AI 是最近几年非常火的一个新技术方向,从几年前大家认识到 AI 的能力,到现在产业里已经在普遍的探讨 AI 如何落地了,我们可以预言未来在很多的领域,很多的行业,AI 都将会在里边起到重要的作用。今天我们就要来谈一谈怎么在这样一个必然的趋势里去正确的理解 AI 的发展趋势?怎么去理解 AI 与人在未来的协作和共振?甚至再具象的说,如果未来你有机会成为一个 AI 产品经理,你将怎样去构建一个真正有效的 AI 产品,能够在不断发展的技术之中,有效地帮助它落地,去在各个领域创造更大的价值。而这一切我相信都需要我们对 AI 的发展有一个正确和全面的未来认知。很多人提到 AI 第一反应就是图像识别,语音识别。确实如果看一下现在 AI 在商业领域的落地情况,这两个应该是应用最广的方向了。但是无论是图像识别还是语音识别,这其实都是 AI 发展的初级形态。我们把它称为感知智能的阶段,这个阶段的 AI 它的理论基础框架其实是在统计学上,也就是说数据和数据之间只有相关关系,没有因果关系比如说它可以从 A 联想到和 A 具有某些共同特征的 B,但是 A 和 B 之间可能没有什么逻辑关系。所以对于感知阶段的 AI 他自己本身没有分析和推理的能力,只能机械地处理人的指令和需求。从功能上来看,它的主要作用是模拟人的眼睛耳朵等等这样的局部器官。具体到商业应用的时候它通常是从解决某个具体场景的具体问题来突破,但是很难给整个行业提出一个系统的解决方案。举个例子,现在很多机场车站都安装了人脸识别系统,摄像头不断在拍摄每个人的人脸,后台也不断在拿大量的数据做对比,看看这些人脸数据跟犯罪分子的匹配度有多高。这样的产品确实在一定程度上提高了公安部门的工作效率,但是它的作用也是有限的,它可以高效率地发现可疑的人,但这个人到底是不是公安系统要找的犯罪分子?如果是的话,怎么证明?这一系列的调查取证的工作还是要拿人工来做的,通常情况下,这部分的工作可能会占到破案过程的 90% 的精力。其实就像生命的进化也是从感知阶段到认知阶段一样,AI 也不会只停留在感知智能的阶段。当技术和各方面条件成熟之后,它必然就会走向更高级的发展阶段,也就是认知智能的阶段。什么叫做认知智能呢?就是机器不仅仅能够识别,识别之后还要去理解分析决策,甚至能够自我的创新。
人工智能ai
人工智能的舞台有多大?中国《新一代人工智能发展规划》提出:到2030年,我国人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。近年来,中国人工智能产业发展迅速,语音识别和计算机视觉成为国内人工智能市场最成熟的两个领域。自2015年开始,中国人工智能产业规模逐年上升,据中国信通院数据,2015年到2018年复合平均增长率为6%,高于全球平均水平(约36%)。2018年,中国人工智能产业市场规模已达到5亿元。前瞻推算,2019年我国人工智能市场规模达到554亿元左右。把人工智能作为新的基础设施来建设,是一项立足长远的规划。“当前,我国正在加快推进新型基础设施建设,并非仅仅是为对冲全球性经济下滑、提振受疫情拖累的经济活力出台的救市之策,而是推动经济转型升级的主动谋划,是一项‘既应需求而建,也谋未来而建’的战略布局。”中国科学技术发展战略研究院研究员、科技部新一代人工智能发展研究中心副主任李修全说。“在新一轮科技变革中,人工智能是发挥‘头雁’效应的引领型技术,将人工智能列入‘新基建’,充分体现出稳增长和促创新并驾齐驱、远近结合、系统布局的特点。”李修全说。与人工智能产业相关的公司也都看好行业未来。“AI是行业发展的倍增器,通过高效挖掘数据价值,赋能各行业各领域智慧升级。
Note that if there
虽然“人工智能”(AI)已经成为一个几乎人人皆知的概念,但对人工智能的定义还没有达成普遍共识。传统的人工智能发展思路是研究人类如何产生智能,然后让机器学习人的思考方式和行为。现代人工智能概念的提出者约翰·麦卡锡认为,机器不一定需要像人一样思考才能获得智能,重点是让机器能够解决人脑所能解决的问题。第四次工业革命正在来临,而人工智能已经从科幻逐步走入现实。从1956年人工智能这个概念被首次提出以来,人工智能的发展几经沉浮。随着核心算法的突破、计算能力的迅速提高、以及海量互联网数据的支撑,人工智能终于在21世纪的第二个十年里迎来质的飞跃,成为全球瞩目的科技焦点。自从2016年AIphaGo战胜李世石之后,全球对于人工智能发展的兴奋与担忧交织难分。即使如此,世界各国已经认识到人工智能是未来国家之间竞争的关键赛场,因而纷纷开始部署人工智能发展战略,以期占领新一轮科技革命的历史高点。对于中国而言,人工智能的发展是一个历史性的战略机遇,对缓解未来人口老龄化压力、应对可持续发展挑战以及促进经济结构转型升级至关重要。本文从科技产出与人才投入、产业发展和市场应用、发展战略和政策环境等方面描绘中国人工智能的发展面貌。科技产出与人才投入 论文产出 : 中国人工智能论文总量和高被引论文数量都是世界第一。中国在人工智能领域论文的全球占比从 1997 年 26% 增长至2017 年的 68%,遥遥领先其他国家。高校是人工智能论文产出的绝对主力,在全球论文产出百强机构中,87家为高校。中国顶尖高校的人工智能论文产出在全球范围内都表现得十分出众。不仅如此,中国的高被引论文呈现出快速增长的趋势,并在 2013 年超过美国成为世界第一。但在全球企业论文产出排行中,中国只有国家电网公司的排名进入全球前 20 位。从学科分布看,计算机科学、工程和自动控制系统是人工智能论文分布最多的学科。国际合作对人工智能论文产出的影响十分明显,高水平论文里中国通过国际合作而发表的占比高达 64% 。 专利申请 : 中国专利数量略微领先于美国和日本,国家电网表现突出。中国已经成为全球人工智能专利布局最多的国家,数量略微领先于美国和日本,而中美日三国占全球总体专利公开数量的 74%。全球专利申请主要集中在语音识别、图像识别、机器人以及机器学习等细分方向。中国人工智能专利持有数量前 30 名的机构中,科研院所与大学和企业的表现相当,其技术发明数量占比分别为 52% 和48%。企业中的主要专利权人表现差异巨大,尤其是中国国家电网近五年的人工智能相关技术发展迅速,在国内布局专利技术量远高于其他专利权人,而且在全球企业排名中位列第四。
你还是自己去汉斯出版社 的官网找下相关文献看看学习学习吧
人工智能绝对是人类未来的发展方向,因为人工智能解决文的很多,很难解决的问题。
未来的人工智能研究主要有两个方向:第一是人工智能应用。即如何更广泛更高效地把人工智能应用到某个具体场景中。第二是人工智能理论研究的突破。这主要是指对抗学习、遗传算法、进化学习和强化学习理论的突破。目前的人工智能还只能解决一些功能性问题。比如Alpha Go,只能下围棋。在不更改模型结构的情况下她不能学习和实现其他功能。另外,目前的人工智能还不能真正做到一边学习一边使用。我们通常只能在训练完成后才能使用模型。
回答 您现在可以使用这种新的图像到图像转换技术,从粗糙甚至不完整的草图生成高质量的人脸图像,无需绘图技巧!如果你的画技和我一样差,你甚至可以调整眼睛、嘴巴和鼻子对最终图像的影响。让我们看看它是否真的有效,以及他们是如何做到的。 Learning to Simulate Dynamic Environments with GameGAN [3] 这项研究由英伟达多伦多AI实验室和日本游戏大厂万代南梦宫 *BANDAI NAMCO) 一同开发,技术来自前者,数据来自后者。 简单来说,仅对简单的游戏录像和玩家输入进行学习,GameGAN 就能够模拟出接近真实游戏的环境,还不需要游戏引擎和底层代码。它的底层是在 AI 领域很有名的生成对抗网络 (GAN)。 PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models [4] 它可以把超低分辨率的16x16图像转换成1080p高清晰度的人脸!你不相信我?然后你就可以像我一样,在不到一分钟的时间里自己试穿一下! Unsupervised Translation of Programming Languages [5] 这种新模型在没有任何监督的情况下将代码从一种编程语言转换成另一种编程语言!它可以接受一个Python函数并将其转换成c++函数,反之亦然,不需要任何先前的例子!它理解每种语言的语法,因此可以推广到任何编程语言!我们来看看他们是怎么做到的。 PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization [6] 这个人工智能从2D图像生成3D高分辨率的人的重建!它只需要一个单一的图像你生成一个3D头像,看起来就像你,甚至从背后! High-Resolution Neural Face Swapping for Visual Effects [7] 迪士尼的研究人员在论文中开发了一种新的高分辨率视觉效果人脸交换算法。它能够以百万像素的分辨率渲染照片真实的结果。。它们的目标是在保持actor的性能的同时,从源actor交换目标actor的外观。这是非常具有 提问 大一人工智能课程学习总结,八百字。 回答 我学习人工智能已经快一年的时间,有许多心得可以和大家分享一下。人工智能,英文是Artificial Intelligence,简称AI。人工智能,最早是由著名计算机科学家图灵在20世纪50年代提出的,就是著名的“图灵测试”。最近几年,随着深度学习发展,人工智能被运用在各行各业,因此有人把人工智能称为第四次科技革命,他将给人们的生活带来翻天覆地的变化。 人工智能怎么学习呢? AI的基础是数据,是对数据进行挖掘、训练和应用。所以基础中的基础是数学,你得要先掌握高等数学、线性代数、概率论和数理统计等相关知识。 学习Python语言。Python最近几年非常火,学习的人非常多,甚至有些地区小学也开设这门课。为什么Python会迅速传红呢?首先,Python编程的代码量只有Java的1/5不到,简单易学。其次,Python的功能强大,写爬虫、游戏开发、自动化运维、机器学习和人工智能领域。最后,Python拥有丰富强大的库,如前端开发的Flask和Django、图形界面的tkInter、矩阵计算numpy、绘图的matplotlib等等。 学习各类机器学习和算法模型。这其中主要包含监督学习和非监督学习,监督学习中有:线性回归、逻辑回归、随机森林、SVM、决策树、等。非监督学习有:聚类、KMeans、DBScan等。 深度学习可以说是AI的精髓。深度学习主要流行的框架有:Tensorflow、Caffe、MXNet、Keras、Pytorch等。 我觉得自学,还是非常费劲的,效果不一定好,最好有老师指导,否则进展很慢,可以先跟教学视频学习,看书实操,做一些具体的项目等。 更多18条
虽然“人工智能”(AI)已经成为一个几乎人人皆知的概念,但对人工智能的定义还没有达成普遍共识。传统的人工智能发展思路是研究人类如何产生智能,然后让机器学习人的思考方式和行为。现代人工智能概念的提出者约翰·麦卡锡认为,机器不一定需要像人一样思考才能获得智能,重点是让机器能够解决人脑所能解决的问题。第四次工业革命正在来临,而人工智能已经从科幻逐步走入现实。从1956年人工智能这个概念被首次提出以来,人工智能的发展几经沉浮。随着核心算法的突破、计算能力的迅速提高、以及海量互联网数据的支撑,人工智能终于在21世纪的第二个十年里迎来质的飞跃,成为全球瞩目的科技焦点。自从2016年AIphaGo战胜李世石之后,全球对于人工智能发展的兴奋与担忧交织难分。即使如此,世界各国已经认识到人工智能是未来国家之间竞争的关键赛场,因而纷纷开始部署人工智能发展战略,以期占领新一轮科技革命的历史高点。对于中国而言,人工智能的发展是一个历史性的战略机遇,对缓解未来人口老龄化压力、应对可持续发展挑战以及促进经济结构转型升级至关重要。本文从科技产出与人才投入、产业发展和市场应用、发展战略和政策环境等方面描绘中国人工智能的发展面貌。科技产出与人才投入 论文产出 : 中国人工智能论文总量和高被引论文数量都是世界第一。中国在人工智能领域论文的全球占比从 1997 年 26% 增长至2017 年的 68%,遥遥领先其他国家。高校是人工智能论文产出的绝对主力,在全球论文产出百强机构中,87家为高校。中国顶尖高校的人工智能论文产出在全球范围内都表现得十分出众。不仅如此,中国的高被引论文呈现出快速增长的趋势,并在 2013 年超过美国成为世界第一。但在全球企业论文产出排行中,中国只有国家电网公司的排名进入全球前 20 位。从学科分布看,计算机科学、工程和自动控制系统是人工智能论文分布最多的学科。国际合作对人工智能论文产出的影响十分明显,高水平论文里中国通过国际合作而发表的占比高达 64% 。 专利申请 : 中国专利数量略微领先于美国和日本,国家电网表现突出。中国已经成为全球人工智能专利布局最多的国家,数量略微领先于美国和日本,而中美日三国占全球总体专利公开数量的 74%。全球专利申请主要集中在语音识别、图像识别、机器人以及机器学习等细分方向。中国人工智能专利持有数量前 30 名的机构中,科研院所与大学和企业的表现相当,其技术发明数量占比分别为 52% 和48%。企业中的主要专利权人表现差异巨大,尤其是中国国家电网近五年的人工智能相关技术发展迅速,在国内布局专利技术量远高于其他专利权人,而且在全球企业排名中位列第四。
人工智能绝对是人类未来的发展方向,因为人工智能解决文的很多,很难解决的问题。
应用场景愈发丰富人工智能技术经过过去近10年的快速发展已经取得较大突破,随着人工智能理论和技术的日益成熟,人工智能场景融合能力不断提升,因此,近年来商业化应用已经成为人工智能科技企业布局的重点,欧洲、美国等发达国家和地区的人工智能产业商业落地期较早,中国作为后期之秀,近年来在政策、资本的双重推动下,人工智能商业化应用进程加快。目前,人工智能技术已在金融、医疗、安防、教育、交通、制造、零售等多个领域实现技术落地,且应用场景也愈来愈丰富值得注意的是,尽管目前全球范围内人工智能商业化进程正加速推进,但受制于应用场景的复杂度、技术的成熟度、数据的公开水平等限制,全球人工智能仍处在产业化和市场化的探索阶段,落地场景的丰富度、用户需求和解决方案的市场渗透率仍有待提高。发展规划国家政策层面看——《新一代人工智能发展规划》提出,到2020年初步建成人工智能技术标准、服务体系和产业生态链,培育若干全球领先的人工智能骨干企业,人工智能核心产业规模超过1500亿元,带动相关产业规模超过1万亿元。在国家层面政策的不断推动下,我国各省市也相继出台了适合本地发展环境的人工智能“十三五”相关规划,据前瞻对制定了具体产业规模发展目标省市的整理,中国12个省市2020年的规模目标达到4290亿,远远超过国家层面制定的1500亿的目标。另进一步研读各省市的政策,可知现阶段国家较为注重人工智能领域四个领域的建设——基础层看,注重芯片等硬件研发、技术层则注重智能计算平台的搭建、智能感知处理、智能交互中心的建设,而应用层则注重人工智能创新发展试验区建设。——以上数据及分析均来自于前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。
人工智能未来的发展前景还是很不错的。未来的人工智能研究主要有两个方向:第一是人工智能应用。即如何更广泛更高效地把人工智能应用到某个具体场景中。第二是人工智能理论研究的突破。这主要是指对抗学习、遗传算法、进化学习和强化学习理论的突破。因此现在学习人工专业是非常不错的选择。
人工智能的前景非常广阔,人类社会正在一点点的走近人工智能社会,应用极其广泛,比如说,你可以弄一个人工智能机器人,陪伴你,帮助你,设计可以用人工智能机器人进行设计,总之太多太多,太广泛了
虽然“人工智能”(AI)已经成为一个几乎人人皆知的概念,但对人工智能的定义还没有达成普遍共识。传统的人工智能发展思路是研究人类如何产生智能,然后让机器学习人的思考方式和行为。现代人工智能概念的提出者约翰·麦卡锡认为,机器不一定需要像人一样思考才能获得智能,重点是让机器能够解决人脑所能解决的问题。第四次工业革命正在来临,而人工智能已经从科幻逐步走入现实。从1956年人工智能这个概念被首次提出以来,人工智能的发展几经沉浮。随着核心算法的突破、计算能力的迅速提高、以及海量互联网数据的支撑,人工智能终于在21世纪的第二个十年里迎来质的飞跃,成为全球瞩目的科技焦点。自从2016年AIphaGo战胜李世石之后,全球对于人工智能发展的兴奋与担忧交织难分。即使如此,世界各国已经认识到人工智能是未来国家之间竞争的关键赛场,因而纷纷开始部署人工智能发展战略,以期占领新一轮科技革命的历史高点。对于中国而言,人工智能的发展是一个历史性的战略机遇,对缓解未来人口老龄化压力、应对可持续发展挑战以及促进经济结构转型升级至关重要。本文从科技产出与人才投入、产业发展和市场应用、发展战略和政策环境等方面描绘中国人工智能的发展面貌。科技产出与人才投入 论文产出 : 中国人工智能论文总量和高被引论文数量都是世界第一。中国在人工智能领域论文的全球占比从 1997 年 26% 增长至2017 年的 68%,遥遥领先其他国家。高校是人工智能论文产出的绝对主力,在全球论文产出百强机构中,87家为高校。中国顶尖高校的人工智能论文产出在全球范围内都表现得十分出众。不仅如此,中国的高被引论文呈现出快速增长的趋势,并在 2013 年超过美国成为世界第一。但在全球企业论文产出排行中,中国只有国家电网公司的排名进入全球前 20 位。从学科分布看,计算机科学、工程和自动控制系统是人工智能论文分布最多的学科。国际合作对人工智能论文产出的影响十分明显,高水平论文里中国通过国际合作而发表的占比高达 64% 。 专利申请 : 中国专利数量略微领先于美国和日本,国家电网表现突出。中国已经成为全球人工智能专利布局最多的国家,数量略微领先于美国和日本,而中美日三国占全球总体专利公开数量的 74%。全球专利申请主要集中在语音识别、图像识别、机器人以及机器学习等细分方向。中国人工智能专利持有数量前 30 名的机构中,科研院所与大学和企业的表现相当,其技术发明数量占比分别为 52% 和48%。企业中的主要专利权人表现差异巨大,尤其是中国国家电网近五年的人工智能相关技术发展迅速,在国内布局专利技术量远高于其他专利权人,而且在全球企业排名中位列第四。
各行各业都在用人工智能提升效率,替代人,减少误差人开始被赶到越来越低端的工作去这就是现实和趋势
人工智能的就业前景非常不错,现在的科技日新月异,人工智能领域需要大量的人才。而且当前时代属于人工智能时代,各种家电品都充斥着人工智能技术。人工智能以计算机为基础,主要从事科研技术类工作。
未来的人工智能研究主要有两个方向:第一是人工智能应用。即如何更广泛更高效地把人工智能应用到某个具体场景中。第二是人工智能理论研究的突破。这主要是指对抗学习、遗传算法、进化学习和强化学习理论的突破。目前的人工智能还只能解决一些功能性问题。比如Alpha Go,只能下围棋。在不更改模型结构的情况下她不能学习和实现其他功能。另外,目前的人工智能还不能真正做到一边学习一边使用。我们通常只能在训练完成后才能使用模型。
人工智能未来的发展前景还是很不错的。未来的人工智能研究主要有两个方向:第一是人工智能应用。即如何更广泛更高效地把人工智能应用到某个具体场景中。第二是人工智能理论研究的突破。这主要是指对抗学习、遗传算法、进化学习和强化学习理论的突破。因此现在学习人工专业是非常不错的选择。
未来人工智能的就业和发展前景都是非常值得期待的,原因有以下几点:一是智能化是未来的重要趋势之一。1、随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。2、人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能相关领域的发展前景还是非常广阔的。二是产业互联网的发展必然会带动人工智能的发展。1、互联网当前正在从消费互联网向产业互联网发展,产业互联网将综合应用物联网、大数据和人工智能等相关技术来赋能广大传统行业。2、人工智能作为重要的技术之一,必然会在产业互联网发展的过程中释放出大量的就业岗位。三是人工智能技术将成为职场人的必备技能之一。1、随着智能体逐渐走进生产环境,未来职场人在工作过程中将会频繁的与大量的智能体进行交流和合作,这对于职场人提出了新的要求。2、未来需要掌握人工智能的相关技术。从这个角度来看,未来掌握人工智能技术将成为一个必然的趋势,相关技能的教育市场也会迎来巨大的发展机会。四是人工智能取代人力,对全球的经济产生影响1、说到人工智能,大多数人都是比较期待的,当然也有少数人会怀着担忧的心态看到它,因为人工智能的发展,让我们看到了人工智能的高效和服从。2、在未来,当人工智能的发展进入到一个全新的领域阶段,它是不是就能够取代现在一些行业所需要的人工劳动呢?如果是的话,那么将会有大面积的失业问题出现。3、人工智能的发展,能够在短时间内对其进行量产,这样就会有很多人下岗,对全球的经济和社会来说,影响都是巨大的。在人工智能研究的过程中,机器学习是行业研究的核心,也是人工智能目标实现的最根本途径,是当前人工智能发展的主要瓶颈。有关于机器学习问题的研究是行业研究的重点,无论是融资金额,还是公司的数量都明显超过其他研究内容。人工智能属于全世界科研发展的前沿技术,发展过程中与信息技术、计算机技术、精密制造技术、互联网技术密切相关,对各行业、各领域的发展都有一定的影响,在人工智能发展过程中要认真、深刻地研究其未来的发展方向。