《打折问题》 打折问题是这学期关于分数百分数应用题的一个特殊形式,它应用学生已经学过的“已知一个数的几分之几(百分之几)是多少求这个数?”或者“已经一个数求它的几分之几(百分之几)是多少?”,打折问题把这两种形式的应用题具体化,而且打折问题是学生在日常生活中经常可以遇到的实际问题,它把抽象问题又具体化、实际化,学生学习起来应该会有兴趣,并且有实际的应用,抓住这一点本课的教学重点放在让学生能够在实际生活中灵活运用打折策略,有经济头脑。 本节课教学由学生经常会使用的肯德基快餐店的优惠券导入,出示不同的优惠券让学生比较哪种我们用起来更加便宜,我把优惠券分为两种:一、原价不同,现价相同;二、原价不同、现价不同,但降低的价钱相同。由此学生会分析出不同的情况,第一种现价相同,那么原价越高,表示降低得越多,这是这款优惠券使用者得到的优惠最大。对于第二种情况,现价不同,原价不同,降低的部分相同,对于学生在理解上可能会存在问题,他们无法理解这种怎么比较大小,很多学生会认为这样的话那么优惠程度是相同的,在教学设计上我考虑到了这一点如果学生能够理解那么则由他们来解释,如果不能我便举例:如2元钱的一种笔记本现降价1元,100元的衣服现在也降价1元,下降价格相同,那么它们的降价对于消费者来说是否程度相同呢?这时候学生可以很清楚地明白,它们之间存在着很大的差异,原价低的降价幅度大。由此引出这节课的课题:我们经常用打折来衡量一种商品现价和原价之间的关系,打折也就是现价是原价的百分之几,打折=现价÷原价,课题揭示学生明白了他们之间的关系以及打折的意义。在教学是我在这部分有些过于急,在揭示出课题时,应该让学生在理解上更加深入,说一说自己的理解,互相给大家解释一下,把概念的理解加深。 在学生理解了打折的概念基础上,出示例题,例题根据学生的日常生活中有可能见到的打折问题采用由简到难,讲练结合的方式: 例1:一件商品原价80元,现在搞活动,九折销售,现价多少元? 学生根据对打折的理解,很容易能够得出答案,在学生得出答案的基础上,让学生根据这三个条件,选其中两个任编一道打折应用题,学生在编题的过程中又进一步对打折进行了理解,并且知道了原价、现价、打折三者之间的关系,要求某一问题,需要知道哪两个条件,有助于学生做更难的应用题。在这个编题过程中,我有些着急,其实这是再一次让学生加强概念理解的好机会,捋清三者之间的关系的好时机,应让学生自己总结。 例2:超市酸奶原价4元一盒,现在买二赠一,相当于打几折? 这是日常生活中经常见到的,间接打折问题,由学生先思考,给他们充足的思考时间,让学生在思考的过程中产生疑问,并动脑筋自己解决,大多数学生在这道题的思考中能够发现问题并解决,灵活运用打折=现价÷原价,有少数在独立思考过程中有问题的学生在大家集体交流时,也会明白,这时我再次强调了打折公式的应用灵活性,并且及时出了一道练习题让学生进行练习,对于刚刚有问题的学生是一次在理解的机会,可是在这里我放掉了一个拓展思维的机会,那就是在买几赠几的打折问题中,打折其实和原价没有关系,例如:买三赠一永远是打七五折,买四赠一永远是打八折,这是一个固定的规律,可由于我的粗心没有给与学生引导,这是在以后的教学中需要注意的。 接着我又安排了另外一种打折方式,就是商场反券和反现金,让学生们讨论和分析它们之间的不同,他们在计算打折时的方法,由于这的确是一个难点,对于有的学生的确存在难度,所以安排先讨论,再汇报,老师讲解,再练习的方式,有助于各个层次的学生的理解需要。 在四十分钟的时间里,我带领学生基本上掌握了打折知识,但是由于课前的预计不好,这节课并没有完成所有的课前预备任务,这也是教学上的一个失败之处,没有正确的估计和预测学生的效果。 纵观这节课,我觉得和学生之间的配合很好,但在教学时应由缺乏经验不能完美的应对之处,对于教学上偶然出现的机会不能准确地抓住和把握,在教学设计上也有考虑不周之处,这还需要进一步的练习。
无回答·····9799471017,7gzh
星期天,我和妈妈去商场购物,超市的海报上写着:购物满200元的返还100元代金券。我心里想:"呵呵,满200元的返还100元,那就是原来价钱的一半,挺划算的。" 我给自己选了一套208元的运动服,获得了100元的代币券。代币券得在今天用完,于是妈妈又给生病的爷爷买了一个288元的榨汁机,我算了算只要再拿出188元就可以买下这个榨汁机。 买完了东西,在回家的路上,我对妈妈说:"妈妈,今天我们买了这些东西是不是都是打了对折啊?"妈妈笑着说:"傻孩子,不是这样的,等回家后,妈妈算给你看,你就知道了。" 回到家,妈妈对我说:"艺儿,今天我们一共花了多少钱?"我说:"运动服208元,榨汁机188元,一共是396元啊。"妈妈接着又问:"那这些商品原价是多少?"我说:"496元啊。"妈妈说:"好,那也就是说今天我们用396元的钱买了496元的商品,如果要算打了多少折,就看看实际花的钱占商品价钱多少比例,用396 496,你拿计算器算算。"我一按计算器,啊原来是79折。我百思不得其解,后来还是妈妈话让我明白。原来商家规定只有满200元才能返券,所以买榨汁机时188元的部分就不能享受到优惠了。因此,我们享受到的优惠程度和商家所说的相比也是打了折扣。 "买家不如卖家精"这话一点也不假。商家心里早已打好了如意算盘,打折背后隐藏着数学问题,以后我一定要注意了。
回答 可以具体说一下什么题么 提问 某店子,所有商品成本价要5%,比如充值会员500送128,实际消费完这500店里有多少利润? 回答 稍等啊, 您方便给我拍张照片么 还在么 可以给我拍下题目么 提问 什么照片?就是问问我店里的利润究竟是多少,我的所有商品成本价是5,现在搞活动,充值500送128,最后这500我究竟有多少利润 回答 不是5%是么 因为您上面有个百分之 提问 对,5% 回答 成本价是5% 这个正常卖是多少 卖是多少钱 提问 我晕,肯定是营业额100,我的成本是营业额的5%啊 回答 好的,等下,我给你算 125 提问 能不能看看你算的公式 回答 可能你看不懂我写的 我给你口述一下可以么 提问 可以一起发给我看吗?[捂脸] 回答 你先看看我给你口述你能听懂不 首先我们充500赠128实际上是628元 我们卖100相当于6次每次成本5 5×6=375元 可我们实际收500 所以这个利润减出来是125 他们还有里面还有28 如果你的28留着那也算利润 更多26条
商家为了促销,可谓挖空心思胶尽脑汁,五花八门层出不穷,一年365天,中方的西方的节日,一网打尽,每一个都成了他们促销的好时机。若那一月节日少了,利润不足,商家们就努力制造节日买100送50,或买100送60,甚至是80到100。商场里涌动的多数是女人,喜欢购物仿佛是女人的天性,可事实是收入有限,数学也不怎么好,本想勤俭持家的节约一把,没想就落入了商家的美丽陷阱。不过我前天晚上花了点时间,总归弄清了这种买多少送多少的折扣算法,说出来与大家一起分享。商家打折的一般是高利润的衣服鞋子,但品牌的衣服和鞋子一般是全国统一的价钱,差异就是各地的折扣不同。比如原价是580元的一件衣服,平时可以打到7折,也就是说你用406元就可以买到。举例说买100送50吧,你用580元现金买了一件衣服,另外得到250元的购物券。假如你又再买了一件350元的衣服,需再付100元现金,(用购物券买东西是不再送券的)也就是说,你实际支出了580+100=680元,买了原价为原价为580+350=930元的商品,即你所享受的折扣为680/930=73,即为3折。而买100送50的时侯,商品的价格很少有100元的整数倍的,多为98,198,298之类,而你为了享受折扣,又购买了几十元的东西来凑。假如你的运气超好,选到了一个100元的商品,得到了50元的购物券,又刚好用这50元买了另外一件商品,那你享受的折扣极限是100/150=67折。如果你买了一件199元的商品,而又凑不到另一件满意的商品,你只得到了50元的购物券,事实上你很难凑到一件价格是50元的商品,如果你买了50元以下的商品,那不找赎你的余款就作废,如果你买了一件99元的商品,你需另付49元现金,那你这单购物的折扣是(199+49)/(199+99)=83。如此算来,买100送50的最低折扣是7折,但这几乎是不可能的,你一般会买到7至8折的商品,而且为了消费你那个好象是多得的购物券,往往会买一些不实用的东西。如果是买200送100,参照以上算法,但实际折扣会更高宁可去买7折的商品也不要去买100送50的。更不要为买200送100的折
今年过寒假,我和爸爸行走在繁华的大街上,随处可见商家打出的“满200送200”的促销招牌。消费者们蜂拥而至,商场里人山人海,抢购成风。而实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满200送200元券”只是商家的一种促销手段,其中暗藏着数学问题。 就说满200送200元购物券。我妈妈先用490元买了一件羊绒外衣,送来了400元购物券。此时得到的四百元购物券,我们心里产生一种捡便宜的感觉,于是就产生了较强的购买欲望,意欲花完为快(一般商家的购物券都是限期消费,在一定的时期内没有消费就过期作废)。于是我们又花了248元券买了一双鞋,又用剩下的150元券中的128买了一条围巾。那么我们买东西到底便宜了多少呢?我算了一下128+248+490=866(元),这是原来不打折时需要花的钱。!
我也新营的。
星期天,我和妈妈去商场购物,超市的海报上写着:购物满200元的返还100元代金券。我心里想:"呵呵,满200元的返还100元,那就是原来价钱的一半,挺划算的。" 我给自己选了一套208元的运动服,获得了100元的代币券。代币券得在今天用完,于是妈妈又给生病的爷爷买了一个288元的榨汁机,我算了算只要再拿出188元就可以买下这个榨汁机。 买完了东西,在回家的路上,我对妈妈说:"妈妈,今天我们买了这些东西是不是都是打了对折啊?"妈妈笑着说:"傻孩子,不是这样的,等回家后,妈妈算给你看,你就知道了。" 回到家,妈妈对我说:"艺儿,今天我们一共花了多少钱?"我说:"运动服208元,榨汁机188元,一共是396元啊。"妈妈接着又问:"那这些商品原价是多少?"我说:"496元啊。"妈妈说:"好,那也就是说今天我们用396元的钱买了496元的商品,如果要算打了多少折,就看看实际花的钱占商品价钱多少比例,用396 496,你拿计算器算算。"我一按计算器,啊原来是79折。我百思不得其解,后来还是妈妈话让我明白。原来商家规定只有满200元才能返券,所以买榨汁机时188元的部分就不能享受到优惠了。因此,我们享受到的优惠程度和商家所说的相比也是打了折扣。 "买家不如卖家精"这话一点也不假。商家心里早已打好了如意算盘,打折背后隐藏着数学问题,以后我一定要注意了。
商家的促销手段—打折 在一些商店里经常可以看到“清仓甩货”的字样,通常在这种情况下是因为商品过时,卖不出去或有一些瑕疵,这种产品通常是不会有人买的,所以商家都会打大折扣。但是一些大的商城里大部分的商品都会打折,这也是吸引顾客的一个重要因素。现在还流行办理打折卡,或者给一些代金卷,让顾客觉得物有所值。打折有很多方式但主要都是围绕着买卖中的让利、减价,是卖方给买方的价格优惠,打折也是指经营者在销售商品时通常销售自有品牌和周转快的商品为主,限定销售品种,并以有限的经营面积、店铺装修简单、有限的服务和低廉的经营成本,向消费者提供“物有所值”的商品。说到底,打折就是商家促进销售的一种手段,是商品能有效销售出的一种方法。商品打折有很多种类比如在一些饭店里,花费金额达到商家要求的最低消费便可以领取数额不同的代金券或饮料;也有一些商家制定一些东西,可以买一赠一,或买几赠几;在一些高级会所,书店等都可以办理会员卡,打折卡,或者办理可以存钱的卡,再存多少钱可以增一些数额不等的钱存到卡里,如果是门票的使用次数便会赠送几次……然而在一些节日或生日里可以用来送礼的商品都精包装后再打一些折扣或在一个盒子里放上各种小袋食品,来买的人更是源源不断。在宠物店里促销的方式可就实惠多了,比如买几只金鱼赠一株小水草,一袋鱼食或者鱼缸……在玩具店里的促销可是各种各样,比如一款很精致的模型,价格不贵,就来当赠品,消费多少元以上便可获得;更厉害的是本可以单卖的商品,却被组成一对,买一赠一,可想而知,价格当然上升了……更令人诱惑的是糖果店,各种各样的糖果接踵而来,可是价格都不一样,也不可能都买下来,所以便有大包装的糖果,种类很多,都觉得合适极了,可是正因为不能每种都计算多少钱,所以糖果店狠狠的赚了一笔;还有那种超大的棒棒糖,本以为物有所值,结果里面竟是一些小棒棒糖,就因为外包装华丽了,结果了;店里通常会有试吃的糖,孩子尝了以后,能不动心么;或买一包糖赠送另一口味的糖等……不只是食品用品可以打折,连各种票也能因为团购而打折。现在我们生活中的很多东西都在打折,打折当然不是为了让商家亏本,从另一的角度来想,反而是在挣钱,当顾客觉得商品好以后便成为了“回头客”,再有“回头客”推荐给别人,这样店铺的名称不就一传十,十传百了吗? 打折越来越成为商家促销的手段之一,在我们生活中无处不在。我们在分辨打折活动是否真正合适的时候,不仅要明辨打折活动真正目的,还需要相互比较,当然在比较中就需要我们利用打折计算出商品的真实价格,然后明辨物品是否物有所值。所以我决定好好学习数学中的学问—打折问题,用于我们的生活中。
星期天,我和妈妈去商场购物,超市的海报上写着:购物满200元的返还100元代金券。我心里想:"呵呵,满200元的返还100元,那就是原来价钱的一半,挺划算的。" 我给自己选了一套208元的运动服,获得了100元的代币券。代币券得在今天用完,于是妈妈又给生病的爷爷买了一个288元的榨汁机,我算了算只要再拿出188元就可以买下这个榨汁机。 买完了东西,在回家的路上,我对妈妈说:"妈妈,今天我们买了这些东西是不是都是打了对折啊?"妈妈笑着说:"傻孩子,不是这样的,等回家后,妈妈算给你看,你就知道了。" 回到家,妈妈对我说:"艺儿,今天我们一共花了多少钱?"我说:"运动服208元,榨汁机188元,一共是396元啊。"妈妈接着又问:"那这些商品原价是多少?"我说:"496元啊。"妈妈说:"好,那也就是说今天我们用396元的钱买了496元的商品,如果要算打了多少折,就看看实际花的钱占商品价钱多少比例,用396 496,你拿计算器算算。"我一按计算器,啊原来是79折。我百思不得其解,后来还是妈妈话让我明白。原来商家规定只有满200元才能返券,所以买榨汁机时188元的部分就不能享受到优惠了。因此,我们享受到的优惠程度和商家所说的相比也是打了折扣。 "买家不如卖家精"这话一点也不假。商家心里早已打好了如意算盘,打折背后隐藏着数学问题,以后我一定要注意了。
新颖的、、、
《打折问题》 打折问题是这学期关于分数百分数应用题的一个特殊形式,它应用学生已经学过的“已知一个数的几分之几(百分之几)是多少求这个数?”或者“已经一个数求它的几分之几(百分之几)是多少?”,打折问题把这两种形式的应用题具体化,而且打折问题是学生在日常生活中经常可以遇到的实际问题,它把抽象问题又具体化、实际化,学生学习起来应该会有兴趣,并且有实际的应用,抓住这一点本课的教学重点放在让学生能够在实际生活中灵活运用打折策略,有经济头脑。 本节课教学由学生经常会使用的肯德基快餐店的优惠券导入,出示不同的优惠券让学生比较哪种我们用起来更加便宜,我把优惠券分为两种:一、原价不同,现价相同;二、原价不同、现价不同,但降低的价钱相同。由此学生会分析出不同的情况,第一种现价相同,那么原价越高,表示降低得越多,这是这款优惠券使用者得到的优惠最大。对于第二种情况,现价不同,原价不同,降低的部分相同,对于学生在理解上可能会存在问题,他们无法理解这种怎么比较大小,很多学生会认为这样的话那么优惠程度是相同的,在教学设计上我考虑到了这一点如果学生能够理解那么则由他们来解释,如果不能我便举例:如2元钱的一种笔记本现降价1元,100元的衣服现在也降价1元,下降价格相同,那么它们的降价对于消费者来说是否程度相同呢?这时候学生可以很清楚地明白,它们之间存在着很大的差异,原价低的降价幅度大。由此引出这节课的课题:我们经常用打折来衡量一种商品现价和原价之间的关系,打折也就是现价是原价的百分之几,打折=现价÷原价,课题揭示学生明白了他们之间的关系以及打折的意义。在教学是我在这部分有些过于急,在揭示出课题时,应该让学生在理解上更加深入,说一说自己的理解,互相给大家解释一下,把概念的理解加深。 在学生理解了打折的概念基础上,出示例题,例题根据学生的日常生活中有可能见到的打折问题采用由简到难,讲练结合的方式: 例1:一件商品原价80元,现在搞活动,九折销售,现价多少元? 学生根据对打折的理解,很容易能够得出答案,在学生得出答案的基础上,让学生根据这三个条件,选其中两个任编一道打折应用题,学生在编题的过程中又进一步对打折进行了理解,并且知道了原价、现价、打折三者之间的关系,要求某一问题,需要知道哪两个条件,有助于学生做更难的应用题。在这个编题过程中,我有些着急,其实这是再一次让学生加强概念理解的好机会,捋清三者之间的关系的好时机,应让学生自己总结。 例2:超市酸奶原价4元一盒,现在买二赠一,相当于打几折? 这是日常生活中经常见到的,间接打折问题,由学生先思考,给他们充足的思考时间,让学生在思考的过程中产生疑问,并动脑筋自己解决,大多数学生在这道题的思考中能够发现问题并解决,灵活运用打折=现价÷原价,有少数在独立思考过程中有问题的学生在大家集体交流时,也会明白,这时我再次强调了打折公式的应用灵活性,并且及时出了一道练习题让学生进行练习,对于刚刚有问题的学生是一次在理解的机会,可是在这里我放掉了一个拓展思维的机会,那就是在买几赠几的打折问题中,打折其实和原价没有关系,例如:买三赠一永远是打七五折,买四赠一永远是打八折,这是一个固定的规律,可由于我的粗心没有给与学生引导,这是在以后的教学中需要注意的。 接着我又安排了另外一种打折方式,就是商场反券和反现金,让学生们讨论和分析它们之间的不同,他们在计算打折时的方法,由于这的确是一个难点,对于有的学生的确存在难度,所以安排先讨论,再汇报,老师讲解,再练习的方式,有助于各个层次的学生的理解需要。 在四十分钟的时间里,我带领学生基本上掌握了打折知识,但是由于课前的预计不好,这节课并没有完成所有的课前预备任务,这也是教学上的一个失败之处,没有正确的估计和预测学生的效果。 纵观这节课,我觉得和学生之间的配合很好,但在教学时应由缺乏经验不能完美的应对之处,对于教学上偶然出现的机会不能准确地抓住和把握,在教学设计上也有考虑不周之处,这还需要进一步的练习。
无回答·····9799471017,7gzh
《打折问题》 打折问题是这学期关于分数百分数应用题的一个特殊形式,它应用学生已经学过的“已知一个数的几分之几(百分之几)是多少求这个数?”或者“已经一个数求它的几分之几(百分之几)是多少?”,打折问题把这两种形式的应用题具体化,而且打折问题是学生在日常生活中经常可以遇到的实际问题,它把抽象问题又具体化、实际化,学生学习起来应该会有兴趣,并且有实际的应用,抓住这一点本课的教学重点放在让学生能够在实际生活中灵活运用打折策略,有经济头脑。 本节课教学由学生经常会使用的肯德基快餐店的优惠券导入,出示不同的优惠券让学生比较哪种我们用起来更加便宜,我把优惠券分为两种:一、原价不同,现价相同;二、原价不同、现价不同,但降低的价钱相同。由此学生会分析出不同的情况,第一种现价相同,那么原价越高,表示降低得越多,这是这款优惠券使用者得到的优惠最大。对于第二种情况,现价不同,原价不同,降低的部分相同,对于学生在理解上可能会存在问题,他们无法理解这种怎么比较大小,很多学生会认为这样的话那么优惠程度是相同的,在教学设计上我考虑到了这一点如果学生能够理解那么则由他们来解释,如果不能我便举例:如2元钱的一种笔记本现降价1元,100元的衣服现在也降价1元,下降价格相同,那么它们的降价对于消费者来说是否程度相同呢?这时候学生可以很清楚地明白,它们之间存在着很大的差异,原价低的降价幅度大。由此引出这节课的课题:我们经常用打折来衡量一种商品现价和原价之间的关系,打折也就是现价是原价的百分之几,打折=现价÷原价,课题揭示学生明白了他们之间的关系以及打折的意义。在教学是我在这部分有些过于急,在揭示出课题时,应该让学生在理解上更加深入,说一说自己的理解,互相给大家解释一下,把概念的理解加深。 在学生理解了打折的概念基础上,出示例题,例题根据学生的日常生活中有可能见到的打折问题采用由简到难,讲练结合的方式: 例1:一件商品原价80元,现在搞活动,九折销售,现价多少元? 学生根据对打折的理解,很容易能够得出答案,在学生得出答案的基础上,让学生根据这三个条件,选其中两个任编一道打折应用题,学生在编题的过程中又进一步对打折进行了理解,并且知道了原价、现价、打折三者之间的关系,要求某一问题,需要知道哪两个条件,有助于学生做更难的应用题。在这个编题过程中,我有些着急,其实这是再一次让学生加强概念理解的好机会,捋清三者之间的关系的好时机,应让学生自己总结。 例2:超市酸奶原价4元一盒,现在买二赠一,相当于打几折? 这是日常生活中经常见到的,间接打折问题,由学生先思考,给他们充足的思考时间,让学生在思考的过程中产生疑问,并动脑筋自己解决,大多数学生在这道题的思考中能够发现问题并解决,灵活运用打折=现价÷原价,有少数在独立思考过程中有问题的学生在大家集体交流时,也会明白,这时我再次强调了打折公式的应用灵活性,并且及时出了一道练习题让学生进行练习,对于刚刚有问题的学生是一次在理解的机会,可是在这里我放掉了一个拓展思维的机会,那就是在买几赠几的打折问题中,打折其实和原价没有关系,例如:买三赠一永远是打七五折,买四赠一永远是打八折,这是一个固定的规律,可由于我的粗心没有给与学生引导,这是在以后的教学中需要注意的。 接着我又安排了另外一种打折方式,就是商场反券和反现金,让学生们讨论和分析它们之间的不同,他们在计算打折时的方法,由于这的确是一个难点,对于有的学生的确存在难度,所以安排先讨论,再汇报,老师讲解,再练习的方式,有助于各个层次的学生的理解需要。 在四十分钟的时间里,我带领学生基本上掌握了打折知识,但是由于课前的预计不好,这节课并没有完成所有的课前预备任务,这也是教学上的一个失败之处,没有正确的估计和预测学生的效果。 纵观这节课,我觉得和学生之间的配合很好,但在教学时应由缺乏经验不能完美的应对之处,对于教学上偶然出现的机会不能准确地抓住和把握,在教学设计上也有考虑不周之处,这还需要进一步的练习。
商家为了促销,可谓挖空心思胶尽脑汁,五花八门层出不穷,一年365天,中方的西方的节日,一网打尽,每一个都成了他们促销的好时机。若那一月节日少了,利润不足,商家们就努力制造节日买100送50,或买100送60,甚至是80到100。商场里涌动的多数是女人,喜欢购物仿佛是女人的天性,可事实是收入有限,数学也不怎么好,本想勤俭持家的节约一把,没想就落入了商家的美丽陷阱。不过我前天晚上花了点时间,总归弄清了这种买多少送多少的折扣算法,说出来与大家一起分享。商家打折的一般是高利润的衣服鞋子,但品牌的衣服和鞋子一般是全国统一的价钱,差异就是各地的折扣不同。比如原价是580元的一件衣服,平时可以打到7折,也就是说你用406元就可以买到。举例说买100送50吧,你用580元现金买了一件衣服,另外得到250元的购物券。假如你又再买了一件350元的衣服,需再付100元现金,(用购物券买东西是不再送券的)也就是说,你实际支出了580+100=680元,买了原价为原价为580+350=930元的商品,即你所享受的折扣为680/930=73,即为3折。而买100送50的时侯,商品的价格很少有100元的整数倍的,多为98,198,298之类,而你为了享受折扣,又购买了几十元的东西来凑。假如你的运气超好,选到了一个100元的商品,得到了50元的购物券,又刚好用这50元买了另外一件商品,那你享受的折扣极限是100/150=67折。如果你买了一件199元的商品,而又凑不到另一件满意的商品,你只得到了50元的购物券,事实上你很难凑到一件价格是50元的商品,如果你买了50元以下的商品,那不找赎你的余款就作废,如果你买了一件99元的商品,你需另付49元现金,那你这单购物的折扣是(199+49)/(199+99)=83。如此算来,买100送50的最低折扣是7折,但这几乎是不可能的,你一般会买到7至8折的商品,而且为了消费你那个好象是多得的购物券,往往会买一些不实用的东西。如果是买200送100,参照以上算法,但实际折扣会更高宁可去买7折的商品也不要去买100送50的。更不要为买200送100的折
星期天,我和妈妈去商场购物,超市的海报上写着:购物满200元的返还100元代金券我心里想:满200元的返还100元,那就是原来价钱的一半,挺划算的"我给自己选了一套208元的运动服,获得了100元的代币券代币券得在今天用完,于是妈妈又给生病的爷爷买了一个288元的榨汁机,我算了算只要再拿出188元就可以买下这个榨汁机买完了东西,在回家的路上,我对妈妈说:"妈妈,今天我们买了这些东西是不是都是打了对折啊?"妈妈笑着说:"傻孩子,不是这样的,等回家后,妈妈算给你看,你就知道了"回到家,妈妈对我说:"艺儿,今天我们一共花了多少钱?"我说:"运动服208元,榨汁机188元,一共是396元啊"妈妈接着又问:"那这些商品原价是多少?"我说:"496元啊"妈妈说:"好,那也就是说今天我们用396元的钱买了496元的商品,如果要算打了多少折,就看看实际花的钱占商品价钱多少比例,用396 496,你拿计算器算算"我一按计算器,啊原来是79折我百思不得其解,后来还是妈妈话让我明白原来商家规定只有满200元才能返券,所以买榨汁机时188元的部分就不能享受到优惠了因此,我们享受到的优惠程度和商家所说的相比也是打了折扣"买家不如卖家精"这话一点也不假商家心里早已打好了如意算盘,打折背后隐藏着数学问题,以后我一定要注意了