首页 > 毕业论文 > 本科毕业论文一元线性

本科毕业论文一元线性

发布时间:

本科毕业论文一元线性

您好, 相关范文: 外商直接投资对山东省技术进步影响作用的实证分析 内容提要:发展中国家的技术进步往往来自国外技术转移和知识扩散,FDI已成为国际技术扩散的重要渠道,大多数研究验证了FDI技术外溢假设。本文用全要素生产率作为衡量山东省技术进步的指标,运用总量生产函数结合对资本存量的现有研究,测算出山东省的TFP。本文实证分析发现FDI对山东省技术进步的作用并不明显,其原因在于山东省对外资吸收能力较差,引资质量不高。要充分发挥FDI的技术外溢效应须提高外资吸收能力,重视引资质量。 关键词:外商直接投资 资本存量 全要素生产率 一 引 言 关于FDI对东道国的技术外溢效应的实证研究较多,大致从几个方面展开:一是验证FDI对东道国存在技术外溢效应的研究。Caves(1974)选择加拿大和澳大利亚两个国家在1966年制造业的行业横截面数据作为研究样本,得出在加拿大和澳大利亚的制造业中存在外商直接投资的技术效应。Kokko(1994)通过对墨西哥1970年的行业横截面数据进行分析,发现只有跨国公司采用的技术相对简单和跨国公司与当地企业间的技术差距较小时,技术外溢效应才会比较明显。廖杰(2003)以1984—1999年我国全要素生产率和实际外商直接投资额数据为样本,研究发现外商直接投资与我国的技术进步率有一定关系,但外商直接投资的流入对我国整体技术进步的贡献不大。姚洋(1998)、何洁、许罗丹(1999)等的实证结果也支持外商企业对我国企业的技术外溢假设。二是把FDI作为投入变量纳入生产函数,认为FDI的流入对我国全要素生产率增长具有积极促进作用,能产生内生技术外溢和技术进步,从而成为内生经济增长的重要源泉。Blomstromt和Kokko(1998)强调了FDI技术外溢对东道国经济增长的重要性。沈坤荣(1999)通过实证分析得出了外商直接投资占国内生产总值的比重每增加1单位可以带来0、37单位的全要素生产率增长的结论。袁诚和陆挺(2006)从民营企业家的角度对FDI管理知识溢出效应的存在性进行了实证研究。三是从东道国吸收能力及其构成要素的角度研究外商投资外溢效应,如人力资本(Borensztein et al.,1998; Xu,2000)、东道国企业自身研发水平(Griffith et al.,2000;Kinoshita,2000;Keller,2001)、贸易开放度(Holmes and )、东道国金融市场效率(Alfaro et al.,2000)等。 FDI作为物化型技术外溢(embodied spillover)的主要形式之一,成为国际技术扩散的重要渠道。因此本文在现有研究基础上,以山东省实际利用FDI数据为样本并考虑其稳定性,借鉴对国内资本存量的已有研究,估算了山东省的资本存量并测算出山东省的全要素生产率,从而检验FDI对山东省的技术进步的作用。 二 理论模型 尽管目前学术界关于全要素生产率内涵的界定还有分歧。 但通过计算全要素生产率来分析各种因素(投入要素增长、技术进步和能力实现等)对经济增长的贡献早已为学者使用。如舒元(1993)、王小鲁(2000)利用生产函数法估算了我国的全要素生产率增长率。郭庆旺、贾俊雪(2006)对全要素生产率的估算方法进行了比较。本文拟采用索洛残差法计算全要素生产率的增长率,在规模收益不变和希克斯中性技术假设下,全要素生产率增长就等于技术进步率。 为具体测算各要素的产出份额,现假定总量生产函数为两要素(劳动和资本)的C—D生产函数: (1) 其中 为现实产出, 为资本存量, 为劳动投入, 、 分别为平均资本产出和劳动产出份额。为消除异方差的影响,运用回归法来估计 和 ,对(1)式两边取对数,可得方程(2),其中 为误差项。 (3) 利用上式可以计算出 、 ,利用公式 可计算出全要素生产率A。其中 为经济产出总量年增长率, 为技术进步年增长率, 、 分别为资本投入和劳动的年增长率。得到技术进步率后,为考察技术进步与FDI间的关系以揭示FDI流入对技术进步的作用,现假定山东省技术进步与FDI间满足一元线性关系: (5) 其中:b表示FDI对山东省技术进步影响的大小, 表示t年外商直接投资的流入量值。 三、数据选取与实证结果 1、资本存量 的选取: 测算资本存量的基本方法是由Goldsmith开创的永续盘存法,基本公式为 , 、 为 、 年的实际资本存量, 为 年的投资, 为 年的折旧率。本文拟采用 进行测算, 为 年的名义投资, 为固定资产投资价格指数,山东只公布1991年以后的固定资产投资价格指数,本文用上海数据替代1991年前数据。初始资本存量的测算,学者间估算结果有很大差异,(见表1) : 表1:资本存量估算值 不含人力资本存量测算的对比 邹至庄 贺菊煌 王小鲁 唐志红 Hu和KhanP 张军、章元 资本存量(1952年不变价,亿元) 2490(1953年) 235.2 800 通过分析山东省与全国固定资产投资数据发现二者之间有很强的相关性,回归残差通过了ADF检验,说明山东省与全国数据间存有协整关系,资本存量也存在较强的相关关系,因此根据张军、章元的测算数据初步估算山东省1981年的资本存量为亿元。折旧率 的估算,本文采用5%的折旧率。 2、变量FDI值和劳动投入L的选取: FDI时间序列来源于山东统计年鉴,按汇率换算成人民币,一阶差分序列的ADF值为,小于1%的临界值,说明序列平稳,可将FDI作为解释变量。劳动投入采用山东省年末劳动力人数。 3、实证结果分析: (1):根据数据的选取我们计算出平均资本产出份额为和平均劳动力产出份额,计算结果如下: ,由此计算出历年TFP值(见表2) 表2:历年TFP值 年份 TFP 年份 TFP -1 将TFP序列作平稳性检验,ADF值为,小于10%的临界值,一阶差分序列的ADF值为,小于1%的临界值,说明TFP序列通过平稳性检验。 (2):将TFP作为被解释变量FDI为解释变量,得出本文的回归方程: 其中a、b为待定系数, 为回归残差项。回归分析结果如下: ( ) 尽管拟合度不高,但其残差数列通过平稳性检验,ADF值为,小于5%的临界值,说明FDI与TFP之间具有协整关系,因而该回归方程具有一定解释力。 FDI回归系数为,说明FDI的流入对山东省全要素生产率的改善无明显作用,实际利用FDI增加1个单位,全要素生产率仅增加单位。该结果与刘宇(2005)对我国TFP与FDI/GDP所作的实证有较大出入,但我们认为其所采用数据FDI/GDP与现实有较大出入,缺乏必要的说服力。与黄静波与付建(2004)对FDI与广东技术进步所作的实证结果总体上基本相符;与廖杰(2003)对我国全要素生产率和实际外商直接投资关系的实证结论相符。 本文的实证结果不支持技术外溢假设,原因在于山东省吸收能力不足与引资质量不高。影响FDI吸收能力的因素有技术差距、人力资本、贸易开放度及东道国金融市场效率等因素。山东省FDI技术外溢作用并不明显的实证结果是否说明山东省内企业与外资企业存有较大差距有待于进一步分析,但有一点可以肯定,尽管改革开放多年来山东省内企业在管理和销售等方面有了很大提高,但很多行业的核心技术仍由外商掌握,在产品核心技术上与跨国公司存有较大差距。跨国公司往往借口知识产权保护,通过专利技术垄断,为国内企业的市场准入和技术学习设置障碍。目前山东省人力资本缺乏实证指标,但可以肯定的是山东大量的人才外流,导致本土人力资本不足。技术与知识资本是人力资本的核心,主要通过专业学习(大学教育)、在职培训及“干中学”(等途径获得,而山东仅有2所进入211的大学,外出学子回乡就业比例较低;“干中学”过程受阻、在职培训重视不够;薪水壁垒也影响人力资本流动,减少FDI向内资企业流动影响了技术扩散。 此外,山东省FDI对技术进步影响作用不明显还在于制度缺失与政策不到位;引资重视数量轻视质量;重视引资前期而忽视后续配套建设等等。从FDI的来源看,韩国的投资比重逐年上升,西方七国的FDI比重却逐年下降(见表3),实证检验来自西方七国的FDI对全要素生产率有正的影响,如黄静波(2004),这也是FDI对山东省技术进步作用不明显的一个原因。至于韩资的作用尚待进一步研究。 表3:不同区域FDI所占比重(%) 1998年 1999年 2000年 2001年 2002年 2003年 2004年 港澳台 西方七国 韩国 其他地区 四、主要结论与建议 山东省经济发展很快,吸引外商直接投资的规模也很大,FDI在山东的投资规模、出口创汇、增加就业及经济增长方面起着重要作用,但在通过引进外资获取技术的质量方面不甚理想,外商直接投资对山东省全要素生产率的提高无明显作用。从上述分析可以看出最根本的原因在于山东省内企业的整体技术水平与所引进外资有一定差距,再加上人力资本不足及贸易开放不够等因素影响了山东省对FDI的吸收能力,使得FDI技术外溢受到制约。 因此,要发挥FDI对山东省技术进步的作用需要将引进外资的观念从重视规模转向重视质量,把推动技术进步作为引资重点,增强山东省对外资的吸收能力。 1、重视引进发达国家的外资。从发展趋势来看,来自美国、日本和欧洲等国的FDI对促进技术水平的提高作用更加明显,要积极吸引发达国家跨国公司投资,重视具有高技术水平的西方跨国公司对山东省技术进步的影响。今后引进外资过程中稳定利用和引进韩资,充分利其产业外移之时机,也要重视西方发达国家的引资工作。 2、重视吸收能力的提高。影响外资吸收能力的因素较多,但主要为人力资本、东道国企业自身研发水平、贸易开放度及东道国金融市场效率等。国内外大量研究表明,实现技术的国际扩散或转移,东道国的技术吸收能力是关键,一国人力资本的素质一定程度上决定其吸收FDI的技术含量,因此山东省要加大人力资本投资,提高自身研发水平,加大贸易开放度,营造良好的发展环境。 参考文献: [1] 张军 章元 对中国资本存量K的再估计2000. [J].经济研究 2003(07):37~40。 [2] 刘宇 外商直接投资技术外溢下降之迷 [J]. 财贸经济 2006,(04):9~12。 [3] 黄静波 付建 FDI与广东技术进步关系的实证分析 [J]. 管理世界2004(09):81~86。 [4] 李铁立 外商直接投资技术溢出效应差异的实证分析 [J].财贸经济 2006(04):13~18。 [5] 袁诚 陆挺 外商直接投资与管理知识溢出效应:来自中国民营企业家的证据[J]. 经济研究 2005(03):69~79。 [6 郭庆旺 贾俊雪 中国全要素生产率的估算:1979-2004 [J]. 经济研究 2005(06):51~60。 [7] 赖明勇 包群等 外商直直接投资与技术外溢:基于吸收能力的研究 [J]. 经济研究 2005(08):95~105。 相关参考资料: 北京地区外商直接投资对经济的影响 仅供参考,请自借鉴 希望对您有帮助 补充: 如果你不想那么繁琐,你可以直接把例子附加到正文里就可以。囧,比如你说,以下为相关论证,等等。

spss里面把目标数据做回归分析,回归分析功能里就有勾选检验、残差图的选项。你下载一个SPSS软件,点击看一下就明白了,很简单的。至于怎么分析,你需要看一下基本的统计学知识。

梁广1,2邵长高1,2

(1.广州海洋地质调查局 广州 510760;2.国土资源部海底矿产资源重点实验室 广州 510760)

第一作者简介:梁广(1972—),男,工程师,主要从事网络管理和数据管理工作,E-mail:。

摘要 近年来资源勘探已经覆盖大部分陆地区域,越来越多的国家把目光投向海洋。海洋作为一个巨大的能源和资源宝库在国民经济、军事战略等的重要性也日益显现。各个国家竞相制定海洋科技开发规划、战略计划,优先发展海洋新技术[1]。如何有效的从海量海洋地质调查数据中获取有用信息是海洋新技术研究中的重要研究内容。论文针对海洋地质调查数据研究技术应用需求,引入了回归分析模型到海洋地质调查数据库中,详细介绍了回归分析的技术方法和在海洋地质调查数据库研究中的应用优势,为海洋科学研究提供了技术支持。

关键词 海洋地质 回归分析 数据库

1 前言

随着陆地资源的消耗和人类对能源越来越强烈的需求,海洋作为一个尚待大规模开发的能源和资源宝库引起各国越来越多的关注。我国作为世界上最大的发展中国家对能源的需求也在大幅增加,近年来我国石油进口数量急剧增长,据估计到2020年我国石油进口依存度将达到60%。党和国家领导人多次提出“资源、能源、特别是油气资源,已成为我国经济和社会发展的重要因素,解决后备能源问题是保证国家经济安全的大事”。随着我国国土资源大调查和海洋地质专项调查的开展,大量的海洋地质数据被收集和积累,并建立了多个满足各自业务需求的信息系统和数据源[2]。如何有效的从海量海洋地质调查数据中获取有用信息是海洋新技术研究中的重要研究内容。论文针对海洋地质调查数据研究技术应用手段的需求,引入了回归分析技术到海洋地质调查数据库中,详细介绍了回归分析的技术方法和在海洋地质调查数据库研究中的应用优势,为海洋科学研究提供了技术支持。

2 回归分析概述

概述

回归分析是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析[3]。回归分析预测法可以从各数据之间的相互关系出发,通过对与预测对象有联系的现象变动趋势的分析,推算预测对象未来状态数量表现的一种预测方法,通过对与预测对象(y)有联系的多个因素X1,X2,……,Xk建立回归模型。求出的回归模型是否合理,是否符合变量之间的客观规律性,引入相关因素是否有效,变量之间是否存在线性相关关系,模型能否付诸应用,这要通过检验决定。本文给出了两方面的检验:一方面为实际意义检验。即利用理论所拟定的期望值与实际结果相比较是否相符。另一方面为统计检验:分别为拟合优度检验(R平方检验)、方程显著性检验(F检验)、变量显著性检验(t检验)[4]。论文主要介绍一元线性回归分析在海洋地质调查数据库中的应用。

一元线形回归分析模型

线性回归分析可以描述两个要素之间的回归关系。线性回归分析公式为:yi=a+bxi+εi.其中a和b为参数.εi是误差.我们定义Q(a,b)a为总误差。则:

南海地质研究(2014)

对公式两边的a和b求导得:

南海地质研究(2014)

南海地质研究(2014)

x表示x的平均值.y表示y的平均值.

关系系数R2求值方法为[5]:

南海地质研究(2014)

多元线形回归分析模型

研究对象y受多个因素x1,x2,x3,…xn的影响,假定各个影响因素与y的关系是线性的,则可建立多元线性回归模型:

y=β0+β1x1+β2x2+…+βkxk+ε

式中:x1,x2,……,xk代表影响因子;ε 为随机误差;y 代表所研究的对象,即预测目标[3]。

统计检验

统计检验是运用数理统计的方法,对方程进行检验、对模型参数估计值的可靠性进行检验。这主要包括拟合优度检验、方程显著性检验、变量显著性检验,即常用的R2检验、F检验和t检验。

拟合优度检验(检验):

拟合优度检验就是检验回归方程对样本观测值的拟合程度。又称为复相关系数检验法,它是通过对总变差(总离差)的分解得到。

南海地质研究(2014)

其中

南海地质研究(2014)

总变差平方和S总是各个观察值与样本均值之差的平方和,反映了全部数据之间的差异;残差平方和S残是总变差平方和中未被回归方程解释的部分,由解释变量x1,x2……,xk中未包含的一切因素对被解释变量y的影响而造成的;回归平方和S回是总变差平方和中由回归方程解释的部分。对于一个好的回归模型,它应该较好地拟合样本观测值,S总中S残越小越好。于是可以用:

南海地质研究(2014)

求得[4]。

方程显著性检验(F 检验):

对于多元线性回归方程,方程显著性检验就是对总体的线性关系是否显著成立作出推断,即检验被解释变量y与所有解释变量X1,X2,……,Xk之间的线性关系是否显著,

南海地质研究(2014)

即F统计量服从以(k,n-k-1)为自由度的F分布。首先根据样本观测值及回归值计算出统计量F,于是在给定的显著性水平a下,若F>Fa(k,n-k-1),则拒绝H0,判定被解释变量y与所有解释变量x1,x2,……,xk之间的回归效果显著,即确实存在线性关系;反之,则不显著[4]。

变量显著性检验(t检验):

对于多元回归模型,方程的显著性并不意味每个解释变量对被解释变量y的影响都是重要的。如果某个解释变量并不重要,则应该从方程中把它剔除,重新建立更为简单的方程。所以必须对每个解释变量进行显著性检验。

在给定的显著性水平a下,若|ti|>ta/2(n-k-1),则拒绝H0,说明解释变量xi对被解释变量y有显著影响,即xi是影响y的主要因素;反之,接受H0,说明解释变量xi对被解释变量y无显著影响,则应删除该因素[4]。

3 应用实例

论文利用线形回归分析模型对南海海域海洋沉积物温度进行了分析,其中散点图显示如图1所示,回归分析结果见表1。

图1 水深与沉积物温度散点图

Water depth temperature

表1 水深沉积物温度回归分析结果 The regression analysis result for Water depth temperature

读取回归结果如下:

截距:a=;斜率:b=;相关系数:R=;测定系数:R2=;F值:F=。

建立回归模型,并对结果进行检验

模型为: 。

F值的计算公式和结果为:

南海地质研究(2014)

其中P<。回归结果证明,沉积物温度与海水深度有着密切的关系,但是通过散点图显示,并不是温度越深沉积物温度越低。而是受到其他例如海底热流,海洋环流等因素的影响。

4 结语

本文介绍了回归分析在海洋地质调查研究中的应用,同时提供了回归分析的技术原理及实现方法,并通过对南海沉积物与海水深度关系模型进行了应用分析,回归结果显示了两者具有密切但是存在不确定性的关系。实验结果得到有效的应用。

参考文献

[1]单宝强,毛永强.中的坐标系定义与转换[J].黑龙江国土资源,11,38-39

[2]苏国辉,孙记红,等.2011.海洋地质数据集成中的关键问题和方案[J].海洋地质前沿,11(27):51

[3]百度百科.回归分析.

[4]沈聪.2009.基于EXCEL的回归分析在足迹分析上的应用[M].辽宁警官高等专科学校本科毕业论文

[5]Cottrell Analysis:Basic ://~cottrell/ecn215/

The Marine Geological Survey Based on Regression Analysis

Liang Guang1,2,Shao Changgao1,2

( Marine Geological Survey,Guangzhou,510760; Laboratory of Marine Mineral Reasources,MLR,Guangzhou,510760)

Abstract:The new resources survey had covered most of the continental area at ,the ocean resources have attracted more and more attention now as it is a huge resource and energy reservoir that had a profound meaning to national economy and military energy competition made manly countries developed new technology project and put the new ocean technology as the primary study ,how to abstract useful information from marine geological survey data is one of the most important study paper focuses on the study of the deficit of marine database technology and introduces regression analysis model and the application advantage of purpose of this paper is to provide the technology support for marine word:Marine geology;Regression analysis model;Database

会计毕业论文一元线性回归

spss里面把目标数据做回归分析,回归分析功能里就有勾选检验、残差图的选项。你下载一个SPSS软件,点击看一下就明白了,很简单的。至于怎么分析,你需要看一下基本的统计学知识。

polyfit选n=1即可

课题不是很难,之前遇见过,可,。,解决

这方面的,我有经验.

毕业论文多元线性回归案例

最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。( 作出相应的说明 )3、确定理论模型或函数式(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)(二)数据的收集和整理(三)数据处理和回归分析(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)(四)回归结果分析和检验(写出模型估计的结果)1、回归结果的经济理论检验,方向正确否?理论一致否?2、统计检验,t检验 F 检验 R2— 拟合优度检验3、模型设定形式正确否?可试试其他形式。4、模型的稳定性检验。(五)模型的修正(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)(六)确定模型(七)预测

多元线性回归:

1.打开数据,依次点击:analyse--regression,打开多元线性回归对话框。

2.将因变量和自变量放入格子的列表里,上面的是因变量,下面的是自变量。

3.设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。其他方法都是逐步进入的方法。

4.等级资料,连续资料不需要设置虚拟变量。多分类变量需要设置虚拟变量。

5.选项里面至少选择95%CI,点击ok。

计算模型

一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。

当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元线性回归。

设y为因变量X1,X2…Xk为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为:

Y=b0+b1x1+…+bkxk+e

多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。前面学到的标准分就有这个功能,具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下:Zy= β1Z*1 + β2Z*2 + … + βkZ*k 1、普通最小二乘法(Ordinary Least Square, OLS)普通最小二乘法通过最小化误差的平方和寻找最佳函数。通过矩阵运算求解系数矩阵2、广义最小二乘法(Generalized Least Square)广义最小二乘法是普通最小二乘法的拓展,它允许在误差项存在异方差或自相关,或二者皆有时获得有效的系数估计值。其中,Ω是残差项的协方差矩阵 SPSS(Statistical Package for the Social Science)--社会科学统计软件包是世界著名的统计分析软件之一。20世纪60年代末,美国斯坦福大学的三位研究生研制开发了最早的统计分析软件SPSS,同时成立了SPSS公司,并于1975年在芝加哥组建了SPSS总部。20世纪80年代以前,SPSS统计软件主要应用于企事业单位。1984年SPSS总部首先推出了世界第一个统计分析软件微机版本SPSS/PC+,开创了SPSS微机系列产品的开发方向,从而确立了个人用户市场第一的地位。同时SPSS公司推行本土化策略,目前已推出9个语种版本。SPSS/PC+的推出,极大地扩充了它的应用范围,使其能很快地应用于自然科学、技术科学、社会科学的各个领域,世界上许多有影响的报刊杂志纷纷就SPSS的自动统计绘图、数据的深入分析、使用方便、功能齐全等方面给予了高度的评价与称赞。目前已经在国内逐渐流行起来。它使用Windows的窗口方式展示各种管理和分析数据方法的功能,使用对话框展示出各种功能选择项,只要掌握一定的Windows操作技能,粗通统计分析原理,就可以使用该软件为特定的科研工作服务。SPSS for Windows是一个组合式软件包,它集数据整理、分析功能于一身。用户可以根据实际需要和计算机的功能选择模块,以降低对系统硬盘容量的要求,有利于该软件的推广应用。SPSS的基本功能包括数据管理、统计分析、图表分析、输出管理等等。SPSS统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类,每类中又分好几个统计过程,比如回归分析中又分线性回归分析、曲线估计、Logistic回归、Probit回归、加权估计、两阶段最小二乘法、非线性回归等多个统计过程,而且每个过程中又允许用户选择不同的方法及参数。SPSS也有专门的绘图系统,可以根据数据绘制各种图形。SPSS for Windows的分析结果清晰、直观、易学易用,而且可以直接读取EXCEL及DBF数据文件,现已推广到多种各种操作系统的计算机上,它和SAS、BMDP并称为国际上最有影响的三大统计软件。和国际上几种统计分析软件比较,它的优越性更加突出。在众多用户对国际常用统计软件SAS、BMDP、GLIM、GENSTAT、EPILOG、MiniTab的总体印象分的统计中,其诸项功能均获得最高分 。在国际学术界有条不成文的规定,即在国际学术交流中,凡是用SPSS软件完成的计算和统计分析,可以不必说明算法,由此可见其影响之大和信誉之高。最新的版采用DAA(Distributed AnalysisArchitechture,分布式分析系统),全面适应互联网,支持动态收集、分析数据和HTML格式报告,依靠于诸多竞争对手。但是它很难与一般办公软件如Office或是WPS2000直接兼容,在撰写调查报告时往往要用电子表格软件及专业制图软件来重新绘制相关图表,已经遭到诸多统计学人士的批评;而且SPSS作为三大综合性统计软件之一,其统计分析功能与另外两个软件即SAS和BMDP相比仍有一定欠缺。虽然如此,SPSS for Windows由于其操作简单,已经在我国的社会科学、自然科学的各个领域发挥了巨大作用。该软件还可以应用于经济学、生物学、心理学、医疗卫生、体育、农业、林业、商业、金融等各个领域。Matlab、spss、SAS等软件都是进行多元线性回归的常用软件。

用多元线性回归的毕业论文

如果不是都线性相关,而且因素又多的话,试试R型因子分析

多元线性回归模型表示一种地理现象与另外多种地理现象的依存关系,这时另外多种地理现象共同对一种地理现象产生影响,作为影响其分布与发展的重要因素。设变量Y与变量X1,X2,…,Xm存在着线性回归关系,它的n个样本观测值为Yj,Xj1,Xj2,…Xjm�(j=1,2,n),于是多元线性回归的数学模型可以写为:可采用最小二乘法对上式中的待估回归系数β0,β1,…,βm进行估计,求得β值后,即可利用多元线性回归模型进行预测了。计算了多元线性回归方程之后,为了将它用于解决实际预测问题,还必须进行数学检验。多元线性回归分析的数学检验,包括回归方程和回归系数的显著性检验。回归方程的显著性检验,采用统计量:式中: ,为回归平方和,其自由度为m; ,为剩余平方和,其自由度为(n-m-1)。利用上式计算出F值后,再利用F分布表进行检验。给定显著性水平α,在F分布表中查出自由度为m和(n-m-1)的值Fα,如果F≥Fα,则说明Y与X1,X2,…,Xm的线性相关密切;反之,则说明两者线性关系不密切。回归系数的显著性检验,采用统计量:式中,Cii为相关矩阵C=A-1的对角线上的元素。对于给定的置信水平α,查F分布表得Fα(n-m-1),若计算值Fi≥Fα,则拒绝原假设,即认为Xi是重要变量,反之,则认为Xi变量可以剔除。多元线性回归模型的精度,可以利用剩余标准差来衡量。S越小,则用回归方程预测Y越精确;反之亦然。

问题一:多元线性回归分析论文中的回归模型怎么分析 根据R方最大的那个来处理。(南心网 SPSS多元线性回归分析) 问题二:谁能给我列一下多元线性回归分析的步骤,这里正在写论文,第一部分是研究方法,多谢 10分 选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。 需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。 问题三:用SPSS做多元线性回归,之后得到一些属于表格,该怎样分析这些数据? 200分 你的分析结果没能通过T检验,这可能是回归假设不满足导致的,需要进一步对数据进行验证,有问题可以私信我。 问题四:过于多元线性回归分析,SPSS操作 典型的多重共线。 多元回归分析中,一定要先进行多重共线检验,如VIF法。 对于存在多重共线的模型,一个办法是逐步回归,如你做的,但结果的删除变量太多,所以,这种方法效果不好。 此外,还有其它办法,如岭回归,主成分回归,这些方法都保留原始变量。 问题五:硕士毕业论文中做多元线性回归的实证分析,该怎么做 多元线性,回归,的实证分析 问题六:用SPSS做多元回归分析得出的指标结果怎么分析啊? 表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。 ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。 问题七:如何对数据进行多元线性回归分析? 5分 对数据进行多元线性回归分析方法有很多,除了用pss ,可以用Excel的数据分析模块,也可以用Matlab的用regress()函数拟合。你可以把数据发到我的企鹅邮箱,邮箱名为百度名。 问题八:经济类论文 多元线性回归 变量取对数 40分 文 多元线性回归 变量取对数 知道更多 多了解

毕业论文二元线性回归模型

最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。( 作出相应的说明 )3、确定理论模型或函数式(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)(二)数据的收集和整理(三)数据处理和回归分析(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)(四)回归结果分析和检验(写出模型估计的结果)1、回归结果的经济理论检验,方向正确否?理论一致否?2、统计检验,t检验 F 检验 R2— 拟合优度检验3、模型设定形式正确否?可试试其他形式。4、模型的稳定性检验。(五)模型的修正(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)(六)确定模型(七)预测

实验三 多元回归模型【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。【实验内容】建立我国国有独立核算工业企业生产函数。根据生产函数理论,生产函数的基本形式为: 。其中,L、K分别为生产过程中投入的劳动与资金,时间变量 反映技术进步的影响。表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。表3-1 我国国有独立核算工业企业统计资料年份 时间 工业总产值Y(亿元) 职工人数L(万人) 固定资产K(亿元)1978 1 3139 2 3208 3 3334 4 3488 5 3582 6 3632 7 3669 8 3815 9 3955 10 4086 11 4229 12 4273 13 4364 14 4472 15 4521 16 4498 17 4545 资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、建立多元线性回归模型一建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:⒈建立工作文件: CREATE A 78 94⒉输入统计资料: DATA Y L K⒊生成时间变量 : GENR T=@TREND(77)⒋建立回归模型: LS Y C T L K则生产函数的估计结果及有关信息如图3-1所示。 图3-1 我国国有独立核算工业企业生产函数的估计结果因此,我国国有独立工业企业的生产函数为: (模型1) =() () () () 模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为,资金的边际产出为,技术进步的影响使工业总产值平均每年递增亿元。回归系数的符号和数值是较为合理的。 ,说明模型有很高的拟合优度,F检验也是高度显著的,说明职工人数L、资金K和时间变量 对工业总产值的总影响是显著的。从图3-1看出,解释变量资金K的 统计量值为,表明资金对企业产出的影响是显著的。但是,模型中其他变量(包括常数项)的 统计量值都较小,未通过检验。因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除 统计量最小的变量(即时间变量)而重新建立模型。二建立剔除时间变量的二元线性回归模型; 命令:LS Y C L K则生产函数的估计结果及有关信息如图3-2所示。 图3-2 剔除时间变量后的估计结果因此,我国国有独立工业企业的生产函数为: (模型2) =() () () 从图3-2的结果看出,回归系数的符号和数值也是合理的。劳动力边际产出为,资金的边际产出为,表明这段时期劳动力投入的增加对我国国有独立核算工业企业的产出的影响最为明显。模型2的拟合优度较模型1并无多大变化,F检验也是高度显著的。这里,解释变量、常数项的 检验值都比较大,显著性概率都小于,因此模型2较模型1更为合理。三建立非线性回归模型——C-D生产函数。C-D生产函数为: ,对于此类非线性函数,可以采用以下两种方式建立模型。方式1:转化成线性模型进行估计;在模型两端同时取对数,得: 在EViews软件的命令窗口中依次键入以下命令:GENR LNY=log(Y)GENR LNL=log(L)GENR LNK=log(K)LS LNY C LNL LNK则估计结果如图3-3所示。 图3-3 线性变换后的C-D生产函数估计结果即可得到C-D生产函数的估计式为: (模型3) = () () () 即: 从模型3中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,而且拟合优度较模型2还略有提高,解释变量都通过了显著性检验。方式2:迭代估计非线性模型,迭代过程中可以作如下控制:⑴在工作文件窗口中双击序列C,输入参数的初始值;⑵在方程描述框中点击Options,输入精度控制值。控制过程:①参数初值:0,0,0;迭代精度:10-3;则生产函数的估计结果如图3-4所示。 图3-4 生产函数估计结果此时,函数表达式为: (模型4) =()(-)() 可以看出,模型4中劳动力弹性 =,资金的产出弹性 =,很显然模型的经济意义不合理,因此,该模型不能用来描述经济变量间的关系。而且模型的拟合优度也有所下降,解释变量L的显著性检验也未通过,所以应舍弃该模型。②参数初值:0,0,0;迭代精度:10-5; 图3-5 生产函数估计结果从图3-5看出,将收敛的误差精度改为10-5后,迭代100次后仍报告不收敛,说明在使用迭代估计法时参数的初始值与误差精度或迭代次数设置不当,会直接影响模型的估计结果。③参数初值:0,0,0;迭代精度:10-5,迭代次数1000; 图3-6 生产函数估计结果此时,迭代953次后收敛,函数表达式为: (模型5) =()()() 从模型5中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理, ,具有很高的拟合优度,解释变量都通过了显著性检验。将模型5与通过方式1所估计的模型3比较,可见两者是相当接近的。④参数初值:1,1,1;迭代精度:10-5,迭代次数100; 图3-7 生产函数估计结果此时,迭代14次后收敛,估计结果与模型5相同。比较方式2的不同控制过程可见,迭代估计过程的收敛性及收敛速度与参数初始值的选取密切相关。若选取的初始值与参数真值比较接近,则收敛速度快;反之,则收敛速度慢甚至发散。因此,估计模型时最好依据参数的经济意义和有关先验信息,设定好参数的初始值。二、比较、选择最佳模型估计过程中,对每个模型检验以下内容,以便选择出一个最佳模型:一回归系数的符号及数值是否合理;二模型的更改是否提高了拟合优度;三模型中各个解释变量是否显著;四残差分布情况以上比较模型的一、二、三步在步骤一中已有阐述,现分析步骤一中5个不同模型的残差分布情况。分别在模型1~模型5的各方程窗口中点击View/Actual, Fitted, Residual/ Actual, Fitted, Residual Table(图3-8),可以得到各个模型相应的残差分布表(图3-9至图3-13)。可以看出,模型4的残差在前段时期内连续取负值且不断增大,在接下来的一段时期又连续取正值,说明模型设定形式不当,估计过程出现了较大的偏差。而且,模型4的表达式也说明了模型的经济意义不合理,不能用于描述我国国有工业企业的生产情况,应舍弃此模型。模型1的各期残差中大多数都落在 的虚线框内,且残差分别不存在明显的规律性。但是,由步骤一中的分析可知,模型1中除了解释变量K之外,其余变量均为通过变量显著性检验,因此,该模型也应舍弃。模型2、模型3、模型5都具有合理的经济意义,都通过了 检验和F检验,拟合优度非常接近,理论上讲都可以描述资本、劳动的投入与产出的关系。但从图3-13看出,模型5的近期误差较大,因此也可以舍弃该模型。最后将模型2与模型3比较发现,模型3的近期预测误差略小,拟合优度比模型2略有提高,因此可以选择模型2为我国国有工业企业生产函数。 图3-8 回归方程的残差分析 图3-9 模型1的残差分布图3-10 模型2的残差分布图3-11 模型3的残差分布图3-12 模型4的残差分布图3-13 模型5的残差分布

多元线性回归模型,(multivariable linear regression model )在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响。一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。 设y为因变量X1,X2…Xk为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为:Y=b0+b1x1+…+bkxk+e其中,b0为常数项,b1,b2…bk为回归系数,b1为X1,X2…Xk固定时,x1每增加一个单位对y的效应,即x1对y的偏回归系数;同理b2为X1,X2…Xk固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为:y=b0 +b1x1 +b2x2 +e建立多元线性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是:(1)自变量对因变量必须有显著的影响,并呈密切的线性相关;(2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的;(3)自变量之间应具有一定的互斥性,即自变量之间的相关程度不应高于自变量与因变量之因的相关程度;(4)自变量应具有完整的统计数据,其预测值容易确定。多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和(Σe)为最小的前提下,用最小二乘法求解参数。以二线性回归模型为例,求解回归参数的标准方程组为

  • 索引序列
  • 本科毕业论文一元线性
  • 会计毕业论文一元线性回归
  • 毕业论文多元线性回归案例
  • 用多元线性回归的毕业论文
  • 毕业论文二元线性回归模型
  • 返回顶部