首页 > 期刊发表知识库 > 数据表示的核心任务

数据表示的核心任务

发布时间:

数据表示的核心任务

数据库系统的核心是数据库管理系统,它是帮助用户创建,维护和使用数据库的软件系统。数据库的核心是数据,它是存储在计算机存储设备上的,结构化的相关数据集合。

数据,现在被誉为工业社会的“石油”。数据(data)是事实或观察的结果,是对客观事物的逻辑归纳,是用于表示客观事物的未经 加工的原始素材。数据可以是连续的值,比如声音、图像,称为模拟数据。也可以是离散的,如符号、文字,称为数字数据。在计算机系统中,数据以二进制信息单元0,1的形式表示,被存储在磁盘或者内存当中。    数据库是数据管理的产物。数据管理是数据库的核心任务,内容包括对数据的分类、组织、编码、储存、检索和维护。随着计算机硬件和软件的发展,数据库技术也不断地发展。从数据管理的角度看,数据库技术到目前共经历了人工管理阶段、文件系统阶段和数据库系统阶段。第二个问题:为什么要使用数据库?A人工管理阶段    人工管理阶段是指计算机诞生的初期(即20世纪50年代后期之前),这个时期的计算机主要用于科学计算。从硬件看,没有磁盘等直接存取的存储设备;从软件看,没有操作系统和管理数据的软件,数据处理方式是批处理。    这个时期数据管理的特点是:  数据不保存    该时期的计算机主要应用于科学计算,一般不需要将数据长期保存,只是在计算某一课题 时将数据输入,用完后不保存原始数据,也不保存计算结果。  没有对数据进行管理的软件系统    程序员不仅要规定数据的逻辑结构,而且还要在程序中设计物理结构,包括存储结构、存取方法、输入输出方式等。因此程序中存取数据的子程序随着存储的改变而改变,数据与程序不具有一致性。  没有文件的概念

数据库系统的核心是数据库管理系统。用于建立、使用和维护数据库,简称DBMS。它对数据库进行统一的管理和控制,以保证数据库的安全性和完整性。用户通过DBMS访问数据库中的数据,数据库管理员也通过DBMS进行数据库的维护工作。它可以支持多个应用程序和用户用不同的方法在同时或不同时刻去建立,修改和询问数据库。大部分DBMS提供数据定义语言DDL(Data Definition Language)和数据操作语言DML(Data Manipulation Language),供用户定义数据库的模式结构与权限约束,实现对数据的追加、删除等操作。DBMS优点1、控制数据冗余。数据库管理应尽可能地消除了冗余,但是并没有完全消除,而是控制大量数据库固有的冗余。例如,为了表现数据间的关系,数据项的重复一般是必要的,有时为了提高性能也会重复一些数据项。2、保证数据一致性。通过消除或控制冗余,可降低不一致性产生的危险。如果数据项在数据库中只存储了一次,则任何对该值的更新均只需进行一次,而且新的值立即就被所有用户获得。如果数据项不只存储了一次,而且系统意识到这点,系统将可以确保该项的所有拷贝都保持一致。不幸的是,许多DBMS都不能自动确保这种类型的一致性。3、提高数据共享。数据库应该被有权限的用户共享。DBMS的引入使更多的用户可以更方便的共享更多的数据。新的应用程序可以依赖于数据库中已经存在的数据,并且只增加没有存储的数据,而不用重新定义所有的数据需求。

数据库设计可以分为概念结构设计、逻辑结构设计和物理结构设计三个阶段。(1)概念结构设计。这是数据库设计的第一个阶段,在管理信息系统的分析阶段,已经得到了系统的数据流程图和数据字典,现在要结合数据规范化的理论,用一种数据模型将用户的数据需求明确地表示出来。概念数据模型是面向问题的模型,反映了用户的现实工作环境,是与数据库的具体实现技术无关的。建立系统概念数据模型的过程叫做概念结构设计。(2)逻辑结构设计。根据已经建立的概念数据模型,以及所采用的某个数据库管理系统软件的数据模型特性,按照一定的转换规则,把概念模型转换为这个数据库管理系统所能够接受的逻辑数据模型。不同的数据库管理系统提供了不同的逻辑数据模型,如层次模型、网状模型、关系模型等。(3)物理结构设计。为一个确定的逻辑数据模型选择一个最适合应用要求的物理结构的过程,就叫做数据库的物理结构设计。数据库在物理设备上的存储结构和存取方法称为数据库的物理数据模型。数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。在信息化社会,充分有效地管理和利用各类信息资源,是进行科学研究和决策管理的前提条件。数据库技术是管理信息系统、办公自动化系统、决策支持系统等各类信息系统的核心部分,是进行科学研究和决策管理的重要技术手段。

数据表示的核心任务是

数据库系统的核心是数据库管理系统。用于建立、使用和维护数据库,简称DBMS。它对数据库进行统一的管理和控制,以保证数据库的安全性和完整性。用户通过DBMS访问数据库中的数据,数据库管理员也通过DBMS进行数据库的维护工作。它可以支持多个应用程序和用户用不同的方法在同时或不同时刻去建立,修改和询问数据库。大部分DBMS提供数据定义语言DDL(Data Definition Language)和数据操作语言DML(Data Manipulation Language),供用户定义数据库的模式结构与权限约束,实现对数据的追加、删除等操作。DBMS优点1、控制数据冗余。数据库管理应尽可能地消除了冗余,但是并没有完全消除,而是控制大量数据库固有的冗余。例如,为了表现数据间的关系,数据项的重复一般是必要的,有时为了提高性能也会重复一些数据项。2、保证数据一致性。通过消除或控制冗余,可降低不一致性产生的危险。如果数据项在数据库中只存储了一次,则任何对该值的更新均只需进行一次,而且新的值立即就被所有用户获得。如果数据项不只存储了一次,而且系统意识到这点,系统将可以确保该项的所有拷贝都保持一致。不幸的是,许多DBMS都不能自动确保这种类型的一致性。3、提高数据共享。数据库应该被有权限的用户共享。DBMS的引入使更多的用户可以更方便的共享更多的数据。新的应用程序可以依赖于数据库中已经存在的数据,并且只增加没有存储的数据,而不用重新定义所有的数据需求。

数据库系统的核心是数据库管理系统,它是帮助用户创建,维护和使用数据库的软件系统。数据库的核心是数据,它是存储在计算机存储设备上的,结构化的相关数据集合。

1、数据库的配置、维护2、服务器的配置与维护 3、应用软件的运行与维护 4、功能的扩展数据库运维服务是指:针对用户数据库开展的软件安装、配置优化、备份策略选择及实施、数据恢复、数据迁移、故障排除、预防性巡检等一系列服务。

数据库系统 database systems 由数据库及其管理软件组成的系统。数据库系统是为适应数据处理的需要而发展起来的一种较为理想的数据处理的核心机构。计算机的高速处理能力和大容量存储器提供了实现数据管理自动化的条件。 数据库系统一般由4个部分组成:①数据库,即存储在磁带、磁盘、光盘或其他外存介质上、按一定结构组织在一起的相关数据的集合。②数据库管理系统(DBMS)。它是一组能完成描述、管理、维护数据库的程序系统。它按照一种公用的和可控制的方法完成插入新数据、修改和检索原有数据的操作。③数据库管理员(DBA)。④用户和应用程序。对数据库系统的基本要求是:①能够保证数据的独立性。数据和程序相互独立有利于加快软件开发速度,节省开发费用。②冗余数据少,数据共享程度高。③系统的用户接口简单,用户容易掌握,使用方便。④能够确保系统运行可靠,出现故障时能迅速排除;能够保护数据不受非受权者访问或破坏;能够防止错误数据的产生,一旦产生也能及时发现。⑤有重新组织数据的能力,能改变数据的存储结构或数据存储位置,以适应用户操作特性的变化,改善由于频繁插入、删除操作造成的数据组织零乱和时空性能变坏的状况。⑥具有可修改性和可扩充性。⑦能够充分描述数据间的内在联系。 数据库管理系统 数据库管理系统(DBMS)是指数据库系统中管理数据的软件系统。DBMS是数据库系统的核心组成部分。对数据库的一切操作,包括定义、更新及各种控制,都是通过DBMS进行的。DBMS总是基于某种数据模型,可以把DBMS看成是某种数据模型在计算机系统上的具体实现。根据数据模型的不同,DBMS可以分成层次型、网状型、关系型、面向对象型等。MS SQL Server2000就是一种关系型数据库管理系统。 关系模型。关系模型主要是用二维表格结构表达实体集,用外键表示实体间联系。关系模型是由若干个关系模式组成的集合。关系模式相当于前面提到的记录类型,它的实例称为关系,每个关系实际上是一张二维表格。 关系模型和层次、网状模型的最大判别是用关键码而不是用指针导航数据,表格简单用户易懂,编程时并不涉及存储结构,访问技术等细节。关系模型是数学化模型。SQL语言是关系数据库的标准化语言,已得到了广泛的应用。 如图1所示,DBMS的特点和功能可以分为三个子系统:设计工具子系统、运行子系统和DBMS引擎。 设计子系统有一个方便数据库及其应用创建的工具集。它典型地包含产生表、窗体、查询和报表的工具。DBMS产品还提供编程语言和对编程语言的接口。 运行子系统处理用设计子系统开发的应用组件。它所包含的运行处理器用来处理窗体和数据库的数据交互,以及回答查询和打印报表等。 DBMS引擎从其他两个组件接受请求,并把它们翻译成对操作系统的命令,以便读写物理介质上的数据。DBMS引擎还涉及事务管理、锁、备份和恢复。数据的结构化,数据的共享性好,数据的独立性好,数据存储粒度小,数据管理系统,为用户提供了友好的接口。  数据库系统的核心和基础,是数据模型,现有的数据库系统均是基于某种数据模型的。  数据库系统的核心是数据库管理系统。  数据库系统一般由数据库、数据库管理系统(DBMS)、应用系统、数据库管理员和用户构成。DBMS是数据库系统的基础和核心。数据库系统的核心是数据模型,因为数据模型是数据库系统的核心和基础。这玩意貌似很多呀

数据挖掘的核心任务

说的最直白的就是从一堆数据中找出有价值的东西,以便用来赚更多的钱。。。

一、数据挖掘工具分类 数据挖掘工具根据其适用的范围分为两类:专用挖掘工具和通用挖掘工具。 专用数据挖掘工具是针对某个特定领域的问题提供解决方案,在涉及算法的时候充分考虑了数据、需求的特殊性,并作了优化。对任何领域,都可以开发特定的数据挖掘工具。例如,IBM公司的AdvancedScout系统针对NBA的数据,帮助教练优化战术组合。特定领域的数据挖掘工具针对性比较强,只能用于一种应用;也正因为针对性强,往往采用特殊的算法,可以处理特殊的数据,实现特殊的目的,发现的知识可靠度也比较高。 通用数据挖掘工具不区分具体数据的含义,采用通用的挖掘算法,处理常见的数据类型。通用的数据挖掘工具不区分具体数据的含义,采用通用的挖掘算法,处理常见的数据类型。例如,IBM公司Almaden研究中心开发的QUEST系统,SGI公司开发的MineSet系统,加拿大SimonFraser大学开发的DBMiner系统。通用的数据挖掘工具可以做多种模式的挖掘,挖掘什么、用什么来挖掘都由用户根据自己的应用来选择。 二、数据挖掘工具选择需要考虑的问题 数据挖掘是一个过程,只有将数据挖掘工具提供的技术和实施经验与企业的业务逻辑和需求紧密结合,并在实施的过程中不断的磨合,才能取得成功,因此我们在选择数据挖掘工具的时候,要全面考虑多方面的因素,主要包括以下几点: (1) 可产生的模式种类的数量:分类,聚类,关联等 (2) 解决复杂问题的能力 (3) 操作性能 (4) 数据存取能力 (5) 和其他产品的接口 三、数据挖掘工具介绍: QUEST QUEST是IBM公司Almaden研究中心开发的一个多任务数据挖掘系统,目的是为新一代决策支持系统的应用开发提供高效的数据开采基本构件。系统具有如下特点: 提供了专门在大型数据库上进行各种开采的功能:关联规则发现、序列模式发现、时间序列聚类、决策树分类、递增式主动开采等。 各种开采算法具有近似线性计算复杂度,可适用于任意大小的数据库。 算法具有找全性,即能将所有满足指定类型的模式全部寻找出来。 为各种发现功能设计了相应的并行算法。 MineSet MineSet是由SGI公司和美国Standford大学联合开发的多任务数据挖掘系统。MineSet集成多种数据挖掘算法和可视化工具,帮助用户直观地、实时地发掘、理解大量数据背后的知识。MineSet有如下特点: MineSet以先进的可视化显示方法闻名于世。 支持多种关系数据库。可以直接从Oracle、Informix、Sybase的表读取数据,也可以通过SQL命令执行查询。 多种数据转换功能。在进行挖掘前,MineSet可以去除不必要的数据项,统计、集合、分组数据,转换数据类型,构造表达式由已有数据项生成新的数据项,对数据采样等。 操作简单、支持国际字符、可以直接发布到Web。 DBMiner DBMiner是加拿大SimonFraser大学开发的一个多任务数据挖掘系统,它的前身是DBLearn。该系统设计的目的是把关系数据库和数据开采集成在一起,以面向属性的多级概念为基础发现各种知识。DBMiner系统具有如下特色: 能完成多种知识的发现:泛化规则、特性规则、关联规则、分类规则、演化知识、偏离知识等。 综合了多种数据开采技术:面向属性的归纳、统计分析、逐级深化发现多级规则、元规则引导发现等方法。 提出了一种交互式的类SQL语言——数据开采查询语言DMQL。 能与关系数据库平滑集成。 实现了基于客户/服务器体系结构的Unix和PC(Windows/NT)版本的系统。 Intelligent Miner 由美国IBM公司开发的数据挖掘软件Intelligent Miner是一种分别面向数据库和文本信息进行数据挖掘的软件系列,它包括Intelligent Miner for Data和Intelligent Miner for Text。Intelligent Miner for Data可以挖掘包含在数据库、数据仓库和数据中心中的隐含信息,帮助用户利用传统数据库或普通文件中的结构化数据进行数据挖掘。它已经成功应用于市场分析、行为监测及客户联系管理等;Intelligent Miner for Text允许企业从文本信息进行数据挖掘,文本数据源可以是文本文件、Web页面、电子邮件、Lotus Notes数据库等等。 SAS Enterprise Miner 这是一种在我国的企业中得到采用的数据挖掘工具,比较典型的包括上海宝钢配矿系统应用和铁路部门在春运客运研究中的应用。SAS Enterprise Miner是一种通用的数据挖掘工具,按照"抽样--探索--转换--建模--评估"的方法进行数据挖掘。可以与SAS数据仓库和OLAP集成,实现从提出数据、抓住数据到得到解答的"端到端"知识发现。 SPSS Clementine SPSS Clementine是一个开放式数据挖掘工具,曾两次获得英国政府SMART 创新奖,它不但支持整个数据挖掘流程,从数据获取、转化、建模、评估到最终部署的全部过程,还支持数据挖掘的行业标准--CRISP-DM。Clementine的可视化数据挖掘使得"思路"分析成为可能,即将集中精力在要解决的问题本身,而不是局限于完成一些技术性工作(比如编写代码)。提供了多种图形化技术,有助理解数据间的关键性联系,指导用户以最便捷的途径找到问题的最终解决办法。 数据库厂商集成的挖掘工具 SQL Server 2000包含由Microsoft研究院开发的两种数据挖掘算法:Microsoft决策树和Microsoft聚集。此外,SQL Server 2000中的数据挖掘支持由第三方开发的算法。 Microsoft决策树算法:该算法基于分类。算法建立一个决策树,用于按照事实数据表中的一些列来预测其他列的值。该算法可以用于判断最倾向于单击特定标题(banner)或从某电子商务网站购买特定商品的个人。 Microsoft聚集算法:该算法将记录组合到可以表示类似的、可预测的特征的聚集中。通常这些特征可能是隐含或非直观的。例如,聚集算法可以用于将潜在汽车买主分组,并创建对应于每个汽车购买群体的营销活动。,SQL Server 2005在数据挖掘方面提供了更为丰富的模型、工具以及扩展空间。包括:可视化的数据挖掘工具与导航、8种数据挖掘算法集成、DMX 、XML/A、第三方算法嵌入支持等等。 Oracle Data Mining (ODM) 是 Oracle 数据库 10g 企业版的一个选件,它使公司能够从最大的数据库中高效地提取信息并创建集成的商务智能应用程序。数据分析人员能够发现那些隐藏在数据中的模式和内涵。应用程序开发人员能够在整个机构范围内快速自动提取和分发新的商务智能 — 预测、模式和发现。ODM 针对以下数据挖掘问题为 Oracle 数据库 10g 提供支持:分类、预测、回归、聚类、关联、属性重要性、特性提取以及序列相似性搜索与分析 (BLAST)。所有的建模、评分和元数据管理操作都是通过 Oracle Data Mining 客户端以及 PL/SQL 或基于 Java 的 API 来访问的,并且完全在关系数据库内部进行。 IBM Intelligent Miner 通过其世界领先的独有技术,例如典型数据集自动生成、关联发现、序列规律发现、概念性分类和可视化呈现,它可以自动实现数据选择、数据转换、数据发掘和结果呈现这一整套数据发掘操作。若有必要,对结果数据集还可以重复这一过程,直至得到满意结果为止。现在,IBM的 Intelligent Miner已形成系列,它帮助用户从企业数据资产中识别和提炼有价值的信息。它包括分析软件工具 ----Intelligent Miner for Data和IBM Intelligent Miner forText ,帮助企业选取以前未知的、有效的、可行的业务知识---- 如客户购买行为,隐藏的关系和新的趋势,数据来源可以是大型数据库和企业内部或Internet 上的文本数据源。然后公司可以应用这些信息进行更好、更准确的决策,获得竞争优势。

最初的数据挖掘分类应用大多都是在这些方法及基于内存基础上所构造的算法。和它们的权系数:W1, W2, , Wn,求和计算出的 Xi*Wi ,产生了

FineBI数据挖掘的结果将以字段和记录的形式添加到多维数据库中,并可以在新建分析时从一个专门的数据挖掘业务包中被使用,使用的方式与拖拽任何普通的字段没有任何区别。配合FineBI新建分析中的各种控件和图表,使用OLAP的分析人员可以轻松的查看他们想要的特定的某个与结果,或是各种各样结果的汇总。

数据科学的核心任务

数学功底:微积分是严格要掌握的。不一定要掌握多元微积分,但一元微积分是必须要熟练掌握并使用的。另外线性代数一定要精通,特别是矩阵的运算、向量空间、秩等概念。当前机器学习框架中很多计算都需要用到矩阵的乘法、转置或是求逆。虽然很多框架都直接提供了这样的工具,但我们至少要了解内部的原型原理,比如如何高效判断一个矩阵是否存在逆矩阵并如何计算等。数理统计:概率论和各种统计学方法要做到基本掌握,比如贝叶斯概率如何计算?概率分布是怎么回事?虽不要求精通,但对相关背景和术语一定要了解。交互式数据分析框架:这里并不是指SQL或数据库查询,而是像Apache Hive或Apache Kylin这样的分析交互框架。开源社区中有很多这样类似的框架,可以使用传统的数据分析方式对大数据进行数据分析或数据挖掘。笔者有过使用经验的是Hive和Kylin。不过Hive特别是Hive1是基于MapReduce的,性能并非特别出色,而Kylin采用数据立方体的概念结合星型模型,可以做到很低延时的分析速度,况且Kylin是第一个研发团队主力是中国人的Apache孵化项目,因此日益受到广泛的关注。机器学习框架:机器学习当前真是火爆宇宙了,人人都提机器学习和AI,但笔者一直认为机器学习恰似几年前的云计算一样,目前虽然火爆,但没有实际的落地项目,可能还需要几年的时间才能逐渐成熟。不过在现在就开始储备机器学习的知识总是没有坏处的。说到机器学习的框架,大家耳熟能详的有很多种, 信手拈来的就包括TensorFlow、Caffe8、Keras9、CNTK10、Torch711等,其中又以TensorFlow领衔。笔者当前建议大家选取其中的一个框架进行学习,但以我对这些框架的了解,这些框架大多很方便地封装了各种机器学习算法提供给用户使用,但对于底层算法的了解其实并没有太多可学习之处。因此笔者还是建议可以从机器学习算法的原理来进行学习。

数据科学的核心任务是

数据库系统的核心和基础,是数据模型,现有的数据库系统均是基于某种数据模型的。数据库系统的核心是数据库管理系统。数据库系统一般由数据库、数据库管理系统(DBMS)、应用系统、数据库管理员和用户构成。DBMS是数据库系统的基础和核心。

数据分析师的基本素养--论如何成为一名数据科学家 Part 1这里有一些我收集的关于数据处理方面的材料,希望能够对你有所帮助(请注意:我是一名本科生,下面提到的资料仅为个人整理所得,在任何方面都不可视为专家意见)。了解矩阵因式分解学习计算机线性代数相关的课程(这类课程有时也叫做线性代数应用、矩阵计算、数值分析或者矩阵分析等,它既可以属于计算机科学,也可以属于应用数学课程)。矩阵分解算法是许多数据挖掘应用的基础,而在标准的"机器学习"课程中使用的矩阵分解算法通常不具有代表性。面对TB规模的数据时,Matlab等传统工具无法有效地执行数据处理工作,你不可能在大数据上只执行一条eig()语句就可以得出预期的结果。分布式矩阵计算包,例如Apache Mahout[1] 中包含的那些,试图填补这方面的空白,但是,你仍需要理解数值算法/LAPACK/BLAS [2][3][4][5]的工作机制,以便正确使用它们,针对特殊情况进行调整,构建自己的数据处理工具,并将其扩展到商业机器集群中TB级别规模的数据之上[6]。数学课程通常基于本科代数与微积分的基础,因此你应该具有良好的先决条件。

数据库系统的核心是数据库管理系统。数据库系统一般由数据库、数据库管理系(DBMS)、应用系统、数据库管理员和用户构成。DBMS是数据库系统的基础和核心。

  • 索引序列
  • 数据表示的核心任务
  • 数据表示的核心任务是
  • 数据挖掘的核心任务
  • 数据科学的核心任务
  • 数据科学的核心任务是
  • 返回顶部