人工智能在当代社会已经是一个不可阻拦的发展大趋势,而且人工智能的影响和运用也深入到了社会生活等方方面面,对人类的衣食住行产生了巨大的改变,同时也在改变着传统或者现代的产业结构和人员配置。人类生活的各个行业例如农业、体育、医疗卫生、制造业、律师行业、记者和编辑行业等领域都已经在或者将会在未来深入使用人工智能技术,这对于未来世界的改变是巨大而且无法想象的。在未来几年内,机器人与人工智能能给世界带来的影响将远远超过个人计算和互联网在过去三十年间已经对世界所造成的改变。人工智能将成为未来10年内的产业新风口,像200I安钱电力彻底颠覆人类世界一样,人工智能也必将掀起一场新的而且持续深入的产业革命。但是事情的发展总是两面性的,人工智能的发展和百年前的工业革命一样将会在很大程度上造成劳动力的转换,在这个过程中,将会出现一系列的问题,而这些问题很有可能成为阻碍人工智能继续发展的巨大阻力。人工智能领域的最新发展对科技变化的促进作用可能会以两种基本的方式搅乱我们的劳动市场。首先,大部分自动化作业都会代替工人,从而减少工作的机会,这就意味着血药人工作的地方变得更少,这种威胁显而易见,也很容易度量;另外,很多科技进步会通过让商家重组和重建运营的方式来改变游戏规则,这样的组织精华和流程不仅经常会淘汰工作岗位,也会淘汰技能。但从总体上来说,人工智能所带给未来人类世界的好处是要大于其弊端的,而且在未来人类生活的理想蓝图中,人工智能也会发挥着很大的作用和推动力,这是一个必然也无法阻止的趋势。
VeryCD上的电子书 书名:SBIA 2004——人工智能的最新进展Advances in Artificial Intelligence走近人工智能 人工智能(Artificial Intelligence,AI)一直都处于计算机技术的最前沿,经历了几起几落…… 长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(MIT)、卡内基-梅隆大学(CMU)到IBM公司,再到日本的本田公司、SONY公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着AI技术的实验。不久前,著名导演斯蒂文·斯皮尔伯格还将这一主题搬上了银幕,科幻片《人工智能》(AI)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领域的兴趣。 在本期技术专题中,中国科学院计算技术研究所智能信息处理开放实验室的几位研究人员将引领我们走近人工智能这一充满挑战与机遇的领域。 计算机与人工智能 "智能"源于拉丁语LEGERE,字面意思是采集(特别是果实)、收集、汇集,并由此进行选择,形成一个东西。INTELEGERE是从中进行选择,进而理解、领悟和认识。正如帕梅拉·麦考达克在《机器思维》(Machines Who Thinks,1979)中所提出的: 在复杂的机械装置与智能之间存在长期的联系。从几个世纪前出现的神话般的巨钟和机械自动机开始,人们已对机器操作的复杂性与自身的某些智能活动进行直观联系。经过几个世纪之后,新技术已使我们所建立的机器的复杂性大为提高。1936年,24岁的英国数学家图灵(Turing)提出了"自动机"理论,把研究会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为"人工智能之父"。 人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了"人工智能"(Artificial Intelligence,AI)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的IBM的"深蓝"在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。 当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的AI软件,而且现在的AI具备了更多的现实应用的基础。90年代以来,人工智能研究又出现了新的高潮。 我们有幸采访了中国科学院计算技术研究所智能信息处理开放实验室史忠植研究员,请他和他的实验室成员引领我们走近人工智能这个让普通人感到深奥却又具有无穷魅力的领域。 问: 目前人工智能研究出现了新的高潮,那么现在有哪些新的研究热点和实际应用呢? 答: AI研究出现了新的高潮,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的3个热点是: 智能接口、数据挖掘、主体及多主体系统。 智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。 数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱: 数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。 主体是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自治地、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。目前对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习以及多主体系统应用等方面。 问: 您在人工智能领域研究了几十年,参与了许多国家重点研究课题,非常清楚国内外目前人工智能领域的研究情况。您认为目前我国人工智能的研究情况如何? 答: 我国开始"863计划"时,正值全世界的人工智能热潮。"863-306"主题的名称是"智能计算机系统",其任务就是在充分发掘现有计算机潜力的基础上,分析现有计算机在应用中的缺陷和"瓶颈",用人工智能技术克服这些问题,建立起更为和谐的人-机环境。经过十几年来的努力,我们缩短了我国人工智能技术与世界先进水平的差距,也为未来的发展奠定了技术和人才基础。 但是也应该看到目前我国人工智能研究中还存在一些问题,其特点是: 课题比较分散,应用项目偏多、基础研究比例略少、理论研究与实际应用需求结合不够紧密。选题时,容易跟着国外的选题走; 立项论证时,惯于考虑国外怎么做; 落实项目时,又往往顾及面面俱到,大而全; 再加上受研究经费的限制,所以很多课题既没有取得理论上的突破,也没有太大的实际应用价值。 今后,基础研究的比例应该适当提高,同时人工智能研究一定要与应用需求相结合。科学研究讲创新,而创新必须接受应用和市场的检验。因此,我们不仅要善于找到解决问题的答案,更重要的是要发现最迫切需要解决的问题和最迫切需要满足的市场需求。 问: 请您预测一下人工智能将来会向哪些方面发展? 答: 技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展: 模糊处理、并行化、神经网络和机器情感。 目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来人工智能应用的新领域,未来智能计算机的构成,可能就是作为主机的冯·诺依曼型机与作为智能外围的人工神经网络的结合。研究表明: 情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。 人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。 什么是人工智能? 人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。 AI理论的实用性 在一年一度AT&T实验室举行的机器人足球赛中,每支球队的"球员"都装备上了AI软件和许多感应器,它们都很清楚自己该踢什么位置,同时也明白有些情况下不能死守岗位。尽管现在的AI技术只能使它们大部分时间处于个人盘带的状态,但它们传接配合的能力正在以很快的速度改进。 这种AI机器人组队打比赛看似无聊,但是有很强的现实意义。因为通过这类活动可以加强机器之间的协作能力。我们知道,Internet是由无数台服务器和无数台路由器组成的,路由器的作用就是为各自的数据选择通道并加以传送,如果利用一些智能化的路由器很好地协作,就能分析出传输数据的最佳路径,从而可以大大减少网络堵塞。 我国也已经在大学中开展了机器人足球赛,有很多学校组队参加,引起了大学生对人工智能研究的兴趣。 未来的AI产品 安放于加州劳伦斯·利佛摩尔国家实验室的ASCI White电脑,是IBM制造的世界最快的超级电脑,但其智力能力也仅为人脑的千分之一。现在,IBM正在开发能力更为强大的新超级电脑--"蓝色牛仔"(Blue Jean)。据其研究主任保罗·霍恩称,预计于4年后诞生的"蓝色牛仔"的智力水平将大致与人脑相当。 麻省理工学院的AI实验室进行一个的代号为Cog的项目。Cog计划意图赋予机器人以人类的行为。该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。
人工智能与机器人研究这本期刊的领域,你可以参考下:智能机器人、模式识别与智能系统、虚拟现实技术与应用、系统仿真技术与应用、工业过程建模与智能控制、智能计算与机器博弈、人工智能理论、语音识别与合成、机器翻译、图像处理与计算机视觉、计算机感知、计算机神经网络、知识发现与机器学习、建筑智能化技术与应用、人智能其他学科
目前,军事理论界对智能武器和智能作战问题谈论渐多。虽然对于智能武器的表述基本只有描述性定义而不是种加属差定义,有的广义一些,有的狭义一些,但大致将其理解为把计算机技术应用于各种武器装备上,具有部分人脑(特定)功能,不用人的直接操作就能自主完成搜索、识别、瞄准、攻击等各种军事任务的高技术武器装备。智能武器的特点这种武器之所以比精确制导武器更先进,就在于它可以“有意识”地寻找、辨别需要打击的目标,有的还具有辨别自然语言的能力,是一种“会思考”的武器系统。例如,智能导弹是在巡航导弹基础上发展起来的,它能在敌方上空自动搜索、识别、跟踪目标并进行优化处理,根据目标特征选择最佳战斗部位实施攻击,消灭一个目标后立刻转向另一目标继续攻击,可在目标区上空持续战斗60分钟。又如,广域智能引信地雷带有多功能传感器,可对目标的各种物理场进行判定。当坦克进入距地雷半径100米范围时,即由微机控制发射智能子弹药,先以35°仰角将子弹药射出,尔后子弹药在空中主动寻找目标,攻击坦克薄弱的顶装甲。而智能化作战,则是运用智能武器手段、广泛实现高效指挥控制和灵巧精确打击的高技术作战形式。军事理论界普遍认为,智能武器将在未来军事领域占有重要地位。据统计,装有智能系统的制导武器,在战场条件不变的情况下,弹药的命中精度将提高3倍;智能化的辅助指挥系统,由于熟知敌我双方的指挥官思维习惯、性格脾气和行为特征,因而能在瞬息万变的战场上帮助指挥员判断情况、定下决心、下达命令。正因为如此,许多国家在建设21世纪军队的计划中,都高度重视智能武器的开发和智能化作战的研究。例如美国列入研制计划的军用机器人达100多种,并且一些部队已经开始小批量装备应用型军用机器人。智能武器和智能化作战的战略化但是更需要注意的是,一方面由于现在大国和大军事集团之间的全球军事竞争形势出现了一些新情况,另一方面由于大国和大军事集团之间的“规模化战争”是一种军事、经济、政治、意识形态相连动的总体战,因此在智能武器和智能化作战方面明显出现了一种战略化的动向。战略智能武器是更高层次的人与各种技术手段的有机结合,其中“软性智能武器”占有很大比重。主要目标是在使己方尽可能“隐形化”的同时使对方“全透明化”,从而从根本上掌握战略主动权,既可以争取“不战”而屈人之兵,又可以在需要时打不对称战争。 这种动向首先表现在对目标方军队全建制编成的全方位行为模拟。前述智能化的辅助指挥系统,还只是战役战术层面的东西。其实大国和大军事集团在智能化指挥方面已走得很远,完全具备了对目标方军队各级指挥员、各军兵种、各作战单元的心理活动、行动特点、装备和训练程度、作战预案及其调整、开进路线、集结和展开方式、联勤保障、人员和装备与作战地域的气象地理环境和民风民情的结合状况等等的宏观-微观模拟,并且在最高指挥层智能化“兵棋推演”中加以演绎。这种涵盖面很广、渗透性很强、集成度很高、连动性很灵的全方位模拟,既仰赖强大的经济实力、计算机技术海量处理能力的发展、以及大量智能化硬件的布署,也得益于长达数十年的跟踪研究和经验积累。通过这种使目标方军队“全透明化”的全方位模拟,智能化作战的内涵就提升到了很高的战略层面上了,完全超出了一般的首长司令部演习和敌情分析的范畴,它是大战略与物质手段的高级结合方式。这一点是军事大国与中等发达军事力量之间的重要区别,也是历史上的战争与现代战争之间的重要区别。一般的实兵演习和模拟演习也要设置各种复杂情况,历史上的战争也有许多深入分析作战对手特点从而有针对性作战的杰出范例,现在即使是友好国家也会相互分析对方军队、尤其是指挥官的特点。但它们与这种全方位模拟相比,仍是很有限、零散、或然的,原因就在于智能武器和智能化作战手段的使用密度已达到了令人难以置信的程度。例如,只有具备全时空解析各级思维活动与各单元微观行为之间内在联系的能力,才使得掌握对方核心密码成为一种带有因果必然性的事情,而核心密码智能破译系统又使前者更加“透明化”。又如,由于有了不仅能扫描物体、而且能看到对方雷达群怎样扫描和处理这些物体的智能雷达,才使得对方的雷达网全面“透明”。其次表现在对目标方军事、经济、政治、意识形态动向的全方位实时监控和作用。如前所述,大国和大军事集团之间的博弈,总体战的特征尤为突出;现在军事大国与中等发达军事力量之间的重要区别,也表现在对目标方经济、政治、意识形态领域的主动作用能力上。因此,军事大国的全方位模拟和博弈并不限于军事系统,而是进一步延伸到经济、政治、意识形态领域,在战略层面上掌握、作用它们与军事行为的连动。人们谈得较多的是现代战争在空间上不分前方和后方,但也要充分注意更宽泛地理解它在时间上的不分平时和战时,并且对经济与军事等等的关系也不应仅从战争潜力的角度去把握。事实上,现代战争不仅造成了逐步攻击和渐次防守的战役战斗程序的改变,出现了先纵深、后前沿、“中心开花”由内向外打的逆程序和战场的各种非线性特征,而且也使经济战与典型军事作战的时空特征和界限划分发生了变化。现在,对目标方经济活动的全面掌控和战略遏制,已成为一种更隐蔽、更复杂的战争。而这种战略行动离开智能武器和智能化作战手段的高密度使用,显然也是不现实的,相反更需宏观、深入的全方位模拟来保障。现代智能武器同样可以使目标方的所有显性经济活动“全透明化”,同时也能全方位实时分析各利益群体、投资和消费阶层的心理曲线等等。再次表现在一些超常的、战略性的宏观巨系统超级智能武器的隐蔽使用,它们将“不宣而战”、“不接触打击”和“总体性压制”引向了一个超级新阶段。战略智能武器和战略智能化作战的一个重要特征,就是以超级智能武器在宏观巨系统中隐蔽地释放巨大的能量。比如超大范围地人工改变气候,它已远远超出了以往制造局部干旱或洪涝的程度,但同时又不能影响全球的基本气候平衡。这是一种复杂的系统工程,并且决不能用常规的物质能量代换的方式去实现,因为在经济上是无法承受的。由于用于智能气象战等的超级智能武器是在绝密状态下开发的,而它的使用又与人们对传统战争的理解隔得很远,所以就可以隐蔽地形成一种新型的“不宣而战”、“不接触打击”和“总体性压制”,帮助实现很大的战略企图。因此,这是一种以“软杀伤”的外衣包裹着的强烈“硬杀伤”。现在人们注意到了喜马拉雅冰川近年突然加速融化及其将对中国、印度和东南亚地区的灾害性影响,这是不是由于自然界本身的活动或仅仅由于二氧化碳排放增多所引起,值得思考。又如,“星球大战”计划和外层空间军事化的开启,实际上也是一种在宏观巨系统中密集布署智能武器的行为,它的“不宣而战”、“不接触打击”和“总体性压制”含义将远远超出反导本身,并且会通过一些超级智能武器的最终现身而更充分地表现出来。智能化作战只是一种作战手段智能武器和智能化作战方式的发展正在极大地改变着军事活动的内容,这是不争的事实。但也应看到,无论是在战略的层面还是在战术的层面,它们仍然只是一种手段,并不能代替作战意志、作战经验等等,也改变不了民心。未来战争并不是只有“高端战争”的空间,可以以“高端”和“低端”并行的方式“各打各的”。像越南战争中发明的子弹雷(以一颗子弹垂直固定在硬物上,下边用一枚铁钉做撞针,人踩上去就被击穿脚掌)等作战手段和作战样式,因其廉价、简便而永远不可能从人类军事活动中开革出局。
人工智能与机器人这本期刊你之前看过吗?建议你有时间可以去看看哦,找下自己的写作思路先
给个邮箱,我发给你
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
人工智能与机器人这本期刊你之前看过吗?建议你有时间可以去看看哦,找下自己的写作思路先
人工智能应用范围比较广
亲。。。。多少字。。。给你
亲。。。。多少字。。。给你
太麻烦了
回答 您现在可以使用这种新的图像到图像转换技术,从粗糙甚至不完整的草图生成高质量的人脸图像,无需绘图技巧!如果你的画技和我一样差,你甚至可以调整眼睛、嘴巴和鼻子对最终图像的影响。让我们看看它是否真的有效,以及他们是如何做到的。 Learning to Simulate Dynamic Environments with GameGAN [3] 这项研究由英伟达多伦多AI实验室和日本游戏大厂万代南梦宫 *BANDAI NAMCO) 一同开发,技术来自前者,数据来自后者。 简单来说,仅对简单的游戏录像和玩家输入进行学习,GameGAN 就能够模拟出接近真实游戏的环境,还不需要游戏引擎和底层代码。它的底层是在 AI 领域很有名的生成对抗网络 (GAN)。 PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models [4] 它可以把超低分辨率的16x16图像转换成1080p高清晰度的人脸!你不相信我?然后你就可以像我一样,在不到一分钟的时间里自己试穿一下! Unsupervised Translation of Programming Languages [5] 这种新模型在没有任何监督的情况下将代码从一种编程语言转换成另一种编程语言!它可以接受一个Python函数并将其转换成c++函数,反之亦然,不需要任何先前的例子!它理解每种语言的语法,因此可以推广到任何编程语言!我们来看看他们是怎么做到的。 PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization [6] 这个人工智能从2D图像生成3D高分辨率的人的重建!它只需要一个单一的图像你生成一个3D头像,看起来就像你,甚至从背后! High-Resolution Neural Face Swapping for Visual Effects [7] 迪士尼的研究人员在论文中开发了一种新的高分辨率视觉效果人脸交换算法。它能够以百万像素的分辨率渲染照片真实的结果。。它们的目标是在保持actor的性能的同时,从源actor交换目标actor的外观。这是非常具有 提问 大一人工智能课程学习总结,八百字。 回答 我学习人工智能已经快一年的时间,有许多心得可以和大家分享一下。人工智能,英文是Artificial Intelligence,简称AI。人工智能,最早是由著名计算机科学家图灵在20世纪50年代提出的,就是著名的“图灵测试”。最近几年,随着深度学习发展,人工智能被运用在各行各业,因此有人把人工智能称为第四次科技革命,他将给人们的生活带来翻天覆地的变化。 人工智能怎么学习呢? AI的基础是数据,是对数据进行挖掘、训练和应用。所以基础中的基础是数学,你得要先掌握高等数学、线性代数、概率论和数理统计等相关知识。 学习Python语言。Python最近几年非常火,学习的人非常多,甚至有些地区小学也开设这门课。为什么Python会迅速传红呢?首先,Python编程的代码量只有Java的1/5不到,简单易学。其次,Python的功能强大,写爬虫、游戏开发、自动化运维、机器学习和人工智能领域。最后,Python拥有丰富强大的库,如前端开发的Flask和Django、图形界面的tkInter、矩阵计算numpy、绘图的matplotlib等等。 学习各类机器学习和算法模型。这其中主要包含监督学习和非监督学习,监督学习中有:线性回归、逻辑回归、随机森林、SVM、决策树、等。非监督学习有:聚类、KMeans、DBScan等。 深度学习可以说是AI的精髓。深度学习主要流行的框架有:Tensorflow、Caffe、MXNet、Keras、Pytorch等。 我觉得自学,还是非常费劲的,效果不一定好,最好有老师指导,否则进展很慢,可以先跟教学视频学习,看书实操,做一些具体的项目等。 更多18条
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
没有
11111