论文模型构建方法如下:
首先要明确撰写论文的目的。
建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员读了之后,相信模型假设的合理性,理解在建立模型过程中所用方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。
当然,一篇好的论文是以作者所建立的模型的科学性为前提的。其次,要注意论文的条理性。
(一)问题提出和假设的合理性
在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。
列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届建模竞赛的试题可以看作是情景说明的范例。
对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立模型还是不够的,还要补充一些假设,模型假设是建立模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。
由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:
(1)论文中的假设要以严格、确切的语言来表达,使读者不致产生任何曲解。
(2)所提出的假设确实是建立模型所必需的,与建立模型无关的假设只会扰乱读者的思考。
(3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。
(二)模型的建立
在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的方法,最后顺利地建立方程式或归纳为其他形式的问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨。
引用现成定理时,要先验证满足定理的条件。论文中用到的各种符号,必须在第一次出现时加以说明。总之,要把得到模型的过程表达清楚,使读者获得判断模型科学性的一个依据。
(三)模型的计算与分析
把实际问题归结为一定的问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。
有些模型需要作稳定性或其他定性分析。这时应该指出所依据的理论,并在推理或计算的基础上得出明确的结论。
在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。
(四)模型的讨论
对所作的模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出由此模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。
通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。
除正文外,论文和竞赛答卷都要求写出摘要。我们不要忽视摘要的写作。因为它会给读者和评卷人第一印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。
语言是构成论文的基本元素。建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把一句句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。
最后,论文的书写和附图也都很重要。附图中的图形应有明确的说明,字迹力求端正。
可以,但是要结构完整
可以。论文里面的模型用模型软件画来更准确更详细,可以带来更专业的数据,让论文可以得到更高的评分。模型软件是指软件开发全部过程、活动和任务的结构框架。软件开发包括需求、设计、编码和测试等阶段,有时也包括维护阶段。软件开发模型能清晰、直观地表达软件开发全过程。
你建模和仿真不是 同样概念吗,不明白你表达的意思,谢谢
机械设计的用solidwords就行,如果是复杂的曲线建模就要用UG和pro/E了,都是三维的,solidwords比较好上手
毕业论文的定量分析法建模,一般需要按照以下步骤进行:1. 确定研究目标和问题:首先需要明确研究目标和问题,确定研究的范围和关注点。根据研究问题的特点,选择合适的定量分析方法。2. 收集和整理数据:收集和整理与研究问题相关的数据,包括基础数据、统计数据、问卷调查数据、实验数据等等。确保数据的准确性和完整性。3. 数据预处理:对收集到的数据进行预处理,包括数据清洗、去重、缺失值处理、异常值处理等等。确保数据的质量和可靠性。4. 模型建立:基于研究问题和数据分析需求,选择适当的定量分析方法,如回归分析、聚类分析、因子分析等等,建立数学模型。5. 参数估计和模型检验:根据建立的数学模型,进行参数估计和模型检验,评估模型的可靠性和有效性。6. 结果解释和应用:根据模型分析结果,对研究问题进行解释和说明,并提出相应的结论和建议。在实践中,将模型应用到实际问题中,评估模型在实际应用中的效果和价值。需要注意的是,在进行毕业论文的定量分析方法建模时,应该遵循科学的研究方法和规范,确保数据的质量和分析结果的有效性。同时,还需要根据具体情况,选择合适的分析方法和工具,避免盲目使用和误解分析方法。最后,应该对分析结果进行客观和全面的解释和说明,以确保研究结论的可信度和可靠性。
不知道你是什么类型的大学了,不过不管那类的,都不存在不好写的问题。现在的毕业论文,大多千篇一律,你自己多搜集一下文献,左抄抄,右抄抄基本就可以拼出毕业论文了。我是南京航空航天大学的,学制造的。三维建模有很多软件,UG,CATIA, PROE……通常CATIA是基础,也很简单,制造装配模块齐全。一般从学习到建模装配,一个礼拜就可以完成了。UG也很简单,他在孔加工,刀轨等方面要优于CATIA,PROE建模是最简单的。不论那种建模,都依赖于STEP标准,也就是说你用这种软件建模,用另外一种软件是可以打开的。希望有用,有问题可以再问
是需要的作为一个每年指导学术论文有上千篇的学术老鸟,给您一点建议感谢您的信任与支持,一般建模都是在优化方案之前,先是写概念,然后建模再下来,根据建模分析,根据数据分析发现问题,最后在写优化方案。那么论文里面也不一定非要建模,重点看的是工作量够不够,同时有没有自己的创新点。只要有十件数据支撑那是最好的,但是也不一定要建模。
不可以。不管你是得什么奖,只要想毕业就必须要写论文的,不写论文绝对毕业不了。这个和你拿多少奖没如何关系,你就拿再多奖也只是记录在你的档案里。拿的奖或许对你就业有很大的帮助。
可以让学习者勤于思考,锻炼开发能力和自主学习能力,因为期间一切问题都应该自己解决。同时在建模过程中学会MATLAB和lingo等软件的使用。我们书记说如果这对考研也有一定的帮助,在面试中如果和主考官说自己参加过数学建模培训,能增加面试分,因为你已经掌握了研究生必备的自主学习的能力,老师当然喜欢省心的学生啦.....在我们学校,如果可以参加比赛还能加创新学分,这也算好处之一吧!
现在觉得数学建模最有用的就是在准备毕业论文的时候不必那么手足无措,一点头绪都没有了。数学建模是一般毕业论文必不可少的重要组成部分,所以还是得学好
解决很多实际应用问题!赚钱啊……
统计学毕业论文不一定要建模的,当时我也是请教的莫‘文网,非常多的专业老师,后来没时间还是帮忙搞定的论文从统计学的角度看留学生对于动宾式离合词的习得空间统计学及其在空间模式分析中的应用高校教务管理系统中的数据分析和模型研究初中学生语文偏误的统计学调查与研究地统计学和神经网络在遥感影像分类中的应用研究我国股票价值投资的统计学实证脑动静脉畸形临床表现及血管构筑学指标的统计学分析研究基于古今医案数据分析的黄疸病证治规律研究契丹居民DNA多态性研究与生物统计学分析
是的啊而且还要找数据呢我替别人做这类的数据分析蛮多的
是需要的作为一个每年指导学术论文有上千篇的学术老鸟,给您一点建议感谢您的信任与支持,一般建模都是在优化方案之前,先是写概念,然后建模再下来,根据建模分析,根据数据分析发现问题,最后在写优化方案。那么论文里面也不一定非要建模,重点看的是工作量够不够,同时有没有自己的创新点。只要有十件数据支撑那是最好的,但是也不一定要建模。
你的意思是套用别人的模型吗?是可以的哦。你可以把别人的模型用在自己的论文里,但只能是类似,不能完全照搬,而且你要记得标明引用出处。其实,所谓的论文模型就是让你要选一篇与你研究方向相近的,且比较优秀的论文作为模版。参考他的写作方法以及论文结构进行写作。但模型也并不是千篇一律的,你可以多参照几篇论文,毕竟每个人的论文写的东西都是不同的,都有它自己的特色。你可以从别人的模版中提炼出对你有用的东西,然后写出属于你自己的论文模版。
按理说的话,不能,我估计你1万字的论文里面,和人家文章重叠的内容不能超过50字,有一些文字验考官他们已经背过很多课文很多论文,而且系统里面有很多论文都可以一查就查到,所以,偷懒也要讲技巧。(希望采纳,谢谢)
主要还是标注的问题。如果这个别人是大家都已知的权威专家,模型有一定的通用性,没有问题的。