一、定义1、中介变量(mediator)是自变量对因变量发生影响的中介,是自变量对因变量产生影响的实质性的、内在的原因 。如果变量Y与变量X的关系是变量M的函数,称M为调节变量。2、调节变量是指考虑自变量X 对因变量Y的影响,如果X通过影响变量M来影响Y,则称M为中介变量。调节变量可以是定性的(如性别、种族、学校类型等) ,也可以是定量的(如年龄、受教育年限、刺激次数等) ,它影响因变量和自变量之间关系的方向(正或负)和强弱。二、区别1、研究目的不同调节变量研究的目的是X何时影响Y或何时影响比较大。中介变量研究的目的是X如何影响Y。2、M的功能不同调节变量M的功能影响Y和X之间关系的方向(正和负)和强弱。中介变量M代表一种机制,X通过它影响Y。3、检验策略不同调节变量做层次回归分析,检验偏回归系数C的显著性,或者检验测定系数的变化。中介变量做依次检验,必要时做Sobel检验。三、例子1、中介变量例如:学生的学习效果和指导方案的关系,往往受到学生个性的影响,一种指导方案对某类学生很有效,对另一类学生却没有效,从而学生个性是调节变量。又如学生一般自我概念与某项自我概念(如外貌、体能等)的关系,受到学生对该项自我概念重视程度的影响:很重视外貌的人,长相不好会大大降低其一般自我概念;不重视外貌的人,长相不好对其一般自我概念影响不大,从而对该项自我概念的重视程度是调节变量。2、调节变量例如:上司的归因研究:下属的表现———上司对下属表现的归因———上司对下属表现的反应,其中的“上司对下属表现的归因”为中介变量 。如果一个变量与自变量或因变量相关不大,它不可能成为中介变量,但有可能成为调节变量。理想的调节变量是与自变量和因变量的相关都不大。有的变量,如性别、年龄等,由于不受自变量的影响,自然不能成为中介变量,但许多时候都可以考虑为调节变量。对于给定的自变量和因变量,有的变量做调节变量和中介变量都是合适的,从理论上都可以做出合理的解释。扩展资料调节变量的特征一般来说,调节变量是定性(如,性别,种族,阶层)或定量(如,回报大小)变量,影响自变量(IV)或预测变量(PV)与因变量(DV)或效标变量(CV)之间关系的方向和/或强度。在相关分析中,调节变量是影响其它两个变量之间的零次相关(the zero-order correlation)的第三方变量。在更熟悉的方差分析中,自变量与通过操控设定为某种条件的因子之间的交互作用代表一个基本的调节效应。调节变量总是作为自变量,而中介从结果到原因的角色变化取决于分析的重点。参考资料来源:百度百科—调节变量参考资料来源:百度百科—中介变量
是否具有责任心,是否经过专业学,是否具有专业资质证书,是首要的判断标准。心理咨询是一项非常有意义的事,可以帮助自己也可以帮助别人像心理课程中的重要一个章节就是“发展心理学”,讲述的就是从婴幼儿时期到青少年,再到中年和老年等各个阶段中的心理特征和引导办法。可以根据自己的情况选择面授课程或者网络课程。亲若觉得回复有用,请采纳哟
这个内容非常多了,主要要做多次回归
分层回归分析
打个比方,调节变量有点像汽车的油门,汽车能跑多快根本上取决于汽车的结构设计(动力系统及其他总成),这个结构对于具体某款汽车是确定的,但具体跑多快看你给的油量,给油多则车越快。再例如,对于一个给定的企业研发系统,研发强度(即资金投入)作用有如汽车油量,即是调节变量,从根本上看企业研发产出取决于企业研发系统的结构。再如获得相同金额的国家基金项目资助的A课题组和B课组,其产出取决于课题组内在研发能力,资助费一致但产出很不一样。调节变量一般只对同一系统的产出起作用,对不同系统的产出不好做出比较的。
可以Q我来请教我
论文其实并不怎样难写,不懂的话我告诉你思路。“巧妇难为无米之炊”,在短少材料的状况下,是很难写出高质量的论文的。选择一个具有丰厚材料来源的课题,对课题深化研讨与展开很有协助。其次,要有浓重的研讨兴味,选择本人感兴味的课题。
在做中介效应时,有时候需要用Sobel检验。Sobel检验可以手工计算,也可以在Excel中计算,但这些都需要一步步计算,比较麻烦。当然,如果下载Sobel小程序,那计算起来就比较方便,但也要设置相应的算式。其实,在SPSS的Process插件就可以自动生成Sobel检验结果,包括具体效应值和显著性水平。Process具体操作步骤见本博客“SPSS数据统计分析”的博文(点击进入)《用SPSS的Process做中介和调节效应的优点、步骤和不足》。
可以的。在常态下具有不饱和体系的分子中存在着电子转移,由这种电子转移所产生的效应称为中介效应。中介效应是一个统计学概念,用来识别、解释、研究自变量和因变量之间关系的机制和过程。