大数据(Big Data)是指“无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据集合。”业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。数据体量巨大(Volume)。截至目前,人类生产的所有印刷材料的数据量是200PB,而历史上全人类说过的所有的话的数据量大约是5EB(1EB=210PB)。数据类型繁多(Variety)。相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。价值密度低(Value)。价值密度的高低与数据总量的大小成反比。如何通过强大的机器算法更迅速地完成数据的价值“提纯”成为目前大数据背景下亟待解决的难题。处理速度快(Velocity)。大数据区分于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,预计到2020年,全球数据使用量将达到2ZB。-------------------------------------------社交网络,让我们越来越多地从数据中观察到人类社会的复杂行为模式。社交网络,为大数据提供了信息汇集、分析的第一手资料。从庞杂的数据背后挖掘、分析用户的行为习惯和喜好,找出更符合用户“口味”的产品和服务,并结合用户需求有针对性地调整和优化自身,就是大数据的价值。所以,建立在上述的概念上我们可以看到大数据的产业变化:1 大数据飞轮效应所带来的产业融合和新产业驱动2 信息获取方式的完全变化带来的新式信息聚合3 信息推送方式的完全变化带来的新式信息推广4 精准营销5 第三方支付 —— 小微信贷,线上众筹为代表的互联网金融带来的全面互联网金融改革6 产业垂直整合趋势以及随之带来的产业生态重构7 企业改革以及企业内部价值链重塑,扩大的产业外部边界8 政府及各级机构开放,透明化,以及随之带来的集中管控和内部机制调整9 数据创新带来的新服务
大数据的价值在于其中蕴含的规律和隐藏的待挖掘信息。
大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术是指从各种各样类型的数据中,快速获得有价值信息的能力。
【导读】现如今,小到街边商家,大到宏观国家政策,都在讲大数据。不过,真正搞清楚什么是大数据的人肯并不多。其实,大数据故名思议肯定体现在“大”上,可数据是一个比较抽象的东西。那么,大数据分析平台价值核心是什么呢?一、数据驱动业务通过数据产品、数据挖掘模型实现企业产品和运营的智能化,从而极大的提高企业的整体效能产出。最常见的应用领域有基于个性化推荐技术的精准营销服务、广告服务、基于模型算法的风控反欺诈服务征信服务等。二、数据对外变现通过对数据进行精心的包装,对外提供数据服务,从而获得现金收入。市面上比较常见有各大数据公司利用自己掌握的大数据,提供风控查询、验证、反欺诈服务,提供导客、导流、精准营销服务,提供数据开放平台服务等。三、数据辅助决策为企业提供基础的数据统计报表分析服务。分析师能够轻易获取数据产出分析报告指导产品和运营,产品经理能够通过统计数据完善产品功能和改善用户体验,运营人员可以通过数据发现运营问题并确定运营的策略和方向,管理层可以通过数据掌握公司业务运营状况,从而进行一些战略决策。关于大数据分析平台价值核心是什么,小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
大数据的核心:数据挖掘大数据的核心:数据挖掘。从头至尾我们都脱离不了数据挖掘。其实从大学到现在一直都接触数据挖掘,但是我们不关心是什么是数据挖掘,我们关心的是我们如何通过数据挖掘过程中找到我们需要的东西,而我们更关心的是这个过程是什么?如何开始?总结的过程也是一个学习的过程,通过有章节的整理对目前正在的学习的内容做规整。在这个过程中我们会从具体的项目实施中去谈数据挖掘,中间会贯穿很多的概念,算法,业务转换,过程,建模等等。我们列一下要谈论的话题:1、什么是数据挖掘及为什么要进行数据挖掘?2、数据挖掘在营销和CRM中的应用?3、数据挖掘的过程4、你应理解的统计学5、数据描述与预测:剖析与预测建模6、经典的数据挖掘技术7、各类算法8、数据仓库、OLAP、分析沙箱和数据挖掘9、具体的案例分析什么是数据挖掘?是知识发现、商业智能、预测分析还是预测建模。其实都可以归为一类:数据挖掘是一项探测大量数据以发现有意义的模式(pattern)和规则(rule)的业务流程。这里谈到了发现模式与规则,其实就是一项业务流程,为业务服务。而我们要做就是让业务做起来显得更简单,或直接帮助客户如何提升业务。在大量的数据中找到有意义的模式和规则。在大量数据面前,数据的获得不再是一个障碍,而是一个优势。在现在很多的技术在大数据集上比在小数据集上的表现得更好——你可以用数据产生智慧,也可以用计算机来完成其最擅长的工作:提出问题并解决问题。模式和规则的定义:就是发现对业务有益的模式或规则。发现模式就意味着把保留活动的目标定位为最有可能流失的客户。这就意味着优化客户获取资源,既考虑客户数量上的短期效益,同时也考虑客户价值的中期和长期收益。而在上面的过程,最重要的一点就是:如何通过数据挖掘技术来维护与客户之间的关系,这就是客户关系管理,CRM。专注于数据挖掘在营销和客户关系管理方面的应用——例如,为交叉销售和向上销售改进推荐,预测未来的用户级别,建模客户生存价值,根据用户行为对客户进行划分,为访问网站的客户选择最佳登录页面,确定适合列入营销活动的候选者,以及预测哪些客户处于停止使用软件包、服务或药物治疗的风险中。两种关键技术:生存分析、统计算法。在加上文本挖掘和主成分分析。经营有方的小店自然地形成与客户之间的学习关系。随着时间的推移,他们对客户的了解也会越来越多,从而可以利用这些知识为他们提供更好的服务。结果是:忠实的顾客和盈利的商店。但是拥有数十万或数百万客户的大公司,则不能奢望与每个客户形成密切的私人关系。面临这样困境,他们必须要面对的是,学会充分利用所拥有的大量信息——几乎是每次与客户交互产生的数据。这就是如何将客户数据转换成客户知识的分析技术。数据挖掘是一项与业务流程交互的业务流程。数据挖掘以数据作为开始,通过分析来启动或激励行为,这些行为反过来又将创建更多需要数据挖掘的数据。因此,对于那些充分利用数据来改善业务的公司来说,不应仅仅把数据挖掘看作是细枝末节。相反,在业务策略上必须包含:1、数据收集。2、为长期利益分析数据。3、针对分析结果做出分析。CRM(客户关系管理系统)。在各行各业中,高瞻远瞩的公司的目标都是理解每个客户,并通过利用这种理解,使得客户与他们做生意更加容易。同样要学习分析每个客户的价值,清楚哪些客户值得投资和努力来保留,哪些准许流失。把一个产品为中心的企业转变成以客户为中心的企业的代价超过了数据挖掘。假设数据挖掘的结果是像一个用户推荐一个小首饰而不是一个小发明,但是如果经理的奖金取决于小发明的季度销售量而不是小首饰的销售量(即便后者更为有利可图或者收获长期盈利更多的客户),那么数据挖掘的结果就会被忽视,这就导致挖掘结果不能产生决策。
分类是在一群已经知道类别标号的样本中,训练一种分类器,让其能够对某种未知的样本进行分类。分类算法的分类过程就是建立一种分类模型来描述预定的数据集或概念集,通过分析由属性描述的数据库元组来构造模型。
简单地说,数据挖掘是从大量数据中提取或‘挖掘’知识。该术语实际上有点用词不当。数据挖掘应当更正确地命名为‘从数据中挖掘知识’,不幸的是它有点长。许多人把数据挖掘视为另一个常用的术语‘数据库中知识发现’或KDD的同义词。而另一些人只是把数
好比淘金者在河沙里淘沙获取金子一个道理,数据挖掘就是在大量已知的数据里找出来有用的数据!数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。
数据挖掘(英语:Data mining),又译为数据采矿、数据挖掘。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
数据挖掘可以理解为在大量的统计数据或者调查数据的海洋里分析出内在的规律和特点。
数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。• 数据挖掘所得到的信息应具有先前未知,有效和可实用三个特征。• 先前未知的信息是指该信息是预先未曾预料到的。• 数据挖掘是要发现那些不能靠直觉发现的信息或知识,甚至是违背直觉的信息或知识。• 挖掘出的信息越是出乎意料,就可能越有价值
数据挖掘一般在企业上是作为决策分析的根据,他是从大量相关的数据中挖掘出规律来,如通过分析历年公司某产品在某地的销售规律,像销售额的变化规律,产品的人气指数等,来决策下一年的工作重点和工作目标
数据分析与数据挖掘的目的不一样,数据分析是有明确的分析群体,就是对群体进行各个维度的拆、分、组合,来找到问题的所在,而数据发挖掘的目标群体是不确定的,需要我们更多是是从数据的内在联系上去分析,从而结合业务、用户、数据进行更多的洞察解读。数据分析与数据挖掘的思考方式不同,一般来讲,数据分析是根据客观的数据进行不断的验证和假设,而数据挖掘是没有假设的,但你也要根据模型的输出给出你评判的标准。我们经常做分析的时候,数据分析需要的思维性更强一些,更多是运用结构化、MECE的思考方式,类似程序中的假设。分析框架(假设)+客观问题(数据分析)=结论(主观判断)而数据挖掘大多数是大而全,多而精,数据越多模型越可能精确,变量越多,数据之间的关系越明确数据分析更多依赖于业务知识,数据挖掘更多侧重于技术的实现,对于业务的要求稍微有所降低,数据挖掘往往需要更大数据量,而数据量越大,对于技术的要求也就越高需要比较强的编程能力,数学能力和机器学习的能力。如果从结果上来看,数据分析更多侧重的是结果的呈现,需要结合业务知识来进行解读。而数据挖掘的结果是一个模型,通过这个模型来分析整个数据的规律,一次来实现对于未来的预测,比如判断用户的特点,用户适合什么样的营销活动。显然,数据挖掘比数据分析要更深一个层次。数据分析是将数据转化为信息的工具,而数据挖掘是将信息转化为认知的工具。其实不论数据分析还是数据挖掘,能抓住老鼠的就是好猫,真的没必要纠结他们之前的区别,难道你给领导汇报时,第一部分是数据分析得出,第二部分是数据挖掘得出?他们只关注你分析的逻辑、呈现的方式。
数据分析和数据挖掘都是从数据库中发现知识、所以我们称数据分析和数据挖掘叫做数据库中的知识发现。但严格意义上来讲,数据挖掘才是真正意义上的数据库中的知识发现(Knowledge Discovery in Database,KDD)。数据分析是从数据库中通过统计、计算、抽样等相关的方法,获取基于数据库的数据表象的知识,也就是指数据分析是从数据库里面得到一些表象性的信息。数据挖掘是从数据库中,通过机器学习或者是通过数学算法等相关的方法获取深层次的知识(比如属性之间的规律性,或者是预测)的技术。
数据挖掘领域的十大经典算法:C5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART。不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 C The k-means algorithm 即K-Means算法 Support vector The Apriori 最大期望(EM)算法 PageR AdaB kNN: k-nearest neighbor Naive B CART关于数据挖掘的相关学习,推荐CDA数据师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。
数据挖掘的十大算法按照不同的目的,我可以将这些算法分成四类,以便你更好地理解。分类算法:C5,朴素贝叶斯(Naive Bayes),SVM,KNN,Adaboost,CART聚类算法:K-Means,EM关联分析:Apriori连接分析:PageRank1、C5C5 算法是得票最高的算法,可以说是十大算法之首。C5 是决策树的算法,它创造性地在决策树构造过程中就进行了剪枝,并且可以处理连续的属性,也能对不完整的数据进行处理。它可以说是决策树分类中,具有里程碑式意义的算法。2、朴素贝叶斯(Naive Bayes)朴素贝叶斯模型是基于概率论的原理,它的思想是这样的:对于给出的未知物体想要进行分类,就需要求解在这个未知物体出现的条件下各个类别出现的概率,哪个最大,就认为这个未知物体属于哪个分类。3、SVMSVM 的中文叫支持向量机,英文是 Support Vector Machine,简称 SVM。SVM 在训练中建立了一个超平面的分类模型。如果你对超平面不理解,没有关系,我在后面的算法篇会给你进行介绍。4、KNNKNN 也叫 K 最近邻算法,英文是 K-Nearest Neighbor。所谓 K 近邻,就是每个样本都可以用它最接近的 K 个邻居来代表。如果一个样本,它的 K 个最接近的邻居都属于分类 A,那么这个样本也属于分类 A。5、AdaBoostAdaboost 在训练中建立了一个联合的分类模型。boost 在英文中代表提升的意思,所以 Adaboost 是个构建分类器的提升算法。它可以让我们多个弱的分类器组成一个强的分类器,所以 Adaboost 也是一个常用的分类算法。6、CARTCART 代表分类和回归树,英文是 Classification and Regression Trees。像英文一样,它构建了两棵树:一棵是分类树,另一个是回归树。和 C5 一样,它是一个决策树学习方法。7、AprioriApriori 是一种挖掘关联规则(association rules)的算法,它通过挖掘频繁项集(frequent item sets)来揭示物品之间的关联关系,被广泛应用到商业挖掘和网络安全等领域中。频繁项集是指经常出现在一起的物品的集合,关联规则暗示着两种物品之间可能存在很强的关系。8、K-MeansK-Means 算法是一个聚类算法。你可以这么理解,最终我想把物体划分成 K 类。假设每个类别里面,都有个“中心点”,即意见领袖,它是这个类别的核心。现在我有一个新点要归类,这时候就只要计算这个新点与 K 个中心点的距离,距离哪个中心点近,就变成了哪个类别。9、EMEM 算法也叫最大期望算法,是求参数的最大似然估计的一种方法。原理是这样的:假设我们想要评估参数 A 和参数 B,在开始状态下二者都是未知的,并且知道了 A 的信息就可以得到 B 的信息,反过来知道了 B 也就得到了 A。可以考虑首先赋予 A 某个初值,以此得到 B 的估值,然后从 B 的估值出发,重新估计 A 的取值,这个过程一直持续到收敛为止。EM 算法经常用于聚类和机器学习领域中。10、PageRankPageRank 起源于论文影响力的计算方式,如果一篇文论被引入的次数越多,就代表这篇论文的影响力越强。同样 PageRank 被 Google 创造性地应用到了网页权重的计算中:当一个页面链出的页面越多,说明这个页面的“参考文献”越多,当这个页面被链入的频率越高,说明这个页面被引用的次数越高。基于这个原理,我们可以得到网站的权重划分。
数据挖掘十大经典算法及各自优势不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 C5C5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法 C5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;2) 在树构造过程中进行剪枝;3) 能够完成对连续属性的离散化处理;4) 能够对不完整数据进行处理。C5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 The k-means algorithm 即K-Means算法k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均 方误差总和最小。 Support vector machines支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更 高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假 定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是CJC Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。 The Apriori algorithmApriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。 最大期望(EM)算法在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然 估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。 PageRankPageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票, 被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自 学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。 AdaBoostAdaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权 值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。 kNN: k-nearest neighbor classificationK最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 Naive Bayes在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以 及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。 但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属 性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。 CART: 分类与回归树CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。以上是小编为大家分享的关于数据挖掘十大经典算法及各自优势的相关内容,更多信息可以关注环球青藤分享更多干货