在食品工业、酿酒行业、石化和工矿企业、环境检测、公安交通管理、社会公用事业等一些国民经济生产和人们工作生活的领域和场合中,常常需要检测特定环境中酒精气体的浓度,以确保工厂企业环境安全和人民生命财产安全[1-4]。如监控酒精生产车间和石化厂的酒精浓度,可以避免工厂起火和爆炸事故的发生;监测工矿企业场地的酒精浓度,能避免工作人员出现酒精中毒等恶性事故;检测司机体内酒精含量,可以防止驾驶人员酒后驾车,减少恶性交通事故的发生。因此,研制酒精气体浓度检测仪具有十分广阔的现实和潜在的市场需求,并具有十分重要的意义。传统的酒精气体检测仪因传感器性能、电路设计、数据处理算法等原因,存在着气体选择性不高、抗干扰性能差、智能化程度低、仪器操作复杂、无法实时保存和调看数据等突出问题[3-4]。鉴于此,笔者设计和研制了一种无线智能酒精浓度探测仪,弥补了传统酒精检测仪器的缺点和不足。
1 系统总体方案
该酒精浓度探测仪由发送端和接收端两部分组成,其原理框图分别如图1和图2所示。发送端主要包括酒精浓度传感器与A/D转换电路、STC90C52RC单片机、浓度阈值设置与声音报警电路、语音播报电路、LCD显示电路和无线收发电路六部分;接收端由无线收发电路、STC90C52RC单片机、数据接口通信电路和上位计算机组成。
2 系统硬件电路设计
传感器电路与A/D转换电路
TGS2620为日本费加罗(FIGARO)公司生产的一款可以探测气体中酒精浓度的半导体气体传感器,具有灵敏度高、功耗低、寿命长、成本低等特点[5-6]。其电路连接如图3所示,其中,RH为加热器电阻,室温下时为83±8 Ω;RS为传感器电阻,其阻值和还原性气体浓度之间的数学关系为:
通过检测VRL就可以确定出待测气体浓度C。
电路中运放OP07接成电压跟随器形式,对传感器和后级电路进行隔离,减小电源波动和外界因素对采样数据的影响。ICL7660是MAXIM公司生产的小功率极性反转电源转换器,作用是将+5 V电源变换成-5 V电源为OP07供电。其中,CC2采用漏电小、介质损耗低的10 μF钽电容,以提高电源转换效率。TLC1549是TI公司生产的10位分辨率逐次逼近型ADC芯片,具有自动采样和保持、可按比例量程校准转换范围、抗噪声干扰功能,在满刻度时总误差最大仅为±1 LSB。
LCD显示、阈值设置与声音报警电路
16×2个字符液晶显示模块DM-162显示报警阈值和酒精浓度值。为了减少单片机I/O口的使用数量和简化电路结构,采用间接控制(4位数据总线)方式,接口电路如图4上部分所示。初始化时,需写入28H指令码将8位总线转为4位数据接口方式。管脚BLA、BLK和VL分别是液晶背光源正极、负极和显示对比度调整端,RS、E分别是寄存器选择端、读/写信号线和使能端。
酒精浓度阈值设置和声音报警电路如图4下部分所示。当设置键S1按下时,进入阈值设置(初始阈值为500 ppm)界面,再按下键S2或S3,对阈值作增加或减小操作,步长为20 ppm。阈值设置好后写入STC90C52RC单片机片内5 KB EEPROM的第一扇区2000H和2001H地址中,使系统重启不必重新设置。若酒精浓度值大于阈值,将口线置为低电平,三极管8550驱动蜂鸣器发声音报警。
语音播报电路
采用华邦(Winbond)公司的ISD2560语音录放集成芯片作酒精浓度值播放,电路如图5所示。话筒采用差分形式接入到片内前置放大器的MIC端和MIC REF端,以抵消噪声和提高输入共模抑制比。扬声器接成双端输出形式,输出功率为单端用法时功率的4倍。单片机的P2口、和口线分别与地址线A0~A9相连,用来设定ISD2560片内480 KB EEPROM(地址为0H~257H)中存储语音段的起始地址,录音和放音功能均从该起始地址开始,录音过程中信息段地址自动增加。本系统在ISD2560中需录入语音信息有:“当前酒精浓度值为”、“零”、“一”、“二”、“三”、“四”、“五”、“六”、“七”、“八”、“九”、“十”、“百”、“千”、“点”、“ppm(浓度单位)”。由于ISD2560的语音录放时间为60 s,按每秒3个汉字计算,则可录放180个汉字,因此满足播报要求。此外,通过、和口线可以配置ISD2560的操作模式[7-8](地址为300H~3FFH)。口线分别用来控制语音芯片的片选、芯片的开关、录音/放音模式选择。口用来判断芯片的存储空间是否已经填满或者信息存储是否溢出。由于录音时在每个信息段结尾处自动插入标志,当放音遇到该标志时产生宽约为 ms的负脉冲。用口检测到此脉冲的上升沿后才播放另一段录音,避免语音播放不连续。
无线收发电路
系统采用NORDIC公司生产的工作于 5 GHz的ISM频段的单片无线收发器芯片nRF24L01完成无线数据的收发工作,nRF24L01的最高传输速率为2 Mb/s,电路如图6所示。稳压芯片 V将5 V输入电压转换成 V给nRF24L01供电。nRF24L01与单片机接口为四线SPI方式,CSN、SCK、MOSI、MISO管脚分别是SPI的片选使能线、时钟线、数据输入线、数据输出线。IRQ为中断信号线(低电平有效),接至单片机的外部中断管脚,单片机主要是通过该接口线与nRF24L01进行通信并判断数据接收和数据发送是否完成。CE为芯片的RX/TX模式选择线。IREF为参考电流输入端,通过22 kΩ电阻接地。管脚ANT1和ANT2给天线提供平衡的RF输出,通过后接的简单射频网络匹配电路获得单端50 Ω的阻抗输出。网络匹配电路在发送模式时阻止谐波,在接收模式时克制本地振荡漏出。VDD_PA管脚输出 V电压,给片内功率放大器提供电源。
数据接口通信电路
接收端的计算机与单片机间的通信由串行USB接口集成电路CH340T完成,如图7所示。CH340T支持或者通信,具有仿真接口,并且可以升级外围串口设备,支持常用的MODEM联络信号,支持IRDA规范的SIR红外通信,提供RS23RS48RS422接口等功能。CH340T内置有独立的收发缓冲区,支持通信波特率50 b/s~2 Mb/s的单工、半双工、全双工等异步串行通信。图7中,在CH340T芯片的发送脚TXD上反接一个二极管1N4001,防止该引脚将电流倒灌到单片机;在接收引脚RXD上加一个300 Ω的限流电阻来防止单片机对CH340T倒灌电流;从而避免电流倒灌导致不需要供电工作的另一方芯片继续工作。
3 系统软件设计
下位机软件设计
下位机的程序开发和调试是在Keil μVision4集成开发环境下进行的,包括发送端和接收端的软件设计。
发送端软件设计
发送端软件流程如图8所示。单片机上电后进行系统初始化,完成单片机内部系统变量的初始化以及TLC154DM-16ISD2560和nRF24L01等外部设备的初始设置;然后延时大约5 min,预热传感器TGS2620,保证传感器工作正常;程序初始化结束后,系统进入监控状态。若报警阈值设置键按下,进入报警限设置模式;若录音键按下,进入录音模式;然后启动A/D转换获取采样数据,作滤波处理、标度变换和系统误差校正后得到被测酒精浓度值。该值与报警阈值比较,若结果是“大于”或“等于”,启动蜂鸣器发声程序,作声音报警,提示酒精浓度超标;接着该值在DM-162液晶模块上实时显示;最后判断放音键是否按下。若按下则根据酒精浓度值查找ISD2560中对应语音信息的存储地址开始放音;放音结束后,该值由nRF24L01发送程序发送到接收端;待发送完成后,采集、显示和发送新一轮的酒精浓度数据。
发送端软件应用了防脉冲干扰平均滤波法[9]对A/D采样数据作预处理。其原理是:连续采样K次,然后对这K个采样数据进行比较,去除其中的最大值和最小值,计算剩下的K-2个数据的算术平均值作为采样有效值。该方法融合了中位值滤波法和算术平均滤波法的优点,既可去掉脉动性质的干扰,又可消除偶然出现的脉冲性干扰引起的采样值偏差。为加快计算速度,设计数字滤波器时K=10。
为了提高系统的实时性,软件中采用分段线性插值法[10-11]作标度变换。过程如下:(1)按传感器TGS2620的标定曲线,将该曲线进行非等距分段(曲率变化大(小)时,样点距离取小(大)),选取各分段点坐标(VRLi,Ci)(i=0,1,…,M),其中:VRLi和Ci分别为不同样点时传感器输出电压值和对应浓度值;(2)计算相邻样点间的拟合直线斜率ki=(Ci+1-Ci)/(VRLi+1-VRLi)(i=0,1,…,M-1);(3)将M组坐标数据(VRLi,Ci)和对应斜率ki存储于单片机片内EEPROM的第二扇区(地址为2200H~23FFH)中;(4)每采集到一个电压值VRL即查询EEPROM表,找出VRL所在区间(VRLi,Ci)~(VRLi+1,Ci+1),取出该区间(VRLi,Ci)和ki数据,用线性插值公式C=Ci+ki(VRL-VRLi)计算出当前酒精浓度值C。
将采集到的N个样本数据(xi,yi)代入式(5)中即得到系数a、b的值,并存入单片机的内存单元中。系统测量时,将标度变换后的酒精浓度测量值x代入误差校正方程y=ax+b中,即可得到校正后的酒精浓度值y,从而达到消除系统误差的目的。
接收端软件设计
接收端单片机的软件流程如图9所示。接收端开机上电后,程序初始化设置nRF24L01和串口,然后进入监控场景。当nRF24L01接收到一帧完整的酒精浓度数据后,立即通过串口发送到上位机。接收端单片机与PC之间数据交互采用异步通信模式。独立波特率,串口协议设置为:波特率9 600 b/s,8 bit数据位,1 bit停止位,无校验位。
上位机软件设计
上位机用户界面采用通用的基于对象的程序设计语言Microsoft Visual Basic 开发,实现酒精浓度数据的接收、显示和保存。软件用到了串行通信控件MSComm。MSComm控件是Microsoft公司提供的Windows下串行通信编程的ActiveX控件,通过对此控件的属性和事件进行相应的编程操作,即可轻松地实现串行通信。串口通信协议与接收端完全相同。上位机软件的程序流程如图10所示。
4 系统测试
为了检验本系统的测量性能,采用无水乙醇和纯净水按照一定体积比配制标准的酒精溶液作为被测量对象,测试结果如表1所示。其中:单位ppm=μg/mL表示1 mL酒精溶液中含酒精的质量。由测量结果可以看出,测试数据覆盖传感器的量程,测试最大相对误差小于±2%,优于同类设计产品[3-5]。
为了获得本仪器发送端与接收端的最大无错误率的通信距离,在室外进行了nRF24L01随距离的错误率(临界区间)测试实验,结果如表2所示。其中,每米的错误率是10次试验后计算得到的平均值。可见,nRF24L01的传输距离可达到100 m,略高于RFID、ZIGBEE和蓝牙等无线通信技术[12]。
5 主要技术指标
本仪器主要技术指标如下:(1)测量范围:50~5 000 ppm;(2)灵敏度(传感器电阻变化率):;(3)测量精度:≤±2%;(4)传输距离:≤100 m;(5)工作电源:DC+5 V;(6)工作环境温度:-40 ℃~+70 ℃;(7)工作环境相对湿度:0~85%RH。
6 结束语
本文设计研制了一种基于STC90C52RC单片机、TGS2620酒精传感器和nRF24L01无线通信芯片的酒精浓度探测仪。该仪器现已投入到成都市某小型酿酒厂酒池的实际生产中。现场工作情况表明:系统运行正常,工作可靠;系统具有气体选择性和灵敏度高、稳定性好、智能化程度高、通信距离远、功耗低、抗工业干扰能力强、性价比优异等优点。该仪器可以应用于食品加工行业、工矿企业、石油和化学工业、环境检测与保护、社会公用事业、高空作业人员、公安交通管理(如酒后驾车、交通警察执法)等需要现场检测或无线遥测酒精气体浓度的场合中,市场应用前景广阔、推广价值较高。
参考文献
[1] 李海涛.基于QNX的远程车载酒驾智能监控系统[J].电子技术应用,2014,40(8):136-139.
[2] 宋晓宇,高国伟,李世川,等.基于单片机控制的酒精浓度检测系统的设计[J].传感器世界,2017,23(8):18-23.
[3] 俞露芦,陶大锦.基于单片机的酒精浓度检测仪的设计[J].微型机与应用,2014,33(22):34-36.
[4] 葛毓.基于GPRS/GPS的车载酒精检测和控制电路的设计[D].南昌:南昌大学,2010.
[5] Zhang Zhe,Tong Jin,Chen Donghui,et al. Electronic nose with an air sensor matrix for detecting beef freshness[J].Journal of Bionic Engineering,2008,5(1):67-73.
[6] FIGARO Information for TGS sensors[EB/OL].(2008-04-23)[2019-07-03].(1104).pdf.
[7] 程可嘉,王振松,刘晓云.ISD2560在门禁系统语音播报中的应用[J].自动化技术与应用,2009,28(5):75-77.
[8] 胡珍玉.智能语音提示器系统设计[J].应用能源技术,2012,15(12):34-38.
[9] 张秀再,陈彭鑫,张光宇,等.河流水质实时监测系统[J].电子技术应用,2015,41(2):82-85.
[10] 梁晓雷.基于单片机的分段线性插值算法实现[J].电脑知识与技术,2012,8(21):5236-5243.
[11] 韩潇,曾立,占丰,等.基于分段多项式近似的DDFS研究及FPGA实现[J].电子技术应用,2018,44(3):22-30.
[12] 佚名.各种主流无线通信技术[EB/OL].(2018-05-11)[2019-07-03]..
胡仕兵,陈子为
(成都信息工程大学 电子工程学院,四川 成都610225)
酒精检测仪,酒精气体检测仪,酒精浓度检测仪,酒精泄漏报警器,酒精浓度泄漏报警器,酒精报警器,酒精气体报警器,酒精报警仪,酒精浓度报警器,主要用于通讯,市政,化工,冶金,石油,矿山等部门,对作业环境中的液化气含量做检测,以保证生产及人身的安全。将为你提供专业的液化气检测仪技术支持及服务,我们提供的气体检测仪品质优越,价格合理。酒精报警器,酒精报警器价格32个检测点网络结构设计可与PC机或其它控制器构成网络自由设置高低报警点酒精报警器声、光报警、浓度显示先进的微处理技术智能化菜单设计提供更多内置功能酒精报警器,酒精报警器价格技术指标◆酒精报警器供电方式:AC220V 后备电池DC24V◆酒精报警器测量范围:0~100%LEL◆酒精报警器检测气体:酒精◆酒精报警器检测原理:催化燃烧式◆报警输出:两组触点输出(AC220v 1A)◆报警方式:大于70分贝声光报警酒精报警器价格以客户为中心,以客户的角度出发,为您量身打造最合适的方法。酒精报警器价格可提供给客户最佳的安装方案,并且在质量与价格上将比同等产品更胜一筹!
你看下这些对你是否有些帮助,1.基于labVIEW虚拟滤波器的设计与实现 2.双闭环直流调速系统设计 3.单片机脉搏测量仪 4.单片机控制的全自动洗衣机毕业设计论文 电梯控制的设计与实现 6.恒温箱单片机控制 7.基于单片机的数字电压表 8.单片机控制步进电机毕业设计论文 9.函数信号发生器设计论文 变电所一次系统设计 11.报警门铃设计论文 单片机交通灯控制 13.单片机温度控制系统 通信系统中的接入信道部分进行仿真与分析 15.仓库温湿度的监测系统 16.基于单片机的电子密码锁 17.单片机控制交通灯系统设计 18.基于DSP的IIR数字低通滤波器的设计与实现 19.智能抢答器设计 20.基于LabVIEW的PC机与单片机串口通信 设计的IIR数字高通滤波器 22.单片机数字钟设计 23.自动起闭光控窗帘毕业设计论文 24.三容液位远程测控系统毕业论文 25.基于Matlab的PWM波形仿真与分析 26.集成功率放大电路的设计 27.波形发生器、频率计和数字电压表设计 28.水位遥测自控系统 毕业论文 29.宽带视频放大电路的设计 毕业设计 30.简易数字存储示波器设计毕业论文 31.球赛计时计分器 毕业设计论文 数字滤波器的设计毕业论文 机与单片机串行通信毕业论文 34.基于CPLD的低频信号发生器设计毕业论文 变电站电气主接线设计 序列在扩频通信中的应用 37.正弦信号发生器 38.红外报警器设计与实现 39.开关稳压电源设计 40.基于MCS51单片机温度控制毕业设计论文 41.步进电动机竹竿舞健身娱乐器材 42.单片机控制步进电机 毕业设计论文 43.单片机汽车倒车测距仪 44.基于单片机的自行车测速系统设计 45.水电站电气一次及发电机保护 46.基于单片机的数字显示温度系统毕业设计论文 47.语音电子门锁设计与实现 48.工厂总降压变电所设计-毕业论文 49.单片机无线抢答器设计 50.基于单片机控制直流电机调速系统毕业设计论文 51.单片机串行通信发射部分毕业设计论文 52.基于VHDL语言PLD设计的出租车计费系统毕业设计论文 53.超声波测距仪毕业设计论文 54.单片机控制的数控电流源毕业设计论文 55.声控报警器毕业设计论文 56.基于单片机的锁相频率合成器毕业设计论文 57.基于Multism/protel的数字抢答器 58.单片机智能火灾报警器毕业设计论 59.无线多路遥控发射接收系统设计毕业论文 60.单片机对玩具小车的智能控制毕业设计论文 61.数字频率计毕业设计论文 62.基于单片机控制的电机交流调速毕业设计论文 63.楼宇自动化--毕业设计论文 64.车辆牌照图像识别算法的实现--毕业设计 65.超声波测距仪--毕业设计 66.工厂变电所一次侧电气设计 67.电子测频仪--毕业设计 68.点阵电子显示屏--毕业设计 69.电子电路的电子仿真实验研究 70.基于51单片机的多路温度采集控制系统 71.基于单片机的数字钟设计 72.小功率不间断电源(UPS)中变换器的原理与设计 73.自动存包柜的设计 74.空调器微电脑控制系统 75.全自动洗衣机控制器 76.电力线载波调制解调器毕业设计论文 77.图书馆照明控制系统设计 78.基于AC3的虚拟环绕声实现 79.电视伴音红外转发器的设计 80.多传感器障碍物检测系统的软件设计 81.基于单片机的电器遥控器设计 82.基于单片机的数码录音与播放系统 83.单片机控制的霓虹灯控制器 84.电阻炉温度控制系统 85.智能温度巡检仪的研制 86.保险箱遥控密码锁 毕业设计 变电所的电气部分及继电保护 88.年产26000吨乙醇精馏装置设计 89.卷扬机自动控制限位控制系统 90.铁矿综合自动化调度系统 91.磁敏传感器水位控制系统 92.继电器控制两段传输带机电系统 93.广告灯自动控制系统 94.基于CFA的二阶滤波器设计 95.霍尔传感器水位控制系统 96.全自动车载饮水机 97.浮球液位传感器水位控制系统 98.干簧继电器水位控制系统 99.电接点压力表水位控制系统 100.低成本智能住宅监控系统的设计 101.大型发电厂的继电保护配置 102.直流操作电源监控系统的研究 103.悬挂运动控制系统 104.气体泄漏超声检测系统的设计 105.电压无功补偿综合控制装置 型无功补偿装置控制器的设计 电机调速 频段窄带调频无线接收机 109.电子体温计 110.基于单片机的病床呼叫控制系统 111.红外测温仪 112.基于单片微型计算机的测距仪正文 113.智能数字频率计 114.基于单片微型计算机的多路室内火灾报警器 115.信号发生器 116.基于单片微型计算机的语音播出的作息时间控制器 117.交通信号灯控制电路的设计 118.基于单片机步进电机控制系统设计 119.多路数据采集系统的设计 120.电子万年历 121.遥控式数控电源设计 降压变电所一次系统设计 变电站一次系统设计 124.智能数字频率计 125.信号发生器 126.基于虚拟仪器的电网主要电气参数测试设计 127.基于FPGA的电网基本电量数字测量系统的设计 128.风力发电电能变换装置的研究与设计 129.电流继电器设计 130.大功率电器智能识别与用电安全控制器的设计 131.交流电机型式试验及计算机软件的研究 132.单片机交通灯控制系统的设计 133.智能立体仓库系统的设计 134.智能火灾报警监测系统 135.基于单片机的多点温度检测系统 136.单片机定时闹钟设计 137.湿度传感器单片机检测电路制作 138.智能小车自动寻址设计--小车悬挂运动控制系统 139.探讨未来通信技术的发展趋势 140.音频多重混响设计 141.单片机呼叫系统的设计 142.基于FPGA和锁相环4046实现波形发生器 143.基于FPGA的数字通信系统 144.基于单片机的带智能自动化的红外遥控小车 145.基于单片机AT89C51的语音温度计的设计 146.智能楼宇设计 147.移动电话接收机功能电路 148.单片机演奏音乐歌曲装置的设计 149.单片机电铃系统设计 150.智能电子密码锁设计 151.八路智能抢答器设计 152.组态控制抢答器系统设计 153.组态控制皮带运输机系统设计 154..基于单片机控制音乐门铃 155.基于单片机控制文字的显示 156.基于单片机控制发生的数字音乐盒 157.基于单片机控制动态扫描文字显示系统的设计 158.基于LMS自适应滤波器的MATLAB实现 功率放大器毕业论文 160.无线射频识别系统发射接收硬件电路的设计 161.基于单片机PIC16F877的环境监测系统的设计 162.基于ADE7758的电能监测系统的设计 163.智能电话报警器 164.数字频率计 课程设计 165.多功能数字钟电路设计 课程设计 166.基于VHDL数字频率计的设计与仿真 167.基于单片机控制的电子秤 168.基于单片机的智能电子负载系统设计 169.电压比较器的模拟与仿真 170.脉冲变压器设计 仿真技术及应用 172.基于单片机的水温控制系统 173.基于FPGA和单片机的多功能等精度频率计 174.发电机-变压器组中微型机保护系统 175.基于单片机的鸡雏恒温孵化器的设计 176.数字温度计的设计 177.生产流水线产品产量统计显示系统 178.水位报警显时控制系统的设计 179.红外遥控电子密码锁的设计 180.基于MCU温控智能风扇控制系统的设计 181.数字电容测量仪的设计 182.基于单片机的遥控器的设计 电话卡代拨器的设计 184.数字式心电信号发生器硬件设计及波形输出实现 185.电压稳定毕业设计论文 186.基于DSP的短波通信系统设计(IIR设计) 187.一氧化碳报警器 188.网络视频监控系统的设计 189.全氢罩式退火炉温度控制系统 190.通用串行总线数据采集卡的设计 191.单片机控制单闭环直流电动机的调速控制系统 192.单片机电加热炉温度控制系统 193.单片机大型建筑火灾监控系统 接口设备驱动程序的框架设计 195.基于Matlab的多频率FMICW的信号分离及时延信息提取 196.正弦信号发生器 197.小功率UPS系统设计 198.全数字控制SPWM单相变频器 199.点阵式汉字电子显示屏的设计与制作 200.基于AT89C51的路灯控制系统设计 201.基于AT89C51的宽范围高精度的电机转速测量系统 202.开关电源设计 203.基于PDIUSBD12和K9F2808简易USB闪存设计 204.微型机控制一体化监控系统 205.直流电机试验自动采集与控制系统的设计 206.新型自动装弹机控制系统的研究与开发 207.交流异步电机试验自动采集与控制系统的设计 208.转速闭环控制的直流调速系统的仿真与设计 209.基于单片机的数字直流调速系统设计 210.多功能频率计的设计 信息移频信号的频谱分析和识别 212.集散管理系统—终端设计 213.基于MATLAB的数字滤波器优化设计 214.基于AT89C51SND1C的MP3播放器 215.基于光纤的汽车CAN总线研究 216.汽车倒车雷达 217.基于DSP的电机控制 218.红外恒温控制器的设计与制作 219.串联稳压电源的设计 220.智能编码电控锁设计 221.多用定时器的电路设计与制作 222.基于单片机的数字电压表设计 223.智能饮水机控制系统 224.自行车 车速 报警系统 225.大棚仓库温湿度自动控制系统 226.浮点数运算FPGA实现 227.自行车里程,速度计的设计 228.等精度频率计的设计 229.人体健康监测系统设计 230.基于单片机的音乐喷泉控制系统设计 231.基于嵌入式系统的原油含水分析仪的硬件与人机界面设 232.基于LabVIEW环境下虚拟调幅波解调器的设计 233.虚拟示波器的设计 234.红外线遥控器系统设计 235.基于LabVIEW的虚拟频谱分析仪的研究与设计 236.低频功率放大器设计 237.银行自动报警系统 238.超媒体技术 239.数字电子钟的设计与制作 240.温度报警器的电路设计与制作 241.数字电子钟的电路设计 242.鸡舍电子智能补光器的设计 243.高精度超声波传感器信号调理电路的设计 245.电子密码锁的电路设计与制作 246.单片机控制电梯系统的设计 247.常用电器维修方法综述 248.控制式智能计热表的设计 249.电子指南针设计 250.汽车防撞主控系统设计 251.单片机的智能电源管理系统 252.电力电子技术在绿色照明电路中的应用 253.电气火灾自动保护型断路器的设计 254.基于单片机的多功能智能小车设计 255.对漏电保护器安全性能的剖析 256.解析民用建筑的应急照明 257.电力拖动控制系统设计 区域降压变电所电气系统的设计 AT89系列通用单片机编程器的设计 260.基于单片机的金属探测器设计 261.双闭环三相异步电动机串级调速系统 262.基于单片机技术的自动停车器的设计 263.自动剪板机单片机控制系统设计 264.单片机电器遥控器的设计 265.试论供电系统中的导体和电器的选择 266.浅论10KV供电系统的继电保护的设计方案 267.论无线通信技术热点及发展趋势 268.论工厂的电气照明 269.论供电系统中短路电流及其计算 270.电气设备的选择与校验 271.电气控制线路的设计原则 272.蓄电池性能测试仪设计 273.红外恒温控制器的设计与制作 274.串联稳压电源的设计 275.智能编码电控锁设计 276.多用定时器的电路设计与制作 277.基于单片机的数字电压表设计 278.智能饮水机控制系统 279.自行车 车速 报警系统 280.大棚仓库温湿度自动控制系统 281.浮点数运算FPGA实现 282.自行车里程,速度计的设计 283.等精度频率计的设计 284.声纳式高度计系统设计和研究 285.集约型无绳多元心脉传感器研究与设计 286.电气电子信息工程,通信工程,课程设计 交流接触器的工艺与工装 288.六路抢答器设计 双闭环不可逆直流调速系统设计 290.机床润滑系统的设计 291.塑壳式低压断路器设计 292.直流接触器设计 工艺流程及各流程分析介绍 294.大棚温湿自动控制系统 295.基于单片机的短信收发系统设计 ――硬件设计 296.三层电梯的单片机控制电路 297.交通灯89C51控制电路设计 298.基于D类放大器的可调开关电源的设计 299.直流电动机的脉冲调速 300.红外快速检测人体温度装置的设计与研制 301.基于8051单片机的数字钟 直流高频开关电源设计 303.继电器保护毕业设计 304.电力系统电压频率紧急控制装置研究 305.用单片机控制的多功能门铃 306.全氢煤气罩式炉的温度控制系统的研究与改造 307.基于ATmega16单片机的高炉透气性监测仪表的设计 308.基于MSP430的智能网络热量表 309.火电厂石灰石湿法烟气脱硫的控制 310.家用豆浆机全自动控制装置 311.新型起倒靶控制系统的设计与实现 312.软开关技术在变频器中的应用 313.中频感应加热电源的设计 314.智能小区无线防盗系统的设计 315.智能脉搏记录仪系统 316.直流开关稳压电源设计 317.用单片机实现电话远程控制家用电器 318.无线话筒制作 319.温度检测与控制系统 320.数字钟的设计 321.汽车尾灯电路设计 322.篮球比赛计时器的硬件设计 323.节能型电冰箱研究 324.交流异步电动机变频调速设计 325.基于单片机控制的PWM调速系统 326.基于单片机的数字温度计的电路设计 327.基于Atmel89系列芯片串行编程器设计 328.基于单片机的实时时钟 329.基于MCS-51通用开发平台设计 330.基于MP3格式的单片机音乐播放系统 331.基于单片机的IC卡智能水表控制系统设计 332.基于MATLAB的FIR数字滤波器设计 333.单片机水温控制系统 334.基于PIC16F74单片机串行通信中继控制器 335.火灾自动报警系统336.基于单片机的电子时钟控制系统337.基于单片机mega16L的煤气报警器的设计338.微机型高压电网继电保护系统的设计 339.智能毫伏表的设计 340.基于单片机的波形发生器设计341.国产化PLC的研制 342.串行显示的步进电机单片机控制系统 343.编码发射与接收报警系统设计:看护机 345.编码发射接收报警设计:爱情鸟346.基于IC卡的楼宇门禁系统的设计 347.基于DirectShow的视频监控系统 348.智能机器人的研究与设计 ——自动循轨和语音控制的349.基于CPLD的出租车计价器设计——软件设计 电子商务在线信任模型实证研究
在食品工业、酿酒行业、石化和工矿企业、环境检测、公安交通管理、社会公用事业等一些国民经济生产和人们工作生活的领域和场合中,常常需要检测特定环境中酒精气体的浓度,以确保工厂企业环境安全和人民生命财产安全[1-4]。如监控酒精生产车间和石化厂的酒精浓度,可以避免工厂起火和爆炸事故的发生;监测工矿企业场地的酒精浓度,能避免工作人员出现酒精中毒等恶性事故;检测司机体内酒精含量,可以防止驾驶人员酒后驾车,减少恶性交通事故的发生。因此,研制酒精气体浓度检测仪具有十分广阔的现实和潜在的市场需求,并具有十分重要的意义。传统的酒精气体检测仪因传感器性能、电路设计、数据处理算法等原因,存在着气体选择性不高、抗干扰性能差、智能化程度低、仪器操作复杂、无法实时保存和调看数据等突出问题[3-4]。鉴于此,笔者设计和研制了一种无线智能酒精浓度探测仪,弥补了传统酒精检测仪器的缺点和不足。
1 系统总体方案
该酒精浓度探测仪由发送端和接收端两部分组成,其原理框图分别如图1和图2所示。发送端主要包括酒精浓度传感器与A/D转换电路、STC90C52RC单片机、浓度阈值设置与声音报警电路、语音播报电路、LCD显示电路和无线收发电路六部分;接收端由无线收发电路、STC90C52RC单片机、数据接口通信电路和上位计算机组成。
2 系统硬件电路设计
传感器电路与A/D转换电路
TGS2620为日本费加罗(FIGARO)公司生产的一款可以探测气体中酒精浓度的半导体气体传感器,具有灵敏度高、功耗低、寿命长、成本低等特点[5-6]。其电路连接如图3所示,其中,RH为加热器电阻,室温下时为83±8 Ω;RS为传感器电阻,其阻值和还原性气体浓度之间的数学关系为:
通过检测VRL就可以确定出待测气体浓度C。
电路中运放OP07接成电压跟随器形式,对传感器和后级电路进行隔离,减小电源波动和外界因素对采样数据的影响。ICL7660是MAXIM公司生产的小功率极性反转电源转换器,作用是将+5 V电源变换成-5 V电源为OP07供电。其中,CC2采用漏电小、介质损耗低的10 μF钽电容,以提高电源转换效率。TLC1549是TI公司生产的10位分辨率逐次逼近型ADC芯片,具有自动采样和保持、可按比例量程校准转换范围、抗噪声干扰功能,在满刻度时总误差最大仅为±1 LSB。
LCD显示、阈值设置与声音报警电路
16×2个字符液晶显示模块DM-162显示报警阈值和酒精浓度值。为了减少单片机I/O口的使用数量和简化电路结构,采用间接控制(4位数据总线)方式,接口电路如图4上部分所示。初始化时,需写入28H指令码将8位总线转为4位数据接口方式。管脚BLA、BLK和VL分别是液晶背光源正极、负极和显示对比度调整端,RS、E分别是寄存器选择端、读/写信号线和使能端。
酒精浓度阈值设置和声音报警电路如图4下部分所示。当设置键S1按下时,进入阈值设置(初始阈值为500 ppm)界面,再按下键S2或S3,对阈值作增加或减小操作,步长为20 ppm。阈值设置好后写入STC90C52RC单片机片内5 KB EEPROM的第一扇区2000H和2001H地址中,使系统重启不必重新设置。若酒精浓度值大于阈值,将口线置为低电平,三极管8550驱动蜂鸣器发声音报警。
语音播报电路
采用华邦(Winbond)公司的ISD2560语音录放集成芯片作酒精浓度值播放,电路如图5所示。话筒采用差分形式接入到片内前置放大器的MIC端和MIC REF端,以抵消噪声和提高输入共模抑制比。扬声器接成双端输出形式,输出功率为单端用法时功率的4倍。单片机的P2口、和口线分别与地址线A0~A9相连,用来设定ISD2560片内480 KB EEPROM(地址为0H~257H)中存储语音段的起始地址,录音和放音功能均从该起始地址开始,录音过程中信息段地址自动增加。本系统在ISD2560中需录入语音信息有:“当前酒精浓度值为”、“零”、“一”、“二”、“三”、“四”、“五”、“六”、“七”、“八”、“九”、“十”、“百”、“千”、“点”、“ppm(浓度单位)”。由于ISD2560的语音录放时间为60 s,按每秒3个汉字计算,则可录放180个汉字,因此满足播报要求。此外,通过、和口线可以配置ISD2560的操作模式[7-8](地址为300H~3FFH)。口线分别用来控制语音芯片的片选、芯片的开关、录音/放音模式选择。口用来判断芯片的存储空间是否已经填满或者信息存储是否溢出。由于录音时在每个信息段结尾处自动插入标志,当放音遇到该标志时产生宽约为 ms的负脉冲。用口检测到此脉冲的上升沿后才播放另一段录音,避免语音播放不连续。
无线收发电路
系统采用NORDIC公司生产的工作于 5 GHz的ISM频段的单片无线收发器芯片nRF24L01完成无线数据的收发工作,nRF24L01的最高传输速率为2 Mb/s,电路如图6所示。稳压芯片 V将5 V输入电压转换成 V给nRF24L01供电。nRF24L01与单片机接口为四线SPI方式,CSN、SCK、MOSI、MISO管脚分别是SPI的片选使能线、时钟线、数据输入线、数据输出线。IRQ为中断信号线(低电平有效),接至单片机的外部中断管脚,单片机主要是通过该接口线与nRF24L01进行通信并判断数据接收和数据发送是否完成。CE为芯片的RX/TX模式选择线。IREF为参考电流输入端,通过22 kΩ电阻接地。管脚ANT1和ANT2给天线提供平衡的RF输出,通过后接的简单射频网络匹配电路获得单端50 Ω的阻抗输出。网络匹配电路在发送模式时阻止谐波,在接收模式时克制本地振荡漏出。VDD_PA管脚输出 V电压,给片内功率放大器提供电源。
数据接口通信电路
接收端的计算机与单片机间的通信由串行USB接口集成电路CH340T完成,如图7所示。CH340T支持或者通信,具有仿真接口,并且可以升级外围串口设备,支持常用的MODEM联络信号,支持IRDA规范的SIR红外通信,提供RS23RS48RS422接口等功能。CH340T内置有独立的收发缓冲区,支持通信波特率50 b/s~2 Mb/s的单工、半双工、全双工等异步串行通信。图7中,在CH340T芯片的发送脚TXD上反接一个二极管1N4001,防止该引脚将电流倒灌到单片机;在接收引脚RXD上加一个300 Ω的限流电阻来防止单片机对CH340T倒灌电流;从而避免电流倒灌导致不需要供电工作的另一方芯片继续工作。
3 系统软件设计
下位机软件设计
下位机的程序开发和调试是在Keil μVision4集成开发环境下进行的,包括发送端和接收端的软件设计。
发送端软件设计
发送端软件流程如图8所示。单片机上电后进行系统初始化,完成单片机内部系统变量的初始化以及TLC154DM-16ISD2560和nRF24L01等外部设备的初始设置;然后延时大约5 min,预热传感器TGS2620,保证传感器工作正常;程序初始化结束后,系统进入监控状态。若报警阈值设置键按下,进入报警限设置模式;若录音键按下,进入录音模式;然后启动A/D转换获取采样数据,作滤波处理、标度变换和系统误差校正后得到被测酒精浓度值。该值与报警阈值比较,若结果是“大于”或“等于”,启动蜂鸣器发声程序,作声音报警,提示酒精浓度超标;接着该值在DM-162液晶模块上实时显示;最后判断放音键是否按下。若按下则根据酒精浓度值查找ISD2560中对应语音信息的存储地址开始放音;放音结束后,该值由nRF24L01发送程序发送到接收端;待发送完成后,采集、显示和发送新一轮的酒精浓度数据。
发送端软件应用了防脉冲干扰平均滤波法[9]对A/D采样数据作预处理。其原理是:连续采样K次,然后对这K个采样数据进行比较,去除其中的最大值和最小值,计算剩下的K-2个数据的算术平均值作为采样有效值。该方法融合了中位值滤波法和算术平均滤波法的优点,既可去掉脉动性质的干扰,又可消除偶然出现的脉冲性干扰引起的采样值偏差。为加快计算速度,设计数字滤波器时K=10。
为了提高系统的实时性,软件中采用分段线性插值法[10-11]作标度变换。过程如下:(1)按传感器TGS2620的标定曲线,将该曲线进行非等距分段(曲率变化大(小)时,样点距离取小(大)),选取各分段点坐标(VRLi,Ci)(i=0,1,…,M),其中:VRLi和Ci分别为不同样点时传感器输出电压值和对应浓度值;(2)计算相邻样点间的拟合直线斜率ki=(Ci+1-Ci)/(VRLi+1-VRLi)(i=0,1,…,M-1);(3)将M组坐标数据(VRLi,Ci)和对应斜率ki存储于单片机片内EEPROM的第二扇区(地址为2200H~23FFH)中;(4)每采集到一个电压值VRL即查询EEPROM表,找出VRL所在区间(VRLi,Ci)~(VRLi+1,Ci+1),取出该区间(VRLi,Ci)和ki数据,用线性插值公式C=Ci+ki(VRL-VRLi)计算出当前酒精浓度值C。
将采集到的N个样本数据(xi,yi)代入式(5)中即得到系数a、b的值,并存入单片机的内存单元中。系统测量时,将标度变换后的酒精浓度测量值x代入误差校正方程y=ax+b中,即可得到校正后的酒精浓度值y,从而达到消除系统误差的目的。
接收端软件设计
接收端单片机的软件流程如图9所示。接收端开机上电后,程序初始化设置nRF24L01和串口,然后进入监控场景。当nRF24L01接收到一帧完整的酒精浓度数据后,立即通过串口发送到上位机。接收端单片机与PC之间数据交互采用异步通信模式。独立波特率,串口协议设置为:波特率9 600 b/s,8 bit数据位,1 bit停止位,无校验位。
上位机软件设计
上位机用户界面采用通用的基于对象的程序设计语言Microsoft Visual Basic 开发,实现酒精浓度数据的接收、显示和保存。软件用到了串行通信控件MSComm。MSComm控件是Microsoft公司提供的Windows下串行通信编程的ActiveX控件,通过对此控件的属性和事件进行相应的编程操作,即可轻松地实现串行通信。串口通信协议与接收端完全相同。上位机软件的程序流程如图10所示。
4 系统测试
为了检验本系统的测量性能,采用无水乙醇和纯净水按照一定体积比配制标准的酒精溶液作为被测量对象,测试结果如表1所示。其中:单位ppm=μg/mL表示1 mL酒精溶液中含酒精的质量。由测量结果可以看出,测试数据覆盖传感器的量程,测试最大相对误差小于±2%,优于同类设计产品[3-5]。
为了获得本仪器发送端与接收端的最大无错误率的通信距离,在室外进行了nRF24L01随距离的错误率(临界区间)测试实验,结果如表2所示。其中,每米的错误率是10次试验后计算得到的平均值。可见,nRF24L01的传输距离可达到100 m,略高于RFID、ZIGBEE和蓝牙等无线通信技术[12]。
5 主要技术指标
本仪器主要技术指标如下:(1)测量范围:50~5 000 ppm;(2)灵敏度(传感器电阻变化率):;(3)测量精度:≤±2%;(4)传输距离:≤100 m;(5)工作电源:DC+5 V;(6)工作环境温度:-40 ℃~+70 ℃;(7)工作环境相对湿度:0~85%RH。
6 结束语
本文设计研制了一种基于STC90C52RC单片机、TGS2620酒精传感器和nRF24L01无线通信芯片的酒精浓度探测仪。该仪器现已投入到成都市某小型酿酒厂酒池的实际生产中。现场工作情况表明:系统运行正常,工作可靠;系统具有气体选择性和灵敏度高、稳定性好、智能化程度高、通信距离远、功耗低、抗工业干扰能力强、性价比优异等优点。该仪器可以应用于食品加工行业、工矿企业、石油和化学工业、环境检测与保护、社会公用事业、高空作业人员、公安交通管理(如酒后驾车、交通警察执法)等需要现场检测或无线遥测酒精气体浓度的场合中,市场应用前景广阔、推广价值较高。
参考文献
[1] 李海涛.基于QNX的远程车载酒驾智能监控系统[J].电子技术应用,2014,40(8):136-139.
[2] 宋晓宇,高国伟,李世川,等.基于单片机控制的酒精浓度检测系统的设计[J].传感器世界,2017,23(8):18-23.
[3] 俞露芦,陶大锦.基于单片机的酒精浓度检测仪的设计[J].微型机与应用,2014,33(22):34-36.
[4] 葛毓.基于GPRS/GPS的车载酒精检测和控制电路的设计[D].南昌:南昌大学,2010.
[5] Zhang Zhe,Tong Jin,Chen Donghui,et al. Electronic nose with an air sensor matrix for detecting beef freshness[J].Journal of Bionic Engineering,2008,5(1):67-73.
[6] FIGARO Information for TGS sensors[EB/OL].(2008-04-23)[2019-07-03].(1104).pdf.
[7] 程可嘉,王振松,刘晓云.ISD2560在门禁系统语音播报中的应用[J].自动化技术与应用,2009,28(5):75-77.
[8] 胡珍玉.智能语音提示器系统设计[J].应用能源技术,2012,15(12):34-38.
[9] 张秀再,陈彭鑫,张光宇,等.河流水质实时监测系统[J].电子技术应用,2015,41(2):82-85.
[10] 梁晓雷.基于单片机的分段线性插值算法实现[J].电脑知识与技术,2012,8(21):5236-5243.
[11] 韩潇,曾立,占丰,等.基于分段多项式近似的DDFS研究及FPGA实现[J].电子技术应用,2018,44(3):22-30.
[12] 佚名.各种主流无线通信技术[EB/OL].(2018-05-11)[2019-07-03]..
胡仕兵,陈子为
(成都信息工程大学 电子工程学院,四川 成都610225)
嗯!原理很简单,就是通过检测红外线的探透率而转换成酒精浓度的。一对红外传感器(发射+接收)通过接收到的红外线(光电反应)形成的电流信号的大小来判断酒精浓度(相当于红外线传播的介质)。不过要求的器件灵敏度和线性度非常高。
可以对气体中酒精含量进行检测的设备有五种基本类型,分别是:1,燃料电池型(电化学)2,半导体型3,红外线型4,气体色谱分析型5,比色型由于价格和使用是否方便等因素所决定,目前普遍使用的只有燃料电池型(电化学型)和半导体型二种。这二种能够制造成便携型呼气酒精测试器,适合于现场使用。半导体型采用氧化锡半导体作为传感器,这类半导体器件具有气敏特性,当接触的气体中其敏感的气体浓度增加,它对外呈现的电阻值就降低,半导体型呼气酒精测试仪就是利用这个原理做成的。这种半导体在不同工作温度时,对不同的气体敏感程度是不同的,因此半导体型呼气酒精测试仪中都采用加热元件,把传感器加热到一定的温度,在该温度下,该传感器对酒精具有最高的敏感度。燃料电池型呼气酒精测试仪采用燃料电池酒精传感器作为气敏元件,它属于电化学类型,因此又称为电化学型。燃料电池是当前全世界都在广泛研究的环保型能源,它可以直接把可燃气体转变成电能,而不产生污染。作为酒精传感器只是燃料电池的一个分支。燃料电池酒精传感器采用贵金属白金作为电极,在燃烧室内充满了特种催化剂,它能使进入燃烧室内的酒精充分燃烧转变为电能,也就是在二个电极上产生电压,电能消耗在外接负载上。此电压与进入燃烧室内气体的酒精浓度成正比,这就是燃料电池型呼气酒精测试仪的基本工作原理
(1)由图甲可知,气敏电阻随酒精气体浓度的增大而减小;(2)由图乙可知,电流从电源正极开始依次经过R2、R1、电流表回到电源负极,即R1、R2串联;(3)酒精气体浓度越大,气敏电阻的阻值越小,电路中的总电阻越小,由I=UR可知,电路中的电流越大,即电流表的示数越大;(4)由图象可知,当酒精气体的浓度为0时,酒精气体传感器R1的阻值为60Ω,∵串联电路中总电阻等于各分电阻之和,∴根据欧姆定律可得,电路中的电流:I=UR1+R2=8V60Ω+20Ω=;(5)当电流表的示数为时,由公式I=UR得:R总=UI′=Ω,此时气敏电阻的阻值:R1′=R总-R2=40Ω-20Ω=20Ω,由图象可知,被检测者的酒精气体浓度为,<<,所以被检测者属于酒驾.答:(1)变小;(2)串联;(3)越大;(4);(5)该驾驶员为酒驾.
嗯!原理很简单,就是通过检测红外线的探透率而转换成酒精浓度的。一对红外传感器(发射+接收)通过接收到的红外线(光电反应)形成的电流信号的大小来判断酒精浓度(相当于红外线传播的介质)。不过要求的器件灵敏度和线性度非常高。
入侵检测技术论文篇二 浅析入侵检测技术 摘 要 入侵检测系统是一个能够对网络或计算机系统的活动进行实时监测的系统,它能够发现并报告网络或系统中存在的可疑迹象,为网络安全管理提供有价值的信息。 关键词 入侵检测 信号分析 模型匹配 分布式 中图分类号:TP393 文献标识码:A 随着计算机技术尤其是网络技术的发展,计算机系统已经从独立的主机发展到复杂的、互连的开放式系统。这给人们在信息利用和资源共享上带来了无与伦比的便利,但又面临着由于入侵而引发的安全问题。传统的安全防御策略( 如访问控制机制、防火墙技术等)均属于静态的安全防御技术,对网络环境下日新月异的攻击手段缺乏主动的反应。由于静态的安全技术自身存在着不可克服的缺点,促发了人们在研究过程中新的探索,从而引出入侵检测这一安全领域的新课题的诞生。入侵检测是动态安全技术的最核心技术之一,是防火墙的合理补充,是安全防御体系的一个重要组成部分。 1 入侵检测系统( IDS) 执行的主要任务 所谓IDS就是一个能够对网络或计算机系统的活动进行实时监测的系统,它能够发现并报告网络或系统中存在的可疑迹象,为网络安全管理提供有价值的信息。IDS 执行的主要任务是:监视、分析用户及系统活动;对系统构造和弱点的审计;识别反映已知进攻的活动模式并向相关人士报警;异常行为模式的统计分析;评估重要系统和数据文件的完整性;操作系统的审计跟踪管理,并识别用户违反安全策略的行为。 2 入侵检测的步骤 信息收集 入侵检测的第一步是信息收集。内容包括系统、网络、数据及用户活动的状态和行为。 入侵检测利用的信息一般来自以下4方面:系统和网络日志文件:目录和文件中的不期望的改变; 程序执行中的不期望行为;物理形式的入侵信息。这包括两个方面的内容:一是未授权的对网络硬件的连接;二是对物理资源的未授权访问。 信号分析 对上述4 类收集到的有关系统、网络、数据及用户活动的状态和行为等信息, 一般通过3 种技术手段进行分析:模式匹配、统计分析和完整分析。其中前两种方法用于实时的入侵检测,而完整性分析则用于事后分析。 响应 入侵检测系统在发现入侵后会及时做出响应, 包括切断网络连接、记录事件和报警等。响应一般分为主动响应和被动响应两种类型。主动响应由用户驱动或系统本身自动执行, 可对入侵者采取行动、修正系统环境或收集有用信息;被动响应则包括告警和通知、简单网络管理协议( SNMP) 陷阱和插件等。 3 常用的入侵检测方法 基于用户行为概率统计模型的入侵检测方法 这种入侵检测方法是基于对用户历史行为建模, 以及在早期的证据或模型的基础上, 审计系统实时的检测用户对系统的使用情况, 根据系统内部保存的用户行为概率统计模型进行检测, 当发现有可疑的用户行为发生时, 保持跟踪并监测、记录该用户的行为。 基于神经网络的入侵检测方法 这种方法是利用神经网络技术进行入侵检测。因此, 这种方法对用户行为具有学习和自适应功能, 能够根据实际检测到的信息有效地加以处理并作出入侵可能性的判断。 基于专家系统的入侵检测技术 该技术根据安全专家对可疑行为进行分析的经验来形成一套推理规则, 然后在此基础上建立相应的专家系统, 由此专家系统自动对所涉及的入侵行为进行分析该系统应当能够随着经验的积累而利用其自学习能力进行规则的扩充和修正。 4 入侵检测技术的发展方向 分布式入侵检测与通用入侵检测架构 传统的IDS一般局限于单一的主机或网络架构, 对异构系统及大规模的网络的监测明显不足, 同时不同的IDS 系统之间不能协同工作, 为解决这一问题, 需要分布式入侵检测技术与通用入侵检测架构。 智能化的入侵检测 入侵方法越来越多样化与综合化, 尽管已经有智能体、神经网络与遗传算法在入侵检测领域的应用研究, 但是这只是一些尝试性的研究工作, 需要对智能化的IDS 加以进一步地研究以解决其自学习与自适应能力。 入侵检测的评测方法 用户需对众多的IDS 系统进行评价, 评价指标包括IDS 检测范围、系统资源占用、IDS 系统自身的可靠性。从而设计通用的入侵检测测试与评估方法和平台, 实现对多种IDS 系统的检测已成为当前IDS 的另一重要研究与发展领域。 与其它网络安全技术相结合 结合防火墙、PKIX、安全电子交易SET 等新的网络安全与电子商务技术,提供完整的网络安全保障。 入侵检测作为一种积极主动的安全防护技术, 提供了对内部攻击、外部攻击和误操作的实时保护, 在网络系统受到危害之前拦截和响应入侵。从网络安全立体纵深、多层次防御的角度出发, 入侵检测理应受到人们的高度重视, 这从国外入侵检测产品市场的蓬勃发展就可以看出。在国内, 随着上网的关键部门、关键业务越来越多, 迫切需要具有自主版权的入侵检测产品。入侵检测产品仍具有较大的发展空间, 从技术途径来讲, 除了完善常规的、传统的技术( 模式识别和完整性检测) 外, 应重点加强统计分析的相关技术研究。入侵检测是保护信息系统安全的重要途径, 对网络应用的发展具有重要意义与深远影响。研究与开发自主知识产权的IDS 系统将成为我国信息安全领域的重要课题。 参考文献 [1]耿麦香.网络入侵检测技术研究综述[J].网络安全技术与应用,2004(6). [2]王福生.数据挖掘技术在网络入侵检测中的应用[J].现代情报,2006(9). [3]蒋萍.网络入侵检测技术[J].郑州航空工业管理学院学报,2003(3). 看了“入侵检测技术论文”的人还看: 1. 关于入侵检测技术论文 2. 计算机网络入侵检测技术论文 3. 论文网络病毒检测技术论文 4. 安全防范技术论文 5. 计算机网络安全技术论文赏析
自己写写吧 简单的
字数不是很多,找人写也不贵,至少在我这里。
《科技传播》杂志国家级科技学术期刊中英文目录知网 万方全文收录随着对网络安全问题的理解日益深入,入侵检测技术得到了迅速的发展,应用防护的概念逐渐被人们所接受,并应用到入侵检测产品中。而在千兆环境中,如何解决应用防护和千兆高速网络环境中数据包线速处理之间的矛盾,成为网络安全技术发展一个新的挑战。 入侵检测技术的演进。 入侵检测系统(IDS, Intrusion Detection System)是近十多年发展起来的新一代安全防范技术,它通过对计算机网络或系统中的若干关键点收集信息并对其进行分析,从中发现是否有违反安全策略的行为和被攻击的迹象。IDS产品被认为是在防火墙之后的第二道安全防线在攻击检测、安全审计和监控等方面都发挥了重要的作用。 但在入侵检测产品的使用过程中,暴露出了诸多的问题。特别是误报、漏报和对攻击行为缺乏实时响应等问题比较突出,并且严重影响了产品发挥实际的作用。Gartner在2003年一份研究报告中称入侵检测系统已经“死”了。Gartner认为IDS不能给网络带来附加的安全,反而会增加管理员的困扰,建议用户使用入侵防御系统(IPS, Intrusion Prevention System)来代替IDS。Gartner公司认为只有在线的或基于主机的攻击阻止(实时拦截)才是最有效的入侵防御系统。 从功能上来看,IDS是一种并联在网络上的设备,它只能被动地检测网络遭到了何种攻击,它的阻断攻击能力非常有限,一般只能通过发送TCP reset包或联动防火墙来阻止攻击。而IPS则是一种主动的、积极的入侵防范、阻止系统,它部署在网络的进出口处,当它检测到攻击企图后,它会自动地将攻击包丢掉或采取措施将攻击源阻断。因此,从实用效果上来看,和IDS相比入侵防御系统IPS向前发展了一步,能够对网络起到较好的实时防护作用。 近年来,网络攻击的发展趋势是逐渐转向高层应用。根据Gartner的分析,目前对网络的攻击有70%以上是集中在应用层,并且这一数字呈上升趋势。应用层的攻击有可能会造成非常严重的后果,比如用户帐号丢失和公司机密泄漏等。因此,对具体应用的有效保护就显得越发重要。从检测方法上看,IPS与IDS都是基于模式匹配、协议分析以及异常流量统计等技术。这些检测技术的特点是主要针对已知的攻击类型,进行基于攻击特征串的匹配。但对于应用层的攻击,通常是利用特定的应用程序的漏洞,无论是IDS还是IPS都无法通过现有的检测技术进行防范。 为了解决日益突出的应用层防护问题,继入侵防御系统IPS之后,应用入侵防护系统(AIP,Application Intrusion Prevention)逐渐成为一个新的热点,并且正得到日益广泛的应用。 应用入侵防护 对应用层的防范通常比内网防范难度要更大,因为这些应用要允许外部的访问。防火墙的访问控制策略中必须开放应用服务对应的端口,如web的80端口。这样,黑客通过这些端口发起攻击时防火墙无法进行识别控制。入侵检测和入侵防御系统并不是针对应用协议进行设计,所以同样无法检测对相应协议漏洞的攻击。而应用入侵防护系统则能够弥补防火墙和入侵检测系统的不足,对特定应用进行有效保护。 所谓应用入侵防护系统AIP,是用来保护特定应用服务(如web和数据库等应用)的网络设备,通常部署在应用服务器之前,通过AIP系统安全策略的控制来防止基于应用协议漏洞和设计缺陷的恶意攻击。 在对应用层的攻击中,大部分时通过HTTP协议(80端口)进行。在国外权威机构的一次网络安全评估过程中发现,97%的web站点存在一定应用协议问题。虽然这些站点通过部署防火墙在网络层以下进行了很好的防范,但其应用层的漏洞仍可被利用进而受到入侵和攻击。因此对于web等应用协议,应用入侵防护系统AIP应用比较广泛。通过制订合理的安全策略,AIP能够对以下类型的web攻击进行有效防范: 恶意脚本 Cookie投毒 隐藏域修改 缓存溢出 参数篡改 强制浏览 Sql插入 已知漏洞攻击 应用入侵防护技术近两年刚刚出现,但发展迅速。Yankee Group预测在未来的五年里, AIP将和防火墙,入侵检测和反病毒等安全技术一起,成为网络安全整体解决方案的一个重要组成部分。 千兆解决方案 应用入侵防护产品在保护企业业务流程和相关数据方面发挥着日益重要的作用,同时随着网络带宽的不断增加,只有在适合千兆环境应用的高性能产品才能够满足大型网络的需要。 传统的软件形式的应用入侵防护产品受性能的限制,只能应用在中小型网络中;基于x86架构的硬件产品无法达到千兆流量的要求;近年来,网络处理器(NP)在千兆环境中得到了日益广泛的应用,但NP的优势主要在于网络层以下的包处理上,若进行内容处理则会导致性能的下降。 通过高性能内容处理芯片和网络处理芯片相结合形式,为千兆应用入侵防护产品提供了由于的解决方案。其设计特点是采用不同的处理器实现各自独立的功能,由网络处理芯片实现网络层和传输层以下的协议栈处理,通过高速内容处理芯片进行应用层的协议分析和内容检查。从而实现了千兆流量线速转发和高速内容处理的完美结合,真正能够为用户提供千兆高性能的应用防护解决方案。 在上面系统框架中,包处理引擎收到数据包后,首先由网络处理器进行传输层以下的协议栈处理,并将数据包还原成数据流。接下来由内容处理器对数据流进行应用协议处理,根据控制器设定的安全策略对各种应用攻击进行检测和过滤。只有符合安全策略要求的数据流才会被发送到服务器,攻击包则被丢弃。 在高性能的千兆解决方案中,能够实现网络层到应用层的多层次立体防护体系。对于面向大型web应用,产品通过多种功能的集成实现有效的应用防护: Web应用入侵防护。通过系统内置的网络内容处理芯片,对web请求和回应流量进行细致的分析。根据内置的规则及启发式的安全策略,有效防范各种针对web应用的攻击行为。 DOS攻击的防护。系统通过网络处理芯片,对Synflood、Icmpflood、Upflood、PinfOfDeath、Smurf、Ping Sweep等网络层的拒绝服务攻击进行过滤的防范,有效保护服务器。 访问控制。通过硬件的ACL匹配算法,系统能够在实现线速转发的同时对数据包进行实时的访问控制。 中科网威在新一代千兆应用入侵防护产品设计中采用了上述解决方案,实现了千兆流量下的线速处理。系统以透明模式接入网络,在增强安全性的同时,网络性能不会受到任何影响,真正实现了应用层内容处理和千兆高性能的完美结合。
嗯!原理很简单,就是通过检测红外线的探透率而转换成酒精浓度的。一对红外传感器(发射+接收)通过接收到的红外线(光电反应)形成的电流信号的大小来判断酒精浓度(相当于红外线传播的介质)。不过要求的器件灵敏度和线性度非常高。
1、实验目的和背景:简要介绍本次实验的目的和研究背景。2、实验方法:详细描述实验所采用的光学方法,包括仪器设备、实验步骤和操作流程等。3、实验结果:展示实验数据和结果。4、结论与总结:对实验结果进行总结和归纳。
这个问得好呀
酒的度数表示酒中含乙醇的体积百分比,通常是以20℃时的体积比表示的,如50度的酒,表示在100毫升的酒中,含有乙醇50毫升(20℃),酒精度一般是以容量来计算,故在酒精浓度后,会加上“Vol. ”以示与重量计算之区分。
啤酒的度数则不表示乙醇的含量,而是表示啤酒生产原料,也就是麦芽汁的浓度,以12度的啤酒为例,是麦芽汁发酵前浸出物的浓度为12%(重量比)。麦芽汁中的浸出物是多种成分的混合物,以麦芽糖为主。
啤酒的酒精是由麦芽糖转化而来的,由此可知,酒精度低于12度。如常见的浅色啤酒,酒精含量为3.3-3.8%;浓色啤酒酒精含量为4-5%。
扩展资料:
体积分数以上的酒精称为无水酒精。生物学中的用途:叶绿体中的色素能溶在有机溶剂无水乙醇(或丙酮)中,所以用无水乙醇可以提取叶绿体中的色素。
95%的酒精用于擦拭紫外线灯。这种酒精在医院常用,而在家庭中则只会将其用于相机镜头的清洁。
70%~75%的酒精用于消毒。这是因为,过高浓度的酒精会在细菌表面形成一层保护膜,阻止其进入细菌体内,难以将细菌彻底杀死。若酒精浓度过低,虽可进入细菌,但不能将其体内的蛋白质凝固,同样也不能将细菌彻底杀死。其中75%的酒精消毒效果最好。
40%~50%的酒精可预防褥疮。长期卧床患者的背、腰、臀部因长期受压可引发褥疮,如按摩时将少许40%~50%的酒精倒入手中,均匀地按摩患者受压部位,就能达到促进局部血液循环,防止褥疮形成的目的。
25%~50%的酒精可用于物理退热。高烧患者可用其擦身,达到降温的目的。因为用酒精擦拭皮肤,能使患者的皮肤血管扩张,增加皮肤的散热能力,酒精蒸发,吸热,使病人体表面温度降低,症状缓解。
注意:酒精浓度不可过高,否则可能会刺激皮肤,并吸收表皮大量的水分。
参考资料来源:百度百科-酒精度