,PM,PB}.依据操作者的控制经验,可建立水位模糊控制系统的模糊控制规则如表1所示.图1 模糊控制系统表1 模糊控制规则表EECNB NM NS Z PS PM PBNB PB PB PM PS PS PS PSNM PB PM PS PS PS PS PSNS PM PS PS PS Z Z ZNZ PS PS Z Z Z NS NSPZ PS PS Z Z Z NS NSPS Z Z Z NS NS NS NMPM NS NS NS NS NS NM NBPB NS NS NS NS NS NM NB实际模糊控制器的2-D控制表可利用MATLAB编制MATLAB语言求得[5].在Mat-lab命令窗口中运行此M文件,可画出如图2所示的E、EC、U隶属度函数图形,并得到表2的2-D控制表[6],存放到计算机存储器中去,在某水位实际过程控制中,计算机通过查表程序既可得出相应的控制量U,实现对象的控制.图2 隶属度函数表2 2-D控制表ECE-6 -5 -4 -3 -2 -1 -0 +0 1 2 3 4 5 6-6 4 4 4 2 0 0 0 -3 -4 -4 -5 -6 -6 -6-5 4 4 4 2 0 0 0 -3 -3 -3 -4 -5 -5 -6-4 4 4 4 2 0 0 0 -3 -3 -3 -3 -4 -5 -6-3 4 4 4 2 0 0 0 -1 -3 -3 -3 -3 -4 -5-2 4 4 4 2 0 0 0 0 -3 -3 -3 -3 -3 -4-1 4 4 4 2 2 2 2 0 -3 -3 -3 -3 -3 -30 4 4 4 4 4 4 4 0 -3 -3 -3 -3 -3 -31 4 4 4 4 4 4 4 0 -1 -1 -1 -3 -3 -32 5 4 4 4 4 4 4 0 0 0 -1 -3 -3 -33 6 5 4 4 4 4 4 2 0 0 -1 -3 -3 -34 7 6 5 4 4 4 4 4 0 0 -1 -3 -3 -35 7 6 6 5 4 4 4 4 0 0 -1 -3 -3 -36 7 7 7 6 5 5 5 4 0 0 -1 -3 -3 -32 某厂水位模糊控制系统的仿真某厂水位对象的传递函数为G(s) =0·033/s().选取水位误差E的基本论域为[-25mm,+25mm],则E的量化因子Ke =6/25=,选取误差变化EC的基本域为[-6,76 甘肃联合大学学报(自然科学版) 第22卷6],则EC量化因子Kec=6/6=1,选取U的基本域为[-102,102],则控制量U的比例因子Ku =102/.在水位正常时,突加25mm阶跃信号对水位系统作定值扰动仿真.在Matlab的Simulink工具中构造模糊控制系统模型如图3所示.双击图中的任何模块,可打开该功能模块来完成参数的设定或修改[3].图3 水位模糊控制系统的Simulink实现如对图3进行仿真,须先运行上述给的M文件,以获得二维表,然后选择Simulink中的Start,启动仿真过程,就可通过Scope观察系统的仿真结果,仿真结果如图4所示.由图4可以看出:在水位上升段,模糊PID控制比新型PID[7]调节时间短、超调小,并且对系统对象参数变化有很好的鲁棒性[8],从而证明该控制器可以获得较好的动态性能指标,达到了良好的控制效果.图4 水位模糊控制系统的仿真结果3 结论本文介绍了模糊PID控制器的设计方法,并利用Matlab中的模糊工具箱设计该控制器,有机地将模糊PID控制器与Simulink结合起来,实现PID参数自调整模糊控制系统的设计和仿真[4].并将该控制器具体应用某厂水位的控制器设计,2-D控制表的建立,以及模糊控制系统的设计与仿真实现.此方法能大大减轻设计者的工作量,且参数修改也十分方便.我们既可修改被控对象,也可修改输入输出的量化论域、语言变量、隶属函数及控制规则等[9].仿真结果:该控制器改善了控制系统的动态性能,增强了其实用性,控制效果良好.参考文献:[1]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004.[2]孙增圻.智能控制理论与技术[M].北京:清华大学出版社,1997.[3]叶军.模糊控制系统的计算机设计与仿真的研究[J].计算机仿真,2002,19(6):49-52.[4]庄利锋,杨慧中.模糊自适应PID控制器的设计及应用[J].自动化仪表,2005(1):30-31.[5]郑恩让.控制系统计算机仿真与辅助设计[M].西安:陕西科学技术出版社,2002.[6]黄道平MATLAB与控制系统的数字仿真及CAD[M].北京:化学工业出版社,2004.[7]陶永华.新型PID控制及其应用[M].第2版.北京:机械工业出版社,2005.[8]曾光奇,胡均安,王东,等.模糊控制理论与工程应用[M].武汉:华中科技大学出版社,2006.[9]王三武,董金发.基于MATLAB模糊自整定PID控制器的设计与仿真[J].机电工程技术,2006(2):第3期 刘悦婷:模糊PID控制器的设计与仿真研究 The Study of Fuzzy-PID Controller Design and SimulationLIU Yue-ting(School of Science and Engineering,Gansu Lianhe University,Lanzhou 730000,China)Abstract:A fuzzy-PID controller design and simulation method is presented in this paper. The controlsystem is suitable for the recovery furnace water level control,power plant boiler water level controland other areas of water control. Its structure is simple,parameter adjustment convenient and shows that the controller works well through the use of fuzzy control Matlab Simulink sim-ulation tool kit and the words:fuzzy-PID controller;simulation;2-D control form(上接第57页)表5 柴油加抗磨剂前后测量数据表测定序号加剂前结果/μm加剂量/(mg/kg)加剂后结果/μm降低程度/μm1 508801603142701942382 486 100 315 171由表5可见,同种柴油加入抗磨剂的量与润滑性的降低程度并不成比例,开始加入一定比例降低的幅度较大,到一定程度降低的幅度逐渐减小.柴油抗磨剂种类繁多,它们对柴油润滑性的改变程度不尽相同.3 结论用高频往复试验机法考察柴油润滑性准确可靠.柴油组分复杂,其润滑性好坏不同,柴油的酸度越大,润滑性越好.润滑性与硫含量、粘度等性质没有良好的对应关系.柴油抗磨剂种类繁多,对柴油润滑性的改变程度不尽相同.加入抗磨剂的量与润滑性的降低程度不成比例.参考文献:[1]陈国良,胡泽祥,高文伟,等.柴油及组分的润滑性研究[J].石油炼制与化工,2005,36(9):42-45.[2]韦淡平.我国柴油的润滑性———一个潜在的重要问题[J].石油炼制与化工,2001,32(1):37-40.[3] SH/T0765-2005,柴油润滑性评定法(高频往复试验机法)[S].[4]钱伯章.柴油质量发展趋势和低硫、低芳烃柴油生产技术进展[J].齐鲁石油化工,1996,24(2):146-155.[5]袁冬梅.高频往复装置(HFRR)测定柴油润滑性[J].锦西炼油化工,2006,11(2):33-35.[6]臧树德,朱敏.用高频往复试验机测定柴油润滑性[J].当代化工,2006,35(1):50-52.[7]杨永红,齐邦峰.柴油润滑性及润滑性添加剂的研究进展[J].江苏化工,2007(2): of the Lubricity of Diesel Fuel Samples by Using theHigh-frequency Reciprocating RigMA Tian-jun,WEI Hai-cang(Petrochina Lanzhou Petrochemical Subsidiary,Lanzhou 730060,China)Abstract:The lubricity of diesel fuel samples and the diesel components are analyzed by the high-fre-quency reciprocating rig. Accuracy and Repeatility of the method are correlations areprimary discussed and confirmed between the lubricity and the contents of sulfur,acidity,viscosity ofthe diesel fuel, words:diesel fuel; the high-frequency reciprocating rig(HFRR);lubricity78 甘肃联合大学学报(自然科学版) 第22卷
经济的发展促进了电网规模的扩大,为实现电力调度的高效、安全,必须使电力调度走向智能化与自动化的发展道路。下面是我为大家整理的浅谈电力调度系统应用论文,供大家参考。
《 电力技术中实时电力调度系统的应用 》
摘要:我国的实时电力调度技术利用了当前的数字化、可视化技术、网络化、对象数据库技术、数字化以及平台技术等先进技术,但在调度技术的发展上还存在着更为广阔的发展空间。目前,电力调度自动系统逐步走向成熟,这给整个电力调度指引了明确的方向。
关键词:电力系统;实时电力调度;分析应用
当下,电已经逐渐成为各家各户生活十分重要的一项设施,所以,在电力系统当中,输送与相关安全的问题对于人们的日常生活有着十分重要的影响,通常情况下,电力调度是电网的核心内容,其对于整个电力系统有着不可忽视的作用。然而,就我国当前的局势来看,我国的电力调度依然存在着很多不稳定的影响因素,所以,对电力调度在电力 系统安全 运行中的应用分析是非常有必要的。
1电力系统中的安全问题分析
电力生产系统由从事生产活动操作人员以及管理人员所组合而成的人子系统,生产必需的机器设备、厂房等物质条件所构成的机器子系统,生产活动所在的环境构成的环境子系统三部分构成。这三个系统相互制约、相互作用,使得整个生产系统位于某个状态下,形成了“人-机-环境”系统。在电力系统生产阶段应该要确保其 安全生产 ,就必须对电力系统中人子系统、机器子系统、环境子系统三方面存在的安全隐患进行认真仔细的分析与探讨,第一时间将电力安全生产阶段所出现安全问题解决到位,科学合理的组织进行电力安全调度管理工作,维持电力系统的稳定运行和良好的供电质量。
人子系统中的问题
当下,在人子系统当中,所面临的主要问题是由于系统中人员的问题,具体来说,主要包括下列几个方面:①工作人员没有安全操作的意识,或者处理复杂操作过程当中粗心失误造成了子系统的故障,从而对全局的稳定与供电质量造成严重的影响。②电力生产阶段管理制度不够完善,缺乏足够的管理力度或是管理 方法 ,造成了在工作人员当中出现了监守自盗的行为,从而对供电网络的稳定性以及质量造成严重的影响。③外界人为因素的影响,比如,不法分子偷盗电力或者是电气设备等造成了电力供应问题的出现。
机器子系统中的问题
对于机器子系统来说,重点问题出现在被我国所广泛使用的10kV配电网络,具体说来,可以概括为下列两点:①技术能力水平的不足。虽然10kV的配电网的技术发展得相对成熟,然而,在设备技术方面还是存在着一定的缺陷。主要问题体现在以下几点:a.配电网络的规划,没有紧密的结合各个区域的环境特征以及电源点分布情况,对10kV配电网规划进行认真仔细的实地调研,造成了与电源点的匹配出现了非常严重的不同步。b.电站建设考虑不周到,质量不高,在具体的施工过程当中对于电网架构与布线走向工作管理太过松懈,造成了布设质量不符合要求,出现架构不牢以及布线太长等方面的问题,进而造成了供电成本的进一步提高。②运行设备维护不够系统。10kV电网线路工作环境是露天运行的,所以,可以概括主要受到以下两方面因素的影响:a.外界因素:自然环境与天气因素等都会对露天的电气设备造成影响,使得电网线路受到损坏,缺相、短路、跳闸等问题,从而对整个网络的稳定性造成影响。b.设备运行周期:供电运行中需要安排好时间定期组织进行电气设备的检查与维护,防止使用时间太长造成设备老化,从而导致故障。
环境子系统中的问题
10kV配电网主要环境为露天环境,所以环境影响也是特别重要的一个方面:①温度因素:在温度太高的情况下,电缆膨胀下垂,造成了接地短路;在温度较低的时候,电缆缩短造成了电缆两端的拉力不断增加,长期运作会导致电缆断裂。②气候因素:暴雨、雷击等都有很大可能对供电线路造成危害。比如雷电容易与配电设备等产生强烈的电磁反应,进而损坏电网局部线路。③人为影响:配电线路周围环境施工建设。一些大型的设备机械在施工过程中,碰撞配电网路,导致了设备的损坏;不法分子的综合素质水平较低,偷盗配电网路电线;树木、违章建筑、铁塔等不恰当安置也会对电网运行造成影响。
2实时电力调度系统的主要应用
实时电力调度技术支持系统的设计,吸收借鉴了国内外相关领域的前沿技术和先进成果,采用了一体化、标准化的设计思想和面向服务的体系架构,研制了高效的动态消息总线、简单服务总线、工作流机制和灵活的人机界面支撑技术,为系统实时监控与预警、调度计划、安全校核和调度管理等应用提供了一体化的技术支撑,在电网运行综合智能分析与告警、大电网稳定分析与评估、调度计划应用的核心算法、调控合一技术和可视化技术等方面取得突破性进展,全面提升了电网调度驾驭大电网的能力,保障了电网安全、稳定、优质、经济运行。据了解,国家电网国调中心根据智能电网调度运行的需要,组织中国电科院、国网电科院的优秀技术人员,制定了一系列的实时电力调度技术支持系统建设标准和功能规范。在全国广泛应用的能量管理系统CC2000A(中国电科院)和OPEN3000(国网电科院)的基础上,严格执行标准和规范,开发了基于国产 操作系统 、数据库、服务器、工作站和安全防护设备的实时电力调度技术支持系统一体化平台D5000。D5000是新一代的实时电力调度技术支持系统基础平台,适应了国家电网公司“大运行”体系中五级调度控制体系的要求,实现了“远程调阅、告警直传、横向贯通、纵向管理”的功能。D-5000采用先进的软件开发(的)技术,具有标准、开放、可靠、安全以及适应性较强的各项优势,其所直接承载的是实时监控与预警、调度计划、安全校核和调度管理等四大应用的平台,对提高电网的调度运行水平、加快调度机构的运行与其标准化建设和提高调度业务精益化的管理具有重要而较为深远的意义。
3加强实时电力调度管理的有效策略
加强人员培训,提高电力调度管理水平
为了有效提高实时电力调度管理水平,电力企业一定要加强工作人员的培训,依照技术等级和工作需求,制定合理的培训计划,定期培训有关人员,使工作人员的业务水平和管理能力得到有效提高,确保自动化管理的顺利开展。电力企业在培训过程中,不仅要强化理论 教育 ,还要强化实际操作能力,理论与实践要做到有机结合,以提升工作人员的实战能力。另外,还要加强工作人员的素质教育,提高工作人员责任心,使他们不仅具备较高的技术水平,而且具备严谨的工作态度,以避免人为因素对实时电力调度管理的顺利开展带来影响。
全面分析电力系统的安全性,加强安全运行管理
电力系统的安全运行与否,是影响居民生活正常用电和企业生产正常进行的重要保障因素。因此,电力调度一定要加强安全运行管理。通过自动化管理系统,对电力系统的安全进行有效分析,确定电力系统整体的安全运行范围,利用计算机技术对电力系统运行进行模拟仿真,对电力系统的运行环境进行虚拟演示,并假设相关事故等。同时,仔细分析模拟中出现的一些问题,并针对这些问题计算不安全因素的发生几率,制定解决方案和解决 措施 。这样,针对性地提前制定安全运行预案,对相关问题做好防范和解决,以降低运行风险,有效应对可能发生的安全问题,维持电能的正常供应,保证企业生产和人民生活正常用电。
加强对电力系统的监督,积极改善系统运行环境
首先,应做好相关管理设备的安装,保证监督与检测工作的有效开展。如安装烟火报警设备、安装视频监控设备、安装温度检测设备等等。这些设备作为自动化管理的重要组成部分,在实时电力调度管理中起着至关重要的作用。在实时电力调度管理过程中,必须保证这些相关管理设备的正常运行,以有效监控电力调度运行状态,降低电力系统的运行风险。电力调度要加强对电力系统的监督,做好相关信息的采集和处理,确保信息数据的准确性和及时性。同时,还要认真分析相关数据,发现问题及时汇报,以便问题得到快速解决。另外,电力调度人员要不断提高管理意识和工作规范性,确保自动化管理的正常开展。在日常调度自动化管理过程中,工作人员应当每天都对自动化管理系统的运行状态进行检查,密切关注机房的温度和湿度的变化情况,掌握设备的整体健康状况,并做好相关记录。在实际工作过程中,工作区和休息区应尽量隔离,避免人机混杂的现象发生,积极改善系统运行环境,保证系统的正常运行。
4结束语
实时电力调度作为数据处理和监控系统,具有实时性、安全性和可靠性,属于动态自动化系统,所以需要加大对其研究的力度,从而采取切实有效的措施来确保系统运行的安全性,使电力系统能够供应更稳定、可靠和高质量的电能。
参考文献:
[1]董伟英.刍议如何做好电网运行中的电力调度工作[J].中国新技术新产品,2012(3):253.
[2]马强,荆铭,延峰,等.电力调度综合数据平台的标准化设计与实现[J].电力自动化设备,2011(11):130~134.
[3]陈启鑫,康重庆,夏清,等.低碳电力调度方式及其决策模型[J].电力系统自动化,2010(12):23~28.
《 电力调度自动化网络安全与实现研究 》
摘要:通过分析当前电力调度自动化网络安全现状,针对出现的问题提出网络安全实现对策建议,以期推动网络安全技术在电力调动自动化系统中的应用。
关键词:电力调度自动化;网络安全;对策研究
引言
随着我国电力行业的不断发展,全国范围内的电力网络规模不断完善,计算机 网络技术 应用于电力领域取得了长足的进步,对电力调度自动化水平的要求也在不断提高。在进行电力调动自动化管理中,主要依托计算机网络安全技术,对信息、数据进行采集、交流、分析和整合,因此,网络安全技术起着至关重要的作用。网络安全问题一直以来受到人们的广泛关注,电力企业一旦遭到网络安全侵袭,会直接影响企业和社会经济利益,因此如何实现电力调度自动化网络安全成为了技术人员重点关注的问题。
1网络安全现状
系统结构混乱
我国电力行业起步较晚,但发展迅速,电力调动自动化系统更新较快,在日常电力 企业管理 中,往往无法及时对电力调动自动化系统进行有效升级,造成电力调动系统混乱,缺乏有效规划和管理,在调度过程中,企业未能根据系统结构进行安全同步建设,如账号密码设置、授权访问设置等,都会引发网络结构出现漏洞[1]。
管理不完善
电力调度自动化网络安全需要专业技术人员对系统进行及时维护和管理,据调查发现,当前大部分电力企业存在着网络安全管理不到位的情况,具体表现如下。1)技术人员管理水平较低,安全意识薄弱,没有及时更新自身专业技能。2)人为操作漏洞,由于部分工作人员安全意识较低,会出现身份信息泄露,无意中造成系统信息丢失等问题,引发系统出现漏项等现象,造成严重安全危害。3)安全监管不及时,没有对网络进行有效防护,给黑客和不法分子可趁之机。
物理安全隐患
物理安全隐患主要有两点。1)自然因素,即客观自然原因造成的安全隐患,是引发电力调度安全隐患的主要原因之一,自然因素主要包括自然灾害,如山洪、台风、雷击等,还包括环境影响,如静电、电磁干扰等,都会对电力调度自动化系统数据、线路、设备造成损坏,导致系统无法正常通讯。2)人为原因,主要包括信息系统偷窃和设备线路破坏等,都会直接影响电力调度监控,给电力企业带来直接安全隐患和经济损失。
2网络安全实现
网络架构
网络架构搭建是网络安全实现的第一步,为保障网络安全防范体系的一致性,需要在网络架构建设初期了解电力调度自动化系统各部分功能和组成。
物理层
物理层安全实现是网络架构的前提。1)环境安全,是指以国家标准GB50173-93《电子计算机机房设计规范》为标准,机房地板需采用防静电地板,相对湿度10%~75%,环境温度15℃~30℃,大气压力80kPa~108kPa。2)设备安全,一是设备自身安全,采用大功率延时电源,机柜采用标准机柜,服务器使用双机冗余;二是在机房设置安全摄像头,全方位对机房进行监控,防止人为造成的设备破坏。3)传输介质安全,电力系统受自身因素影响,特别是集控站等,电磁干扰严重,因此需使用屏蔽双绞线,防止近端串扰和回波损耗[2]。
系统层
网络安全很大程度上依赖于主机系统安全性,而主机系统安全性是由操作系统决定的,由于大部分操作系统技术由国外发达国家掌握,程序源都是不公开的,因此在安全机制方面还存在很多漏洞,很容易遭到计算机黑客进攻。当前我国电力调度自动化系统主要采用Windows、Unix操作系统,其中Unix系统在安全性方面要强于Windows系统。Unix系统的安全性可以从以下几个方面进行控制:控制台安全、口令安全、网络文件系统安全。Win-dows系统安全实现包括:选择NTFS格式分区、漏洞补丁和安装杀毒软件与加强口令管理。
网络层
网络层安全实现是电力调度自动化系统建立的基础,网络层结构主要包括以下几点。1)网络拓扑,主要考虑冗余链路,地级以上调度采用双网结构(如图1所示)。2)网络分段,是进行网络安全保障的重要措施之一,目的在于隔离非法用户和敏感网络资源,防止非法监听。3)路由器、交换机安全,路由器和交换机一旦受到攻击,会导致整体网络系统瘫痪,路由器和交换机主要依赖ios操作系统,因此应对ios系统漏洞等进行及时修补[3]。
防火墙技术
防火墙技术是提供信息安全的基础,实质是限制器,能够限制被保护网络和外部网络的交互,能够有效控制内部网络和外部网络之间信息数据转换,从而保障内网安全(如图2所示),传统意义上的防火墙技术主要包括包过滤技术、应用代理和状态监视,当前所使用的防火墙技术大多是由这三项技术拓展的。防火墙根据物理性质可分为硬件防火墙和软件防火墙,硬件防火墙技术要点是将网络系与系统内部服务装置和外部网络连接,组成链接装置,如DF-FW系列防火墙。防火墙应用于电力调度自动化系统主要有两大优势。1)便于系统上下级调度,能够有效承接下级发送的数据信息,通过安全处理后送往上级。2)位于MIS网址中的服务装置,可以通过对该服务器进行访问,但web服务器可以拒绝MIS服务器。由于两者间的防火墙存在区别,因此功能和装置也会有所区别。不同的电力调度企业可以根据实际情况选择相应防火墙[4]。
安全管理
软件管理提高操作人员软件操作和维护专业水平,提高操作中人员网络安全意识,不断更新自身专业技能,进行高效、高标准操作。当软件操作人员需要暂时离开操作系统时,应注意注销操作账户,此外应加强对软件系统的信息认证,保障软件的安全性。近年来,软件安全管理逐渐开始采用打卡、指纹识别等方式进行身份认证,取得了一定的效果。
信息数据备份
由于环境因素或人为因素造成信息数据丢失、网络漏洞等风险都是难以避免的,因此需要对信息数据进行网络备份操作,当软件系统出现不明原因损毁时,可以通过数据备份进行弥补,能够对内部网络起到保护作用。建立网络备份管理能够有效避免因电力调度自动化系统信息保存时长限制造成的信息丢失,完善数据信息管理。
安装杀毒软件
计算机病毒长久以来都威胁着网络安全,计算机网络病毒随着科学技术和不法分子的增多越来越猖獗,因此需要定期对系统进行杀毒处理,不仅能够对自动化网络进行合理控制,还能够对病毒进行及时清理和杀除,提高网络安全,确保系统能够抵御外部病毒侵袭[5]。
3结语
电力调度自动化网络安全对电力行业发展起着至关重要的作用,安全技术完善并非一朝一夕的工作,而是需要技术人员加强自身专业技能和安全意识,通过日常管理和操作,不断完善安全防护系统和软件,提高网络安全,确保信息数据的安全性。
参考文献
[1]马雷.针对电力调度自动化的网络安全问题的分析[J].科技与企业,2014,13(4):76.
[2]姜红燕.有关电力调度自动化的网络安全问题思考[J].无线互联科技,2014,17(12):58.
[3]邹晓杰,常占新.电力调度自动化网络安全与现实的研究[J].电子制作,2014,21(24):112.
[4]张强.电力调度自动化系统网络安全的建设探讨[J].电子技术与软件工程,2015,11(10):216.
[5]黄芬.浅论电力调度自动化系统网络安全隐患及其防止[J].信息与电脑(理论版),2011,10(1):20-21.
有关浅谈电力调度系统应用论文推荐:
1. 电力调度自动化论文
2. 有关电力调度自动化论文
3. 电力技术毕业论文范文
4. 浅谈电力安全管理论文
5. 浅谈电力优质服务论文
基于PID的锅炉温度控制系统设计 摘要:利用BP神经网络PID控制具有逼近任意非线性函数的能力,将神经网络PID与LabVIEW友好地人 机交互结合,实现对锅炉温度的控制.仿真结果表明,该系统具有更小的超调量,并且更快地到达需要的控制温 度. 关键词:BP神经网络;PID控制;温度控制 温度是锅炉生产蒸汽质量的重要指标之一,也是保证锅炉设备安全的重要参数.同时,温度是影响锅 炉传热过程和设备效率的主要因素.例如,在利用烟化炉对锌、铝冶炼过程中,如果温度过低,则还原速度 和挥发速度都会降低;但温度也不宜过高,否则在温度超过1 250℃时,可能形成Zn-Fe合金,有害于烟 化炉的作业,因此温度的精确测量和控制是十分必要的.作为工业控制系统中的基本方式,PID控制对于 动态反应较缓慢的工业过程是非常好的控制规律[1].但是,当工业过程复杂,负荷变化很多,对象的纯滞 后又较大时常规PID控制达不到要求,为了解决上述问题系统采用PLC作为下位机,PC作为上位机,利 用labVIEW构造人机交互界面,应用神经网络PID对系统进行控制,设计锅炉温度的监制电路. 1 系统总体设计 系统通过热电偶传感器检测出锅炉的温度,采集的信号经过A/D电路转换后传给PLC控制器.PLC 根据数据做出判断,当锅炉处在升温阶段时对锅炉进行加热,当锅炉处于保温段时调用PID算法控制温 度满足输出要求.同时PLC把数据传给PC机,PC机做出显示和报警.具体电路如图1所示. 1·1 主控芯片 S7-300PLC是西门子生产的模块式中小型PLC,提供了大量可以选择的模块,包括:PS 电源模块、CPU模块、IM接口模块、SM信号模块、FM功能模块和CP通信模块.其中FM模块可实现高 速级数、定位控制、闭环控制功能;CP模块是组态网使用的接口模块常用的网络有PROFIBUS,工业以太 网及点对点连接网络.这些模块可以通过U形总线紧密地固定在轨道上,一条导轨共有11个槽号:1号槽 至3号槽分别放置电源、CPU、IM模块4号槽至11号槽 可以随意放置其他模块. 1·2 通信网络 一般的自动化系统都是以单元生产设备 为中心进行检测和控制,不同单元的生产设备间缺乏信息 交流,难以满足生产过程的统一管理.西门子全集成自动 化解决方案顺应了当今自动化的需求,TIA从统一的组态 和编程、统一的数据管理及统一的通信三方面集成在一 起,从现场级到管理级,可以使用如工业以太网、PROFIB- BUS,MPI,EIB等通信网络.根据设计的需要可以自由选择通信网络的配置[2]. 1·3 温度传感器 热电偶是将2种不同的导体焊接起来组成闭合回路,当两端节点有温度差时,两端点 之间产生电动势,回路中会产生电流,这种现象称为热电效应.热电偶温度传感器就是利用这一效应来工 作的.在工业生产过程中被测点与基准节点之间的距离常常过远,为了节省热电偶材料,降低成本,通常采 用补偿导线的方式进行补偿[3]. 1·4 显示界面 LabVIEW是美国NI公司推出的图形化工业控制测控开发平台,是目前应用最广、发展 最快、功能最强的图形软件集成开发环境.LabVIEW具有界面友好、开发周期短等优点,广泛应用于仪器 控制、数据采集、数据分析和数据显示等领域.所以,我们可以在计算机上采用它来实现对设备运行状态的 监控,同时也可以对各种数据进行采集显示.系统的温度显示界面如图2所示. 2 系统控制算法设计 PID控制是工业过程控制中最常用的一种控制方法, 但常规的PID控制在被控对象具有复杂的非线性时,如锅 炉的温度控制,不仅具有较大的纯延迟,而且模型也不确 定时,对于这种对象往往难以达到满意的控制效果.BP神 经网络PID控制具有逼近任意非线性函数的能力,通过神 经网络自身的学习,找到最佳组合的PID控制参数,以满 足控制系统的要求.具体的神经网络PID控制系统框图如 图3所示. 设PID神经元网络是一个3层BP网络,包括2个输入节点,3个隐含层节点,1个输出接点.输入节 点对应所选的系统运行状态量,如系统不同时刻的输入量和输出量等,必要时要进行归一化处理.输出节 点分别对应PID控制的3个可调参数KP,KI,KD.输入层的2个神经元在构成控制系统可分别输入系统 被调量的给定值和实际值.由文献[4]和[5]中的前向算法可得到输出层的权系数计算公式为: 3结论 PID控制算法是一种易于实现而且经济实用的方法,具有很强的灵活性,但在被控制对象具有复杂的 非线性时,难以满足控制要求,而神经网络PID控制具有逼近任意非线性函数的能力,神经网络PID与 LabVIEW结合实现对锅炉温度的数据采集、控制和显示,提高了锅炉监控系统的效率. 参考文献: [1] 邓洪伟.供暖锅炉温度和压力的PLC控制[J].动力与电力工程,2008(18):93-94. [2] 张运刚.西门子S7-300/400PLC技术与应用[M].北京:人民邮电出版社,2007. [3] 何希才.传感器及其应用实例[M].北京:机械工业出版社,2004. [4] 何离庆.过程控制系统与装置[M].北京:重庆大学出版社,2003. [5] 舒怀林.PID神经元网络及其控制系统[M].北京:国防工业出版社,2006.
其一是单片机输出一个电压(经DA芯片或PWM方式),用作电源的基准电压.这种方式仅仅是用单片机代替了原来的基准电压,可以用按键输入电源的输出电压值,单片机并没有加入电源的反馈环,电源电路并没有什么改动.这种方式最简单.其二是单片机扩展AD,不断检测电源的输出电压,根据电源输出电压与设定值之差,调整DA的输出,控制PWM芯片,间接控制电源的工作.这种方式单片机已加入到电源的反馈环中,代替原来的比较放大环节,单片机的程序要采用比较复杂的PID算法.其三是单片机扩展AD,不断检测电源的输出电压,根据电源输出电压与设定值之差,输出PWM波,直接控制电源的工作.这种方式单片机介入电源工作最多.
看看我以前回答过的一个问题,或许有帮助。评价一个控制系统是否优越,有三个指标:快、稳、准。所谓快,就是要使压力能快速地达到“命令值”(不知道你的系统要求多少时间)所谓稳,就是要压力稳定不波动或波动量小(不知道你的系统允许多大波动)所谓准,就是要求“命令值”与“输出值”之间的误差e小(不知道你的系统允许多大误差)对于你的系统来说,要求“快”的话,可以增大Kp、Ki值要求“准”的话,可以增大Ki值要求“稳”的话,可以增大Kd值,可以减少压力波动仔细分析可以得知:这三个指标是相互矛盾的。如果太“快”,可能导致不“稳”;如果太“稳”,可能导致不“快”;只要系统稳定且存在积分Ki,该系统在静态是没有误差的(会存在动态误差);所谓动态误差,指当“命令值”不为恒值时,“输出值”跟不上“命令值”而存在的误差。不管是谁设计的、再好的系统都存在动态误差,动态误差体现的是系统的跟踪特性,比如说,有的音响功放对高频声音不敏感,就说明功放跟踪性能不好。调整PID参数有两种方法:1、仿真法;2、“试凑法”仿真法我想你是不会的,介绍一下“试凑法”“试凑法”设置PID参数的建议步骤:1、把Ki与Kd设为0,不要积分与微分;2、把Kp值从0开始慢慢增大,观察压力的反应速度是否在你的要求内;3、当压力的反应速度达到你的要求,停止增大Kp值;4、在该Kp值的基础上减少10%;5、把Ki值从0开始慢慢增大;6、当压力开始波动,停止增大Ki值;7、在该Ki值的基础上减少10%;8、把Kd值从0开始慢慢增大,观察压力的反应速度是否在你的要求内;
PLC和变频器在中央空调系统中的节能应用摘要:介绍一种以PLC作为总控制部件,采用变频器控制中央空调冷冻水循环泵,构成恒压循环供水;变频调速循环供水,以及用PLC控制一台软起动器分别起动4台井水泵的控制系统。从而实现节能的目的,提高系统的可靠性,确保设备的安全运行。关键词:PLC;变频器;软起动器;节能1引言晶澳太阳能有限公司采用3台设备制冷机组用于生产设备制冷,设备冷冻水循环泵2台,额定功率30kW,一备一用。另采用2台空调制冷机组用于环境制冷,空调冷冻水循环泵3台,额定功率37kW,二用一备。两种循环水泵均为工频全速运转,由于设备冷冻水采用传统的固定节流方式来满足生产设备恒压供水要求和空调冷冻水采用固定节流的方式实现调节室内温度的目的,造成了大量电能的浪费,减短了水泵和阀门的使用寿命。现改造为由PLC作为核心控制部件,由变频器和设备冷冻水泵组成恒压供水系统。空调冷冻水根据温差△T控制原理,由变频器,PID温差控制器,温度变送器,循环泵组成温差△T控制变频调速系统。现公司有4口水井,井水泵额定功率为75kW,采用工频恒速运行。井水统一供给两种制冷机组冷却水、其他车间用水、消防用水等。由于井水泵的自耦降压起动方式控制机构宠大,故障率高。现改造为由PLC控制一台软起动器分别起动4台井水泵的起动方式。2硬件配置设计选用一台PLC作为核心控制部件,控制井水泵的软起动,设备冷冻水恒压供水和空调冷冻水的变频调速。其中,PLC选用Siemens公司的s7-200,CPU选用S7-222,电源模块一块,数字扩展模块选用EM223 24VDC 16输入/16输出。共24个输入点,22个输出点。数字量输入主要有循环泵手/自动运行方式的切换,循环水泵和井水泵的手动启/停操作和井水流量反馈。数字输出点用于19点继电器输出和两个冷冻水系统故障报警和井水流量报警。变频器选用MicroMaster430系列2台,一台额定功率30kW,用于控制设备冷冻水循环泵,另一台额定功率37kW,用于控制空调冷冻水循环泵。MicroMaster430系列变频器是风机类和水泵类的专用变频器,它拥有内置PID调节器,可以提高供水压力的控制精度,改善系统的动态响应。软起动器选用SIRIUS 3RW40系列一台,额定功率75kW,用于软起动井水泵。PID温差控制器一台,选用Transmit(全仕)G-2508系列PID双路温差控制器,用于设定温差,并将PID处理后的4~20mA的模拟信号送至变频器。压力变送器一个,用于检测设备冷冻水的管网压力,并将压力信号反馈给变频器。温度变送器两个,用于检测蒸发器两端的温度,并将温度信号送至PID温差控制器。3控制方案设计设备冷冻水恒压供水控制方案设计控制原理如图2所示,设备冷冻水循环系统是一个密闭的系统,由1#,2#循环泵供水,供水压力要求在±。正常情况下,一台循环泵工频全速运转时,出水压力可达 Mbar。具有很大的裕量,为避免电能的浪费,将设备冷冻水循环系统设计为恒压供水系统。方案设计有手动/自动两种工作方式。在手动方式下,工作人员可以根据实际情况现场决定起/停水泵的变频运行,并设最高优先控制级,不受PLC的自动控制,以保证检修或出现故障时的安全使用。自动方式控制过程:将控制面板上设备冷冻水泵的手动/自动开关,打到“自动”档,由井水泵的运行给定PLC设备冷冻水泵的起动信号,PLC控制KM11吸合,并与变频器通信,由变频器1F软起动1#循环泵。压力变送器检测设备冷冻水管网压力,转化为4~20mA的模拟信号反馈至变频器1F,变频器1F通过内置的PID将检测压力与压力给定值进行比较优化计算,输出运行频率调节1#循环泵的转速。当压力变送器检测到的管网压力低于给定压力时,变频器输出频率上升,增加1#泵的转速,提高管网压力;反之,则频率下降,降低1#水泵的转速。为防止备用泵在备用期间发生锈蚀现象,在自动控制方式下,将1#、2#循环泵设置起始/停止周期,使其自动定时循环使用。为避免在水泵切换时,管网压力变化过大,应采取必要的起/停时间协调措施,以尽量保证水压的稳定,并在切换过程中,对压力检测信号进行一定延时的“屏蔽”,防止变频器在较高的压力信号下不起动。切换过程为:当设定的循环周期已到时,屏蔽压力检测信号。将正在运行的水泵的频率升至50Hz后切换为工频运行,之后将备用泵变频起动(备用泵与运行泵不固定),在频率升至30Hz时,切除工频泵,并取消对压力信号的屏蔽,恢复正常运行,如此循环。在水泵切换时为了防止KM11与KM12、KM21与KM22、KM11与KM22误动作同时吸合发生故障,须将它们电气互锁和程序互锁。当工作泵发生故障时,则立即停止工作泵,将备用泵投入变频运行,并输出声光报警,提示工作人员及时检修,当变频器发生故障时则停止水泵运行立即输出报警。空调冷冻水系统循环泵变频调速控制方案设计控制原理如图3所示,空调冷冻水系统的供回水温度之差反映了冷冻水从室内携带热量的情况。温差大,说明室内温度高,应提高冷冻水泵的转速,加快冷冻水循环;反之,温差小,说明室内温度低,可以适当降低冷冻水泵的转速,减缓冷冻水循环。一般中央空调冷冻水系统设计温差为5oC~7oC。通过温差△T控制,控制冷冻水系统的循环状态,可以降低能源损耗,延长水泵的寿命。此外,空调冷冻水系统是一个密闭的系统不必考虑恒压问题。差控制器和循环泵温差闭环变频调速系统,控制冷冻水泵的转速随着室内热负载的变化而变化。工作过程为:温度变送器1、2分别在空调机组蒸发器输入和输出端测得温度后,转换为4~20mA的标准信号送入PID温差控制器,经PID与给定温差值比较处理后,输出4~20mA的标准信号到变频器2F的模拟量输入端,变频器2F输出相应频率,调节循环水泵的转速,达到控制温度的目的,形成一个完整的闭环控制系统。系统设计为手动和自动两种控制方式手动方式工作过程与设备冷冻水泵手动工作方式类似自动控制过程为:将控制面板上的空调冷冻水循环泵手动/自动控制开关打到“自动”档,系统将在自动方式下运行,由井水泵的运行给定PLC空调冷冻水泵起动指令后,首先控制KM31吸合投入3#循环泵变频运行,由温度变送器1、2检测蒸发器两端的温度,并将温度信号送到PID温差控制器,PID温差控制器将检测到的温差与给定温差比较处理后的标准信号反馈给变频器2F。若检测到的温差大于温差给定值时,变频器2F提升输出频率,提高水泵的转速,加快冷冻水的循环;反之,则降低频率,降低水泵转速。在自动运行方式下,将3台水泵设定自动循环周期,定时自动循环使用。3台水泵的开闭顺序为“先开先关”的顺序,当室内热负荷加大时,若变频器2F的输出频率已升至50Hz,经一定延时(如20min),当检测温差值仍大于温差给定值时,通过PLC程序控制,把3#水泵切换为工频运行,再投入4#水泵变频运行,如此循环,直到变频运行5#水泵。当3台水泵被全部投入运行,且变频泵频率已至50Hz,经延时若频率仍没下降,则由PLC输出报警,提醒工作人员及时修改空调机组设定值;相反,当室内热负荷减小时,变频器2F降低输出频率,降低5#泵的转速,当频率降到20Hz时,若检测温差值仍低于温差给定值时,经延时(如20min),停止3#泵,依此类推。为保证变频器2F只控制一台水泵,将KM31、KM41和KM51电气互锁和程序互锁,同时须将KM31与KM32、KM41与KM42、KM51与KM52电气互锁。当变频器2F或水泵发生故障时,由PLC输出声光报警,提示工作人员及时检修。井水泵软起动控制方案设计如图1所示,利用PLC控制一台软起动器,即可分别起动4台井水泵.将井水泵的运行方式设计为手动方式。具体控制过程为:按下控制面板上相应的起动按钮,如按下6#泵起动按钮,PLC控制KM61吸合并运行软起动器,软起动6#井水泵。当软起动器起动完毕后利用其辅助触点反馈信号给PLC,PLC断开KM61并立即闭合KM62,将6#井水泵切入工频运行,并停止运行软起动器,依此类推。为防止软起动器同时起动两台以上的井水泵,须将KM61、KM71、KM81、KM91电气互锁和程序互锁,另须将KM61与KM62、KM71与KM72、KM81与KM82、KM91与KM92电气互锁,4 S7-200与MM430变频器的通信设置S7-200PLC作为核心控制部件,它有总线访问权,可以读取或改写变频器的状态,控制软起动器的运行状态,从而达到控制和监视设备运行状态的目的。系统采用总线式拓扑结构,两台变频器采用总线接插件连入总线。S7-200选用S7-222CPU,软件采用。采用西门子Profibus屏蔽电缆及9针D形网络连接头。利用S7-222的自由通信口功能,即RS485通信口。由用户程序实现USS协议与两台MM430变频器通信。在硬件连接完毕后,需要对两台MM430变频器的通信参数进行设置,如表1所示。5软件设计在应用设计中,PLC起到“总监总控”的角色,可以对两台变频器的状态进行查询和控制。程序首先将S7-222的通信口初始化为自由通信口方式,然后程序进入一个顺序控制逻辑功能块。控制顺序为:手动起动井水泵,在井水流量满足要求的情况下,自动运行设备冷冻水循环泵和空调冷冻水循环泵。在PLC的程序中设计了井水泵的手动软起动井水泵控制、设备冷冻水循环泵和空调冷冻水循环泵自动定时循环程序;同时设计了设备冷冻水循环泵和空调冷冻水循环泵的手动控制程序。在本系统中采用了变频器自身控制的方法,这样就省去了对PLC的PID算法的编程。6结论本系统设计实际应用运行一个夏季后,得出与上个季度循环水泵电能消耗数据及故障次数如表2所示。数据显示,系统改造后节能达30%以上,并且在春,秋、冬季节空调冷冻水循环泵的节能效果会更加明显,并且故障发生次数大幅下降。因此采用调速调节流量的方式,可以大幅度降低截流能量的损耗,具有显著的节能效果,并能延长水泵的寿命,提高系统运行的稳定性,降低生产成本,提高生产效率。参考文献[1]王仁祥,王小曼.变频器在中央空调中的应用.通用变频器选型,应用与维护.北京:人民邮电出版社,2002:176-202.[2]西门子有限公司.MM430通信设置.MICROMASTER430使用大全..[3]蔡行健.S7-200模块.深入浅出西门子S7-200PLC.北京:北京航空航天出版社,2003:95-125.[4]原魁,刘伟强.变频器基础及应用.北京:冶金工业出版社,2006.[5]罗宇航.流行PLC实用程序及设计(西门子S7-200系列).西安:西安电子科技大学出版社,2004.叮叮猫进士 回答采纳率: 2010-03-24 20:38 随着我国经济的高速发展,交流变频调速技术已经进入一个崭新的时代,其应用越来越广泛。而电梯作为现代高层建筑的垂直交通工具,与人们的生活紧密相关。随着人们对其要求的提高,电梯得到了快速的发展,其拖动技术已经发展到了变压变频调速,其逻辑控制也由PLC代替原来的继电器控制。通过对变频器和PLC的合理选择和设计,大大提高了电梯的控制水平,并改善了电梯运行的舒适感,使电梯得到了较为理想的控制和运行效果。并利用旋转编码器发出的脉冲信号构成位置反馈,实现电梯的精确位移控制。通过PLC程序设计实现楼层计数、换速信号、开门控制和平层信号的数字控制,取代井道位置检测装置,提高了系统的可靠性和平层精度。该系统具有先进、可靠、经济的特色。该电梯控制系统具有司机运行和无司机运行的功能,并且具有指层、厅召唤、选层、选向等功能和具有集选控制的特点。关键词: 电梯; PLC; 变频调速; 旋转编码器ABSTRACTAs China's rapid economic development, exchange of VVVF technology has entered a new era, its application more widely. The elevator as a modern high-rise building the vertical transport, and is closely related to people's lives, as people raise their requirements, the lift has been the rapid development of its technology has developed to drag the PSA Frequency Control, the logic control Also by the PLC to replace the original control the PLC chip and a reasonable choice and design, Greatly improving the control of the elevator, the elevator and to improve the operation of comfort, so that the lift has been better control and operation results. And using a rotary encoder pulse a position feedback, and lift the precise control of displacement. PLC program designed to achieve through the floor count, for speed signal, to open the door of peace control of the digital control signals to replace Wells Road location detection devices, improving the reliability of the system accuracy of the peace. The system has advanced, reliable and economic elevator control system has run drivers and drivers operating without that manual and automatic features, and with that layer, called the Office for the election of the Commission to function, with election-control : lift ; PLC; VVVF; rotary encoder目 录1 绪论 PLC控制交流变频电梯的简介 电梯控制的国内外发展现状 题目选择的来源与意义 本文所做的主要工作 32 电梯设备的介绍 电梯设备 电梯的分类 电梯的主要参数 电梯的安全保护装置 53 变频器的选择及其参数计算 变频器的分类 变频器的选择 变频器品牌型号的选择 变频器规格的选择 选择变频器应满足的条件 VS-616G5型通用型变频器 变频器有关参数的计算 变频器容量的计算 变频器制动电阻的计算 114 PLC的选择及硬件开发 PLC简介 控制器件的选择 PLC的选择 轿厢位置的检测元件 PLC硬件系统的设计 设计思路 I/O点数的分配及机型的选择 215 系统软件开发 电梯的三个工作状态 电梯的自检状态 电梯的正常工作状态 电梯的强制工作状态 系统的软件开发方法确定 软件设计特点 软件流程 模块化编程 系统的软件开发 电路的开关门运行回路 电梯的外召唤信号的登记消除及显示回路 利用旋转编码器获取楼层信息 呼梯铃控制与故障报警 电梯的消防运行回路 36结 论 38致 谢 39参考文献 40附录 Ⅰ VS-616G5型变频器的常用参数 41附录 Ⅱ VS-616G5变频器主要参数设置表 42附录 Ⅲ 梯形图 43
PLC的自动送料小车摘 要可编程序控制器(Programmable controller)简称PLC,由于PLC的可靠性高、环境适应性强、灵活通用、使用方便、维护简单,所以PLC的应用领域在迅速扩大。对早期的PLC,凡是有继电器的地方,都可采用。而对当今的PLC几乎可以说凡是需要控制系统存在的地方就需要PLC。尤其是近几年来,PLC的成本下降,功能又不段增强,所以,目前PLC在国内外已被广泛应用于各个行业。本设计是为了实现送料小车的手动和自动化的转化,改变以往小车的单纯手动送料,减少了劳动力,提高了生产效率,实现了自动化生产!而且本送料小车的设计是由于工作环境恶劣,不允许人进入工作环境的情况下孕育而成的。本文从第一章送料小车的系统方案的确定为切入点,介绍了为什么选用PLC控制小车;第二章介绍了送料小车的应达到的控制要求;第三章根据控制要求进行了小车系统的具体设计,包括端子接线图、梯形图(分段设计说明和系统总梯形图)和程序指令设计;最后得出结论。关键词:PLC,送料小车,控制,程序设计目 录前 言 1第1章 控制系统介绍和控制过程要求 控制系统在送料小车中的作用与地位 控制系统介绍 2第2章 送料小车系统方案的选择 可编程控制器 PLC的优点 小车送料系统方案的选择 5第3章 基于PLC的送料小车接线图及梯形图 送料小车PLC的 I/O分配表 PLC端子接线图 梯形图分段设计 程序运行原理说明调试与完善 系统总梯形图设计 小车程序设计 18结 论 23谢 辞 24参考文献 25前 言随着社会迅速的发展,各机械产品层出不穷。控制系统的发展已经很成熟,应用范围涉及各个领域,例如:机械、汽车制造、化工、交通、军事、民用等。PLC专为工业环境应用而设计,其显著的特点之一就是可靠性高,抗干扰能力强。PLC的应用不但大大地提高了电气控制系统的可靠性和抗干扰能力,而且大大地简化和减少了维修维护的工作量。PLC以其可靠性高、抗干扰能力强、编程简单、使用方便、控制程序可变、体积小、质量轻、功能强和价格低廉等特点 ,在机械制造、冶金等领域得到了广泛的应用。送料小车控制系统采用了PLC控制。从送料小车的工艺流程来看,其控制系统属于自动控制与手动控制相结合的系统,因此,此送料小车电气控制系统设计具有手动和自动两种工作方式。我在程序设计上采用了模块化的设计方法,这样就省去了工作方式程序之间复杂的联锁关系,从而在设计和修改任何一种工作方式的程序时,不会对其它工作方式的程序造成影响,使得程序的设计、修改和故障查找工作大为简化。在设计该PLC送料小车设计程序的同时总结了以往PLC送料小车设计程序的一般方法、步骤,并且把以前学过的基础课程融汇到本次设计当中来,更加深入的了解了更多的PLC知识。第1章 控制系统介绍和控制过程要求 控制系统在送料小车中的作用与地位在现代化工业生产中,为了提高劳动生产率,降低成本,减轻工人的劳动负担,要求整个工艺生产过程全盘自动化,这就离不开控制系统。控制系统是整个生产线的灵魂,对整个生产线起着指挥的作用。一旦控制系统出现故障,轻者影响生产线的继续进行,重者甚至发生人身安全事故,这样将给企业造成重大损失。送料小车是基于PLC控制系统来设计的,控制系统的每一步动作都直接作用于送料小车的运行,因此,送料小车性能的好坏与控制系统性能的好坏有着直接的关系。送料小车能否正常运行、工作效率的高低都与控制系统密不可分。 控制系统介绍图1-1 送料小车本控制系统只要是用于控制送料小车的自动送料。它既能减轻人的劳动强度又能自动准确到达人不能达到或很难到达的预定位置。如图1-1,推车机可以沿轨道上下移动,到达预定位置。推车机上是一个小型泵站,通过控制电磁阀换向,使两油缸伸出、缩回,顶出送料小车,再由各个仓位控制要料。用PLC对送料小车实现控制,其具体要求如下:(1) 送料小车1动作要求:送料小车负责向四个料仓送料,送料路上从左向右共有4个料仓(位置开关SQ1,SQ2,SQ3,SQ4)分别受PLC的,,,检测,当信号状态为1是,说明运料小车到达该位置。小车行走受两个信号的驱动,驱动小车左行,驱动小车右行。料仓要料由4个手动按钮(SB1,SB2,SB3,SB4)发出(对应于PLC为,,,)按钮发出信号其相应指示灯就亮(HL1-HL4),指示灯受PLC的控制。送料小车2动作要求:送料小车负责向四个料仓送料,送料路上从左向右共有4个料仓(位置开关SQ11,SQ12,SQ13,SQ14)分别受PLC的,,,检测,当信号状态为1是,说明运料小车到达该位置。小车行走受两个信号的驱动,驱动小车左行,驱动小车右行。料仓要料由4个手动按钮(SB11,SB12,SB13,SB14)发出(对应于PLC为,,,)按钮发出信号其相应指示灯就亮(HL11-HL14),指示灯受PLC的控制。(2)运料小车行走条件:运料小车右行条件:小车在1,2,3号仓位,4号仓要料;小车在1,2号仓位,3号仓要料;小车在1号仓位,2号仓要料。运料小车左行条件:小车在4,3,2,0号仓位,1号仓要料;小车在4,3,0号仓位,2号仓要料;小车在4,0号仓位,3号仓要料;小车在0位,4号仓位要料。运料小车停止条件:要料仓位与小车的车位相同时,应该是小车的停止条件。运料小车的互锁条件:小车右行时不允许左行启动,同样小车左行时也不允许右行启动。第2章 送料小车系统方案的选择 可编程控制器 PLC的优点可编程控制器 PLC对用户来说,是一种无触点设备,改变程序即可改变生产工艺。目前,可编程控制器已成为工厂自动化的强有力工具,得到了广泛的推广应用。可编程控制器是面向用户的专用工业控制计算机,具有许多明显的特点。1. 可靠性高,抗干扰能力强高可靠性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。例如西门子公司生产的S7系列PLC平均无故障时间高达30万小时。一些使用冗余CPU的PLC的平均无故障工作时间则更长。从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统具有极高的可靠性也就不奇怪了。2. 配套齐全,功能完善,适用性强PLC发展到今天,已经形成了大、中、小各种规模的系列化产品。可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。3. 易学易用,深受工程技术人员欢迎PLC作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。4. 系统的设计、建造工作量小,维护方便,容易改造PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。更重要的是使同一设备经过改变程序改变生产过程成为可能。这很适合多品种、小批量的生产场合。5. 体积小,重量轻,能耗低以超小型PLC为例,新近出产的品种底部尺寸小于100 mm,重量小于150 g,功耗仅数瓦。由于体积小,很容易装入机械内部,是实现机电一体化的理想控制设备。 小车送料系统方案的选择实现小车送料系统控制有很多方法来实现,可以用单片机、可编程控制器PLC等元器件来实现。但在单片机控制系统电路中需要加入A/D,D/A转换器,线路复杂,还要分配大量的中断口地址。而且单片机控制电路易受外界环境的干扰,也具有不稳定性。另外控制程序需要具有一定编程能力的人才能编译出,在维修时也需要高技术的人员才能修复,所以在此也不易用单片机来实现。而从上述第一节对PLC的特点了解可知,PLC具有很多优点,因此我们归纳出:可编程控制器PLC具有很高的可靠性,通常的平均无故障时间都在30万小时以上;安装,操作和维护也较容易;编程简单,PLC的基本指令不多,编程器使用比较方便,程序设计和产品调试周期短,具有很好的经济效益。此外PLC内部定时、计数资源丰富,可以方便地实现对送料小车的控制。因此,最终我选择了用可编程控制器PLC来实现送料小车系统的控制,完成本次的设计题目。第3章 基于PLC的送料小车接线图及梯形图 送料小车PLC的 I/O分配表输入点分配 输出点分配输入接点 输入开关名称 输出接口 驱动设备 小车1行程开关(SQ1-SQ4) 小车1要料指示灯(HL1-HL4) 小车1控制按钮(SB1-SB4) 小车1左右行线圈 小车2行程开关(SQ11-SQ14) 油缸1伸出缩回线圈 小车2控制按钮(SB11-SB14) 小车2要料指示灯(HL11-HL14) 推车机行程开关(SQ5-SQ10) 小车2左右行线圈 起动,停止按钮(SB5,SB6) 油缸2伸出缩回线圈 手动,连续转换开关(SA6,SA7) 推车机上下行线圈 推车机上下,左右转换开关 (SA1,SA2) 油缸单动联动转换开关(SA3-SA5) 3-1 I/O分配表根据控制要求,PLC控制送料小车的输入\输出(I\0)地址编排如下表所示,其中SB5为启动开关,为SB6停止开关,SA6、SA7为手动\连续选择开关,SA1、SA2为上下、左右转换开关,SA3、SA4、SA5为油缸单动联动转换开关。和控制8个要料指示灯,和控制小车1、2左行右行,和。如表3-1所示: PLC端子接线图PLC型号的选择:由于该系统是在原来CPU226的基础上改进的设备,而现在共用了31个输入,用直流24V;18个输出,用交流电220V,所以我选择用S7-200系列CPU226,加一个EM223的扩展模块。CPU226的主要的技术参数:输入24VDC,24点;输出220VAC,16点;电源电压为AC100—240V 50/60Hz。EM223的主要技术参数:输入24VDC,8点;输出220VAC,8点;电源电压为AC100—240V 50/60Hz。如图3-1所示:图3-1 端子接线图 梯形图分段设计本次设计的自动送料小车梯形图,是分开来画的。由总程序结构图、自动操作程序图、手动操作程序图、小车1左右自动送料运行程序图、小车2左右自动送料运行程序图组成。图3-2 总系统结构图(1)程序的总结构图如图3-2所示:因为在手动操作方式下,各种动作都是用按钮控制来实现的,其程序可独立于自动操作程序而另行设计。因此,总程序可分为两段独立的部分:手动操作程序和自动操作程序。当选择手动操作时,则输入点接通,其常闭触点断开,执行手动程序,并由于的常闭触点为闭合,则跳过自动程序。若选择自动操作方式,将跳过手动程序段而执行自动程序。(2)自动程序设计,自动操作控制主要是由行程开关来控制推车机的上行、下行,两缸的伸出、缩回。通过行程开关的上限、下限、左限、右限准确的控制推车机到达预定位置。自动程序时,手动自动转换开关拨到连续档SA7,按下启动按钮SB6,推车机上行,碰到上位行车开关SQ6,上行停止;同时两个油缸动作,推动两小车向左移动,小车1、2碰到左位行程开关SQ10、SQ5,说明两小车到位,这时各个仓位可向小车要料;而且两油缸缩回,碰到行程右位开关SQ8、SQ9停止收缩,推车机下行到行程开关位SQ7时停止。如图3-3所示:图3-3 自动操作程序图(3)手动操作程序的设计,手动操作控制简单,可按照一般继电器控制系统的逻辑设计法来设计。手动程序时,手动自动转换开关拨到手动档SA6,上下、左右转换开关拨到上/下行档时,按启动按钮SB5推车机上行,按停止按钮SB6推车机下行;上下、左右转换开关拨到左/右档时,拨动单动联动转换开关SA3(缸1动作),按启动按钮SB5,缸1伸出推动小车1左行;按停止按钮SB6,缸1缩回;拨动转换开关到SA5(缸2动作),按启动按钮SB5,缸2伸出推动小车2左行,按停止按钮SB6,缸2缩回;拨动单动联动转换开关到SA4(两缸同时动作)按启动按钮SB5,两缸伸出推动两小车左行;按停止按钮SB6,两缸缩回。如图3-4所示:图3-4 手动操作程序图(4)小车1自动送料运行程序,把小车1送到指定位置后,四个仓位就可以向小车要料了,分别代表小车1的1号料仓到4号料仓的要料状态,运料小车1当前所处位置由,运料小车1的右行,左行,停止控制由、。小车到位后,用上微分操作(P)来清除料仓要料状态信号及控制小车停车。(上微分操作的注意事项,上微分脉冲只存在在一个扫描周期,接受这一脉冲控制的元件应写在这一脉冲出现的语句之后)。小车1自动送料图如下图3-5所示:图3-5 小车1左右自动送料运行程序图(5)小车2自动送料运行程序,把小车2送到指定位置后,四个仓位就可以向小车要料了,分别代表小车2的1号料仓到4号料仓的要料状态。运料小车2当前所处位置由,运料小车2的右行,左行,停止控制由、。小车到位后,用上微分操作(P)来清除料仓要料状态信号及控制小车停车。小车2自动送料图3-6所示:图3-6 小车2左右自动送料运行程序图 程序运行原理说明调试与完善本程序是用梯形图所写的。在运行前,先选择工作方式,手动/自动。选择手动SA6时,把上/下、左/右转换开关旋转到上/下档SA1,按下SB5起动点动按钮,推车机上行,按下SB6停止点动按钮,推车机下行;把上/下、左/右转换开关旋转到左/右档SA2,再选择小车的单动、联动控制,小车1单动时把单动/联动转换开关旋转到单动档SA3,两小车联动时旋转到联动档SA4,小车2单动时旋转到单动档SA5,这时按下起动按钮SB5,油缸推动小车左行,按下停止按钮SB6,油缸缩回。选择自动SA7时,按下起动按钮SB5,推车机开始上行,碰到上限行程开关SQ6时停车,两缸自动推出小车,小车碰到左限行程开关SQ5、SQ10时,说明小车到位,各个仓位可以向小车要料,这时两缸自动缩回,碰到右限行程开关SQ8、SQ9时,推车机自动下行,下行到位后(碰到SQ7)停车。只有再次按下起动按钮SB5,才能再次运行。手动程序中设置了联锁和保护电路。如推车机的上行、下行常闭触点的联锁,推车机上下行行程有行程开关SQ6、SQ7控制保护。自动程序是根据推车机的位置、油缸的位置来控制电路执行下一条指令的。油缸把小车推到位后,小车处于准备送料的初始位置,这时1-4号仓位都可以向小车要料。本设计中要料时刻不同时,先要料者优先,但是要料时刻相同时,却不知道小车向哪个仓位送料,需要改进。 系统总梯形图设计由以上,我们画出送料小车系统的总梯形图,其中包括推车机的手动控制程序、自动控制程序、送料小车1控制程序、送料小车2控制程序。如下图3-7所示:图3-7送料小车梯形图(a) 图3-7 送料小车梯形图(b) 图3-7 送料小车梯形图(c) 图3-7 送料小车梯形图(d) 小车程序设计由系统总梯形图,我们写出送料小车的程序指令,如下表3-2所示:表3-2 送料小车程序指令表LDN A JMP 0 A LD AN LPS = A LD AN O = AN LPP = A LD AN O = A LD A = AN LD = O LD A O A A A A AN AN = = LD LBL 0 O LDN AN JMP 1 = LD LD O O AN AN O AN AN = AN LD AN O = AN LD AN AN AN O = AN LD AN O AN AN = = LBL 1 LD LD O AN AN AN AN AN AN S 1= S 1LD LD O AN AN AN = AN LD S 1O S 1AN LD AN AN AN AN = AN LD S 1S 1 A LD OLD AN AN AN S AN LD S 1 O S 1 O LD O A A LD LD A O OLD O LD A A OLD OLD LD LD O A A OLD OLD EU LD R 6 A R 4 OLD LD AN O S 1O LD A AN LD AN O AN A S 1OLD S 1LD LD AN LD AN O AN O S 1 A S 1 LD LD O AN A AN OLD AN LD S 1 A S 1 OLD LD AN AN S 1AN LD AN O S 1 O S 1 O LD A A LD LD O A O OLD A LD OLD A LD OLD O LD A A OLD EU LD R 6 A R 4 OLD AN S 1 结 论在做这个设计中,我学会了很多以前没学过的知识,也巩固了很多以前没学好的知识,使我的专业理论知识更加扎实,软件操作更加熟练了。做完这个设计后,我得出几个结论如下:一、送料小车在硬件设计中,加入了扩展模块,可以在触点不够的情况下方便地实现该小车的系统控制;然后软件设计中,运用了上微分指令,简化了程序,还运用了互锁和联锁,确保了系统的正常运行,减少了系统的故障点。在送料小车的系统中加入了手动操作程序,便于设备的维修,方便操作人员操作。二、该小车系统在实施的情况下,其成本价格比较高。三、该小车控制系统的研究方向:由于本小车系统并不完善,只做了送料,没有设计小车怎么装料和小车到料仓后送料的多少。这两方面是该系统设计的完善,是将来的研究方向。 最后,经过这次毕业设计培养了我们的设计能力以及全面的考虑问题能力。学习的过程是痛苦的但是收获成功的喜悦更是让人激动的。相信通过这次毕业设计它对我以后的学习及工作都会产生积极的影响。谢 辞本论文是在余炳辉导师亲自指导下完成的。导师在学业上给了我很大的帮助,使我在设计过程中避免了许多无为的工作。导师一丝不苟、严谨认真的治学态度,精益求精、诲人不倦的学者风范,以及正直无私、磊落大度的高尚品格,更让我明白许多做人的道理,在此我对导师表示衷心的感谢!本论文能够完成,要感谢机电学院的所有老师,是他们在这三年的时间里,教会我的专业知识。在我撰写论文期间,得到了我的指导老师的帮助,在忙碌的工作之余,给予我专业知识上的指导,而且教给我学习的方法和思路,使我在科研工作及论文设计过程中不断有新的认识和提高。导师为论文课题的研究提出了许多指导性的意见,为论文的撰写、修改提供了许多具体的指导和帮助。多得他们的指导和帮助才使我能完成本论文。我会在以后的工作中为社会作出贡献去回报他们对我的教导。希望每个人都和我一样,通过做毕业设计,能够学到很多的知识与道理,大家都能用一颗热诚的心去投身未来的工作,报效祖国、父母、老师。 在本文结束之际,特向我敬爱的导师和机电学院所有老师致以最崇高的敬礼和深深的感谢!参考文献[1] 张结,黄德斌,唐毅.应用标准与IEC61850的引用和兼容关系.电力系统自动化,2004,28(19):88~91[2] 朱永利,黄歌,刘培培等.基于IEC61850的电力远动信息网络化传愉的研究.继电器,2005,33(11):45~48[3] 章宏甲,黄谊,王积伟.液压与气压传动.北京:机械工业出版社, 2002:112~118[4] 成大先.机械设计手册(液压控制).单行本.北京:化学工业出版社, 2004:20~21[5] 廖常初.PLC基础及应用.北京:机械工业出版社,2003:57~64[6] 储云峰.西门子电气可编程序控制器原理及应用.北京:机械工业出版社,2006:75~84[7] 汪巍,汪小凤.基于PLC的气动机械手研究.辽宁工程技术大学学报,2005,4(12):97~98[8] 丁筱玲,赵立新. PLC在机械手控制系统上的应用.山东农业大学学报,2006,37(1):105~108[9] 常斗南,王健琪,李全力.可编程控制原理.应用及通信基础.北京:机械工业出版社,1997:50~68[10]王本轶.机电设备控制基础.北京:机械工业出版社,2005:96~112[11]王春行.液压控制系统.北京:机械工业出版社,1999:12~45[12]王永华.现代电气控制及 PLC 应用技术.北京:北京航空航天大学出版社,2003:75~90[13]陈立定.电器控制于可编程控制器.广州:华南理工大学出版社,2001:67~77[14]张林国,王淑英.可编程控制器技术.北京:高等教育出版社,2002:110~123[15]周万珍,高鸿宾.PLC分析与设计应用.北京:电子工业出版社,2004:21~45
看看我以前回答过的一个问题,或许有帮助。评价一个控制系统是否优越,有三个指标:快、稳、准。所谓快,就是要使压力能快速地达到“命令值”(不知道你的系统要求多少时间)所谓稳,就是要压力稳定不波动或波动量小(不知道你的系统允许多大波动)所谓准,就是要求“命令值”与“输出值”之间的误差e小(不知道你的系统允许多大误差)对于你的系统来说,要求“快”的话,可以增大Kp、Ki值要求“准”的话,可以增大Ki值要求“稳”的话,可以增大Kd值,可以减少压力波动仔细分析可以得知:这三个指标是相互矛盾的。如果太“快”,可能导致不“稳”;如果太“稳”,可能导致不“快”;只要系统稳定且存在积分Ki,该系统在静态是没有误差的(会存在动态误差);所谓动态误差,指当“命令值”不为恒值时,“输出值”跟不上“命令值”而存在的误差。不管是谁设计的、再好的系统都存在动态误差,动态误差体现的是系统的跟踪特性,比如说,有的音响功放对高频声音不敏感,就说明功放跟踪性能不好。调整PID参数有两种方法:1、仿真法;2、“试凑法”仿真法我想你是不会的,介绍一下“试凑法”“试凑法”设置PID参数的建议步骤:1、把Ki与Kd设为0,不要积分与微分;2、把Kp值从0开始慢慢增大,观察压力的反应速度是否在你的要求内;3、当压力的反应速度达到你的要求,停止增大Kp值;4、在该Kp值的基础上减少10%;5、把Ki值从0开始慢慢增大;6、当压力开始波动,停止增大Ki值;7、在该Ki值的基础上减少10%;8、把Kd值从0开始慢慢增大,观察压力的反应速度是否在你的要求内;
模糊PID控制器的设计与仿真研究摘 要:提出了一种模糊PID控制器的设计与仿真方法.该控制系统适用于碱回收炉的水位控制、火电厂锅炉水位控制以及其他领域的水位控制.其结构简单、参数调整方便、快捷.另外,借助于Matlab模糊控制工具箱和Simulink仿真工具进行的仿真试验,表明控制效果很好.关键词:模糊PID控制器;仿真;2-D控制表中图分类号: 文献标识码:A0 引言目前,模糊控制理论及模糊控制系统的应用发展很快,显示出模糊控制在控制领域具有广阔的前景.模糊控制已成为智能控制的重要组成部分.在工业过程控制中,因为PID控制器所涉及的设计算法和控制结构简单,不要求非常精确的受控对象的数学模型,且众多的过程控制软件都带有PID控制器的算法模块,而被广泛应用于工业过程控制中.但是,PID控制器参数的整定尚需工程技术人员才能完成,对于存在时滞、非线性等因素的系统更难整定,调试过程中经常出现超调、振荡等影响系统正常运行的现象.模糊控制器具有不依赖控制对象精确的数学模型,减弱超调、防止振荡等优点[1].由此本文合理结合两种控制算法的优点提出一种调整系统控制量的模糊PID控制器,这种控制器在大偏差范围内利用模糊推理的方法调整系统控制量U,而在小偏差范围内转化为PID控制,并以给定的偏差范围自动完成二者的转化[2].本文将讨论调整系统控制量的模糊PID控制器的设计与仿真.并以一个具体的水位对象为例给出该控制器的设计与仿真实例.1 模糊PID控制器的设计该控制器中主要包含二维的模糊控制器和PID控制器.在大偏差范围内通过模糊控制器实现过程控制.模糊控制通过模糊逻辑和近似推理方法,让计算机把人的经验形式化、模型化,根据给定的语言控制规则进行模糊推理,给出模糊输出判决,并将其转化为精确量,馈送到被控对象(或过程)的.其中所使用的模糊控制器为常用的二维模糊控制器.在实际应用中,一般是用系统输出的偏差E和输出偏差的变化率EC作为输入信息,而把控制量的变化作为控制器的输出量,以此确定模糊控制器的结构.Ke和Kec表示量化因子, Ku表示比例因子.并且在实际微机模糊控制中,一般先确定出模糊控制规则,然后将此表存入存储器中,这样在实际的过程控制中,微机根据采样到的E和EC通过查询控制规则表求得控制量U,馈送到控制对象实现过程的模糊控制.小偏差范围内通过传统的PID控制算法实现过程控制[3].二者通过系统的偏差E实现自动切换.这样既可以通过模糊控制器加快过程动态响应过程,减弱超调和振荡现象,减弱调试过程对正常工作运行的影响,又可以通过常用的PID控制器在小偏差范围内实现精确控制,减少纯模糊控制器带来的稳态误差.图1是某水位的调整系统控制量的模糊PID控制系统[4].选取某水位误差E及其误差变化率EC和控制量U的论域分别为:E={-6,-5,-4,-3,-2,-1,-0,+0,1,2,3,4,5,6};EC={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6};U={-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7}.选取某水位误差E及其误差变化率EC和控制量U的语言变量值分别为:E={NB,NM,NS,NZ,PZ,PS,PM,PB};第22卷第3期甘肃联合大学学报(自然科学版) 年5月Journal of Gansu Lianhe University (Natural Sciences) May 2008 EC={NB,NM,NS,Z,PS,PM,PB};U={NB,NM,NS,Z,PS,PM,PB}.依据操作者的控制经验,可建立水位模糊控制系统的模糊控制规则如表1所示.图1 模糊控制系统表1 模糊控制规则表EECNB NM NS Z PS PM PBNB PB PB PM PS PS PS PSNM PB PM PS PS PS PS PSNS PM PS PS PS Z Z ZNZ PS PS Z Z Z NS NSPZ PS PS Z Z Z NS NSPS Z Z Z NS NS NS NMPM NS NS NS NS NS NM NBPB NS NS NS NS NS NM NB实际模糊控制器的2-D控制表可利用MATLAB编制MATLAB语言求得[5].在Mat-lab命令窗口中运行此M文件,可画出如图2所示的E、EC、U隶属度函数图形,并得到表2的2-D控制表[6],存放到计算机存储器中去,在某水位实际过程控制中,计算机通过查表程序既可得出相应的控制量U,实现对象的控制.图2 隶属度函数表2 2-D控制表ECE-6 -5 -4 -3 -2 -1 -0 +0 1 2 3 4 5 6-6 4 4 4 2 0 0 0 -3 -4 -4 -5 -6 -6 -6-5 4 4 4 2 0 0 0 -3 -3 -3 -4 -5 -5 -6-4 4 4 4 2 0 0 0 -3 -3 -3 -3 -4 -5 -6-3 4 4 4 2 0 0 0 -1 -3 -3 -3 -3 -4 -5-2 4 4 4 2 0 0 0 0 -3 -3 -3 -3 -3 -4-1 4 4 4 2 2 2 2 0 -3 -3 -3 -3 -3 -30 4 4 4 4 4 4 4 0 -3 -3 -3 -3 -3 -31 4 4 4 4 4 4 4 0 -1 -1 -1 -3 -3 -32 5 4 4 4 4 4 4 0 0 0 -1 -3 -3 -33 6 5 4 4 4 4 4 2 0 0 -1 -3 -3 -34 7 6 5 4 4 4 4 4 0 0 -1 -3 -3 -35 7 6 6 5 4 4 4 4 0 0 -1 -3 -3 -36 7 7 7 6 5 5 5 4 0 0 -1 -3 -3 -32 某厂水位模糊控制系统的仿真某厂水位对象的传递函数为G(s) =0·033/s().选取水位误差E的基本论域为[-25mm,+25mm],则E的量化因子Ke =6/25=,选取误差变化EC的基本域为[-6,76 甘肃联合大学学报(自然科学版) 第22卷6],则EC量化因子Kec=6/6=1,选取U的基本域为[-102,102],则控制量U的比例因子Ku =102/.在水位正常时,突加25mm阶跃信号对水位系统作定值扰动仿真.在Matlab的Simulink工具中构造模糊控制系统模型如图3所示.双击图中的任何模块,可打开该功能模块来完成参数的设定或修改[3].图3 水位模糊控制系统的Simulink实现如对图3进行仿真,须先运行上述给的M文件,以获得二维表,然后选择Simulink中的Start,启动仿真过程,就可通过Scope观察系统的仿真结果,仿真结果如图4所示.由图4可以看出:在水位上升段,模糊PID控制比新型PID[7]调节时间短、超调小,并且对系统对象参数变化有很好的鲁棒性[8],从而证明该控制器可以获得较好的动态性能指标,达到了良好的控制效果.图4 水位模糊控制系统的仿真结果3 结论本文介绍了模糊PID控制器的设计方法,并利用Matlab中的模糊工具箱设计该控制器,有机地将模糊PID控制器与Simulink结合起来,实现PID参数自调整模糊控制系统的设计和仿真[4].并将该控制器具体应用某厂水位的控制器设计,2-D控制表的建立,以及模糊控制系统的设计与仿真实现.此方法能大大减轻设计者的工作量,且参数修改也十分方便.我们既可修改被控对象,也可修改输入输出的量化论域、语言变量、隶属函数及控制规则等[9].仿真结果:该控制器改善了控制系统的动态性能,增强了其实用性,控制效果良好.参考文献:[1]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004.[2]孙增圻.智能控制理论与技术[M].北京:清华大学出版社,1997.[3]叶军.模糊控制系统的计算机设计与仿真的研究[J].计算机仿真,2002,19(6):49-52.[4]庄利锋,杨慧中.模糊自适应PID控制器的设计及应用[J].自动化仪表,2005(1):30-31.[5]郑恩让.控制系统计算机仿真与辅助设计[M].西安:陕西科学技术出版社,2002.[6]黄道平MATLAB与控制系统的数字仿真及CAD[M].北京:化学工业出版社,2004.[7]陶永华.新型PID控制及其应用[M].第2版.北京:机械工业出版社,2005.[8]曾光奇,胡均安,王东,等.模糊控制理论与工程应用[M].武汉:华中科技大学出版社,2006.[9]王三武,董金发.基于MATLAB模糊自整定PID控制器的设计与仿真[J].机电工程技术,2006(2):第3期 刘悦婷:模糊PID控制器的设计与仿真研究 The Study of Fuzzy-PID Controller Design and SimulationLIU Yue-ting(School of Science and Engineering,Gansu Lianhe University,Lanzhou 730000,China)Abstract:A fuzzy-PID controller design and simulation method is presented in this paper. The controlsystem is suitable for the recovery furnace water level control,power plant boiler water level controland other areas of water control. Its structure is simple,parameter adjustment convenient and shows that the controller works well through the use of fuzzy control Matlab Simulink sim-ulation tool kit and the words:fuzzy-PID controller;simulation;2-D control form(上接第57页)表5 柴油加抗磨剂前后测量数据表测定序号加剂前结果/μm加剂量/(mg/kg)加剂后结果/μm降低程度/μm1 508801603142701942382 486 100 315 171由表5可见,同种柴油加入抗磨剂的量与润滑性的降低程度并不成比例,开始加入一定比例降低的幅度较大,到一定程度降低的幅度逐渐减小.柴油抗磨剂种类繁多,它们对柴油润滑性的改变程度不尽相同.3 结论用高频往复试验机法考察柴油润滑性准确可靠.柴油组分复杂,其润滑性好坏不同,柴油的酸度越大,润滑性越好.润滑性与硫含量、粘度等性质没有良好的对应关系.柴油抗磨剂种类繁多,对柴油润滑性的改变程度不尽相同.加入抗磨剂的量与润滑性的降低程度不成比例.参考文献:[1]陈国良,胡泽祥,高文伟,等.柴油及组分的润滑性研究[J].石油炼制与化工,2005,36(9):42-45.[2]韦淡平.我国柴油的润滑性———一个潜在的重要问题[J].石油炼制与化工,2001,32(1):37-40.[3] SH/T0765-2005,柴油润滑性评定法(高频往复试验机法)[S].[4]钱伯章.柴油质量发展趋势和低硫、低芳烃柴油生产技术进展[J].齐鲁石油化工,1996,24(2):146-155.[5]袁冬梅.高频往复装置(HFRR)测定柴油润滑性[J].锦西炼油化工,2006,11(2):33-35.[6]臧树德,朱敏.用高频往复试验机测定柴油润滑性[J].当代化工,2006,35(1):50-52.[7]杨永红,齐邦峰.柴油润滑性及润滑性添加剂的研究进展[J].江苏化工,2007(2): of the Lubricity of Diesel Fuel Samples by Using theHigh-frequency Reciprocating RigMA Tian-jun,WEI Hai-cang(Petrochina Lanzhou Petrochemical Subsidiary,Lanzhou 730060,China)Abstract:The lubricity of diesel fuel samples and the diesel components are analyzed by the high-fre-quency reciprocating rig. Accuracy and Repeatility of the method are correlations areprimary discussed and confirmed between the lubricity and the contents of sulfur,acidity,viscosity ofthe diesel fuel, words:diesel fuel; the high-frequency reciprocating rig(HFRR);lubricity78 甘肃联合大学学报(自然科学版) 第22卷
基于PID的锅炉温度控制系统设计 摘要:利用BP神经网络PID控制具有逼近任意非线性函数的能力,将神经网络PID与LabVIEW友好地人 机交互结合,实现对锅炉温度的控制.仿真结果表明,该系统具有更小的超调量,并且更快地到达需要的控制温 度. 关键词:BP神经网络;PID控制;温度控制 温度是锅炉生产蒸汽质量的重要指标之一,也是保证锅炉设备安全的重要参数.同时,温度是影响锅 炉传热过程和设备效率的主要因素.例如,在利用烟化炉对锌、铝冶炼过程中,如果温度过低,则还原速度 和挥发速度都会降低;但温度也不宜过高,否则在温度超过1 250℃时,可能形成Zn-Fe合金,有害于烟 化炉的作业,因此温度的精确测量和控制是十分必要的.作为工业控制系统中的基本方式,PID控制对于 动态反应较缓慢的工业过程是非常好的控制规律[1].但是,当工业过程复杂,负荷变化很多,对象的纯滞 后又较大时常规PID控制达不到要求,为了解决上述问题系统采用PLC作为下位机,PC作为上位机,利 用labVIEW构造人机交互界面,应用神经网络PID对系统进行控制,设计锅炉温度的监制电路. 1 系统总体设计 系统通过热电偶传感器检测出锅炉的温度,采集的信号经过A/D电路转换后传给PLC控制器.PLC 根据数据做出判断,当锅炉处在升温阶段时对锅炉进行加热,当锅炉处于保温段时调用PID算法控制温 度满足输出要求.同时PLC把数据传给PC机,PC机做出显示和报警.具体电路如图1所示. 1·1 主控芯片 S7-300PLC是西门子生产的模块式中小型PLC,提供了大量可以选择的模块,包括:PS 电源模块、CPU模块、IM接口模块、SM信号模块、FM功能模块和CP通信模块.其中FM模块可实现高 速级数、定位控制、闭环控制功能;CP模块是组态网使用的接口模块常用的网络有PROFIBUS,工业以太 网及点对点连接网络.这些模块可以通过U形总线紧密地固定在轨道上,一条导轨共有11个槽号:1号槽 至3号槽分别放置电源、CPU、IM模块4号槽至11号槽 可以随意放置其他模块. 1·2 通信网络 一般的自动化系统都是以单元生产设备 为中心进行检测和控制,不同单元的生产设备间缺乏信息 交流,难以满足生产过程的统一管理.西门子全集成自动 化解决方案顺应了当今自动化的需求,TIA从统一的组态 和编程、统一的数据管理及统一的通信三方面集成在一 起,从现场级到管理级,可以使用如工业以太网、PROFIB- BUS,MPI,EIB等通信网络.根据设计的需要可以自由选择通信网络的配置[2]. 1·3 温度传感器 热电偶是将2种不同的导体焊接起来组成闭合回路,当两端节点有温度差时,两端点 之间产生电动势,回路中会产生电流,这种现象称为热电效应.热电偶温度传感器就是利用这一效应来工 作的.在工业生产过程中被测点与基准节点之间的距离常常过远,为了节省热电偶材料,降低成本,通常采 用补偿导线的方式进行补偿[3]. 1·4 显示界面 LabVIEW是美国NI公司推出的图形化工业控制测控开发平台,是目前应用最广、发展 最快、功能最强的图形软件集成开发环境.LabVIEW具有界面友好、开发周期短等优点,广泛应用于仪器 控制、数据采集、数据分析和数据显示等领域.所以,我们可以在计算机上采用它来实现对设备运行状态的 监控,同时也可以对各种数据进行采集显示.系统的温度显示界面如图2所示. 2 系统控制算法设计 PID控制是工业过程控制中最常用的一种控制方法, 但常规的PID控制在被控对象具有复杂的非线性时,如锅 炉的温度控制,不仅具有较大的纯延迟,而且模型也不确 定时,对于这种对象往往难以达到满意的控制效果.BP神 经网络PID控制具有逼近任意非线性函数的能力,通过神 经网络自身的学习,找到最佳组合的PID控制参数,以满 足控制系统的要求.具体的神经网络PID控制系统框图如 图3所示. 设PID神经元网络是一个3层BP网络,包括2个输入节点,3个隐含层节点,1个输出接点.输入节 点对应所选的系统运行状态量,如系统不同时刻的输入量和输出量等,必要时要进行归一化处理.输出节 点分别对应PID控制的3个可调参数KP,KI,KD.输入层的2个神经元在构成控制系统可分别输入系统 被调量的给定值和实际值.由文献[4]和[5]中的前向算法可得到输出层的权系数计算公式为: 3结论 PID控制算法是一种易于实现而且经济实用的方法,具有很强的灵活性,但在被控制对象具有复杂的 非线性时,难以满足控制要求,而神经网络PID控制具有逼近任意非线性函数的能力,神经网络PID与 LabVIEW结合实现对锅炉温度的数据采集、控制和显示,提高了锅炉监控系统的效率. 参考文献: [1] 邓洪伟.供暖锅炉温度和压力的PLC控制[J].动力与电力工程,2008(18):93-94. [2] 张运刚.西门子S7-300/400PLC技术与应用[M].北京:人民邮电出版社,2007. [3] 何希才.传感器及其应用实例[M].北京:机械工业出版社,2004. [4] 何离庆.过程控制系统与装置[M].北京:重庆大学出版社,2003. [5] 舒怀林.PID神经元网络及其控制系统[M].北京:国防工业出版社,2006.
我现在也想要~
模糊PID控制器的设计与仿真研究摘 要:提出了一种模糊PID控制器的设计与仿真方法.该控制系统适用于碱回收炉的水位控制、火电厂锅炉水位控制以及其他领域的水位控制.其结构简单、参数调整方便、快捷.另外,借助于Matlab模糊控制工具箱和Simulink仿真工具进行的仿真试验,表明控制效果很好.关键词:模糊PID控制器;仿真;2-D控制表中图分类号: 文献标识码:A0 引言目前,模糊控制理论及模糊控制系统的应用发展很快,显示出模糊控制在控制领域具有广阔的前景.模糊控制已成为智能控制的重要组成部分.在工业过程控制中,因为PID控制器所涉及的设计算法和控制结构简单,不要求非常精确的受控对象的数学模型,且众多的过程控制软件都带有PID控制器的算法模块,而被广泛应用于工业过程控制中.但是,PID控制器参数的整定尚需工程技术人员才能完成,对于存在时滞、非线性等因素的系统更难整定,调试过程中经常出现超调、振荡等影响系统正常运行的现象.模糊控制器具有不依赖控制对象精确的数学模型,减弱超调、防止振荡等优点[1].由此本文合理结合两种控制算法的优点提出一种调整系统控制量的模糊PID控制器,这种控制器在大偏差范围内利用模糊推理的方法调整系统控制量U,而在小偏差范围内转化为PID控制,并以给定的偏差范围自动完成二者的转化[2].本文将讨论调整系统控制量的模糊PID控制器的设计与仿真.并以一个具体的水位对象为例给出该控制器的设计与仿真实例.1 模糊PID控制器的设计该控制器中主要包含二维的模糊控制器和PID控制器.在大偏差范围内通过模糊控制器实现过程控制.模糊控制通过模糊逻辑和近似推理方法,让计算机把人的经验形式化、模型化,根据给定的语言控制规则进行模糊推理,给出模糊输出判决,并将其转化为精确量,馈送到被控对象(或过程)的.其中所使用的模糊控制器为常用的二维模糊控制器.在实际应用中,一般是用系统输出的偏差E和输出偏差的变化率EC作为输入信息,而把控制量的变化作为控制器的输出量,以此确定模糊控制器的结构.Ke和Kec表示量化因子, Ku表示比例因子.并且在实际微机模糊控制中,一般先确定出模糊控制规则,然后将此表存入存储器中,这样在实际的过程控制中,微机根据采样到的E和EC通过查询控制规则表求得控制量U,馈送到控制对象实现过程的模糊控制.小偏差范围内通过传统的PID控制算法实现过程控制[3].二者通过系统的偏差E实现自动切换.这样既可以通过模糊控制器加快过程动态响应过程,减弱超调和振荡现象,减弱调试过程对正常工作运行的影响,又可以通过常用的PID控制器在小偏差范围内实现精确控制,减少纯模糊控制器带来的稳态误差.图1是某水位的调整系统控制量的模糊PID控制系统[4].选取某水位误差E及其误差变化率EC和控制量U的论域分别为:E={-6,-5,-4,-3,-2,-1,-0,+0,1,2,3,4,5,6};EC={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6};U={-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7}.选取某水位误差E及其误差变化率EC和控制量U的语言变量值分别为:E={NB,NM,NS,NZ,PZ,PS,PM,PB};第22卷第3期甘肃联合大学学报(自然科学版) 年5月Journal of Gansu Lianhe University (Natural Sciences) May 2008 EC={NB,NM,NS,Z,PS,PM,PB};U={NB,NM,NS,Z,PS,PM,PB}.依据操作者的控制经验,可建立水位模糊控制系统的模糊控制规则如表1所示.图1 模糊控制系统表1 模糊控制规则表EECNB NM NS Z PS PM PBNB PB PB PM PS PS PS PSNM PB PM PS PS PS PS PSNS PM PS PS PS Z Z ZNZ PS PS Z Z Z NS NSPZ PS PS Z Z Z NS NSPS Z Z Z NS NS NS NMPM NS NS NS NS NS NM NBPB NS NS NS NS NS NM NB实际模糊控制器的2-D控制表可利用MATLAB编制MATLAB语言求得[5].在Mat-lab命令窗口中运行此M文件,可画出如图2所示的E、EC、U隶属度函数图形,并得到表2的2-D控制表[6],存放到计算机存储器中去,在某水位实际过程控制中,计算机通过查表程序既可得出相应的控制量U,实现对象的控制.图2 隶属度函数表2 2-D控制表ECE-6 -5 -4 -3 -2 -1 -0 +0 1 2 3 4 5 6-6 4 4 4 2 0 0 0 -3 -4 -4 -5 -6 -6 -6-5 4 4 4 2 0 0 0 -3 -3 -3 -4 -5 -5 -6-4 4 4 4 2 0 0 0 -3 -3 -3 -3 -4 -5 -6-3 4 4 4 2 0 0 0 -1 -3 -3 -3 -3 -4 -5-2 4 4 4 2 0 0 0 0 -3 -3 -3 -3 -3 -4-1 4 4 4 2 2 2 2 0 -3 -3 -3 -3 -3 -30 4 4 4 4 4 4 4 0 -3 -3 -3 -3 -3 -31 4 4 4 4 4 4 4 0 -1 -1 -1 -3 -3 -32 5 4 4 4 4 4 4 0 0 0 -1 -3 -3 -33 6 5 4 4 4 4 4 2 0 0 -1 -3 -3 -34 7 6 5 4 4 4 4 4 0 0 -1 -3 -3 -35 7 6 6 5 4 4 4 4 0 0 -1 -3 -3 -36 7 7 7 6 5 5 5 4 0 0 -1 -3 -3 -32 某厂水位模糊控制系统的仿真某厂水位对象的传递函数为G(s) =0·033/s().选取水位误差E的基本论域为[-25mm,+25mm],则E的量化因子Ke =6/25=,选取误差变化EC的基本域为[-6,76 甘肃联合大学学报(自然科学版) 第22卷6],则EC量化因子Kec=6/6=1,选取U的基本域为[-102,102],则控制量U的比例因子Ku =102/.在水位正常时,突加25mm阶跃信号对水位系统作定值扰动仿真.在Matlab的Simulink工具中构造模糊控制系统模型如图3所示.双击图中的任何模块,可打开该功能模块来完成参数的设定或修改[3].图3 水位模糊控制系统的Simulink实现如对图3进行仿真,须先运行上述给的M文件,以获得二维表,然后选择Simulink中的Start,启动仿真过程,就可通过Scope观察系统的仿真结果,仿真结果如图4所示.由图4可以看出:在水位上升段,模糊PID控制比新型PID[7]调节时间短、超调小,并且对系统对象参数变化有很好的鲁棒性[8],从而证明该控制器可以获得较好的动态性能指标,达到了良好的控制效果.图4 水位模糊控制系统的仿真结果3 结论本文介绍了模糊PID控制器的设计方法,并利用Matlab中的模糊工具箱设计该控制器,有机地将模糊PID控制器与Simulink结合起来,实现PID参数自调整模糊控制系统的设计和仿真[4].并将该控制器具体应用某厂水位的控制器设计,2-D控制表的建立,以及模糊控制系统的设计与仿真实现.此方法能大大减轻设计者的工作量,且参数修改也十分方便.我们既可修改被控对象,也可修改输入输出的量化论域、语言变量、隶属函数及控制规则等[9].仿真结果:该控制器改善了控制系统的动态性能,增强了其实用性,控制效果良好.参考文献:[1]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004.[2]孙增圻.智能控制理论与技术[M].北京:清华大学出版社,1997.[3]叶军.模糊控制系统的计算机设计与仿真的研究[J].计算机仿真,2002,19(6):49-52.[4]庄利锋,杨慧中.模糊自适应PID控制器的设计及应用[J].自动化仪表,2005(1):30-31.[5]郑恩让.控制系统计算机仿真与辅助设计[M].西安:陕西科学技术出版社,2002.[6]黄道平MATLAB与控制系统的数字仿真及CAD[M].北京:化学工业出版社,2004.[7]陶永华.新型PID控制及其应用[M].第2版.北京:机械工业出版社,2005.[8]曾光奇,胡均安,王东,等.模糊控制理论与工程应用[M].武汉:华中科技大学出版社,2006.[9]王三武,董金发.基于MATLAB模糊自整定PID控制器的设计与仿真[J].机电工程技术,2006(2):第3期 刘悦婷:模糊PID控制器的设计与仿真研究 The Study of Fuzzy-PID Controller Design and SimulationLIU Yue-ting(School of Science and Engineering,Gansu Lianhe University,Lanzhou 730000,China)Abstract:A fuzzy-PID controller design and simulation method is presented in this paper. The controlsystem is suitable for the recovery furnace water level control,power plant boiler water level controland other areas of water control. Its structure is simple,parameter adjustment convenient and shows that the controller works well through the use of fuzzy control Matlab Simulink sim-ulation tool kit and the words:fuzzy-PID controller;simulation;2-D control form(上接第57页)表5 柴油加抗磨剂前后测量数据表测定序号加剂前结果/μm加剂量/(mg/kg)加剂后结果/μm降低程度/μm1 508801603142701942382 486 100 315 171由表5可见,同种柴油加入抗磨剂的量与润滑性的降低程度并不成比例,开始加入一定比例降低的幅度较大,到一定程度降低的幅度逐渐减小.柴油抗磨剂种类繁多,它们对柴油润滑性的改变程度不尽相同.3 结论用高频往复试验机法考察柴油润滑性准确可靠.柴油组分复杂,其润滑性好坏不同,柴油的酸度越大,润滑性越好.润滑性与硫含量、粘度等性质没有良好的对应关系.柴油抗磨剂种类繁多,对柴油润滑性的改变程度不尽相同.加入抗磨剂的量与润滑性的降低程度不成比例.参考文献:[1]陈国良,胡泽祥,高文伟,等.柴油及组分的润滑性研究[J].石油炼制与化工,2005,36(9):42-45.[2]韦淡平.我国柴油的润滑性———一个潜在的重要问题[J].石油炼制与化工,2001,32(1):37-40.[3] SH/T0765-2005,柴油润滑性评定法(高频往复试验机法)[S].[4]钱伯章.柴油质量发展趋势和低硫、低芳烃柴油生产技术进展[J].齐鲁石油化工,1996,24(2):146-155.[5]袁冬梅.高频往复装置(HFRR)测定柴油润滑性[J].锦西炼油化工,2006,11(2):33-35.[6]臧树德,朱敏.用高频往复试验机测定柴油润滑性[J].当代化工,2006,35(1):50-52.[7]杨永红,齐邦峰.柴油润滑性及润滑性添加剂的研究进展[J].江苏化工,2007(2): of the Lubricity of Diesel Fuel Samples by Using theHigh-frequency Reciprocating RigMA Tian-jun,WEI Hai-cang(Petrochina Lanzhou Petrochemical Subsidiary,Lanzhou 730060,China)Abstract:The lubricity of diesel fuel samples and the diesel components are analyzed by the high-fre-quency reciprocating rig. Accuracy and Repeatility of the method are correlations areprimary discussed and confirmed between the lubricity and the contents of sulfur,acidity,viscosity ofthe diesel fuel, words:diesel fuel; the high-frequency reciprocating rig(HFRR);lubricity78 甘肃联合大学学报(自然科学版) 第22卷
毕业设计(论文)撰写规范毕业论文或设计说明书通常由标题、摘要、目录、前言、正文、结论、参考文献、附录、致谢等几部分构成,要求统一采用计算机打印。1.毕业论文的文稿结构与顺序题目:即标题,主要作用是概括整个论文的中心内容,因此,题目要确切、简短、精炼。摘要:简要介绍毕业设计(论文)的研究目的、方法、结果和结论,语言力求精炼。中文摘要一般在400字以内,字体为小四号宋体。英文摘要内容应与中文摘要相对应,字体为小四号Times New Roman;中英文摘要均要有关键词,一般为3—7个,各关键词之间要有分号。关键词的用语要规范。目录:应列出通篇文稿各组成部分的大小标题,并分清层次,逐项标注页码,包括参考文献、附录、图版、索引等附属部分的页次,以便读者查找。“目录”二字用三号字、黑体、居中书写,“目”与“录”之间空两格。目录的各章节应简明扼要,其中每章题目采用小三号宋体字,每节题目采用四号宋体字。要注明各章节起始页码,题目和页码间用“…………”相连。前言:文字以600字左右为宜。一般包括以下内容:①简单介绍本论文的研究领域。②对本论文研究主题范围内已有文献资料的评述。③说明本论文所要解决的问题及拟采用的研究手段和方法。正文:论文的正文是作者对自己的研究工作详细的表述。应包括以下内容:①理论分析部分。详细说明本课题的理论依据所使用的分析方法和计算方法等基本情况;指出所应用的分析方法、计算方法、实验方法等哪些是已有的,哪些是经过自己改进的,哪些是自己创造的。这一部分应以简练、明了的文字概略表述。②课题研究的方法与手段,分别以下面几种方法说明。如用实验方法研究课题,应具体说明实验用的装置、仪器、原材料等,并应对所有装置、仪器、原材料做出检验和标定。对实验的过程和操作方法,力求叙述得简明扼要,对实验结果的记录、分析,对人所共知的或细节性的内容不必过分详述。如用理论推导的手段和方法达到研究目的,这方面内容要精心组织,做到概念准确,判断推理符合客观事物的发展规律,要做到言之有序,言之有理,以论点为中枢,组织成完整而严谨的内容整体。如用调查研究的方法达到研究目的,调查目标、对象、范围、时间、地点、调查的过程和方法等内容的叙述要简练,对调查所提的样本、数据、新的发现等应详细说明,作为结论产生的依据。③在结果与讨论部分,应把那些必要而充分的数据、现象、样品、认识等作为分析的依据。在对结果做定性和定量分析时,应说明数据的处理方法以及误差分析,说明现象出现的条件,交代理论推导中认识的由来和发展,以使别人可以此为根据进行核实验证。对结果进行分析后所得到的结论和推论,也应说明其适用的条件和范围。结论:结论主要反映个人的研究工作,包括对整个研究工作进行归纳和综合而得出的总结;要写所得结果与已有结果的比较;要联系实际结果,指出它的学术意义或应用价值和在实际中推广应用的可能性;要写本课题研究中尚存在的问题,对进一步开展研究的见解与建议等。结论一般要写得概括、篇幅要短、要简单、明确,在措辞上要严密,易被人领会。参考文献:列出作者直接阅读过或在正文中被引用过的文献资料,本专业教科书不能作为参考文献。参考文献要另起一页,一律放在正文后,在文中要有引用标注。每篇文稿所查阅的文献数量必须在10篇以上。具体格式见模板。附录:在论文之后附上不便放进正文的重要数据、表格、公式、图纸、程序、译文等资料,供读者阅读论文时参考。致谢:对于毕业设计(论文)的指导教师,对毕业设计(论文)提过有益的建议或给予过帮助的老师、同学以及其他人,都应在论文的结尾部分书面致谢。2.毕业设计说明书的结构毕业设计的内容包括设计说明书和图纸两部分。毕业设计说明书是对毕业设计进行解释与说明的书面材料,在写法上应注意与论文的区别:(1)前言由设计的目的和意义、设计项目发展情况简介、设计原理及规模介绍三部分组成。(2)正文包括方案的论证和主要参数的计算。3.一些其它要求(1)工程设计类绘图量不少于折合图幅为0#号图纸张,工程技术研究类绘图量不少于折合图幅为0#号图纸1张;所绘图纸必须反映出设计的内容。绘图方式可自行选择,图纸绘制要符合国家标准。图纸经审核后审核人要签字。(2)外语文献译文字数2000~3000字,要求译文与原文相符并与论文内容相关。4.撰写毕业论文时应注意的其它相关问题(1)使用的文字要规范,不可滥用、误用简化字、异体字;中文的标点要准确,标点符号要写在行内。(2)论文标题一律采用三号加黑宋体字,正文采用小四号宋体,英文及数字采用小四号Times New Roman字体;。(3)文章标题层次及同级标题序码,必须段落分明前后一致。(4)实验结果如已用图表示过一般不再列表。表中内容不必在正文中再做说明。(5)图:图题采用中文,字体为五号宋体。引用图应在图题右上角标出文献来源。图号以章为单位顺序编号。(6)表格:应有相应的表题和表序号,表题应写在表格上方正中,表序写在表题左方,不加标点,空一格接写表题,表题末尾不加标点。表格按章顺序编号,表内必须按规定的符号标注单位。(7)公式:应另起一行写在稿纸中央。一行写不完的公式,最好在等号处转行,也可在数学符号(如“+”、“-”号)处转行,数学符号应写在转行后的行首。公式的编号用圆括号括起放在公式右边行末,在公式和编号之间不加虚线。重复引用的公式不再另编新序号;公式序号必须连续,不得重复或跳缺。(8)列举参考文献资料必须注意:①所列举的参考文献应是正式出版物,包括期刊、书籍、论文集和会议文集。②列举参考文献的格式为:序号、作者姓名、书或文章名称、出版单位、出版时间、章节与页码等。③应按论文参考或引证的文献资料的先后顺序,依次列出。④在论文中应用参考文献处,应注明该文献的序号。附件2毕业设计(论文)装订要求由学院统一设计封面,页面设置统一用A4纸打印,然后到校印刷厂装订。毕业设计(论文)必须按以下顺序装订: 1.封面(包括课题名称、学生姓名、学生所在院(系)及专业、指导教师姓名、职称); 2.毕业设计(论文)任务书; 3.毕业设计(论文)开题报告表; 4.毕业设计(论文)评阅表; 5.毕业设计(论文)成绩考核表(附表7); 6.中文摘要、关键词; 7.英文摘要、关键词; 8.目录; 9.前言; 10.正文; 11.结论; 12.参考文献; 13.附录(含外文资料及中文译文); 14.谢辞。附件3 毕业设计(论文)文稿模板(本行不显示)天津工业大学毕业设计(论文)题目:(三号宋体,加黑)姓 名 学 院 专 业 指导教师 职 称 年 月 日 摘□□要(“摘要”之间空两格,采用三号字、黑体、居中,与内容空一行)□□×××××××××(内容采用小四号宋体)关键词:×××××;×××××;×××××;×××××;×××××采用小四号、宋体、接排 小四号、黑体、顶格ABSTRACT(采用三号字、Times New Roman字体、加黑、居中、与内容空一行)□□×××××××××(内容采用小四号Times New Roman字体)Key words:×××××;×××××;×××××;×××××;×××××采用小四号、Times New Roman字体、接排 小四号、Times New Roman、加黑、顶格目 录(三号、黑体、居中、目录两字空两格、与正文空一行)第一章(空两格)☆☆☆(四号、宋体)……………………………×☆☆☆☆(小四号宋体)………………………………………………………×☆☆☆☆………………………………………………………………………×☆☆☆☆………………………………………………………………………×………………第四章(空两格)☆☆☆(四号、宋体)……………………………×☆☆☆☆………………………………………………………………………×☆☆☆☆………………………………………………………………………×………………参考文献(四号、宋体)………………………………………………×附录(四号、宋体)……………………………………………………×谢辞(四号、宋体)……………………………………………………×不标页码第一章□□☆☆☆☆☆(居中、小三号、黑体)☆☆☆(四号、黑体、顶格)☆☆☆(四号、黑体、顶格)□□☆☆☆☆☆☆☆☆☆正文(小四号、宋体) 宋体五号,居中,位于表上表1-3□□☆☆☆ ×××××× ××× ×××××× ××× (宋体五号,垂直居中) ×××××× ××× ×××(表与正文空一行)□□☆☆☆☆☆☆☆☆☆☆☆☆☆ (下一章另起一页) 第二章□□☆☆☆☆☆(居中、小三号、黑体)☆☆☆(四号、黑体、顶格)☆☆☆(四号、黑体、顶格)□□☆☆☆☆☆☆☆☆☆正文(小四号、宋体、空2格、用倍行间距)图2-5□□×××组织结构图 宋体五号居中,位于图下 图与下文空一行正文开始标注页码;位置:页面底端(页脚);对齐方式:居中 参考文献(四号、黑体、顶格)[1]□□王传昌.高分子化工的研究对象.天津大学学报,1997,53(3):1~7 作者姓名 论文题目 杂志名称 出版年份\页码(阿拉伯数码)[2]□□王连芬.层次分析法引论[M].北京:中国人民大学出版社,1990.作者姓名 书名 出版地 出版者 出版年 [3]□□Joe Tidd[×],陈劲译.创新管理----技术、市场与组织变革的集成.清华大学出版社,2002. 原著者姓名 国别 翻译者姓名 书名 出版者 出版年[4]□□姚光起.一种氧化锆材料的制备方法.中国专利,891056088,1980-07-03申请者 专利名 国家 专利号 授权日期[5]□□Pamela Lucas,et al,Evaluation of combustion by-products of MTBE as a component of reformulated gasoline [J], Chemosphere, 2001, 42:861-872 (以上,如果需要两行的,第二行文字要位于序号的后边,与第一行文字对齐。中文的用五号宋体,外文的用五号Times New Roman字体。)
积分环节 比例环节 微分环节