首页 > 期刊发表知识库 > 论文统计方法怎么写

论文统计方法怎么写

发布时间:

论文统计方法怎么写

科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。

数据可从网上搜索,统计年鉴及各大数据库都有再通过统计软件作分析,例如相关分析和回归分析,这种论文偏理论型也可以通过设计调查问卷,可针对身边某一热点问题进行调查,如消费观,就业观,来搜集数据,再写一篇调查报告

缺失值的处理:缺失值是人群研究中不可避免的问题,其处理方式的差异可能在不同程度上引入偏倚,因此,详细报告数据清理过程中缺失值的处理方法有助于读者对潜在偏倚风险进行评价。例如,瑞舒伐他汀试验在统计分析部分详细说明了缺失值的填补策略,包括:将二分类结局中的缺失值视为未发生事件;将生物标志物和心电图测量中的缺失值进行多重填补(multiple imputation);为了证明缺失值处理的合理性和填补结果的稳定性,研究还比较了多重填补与完整数据(complete-case)分析的结果。2、数据的预处理:实施统计分析之前往往需要将原始数据进行预处理,如:对连续变量进行函数转换使其更接近正态分布,基于原始数据构建衍生变量,将连续变量拆分为分类变量或将分类变量的不同类别进行合并等。医学论文应报告处理原始数据的方法及依据,瑞舒伐他汀试验即在统计分析部分描述了对血液生物标志物的对数转换。3、变量分布特征描述:确定统计分析使用的变量,并针对每一个变量的分布特征进行描述,是决定研究选用何种统计分析方法的基础。医学期刊虽然普遍对此提出要求,但作者往往套用常用方法,如:连续变量符合正态分布时,采用均数(标准差)描述,否则采用中位数(四分位间距)描述;分类变量采用频数(百分比)描述等。事实上,应根据研究设计类型、统计分析目的和数据特征选择恰当的描述方法。例如,CKB选择采用年龄、性别和地区校正的均值和率来描述人群分布特征,而非简单的报告连续变量的均数和分类变量的构成比。4、主要分析(primary analysis):指针对研究结局的统计分析,是研究论文的核心证据。因此,医学论文应详细描述主要分析的实施过程和适用性。在试验性研究中,应明确统计分析数据集、试验效应指标、相对或绝对风险及其置信区间的计算方法、以及假设检验的方法。

论文中统计学方法怎么写

虽然我也写过论文,但并不是你这个专业的,但我想论文的大致思路其实也是差不多的。首先你得要确定你论文的题目,确定了论文题目之后就会比较好下笔了

数据可从网上搜索,统计年鉴及各大数据库都有再通过统计软件作分析,例如相关分析和回归分析,这种论文偏理论型也可以通过设计调查问卷,可针对身边某一热点问题进行调查,如消费观,就业观,来搜集数据,再写一篇调查报告

正确的统计学分析一定要建立在明确的研究目的和研究设计的基础之上,那些事先没有研究目的和研究设计,事后找来一堆数据进行统计分析都是不可取的。 在医学论文的撰、编、审、读过程中经常遇到的问题是研究的题目与课题设计、论文内容不符,包括文章的方法解决不了论文的目的、文章的结果说明不了论文的题目、文章的讨论偏离了论文的主题;还有是目的不明确、设计不合理。如题目过小,论文不够字数,而一些无关紧要的变量指标或结果被分析被讨论;又如题目过大,论文的全部内容不足以说明研究的目的,使论文的论点难以立足。 所以,合理明确的论文题目或目的以及研究设计方案是撰、编、审、读者应当关注的首要问题。此外,样本含量是否满足,抽样是否随机,偏倚是否控制等,也是不可忽视的问题。2、建好分析用的数据库建好数据库是正确统计分析的前提和基础,甚至决定了论文分析结果的成败。对于编、审、读者来讲,一般由于篇幅的限制,往往得不到数据库数据,而只有作者在数据库数据基础上经统计描述计算后给出的诸如各指标均数 x、标准差 s 或中位数 M、百分位数 Px 的“二手”数据,或将研究对象小或特征属性分组,清点各组观察单位出现的个数或频数的频数表数据等。 无论是否能够得到数据库数据,作者在统计分析过程中一定依据数据库数据进行计算,得出结果。如果对“二手”数据或频数表数据的结果等存在疑惑,编辑、审稿专家或读者有权要求作者提供数据库数据以检查其完整性、准确性和真实性,确保研究数据的质量。假若在投稿须知中对数据库数据作出必要的要求,无疑对于保证刊物的发表质量有着积极的意义

无论是在校研究生,博士生还是已经在工作岗位的科研人员,亦或是医务工作者大家都会有这样的经历——写论文,发论文。毕业要文章、找工作要文章、年终考评要文章、晋职称还是要文章,文章压得我们透不过气来。不少人觉得论文撰写困难,尤其是文章数据统计部分,拿着统计学工具书,虽说每个字都认识,可就是看不懂……一天一位饱受论文折磨的检验科小青年找到了一位叱咤学术界的禅师。青年禅师,很多检验科医生快被论文憋疯了,你认为检验科医生写论文的主要瓶颈在哪里?禅师第一、思想没有被开过光;第二、不会文献检索,更没有阅读文献的习惯;第三、不会统计学;第四、不会绘声绘色地写论文,写出来的东西不堪入目。青年为啥我想到的别人都想到了,感觉没啥新的东西可以写。禅师那是因为你文献看得不够。文献阅读是开展科研的基础,首先你得知道本领域的研究进展,之后才可能提出自己的研究设想。青年我不会文献检索,怎么办?禅师没办法,只能多问、多学、多交流。当前使用最广泛的数据库是PubMed,网上有很多教程可以下载。没事就对照着教程瞎折腾PubMed呗,总之都不费电。青年我会检索到全文,但下载不了全文,该怎么办啊?禅师方法很多,给通讯作者写信索要、找有权限的朋友帮助下载、网上求助、用其它手段(比如SCI-Hub),只要你想要,这都不叫事儿。青年还有最最关键的一点,辛辛苦苦的做完实验,收集好数据,却不会统计分析!对于没有进行过专业培训的检验人来说,是文章产出的一大拦路虎呀!禅师其实我们只需要知道什么时候该用什么统计分析方法、如何在软件中实现该统计分析、分析得到的数据如何解读就行了,至于其中统计原理,不必纠结,让它随风去吧!我这里有一本秘籍,专治统计学小白,看与你有缘,就免费赠与你啦!假以时日,你必能修成正果。青年接过秘籍,定睛一看,《白话统计》四个大字映入眼帘。青年谢谢禅师,如此珍贵的秘籍,为什么偏偏选择送给我?禅师别误会,我这里还有799本,赠于有缘人,找到我的人都有份……青年……关于这本统计秘籍《白话统计》这秘籍分为两大部分:基础篇和实用篇,基础篇介绍统计中常见的概念,实用篇则注重介绍各种方法的思路及实现,适合零基础小白快速入门,也适合已经学会统计的人对知识进一步的融会贯通,所以它绝对是一本统计学习必不可少的书籍。有了它,让你撰写论文更加游刃有余。此外,这本书是一本寓教于乐的书籍,他不会像教材一样用沉重拘谨的语言来介绍统计学方法,而是以风趣、浅显的话语来解释说明。它的内容不一定多,但会做到尽量深入。国内这样的书籍并不多见,在生物统计学领域就更加少见,而这本《白话统计》正是兼具了幽默风趣的语言和科学严谨的思维的一本书。郭靖的内力能支撑多久女士品茶的故事《白话统计》能够帮助每一位科研人更好地理解生物医学统计,大大提升大家统计能力,完成属于自己第一篇SCI论文!邀请好友完成助力后,点击公众号弹出的模板消息填写地址。如果出现无法填写地址的情况,可能是同一时间填写的用户人数太多导致的,您可以扫码加入公众号消息弹出的活动群,会有禅师的助手为您处理。

用统计方法写论文

虽然我也写过论文,但并不是你这个专业的,但我想论文的大致思路其实也是差不多的。首先你得要确定你论文的题目,确定了论文题目之后就会比较好下笔了

数据可从网上搜索,统计年鉴及各大数据库都有再通过统计软件作分析,例如相关分析和回归分析,这种论文偏理论型也可以通过设计调查问卷,可针对身边某一热点问题进行调查,如消费观,就业观,来搜集数据,再写一篇调查报告

可以多看一些资料,然后去学习一下人家的论文是怎么写的?通过借鉴,然后但是千万不要抄袭,如果抄袭的话,那基本上就没有用了

从统计学的发展趋势谈统计教育的改革 摘要:要培养出新型的21世纪的人才,统计教育必须高瞻远瞩。本文从统计学的发展趋势谈了统计教育急需改革的几个方面。 关键词: 统计学; 发展趋势; 统计教育改革 随着国家创新体系的建立,统计创新工程已经提上议事日程,统计创新包括两个方面,一是统计实践的创新;二是统计教育的创新。创新的基础在于教育,没有统计教育的创新,就谈不上统计实践的创新。准确把握统计学的发展方向与发展形势,培养适应新世纪社会经济发展需要的人才,是统计教育工作者必须面对的问题,本文从统计学的基本发展趋势谈一谈统计教育急需改革的几个方面。 一、统计学的基本发展趋势 纵观统计学的发展状况,与整个科学的发展趋势相似,统计学也在走与其他科学结合交融的发展道路。归纳起来,有两个基本结合趋势。 (一)统计学与实质性学科结合的趋势 统计学是一门通用方法论的科学,是一种定量认识问题的工具。但作为一种工具,它必须有其用武之地。否则,统计方法就成为无源之水,无用之器。统计方法只有与具体的实质性学科相结合,才能够发挥出其强大的数量分析功效。并且,从统计方法的形成历史看,现代统计方法基本上来自于一些实质性学科的研究活动,例如,最小平方法与正态分布理论源于天文观察误差分析,相关与回归源于生物学研究,主成分分析与因子分析源于教育学与心理学的研究。抽样调查方法源于政府统计调查资料的搜集。历史上一些著名的统计学家同时也是生物学家或经济学家等。同时,有不少生物学家、天文学家、经济学家、社会学家、人口学家、教育学家等都在从事统计理论与方法的研究。他们在应用过程中对统计方法进行创新与改进。另外,从学科体系看,统计学与实质性学科之间的关系绝对不是并列的,而是相交的,如果将实质性学科看作是纵向的学科,那么统计学就是一门横向的学科,统计方法与相应的实质性学科相结合,才产生了相应的统计学分支,如统计学与经济学相结合产生了经济统计,与教育学相结合产生了教育统计,与生物学相结合产生了生物统计等,而这些分支学科都具有"双重"属性:一方面是统计学的分支,另一方面也是相应实质性学科的分支,所以经济统计学、经济计量学不仅属于统计学,同时属于经济学,生物统计学不仅是统计学的分支,也是生物学的分支等。这些分支学科的存在主要不是为了发展统计方法,而是为了解决实质性学科研究中的有关定量分析问题,统计方法是在这一应用过程中得以完善与发展的。因此,统计学与各门实质性学科的紧密结合,不仅是历史的传统更是统计学发展的必然模式。实质性学科为统计学的应用提供了基地,为统计学的发展提供了契机。21世纪的统计学依然会采取这种发展模式,且更加注重应用研究。 这个趋势说明:统计方法的学习必须与具体的实质性学科知识学习相结合。必须以实质性学科为依据,因此,财经类统计专业的学生必须学好有关经济类与管理类的课程,只有这样,所学的统计方法才有用武之地。统计的工具属性才能够得以充分体现。 (二)统计学与计算机科学结合的趋势 纵观统计数据处理手段发展历史,经历了手工、机械、机电、电子等数个阶段,数据处理手段的每一次飞跃,都给统计实践带来革命性的发展。上个世纪40年代第一台电子计算机的诞生,给统计学方法的广泛应用创造了条件。20年代发展起来的多元统计方法虽然对于处理多变量的种类数据问题具有很大的优越性,但由于计算工作量大,使得这些有效的统计分析方法一开始并没有能够在实践中很好推广开来。而电子计算机技术的诞生与发展,使得复杂的数据处理工作变得非常容易,那些计算繁杂的统计方法的推广与应用,由于相应统计软件的开发与商品化而变得更加方便与迅速,非统计专业的理论工作者可以直接凭借商品化统计分析软件来处理各类现实问题的多变量数据分析,而无需对有关统计方法的复杂理论背景进行研究。计算机运行能力的提高,使得大规模统计调查数据的处理更加准确、充分与快捷。目前企业经营管理中建立的决策支持系统(DSS)更加离不开统计模型。最近国外兴起的数据挖掘(Datamining,又译"数据掏金")技术更是计算机专家与统计学家共同关注的领域。随着计算机应用的越来越广泛,每年都要积累大量的数据,大量信息在给人们带来方便的同时也带来了一系列问题:信息过量,难以消化;信息真假,难以辨识;信息安全,难以保证;信息形式不一致,难以统一处理;于是人们开始提出一个新的口号"要学会抛弃信息"。人们考虑"如何才能不被信息淹没,而是从中及时发现有用的知识,提高信息利用率?"面对这一挑战,数据挖掘和知识发现(DMKD)技术应运而生,并显示出强大的生命力。数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘是一门交叉学科,它把人们对数据的应用从低层的简单查询,提升到从数据中挖掘知识,提供决策支持。在这种需求牵引下,汇聚了不同领域的研究者,尤其是数据库技术、人工智能技术、统计、可视化技术、并行计算等方面的学者和工程技术人员,投身到数据挖掘这一新兴的研究领域,形成新的技术热点。虽然统计学家与计算机专家关心Datamining的视角不完全相同,但可以说,Datamining与DSS一样,使得统计方法与计算机技术的结合达到了一个更高的层次。 因此,统计学越来越离不开计算机技术,而计算机技术应用的深入,也同样离不开统计方法的发展与完善。这个趋势说明:充分利用现代计算技术,通过计算机软件将统计方法中复杂难懂的计算过程屏障起来,让用户直接看到统计输出结果与有关解释,从而使统计方法的普及变得非常容易。所以,对于财经类统计专业的学生来说,一方面要学好统计方法,但另一方面更加要学会利用商品化统计软件包解决实践中的统计数量分析问题,学好计算机信息系统开发的基本思想与基本程序设计,能够将具体单位的统计模型通过编程来实现,以建立起统计决策支持系统。 所以统计与实质性学科相结合,与计算机、与信息相结合,这是发展的趋势。了解这一点,再来看我们目前教育中的问题就更加明显了,所以一些课程要改革,教学方式也要改革。以下谈一谈统计教育需要改革的几个方面。采纳哦

写论文的统计方法

《统计学与应用》这本期刊上的文献,你可以去看看学习学习的

从统计学的发展趋势谈统计教育的改革 摘要:要培养出新型的21世纪的人才,统计教育必须高瞻远瞩。本文从统计学的发展趋势谈了统计教育急需改革的几个方面。关键词:统计学;发展趋势;统计教育改革 随着国家创新体系的建立,统计创新工程已经提上议事日程

科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。

写论文用的统计分析,当然是通过计算得出来的。也就是说,按照数字的比例来计算出来的。

毕业论文统计学方法怎么写

在开始论文撰写之前,需要仔细阅读高校对本科论文的写作要求,包括字数,论文的查重率以及论文的格式。一般高校的规定,都可以影响论文的重复率。对于本科毕业论文来说,拟定一个好的提纲,你的论文就已经成功一半了,拟提纲是按照从大到小的顺序,一层一层的规划。列完提纲之后,就可以开始最重要的正文撰写,需要自己有研究的课题,一般会选择与自己专业相关的题目,对社会发展背景有一定的了解,可以更好的去撰写。本科毕业论文中必须要有理论依据,研究方法,理论依据就是撰写论文可能用到的理论资源,研究方法要有针对性,需要讲清楚自己主要探讨的过程,以及研究结论。一般本科毕业论文的字数要求都在8000字以上,如果对自己的论文胸有成竹,可以根据自己的想法写,如果实在写不来,需要借鉴一下本科学长学姐的优秀论文,查阅一下论文会对自己有所帮助。

理论加自身总结

写统计学的论文首先要读大量的同济学论文文献,在前人的研究基础上践行。

《统计学与应用》这本期刊上的文献,你可以去看看学习学习的

  • 索引序列
  • 论文统计方法怎么写
  • 论文中统计学方法怎么写
  • 用统计方法写论文
  • 写论文的统计方法
  • 毕业论文统计学方法怎么写
  • 返回顶部