本科论文80分儿其实挺好拿的。并不是说你可以随便糊弄糊弄就拿80分,而是你认真做的话,其实80分很容易,而且普通大学的大学毕业论文要求并不是那样,严格,只要求你的格式,内容嘛自己把握,只要大体上能自圆其说就可以,这就达到了60分的地步。而且对于大部分的学校来讲,70分,80分是主要的分数区间,也就意味着全班基本上能有70%以上,达到70分以上。所以80分基本上就是一个大众分,即便你学校要求严格的话,也是中等分数。
大学本科毕业论文的成绩评定主要由答辩老师的评分和指导老师的评分综合而来。答辩时,至少三位答辩老师会根据论文质量和学生的答辩情况给论文给出一个分数,这几个分数平均后会报送至知网系统,然后在知网的论文系统里,指导老师也会给一个分数,这两个分数决定了论文的总成绩。一般而言,毕业论文仍然使用百分制,也就是及格分是60分,只要总评分数达到60分或以上,即是合格论文。
根据上海电力大学的毕业设计(论文)评分标准,60分为合格线。
毕业设计(论文)的综合成绩采用五级记分(优、良、中、及格、不及格),采用“结构分”进行成绩的综合评定。结构分由指导教师的评分、评阅人的评分和答辩小组的评分构成,结构分成绩采用百分制记分,三部分的比例为4∶3∶3。
毕业设计(论文)的综合成绩与结构分的加权平均分的对应关系为:优100-90,良89-78,中77-68,及格67-60。评优比例不得超过15%。
评分标准:
(1)优(100-90)
按期圆满完成任务书规定的任务;能熟练运用所学理论和专业知识;立论正确,计算、分析和实验正确、严密,结论合理;独立工作能力较强,科学作风严谨;毕业设计(论文)有自己的独到见解,水平较高。
论文条理清楚,论述充分,文字通顺并符合技术用语要求,符号统一,编号齐全,图纸完备、整洁和正确。答辩时思路清晰,论点正确,回答问题有理论根据,基本概念清楚,对主要问题回答正确、深入。
(2)良(89-78)
按期圆满完成任务书规定的任务;能较好地运用所学理论和专业知识;立论正确,计算、分析和实验正确,结论合理;有一定的独立工作能力,科学作风良好;毕业设计(论文)有一定的水平。
论文条理清楚,论述正确,文字通顺并符合技术用语要求,设计图纸完备、整洁、正确。答辩时思路清晰,论点基本正确,能正确回答主要问题。
(3)中(77-68)
按期圆满完成任务书规定的任务;在运用所学理论和专业知识上基本正确;有一定的独立工作能力;毕业设计(论文)水平一般。
论文文理通顺,但论述有个别错误(或表达不清楚),设计图纸完备、基本正确,但质量一般或有小的缺陷。答辩时对主要问题的回答基本正确,但分析不够深入。
(4)及格(67-60)
在指导教师的指导和帮助下,能按期完成任务;独立工作能力较差;且有一些小的疏忽、遗漏;在运用所学理论和专业知识中,无大的原则性的错误;论点、论据基本成立;计算、分析、实验基本正确;毕业设计(论文)达到了基本要求。
论文文理通顺,但叙述不够恰当和清晰,文字、符号有些出入;图纸质量不高,工作不够认真,有个别明显错误。答辩时对主要问题能回答,经启发后才能答出,回答问题较肤浅。
(5)不及格(59-0)
未按期完成任务书规定的任务,或基本概念和基本技能未掌握;在运用所学理论和专业知识中出现不应有的原则性错误;在方案论证、分析、实验等工作中,独立工作能力差;毕业设计(论文)未达到最低要求。
论文文理不通,质量差;图纸不齐全或有原则性错误。答辩时阐述不清毕业设计(论文)的主要内容,基本概念模糊,对主要问题回答有误或回答不出。
毕业设计期间态度不认真,接到黄牌警告(“能源与环境工程学院毕业设计学生情况异常表”)后未有悔改,无故缺席超过有关规定(“上海电力学院本科生毕业设计(论文)工作条例”)。
以上内容参考 上海电力大学-毕业设计(论文)评分标准
太原理工大学软件工程专业的分数线是532分。
太原理工大学软件学院前身是太原理工大学计算机与软件学院,具有“计算机应用技术”学科博士学位授予权。
主要课程:大学英语、高等数学、大学物理、离散结构、程序设计技术、面向对象程序设计基础、数据结构、操作系统、算法设计与分析、数据库系统原理。
主要实践教学环节:军训、教学实习、生产实习、社会实践、科研训练、自主实践、课程实验、课程设计、综合实践、专业实训、毕业实习、毕业设计(论文)等。
学院现有教师72人,教授12人,副教授20人,高级工程师9名。有博士生导师4名,硕士生导师27名。
2023年太原理工大学研究生复试线:310分理科,本科毕业生:总分160分,单科不低于70分;硕士研究生:总分170分,单科不低于80分;博士研究生:总分180分,单科不低于90分。
太原理工大学有84个本科专业,学校学科结构合理、师资力量雄厚、办学效益显著、校园环境优美是山西培养高层次人才和进行多学科、高水平研究的重要基地。2023年考研太原理工大根据不同的门类专业,录取成绩分数线在170-360不等。
复试内容
1、个人简历、本科专业学习成绩单(盖校或院系公章)。
2、外语能力、科研能力、学业奖励:CET-4/CET-6/雅思/托福成绩单;论文、专利、学科和设计竞赛、参与课题等证明材料。
3、校级及以上其他奖励,或参加实践活动(学生工作、社团活动、志愿服务等)方面的证明材料。
4、设计作品:设计作品应选自本科课程设计和参加竞赛作品,若为团队作品应说明个人独立完成部分。
复试注意事项
复试时考生提供的各类材料将作为对考生既往学业、科研能力、综合素质和思想品德等情况全面考查的重要参考依据。考生应保证材料的真实准确,发现弄虚作假情况,将取消复试或录取资格。
不知道怎么写说明是文献看少了,我建议你写之前一定要多看看应用数学进展这本期刊上的文献,找下自己的写作思路
论文提纲就是论文的框架、结构,是作者构思谋篇的具体体现。便于作者有条理地安排材料、展开论证。本科论文的提纲结构:一、中英文摘要二、绪论(前言)1、研究背景2、研究目的和意义3、国内外研究综述4、研究方法三、理论概述与文献概述1、论文用到的相关概念2、相关理论概述四、现状,对研究问题现状进行分析总结(文字描述及数据分析)五、根据现状提出存在的问题及原因分析(列出123)六、对策与建议,针对上面提出的问题提出解决政策,一 一对应进行解决(列出123)。七、结论
具体的范文模板链接:
毕业论文提纲结构及标准格式 本科毕业论文提纲包括(按顺序):封面、内容摘要及关键词、提纲内容等三部分
一般而言,论文大纲分为简要大纲和具体大纲,其主要撰写步骤为以下内容。1.整理文献资料在确认提纲之前的步骤中就有收集材料,在大纲撰写之前,需要对相关文献建立资料索引,且与后续的研究方向一一对应。2.确认大标题和小标题大标题和小标题基本就决定了论文的框架,研究的深度,以及理论部分的需求,在标题与标题之间可以建立相应的逻辑关系,按照逻辑推导推演出下一个标题,非常有效的提升论文的鲜明程度。
给你介绍几本数学类的核心期刊1 纯粹数学与应用数学2 大学数学3 高等学校计算数学学报 纯4 高校应用数学学报A辑(中文版) 5 工程数学学报6 计算数学 7 模糊系统与数学 8 数学的实践与认识 9 数学教育学报 10 数学季刊11 数学进展12 数学年刊A辑(中文版) 13 数学物理学报 14 数学学报 15 数学研究与评论 16 数学杂志17 系统科学与数学18 应用概率统计 19 应用数学20 应用数学学报21 运筹学学报
核心期刊有:国内七大核心期刊体系,1、北京大学图书馆“中文核心期刊”;2、南京大学“中文社会科学引文索引(CSSCI)来源期刊”;3、中国科学技术信息研究所“中国科技论文统计源期刊”(又称“中国科技核心期刊”);4、中国社会科学院文献信息中心“中国人文社会科学核心期刊”;5、中国科学院文献情报中心“中国科学引文数据库(CSCD)来源期刊”;6、中国人文社会科学学报学会“中国人文社科学报核心期刊”;7、万方数据股份有限公司的“中国核心期刊遴选数据库”。
理论数学、应用数学进展都是rccse的核心刊
数学四大刊是《数学年刊》、《数学新进展》、Acta Mathematic、《美国数学会杂志》 。
1、《数学年刊》
开始由哈佛大学出版,在1911年的时候迁到号称是世界数学中心的普林斯顿大学,现在是普林斯顿大学跟普林斯顿高等研究院共同出版。搞数学的人不喜欢噱头的东西,崇尚简洁就是美,Annals of Mathematics的影响因子并不高,2011年才2.928,然而这丝毫不能动摇它在数学界的地位。
2、《数学新进展》
Inventiones Mathematicae 由Springer Verlag 出版,是另外一本权威期刊。影响因子比Annals of Mathematics稍低。中国数学家们在这个期刊上发表的文章数量要比Annals of Mathematics多一些。
3、Acta Mathematica
由Gösta Mittag-Leffler出版社创刊于1882年,隶属于瑞典皇家科学院,2011年的影响因子为3.333。Acta Mathematica是季刊,每年发行2卷,每卷有2期。内容覆盖了数学所有研究方向。
4、《美国数学会杂志》
Journal Of The American Mathematical Society是美国数学协会所办的期刊,也是季刊。2011年的影响因子是3.841,发表文章数量为32篇,等于说每期8篇文章。对众多数学方向的研究人员来说,能在这么少的文章数量中占有一席之地那是多么的艰难啊。
数学
数学(英语:mathematics,源自古希腊语μθημα(máthēma);经常被缩写为math或maths])是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
大学数学是大学生必修的课程之一,如何提升大学生数学学习兴趣,培养数学型人才,是每一个大学数学教师都需要思考的。下面是我为大家整理的大学数学论文,供大家参考。
大学数学论文 范文 一:大学数学网络 教育 论文
一、教师要转变观念
意识是行动的主宰者。首先,教师要充分认识到网络教学资源对大学数学教学所产生的深刻影响。在网络信息快速发展的当今时代,如果仍旧拘泥于传统教学方式,势必将会处于落伍的境地。不仅影响教学效率,往深层次讲,还会影响学生 毕业 走向社会的适应能力以及生存能力。因此,教师要积极主动投身于教学改革的先行者行列中,构建现代化网络教学平台、加强网络教学资源的建设。
二、进行有效引导
在现代网络信息资源的基础上,学生能够变传统被动接受知识为主动探索知识。因此,教师要进行适当引导,指导学生掌握有效运用现代网络资源的 方法 ,不断发挥学生的主观能动性,培养学生的自主学习与探索能力,进而实现学生主动探索、教师指导的理想教学模式。 课前预习 、课中学习、课后巩固等这些环节,教师均可以让学生先自主学习,而后再进行有效指导。
三、有效整合教学资源
现代网络为我们带来丰富多彩的教学资源的同时,也带来了一些垃圾信息。因此,在大学数学教学中,教师要具备有效甄选、整合教学资源的能力。要根据课程内容,选择适合课时内容的资源融入到教学中。在选择网络资源时要遵循趣味性原则、实用性原则以及内容相符原则。运用网络教学资源进行大学数学教学是提高大学数学教学质量与教学效率的有效途径与方法,也是教育教学发展的必然趋势。教师应当转变传统的教学观念,充分重视网络信息资源,以教材为中心,有效整合网络资源,并运用于教学中,提高学生的学习兴趣,不断培养学生的自主学习能力。
大学数学论文范文二:大学数学教学中网络教育资源研究
一、如何利用网络教育资源提高大学数学教育质量
(一)加强教师对网络教育资源的认知
以前的大学数学教学方式单一,与学生的交流也少之又少,但是随着网络资源的发展,这一切将会有很大的变化,这也是适应社会的发展,提高数学教学质量的一种必然趋势。学校也应加大网络资源建设,顺应社会发展的潮流,不要封闭在传统的教育理念之中。大学教师也应适应社会的发展,不断的学习,摆脱落伍的危机。
(二)教师要把网络教育资源的内容融入到教学之中
教师应该适应网络的发展,把网络教育资源融入到现代教学之中,但是不要盲目的引进,首先就要考虑引进内容的适用性,所引进的内容要与所学的内容有相关性,能起到补充,扩充的作用,这样能够开拓学生们的视野。其次引进的内容还要具有适用性,能够让学生们把所学的内容融入到生活,融入到社会,达到学生们能认识数学,应用数学,培养他们的能力。最后还要具有一定的趣味性,这样才能令学生更能接受所学内容,更愿意去学习数学,应用数学。所以教师合理的引进网络教育资源使十分重要的。
(三)教师要引导学生们自主利用网络教育资源
教师不但要学习引进网络教育资源,还要充分的引导学生利用网络资源,培养他们自主学习数学, 爱好 数学的良好作风。以前的数学教育中,以老师讲解为主,学生被动的接受知识,学习过后学生们无法应用,这是一个很大的失败,而现在的网络发展情况下,老师可以引导学生们更好的利用网络资源,引导学生们自主学习,可以布置学生做课前预习,到网络上寻求资料,还可以让学生们课后巩固学习内容,网上寻求交流,以便达到巩固知识的作用。
(四)增强学生自主学习能力和兴趣
现在大学数学教育尽管很重视学生的学习,教师又会安排课余时间组织学生们给他们进行答疑解惑,但是受到时间性和地域性的限制,效果往往是不太理想,现在网络资源的丰富,不再受时间和地域的限制, 网络技术 可以让学生和老师间进行多样化的交流和辅导,也可以让学生们通过一些论坛,邮箱,视频等等不断的学习巩固自己的知识。学习不再有时间地域的限制,学生们的积极性会大大提高,兴趣也会越来越高,提高数学成绩不再是难事。
二、结束语
大学数学教育充分有效的利用网络课程资源是提高大学数学教育质量的有效办法,教师应该打破传统教学的局限性,以课材为中心,充分利用网络资源融入到现在教学之中,补充课本上的不足,增强教育之中的趣味性,这样会开拓学生们的视野,培养学生们的 兴趣爱好 ,让他们更加具备学习数学的激情,更加具备自主学习的能力。只有这样学生们才会更加有发展,大学数学的教育才会更加成功。
大学数学论文范文相关 文章 :
1. 大学生论文范文
2. 大学论文格式范文
3. 大学生论文范文模板
4. 大学毕业论文范文
5. 大学生毕业论文范文
6. 大学毕业生论文范文
毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。
本科数学毕业论文题目
★浅谈奥数竟赛的利与弊
★浅谈中学数学中数形结合的思想
★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学
★中数教学研究
★XXX课程网上教学系统分析与设计
★数学CAI课件开发研究
★中等职业学校数学教学改革研究与探讨
★中等职业学校数学教学设计研究
★中等职业学校中外数学教学的比较研究
★中等职业学校数学教材研究
★关于数学学科案例教学法的探讨
★中外著名数学家学术思想探讨
★试论数学美
★数学中的研究性学习
★数字危机
★中学数学中的化归方法
★高斯分布的启示
★a二+b二≧二ab的变形推广及应用
★网络优化
★泰勒公式及其应用
★浅谈中学数学中的反证法
★数学选择题的利和弊
★浅谈计算机辅助数学教学
★论研究性学习
★浅谈发展数学思维的学习方法
★关于整系数多项式有理根的几个定理及求解方法
★数学教学中课堂提问的误区与对策
★怎样发掘数学题中的隐含条件
★数学概念探索式教学
★从一个实际问题谈概率统计教学
★教学媒体在数学教学中的作用
★数学问题解决及其教学
★数学概念课的特征及教学原则
★数学美与解题
★创造性思维能力的培养和数学教学
★教材顺序的教学过程设计创新
★排列组合问题的探讨
★浅谈初中数学教材的思考
★整除在数学应用中的探索
★浅谈协作机制在数学教学中的运用
★课堂标准与数学课堂教学的研究与实践
★浅谈研究性学习在数学教学中的渗透与实践
★关于现代中学数学教育的思考
★在中学数学教学中教材的使用
★情境教学的认识与实践
★浅谈初中代数中的二次函数
★略论数学教育创新与数学素质提高
★高中数学“分层教学”的初探与实践
★在中学数学课堂教学中如何培养学生的创新思维
★中小学数学的教学衔接与教法初探
★如何在初中数学教学中进行思想方法的渗透
★培养学生创新思维全面推进课程改革
★数学问题解决活动中的反思
★数学:让我们合理猜想
★如何优化数学课堂教学
★中学数学教学中的创造性思维的培养
★浅谈数学教学中的“问题情境”
★市场经济中的蛛网模型
★中学数学教学设计前期分析的研究
★数学课堂差异教学
★一种函数方程的解法
★浅析数学教学与创新教育
★数学文化的核心—数学思想与数学方法
★漫话探究性问题之解法
★浅论数学教学的策略
★当前初中数学教学存在的问题及其对策
★例谈用“构造法”证明不等式
★数学研究性学习的探索与实践
★数学教学中创新思维的培养
★数学教育中的科学人文精神
★教学媒体在数学教学中的应用
★“三角形的积化和差”课例大家评
★谈谈类比法
★直觉思维在解题中的应用
★数学几种课型的问题设计
★数学教学中的情境创设
★在探索中发展学生的创新思维
★精心设计习题提高教学质量
★对数学教育现状的分析与建议
★创设情景教学生猜想
★反思教学中的一题多解
★在不等式教学中培养学生的探究思维能力
★浅谈数学学法指导
★中学生数学能力的培养
★数学探究性活动的内容形式及教学设计
★浅谈数学学习兴趣的培养
★浅谈课堂教学的师生互动
★新世纪对初中数学的教材的思考
★数学教学的现代研究
★关于学生数学能力培养的几点设想
★在数学教学中培养学生创新能力的尝试
★积分中值定理的再讨论
★二阶变系数齐次微分方程的求解问题
★浅谈培养学生的空间想象能力
★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育
★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计
★培养学生学习数学的兴趣
★课堂教学与素质教育探讨
★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施
★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题
★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣
★数学教学中探究性学习策略
★论数学课堂教学的语言艺术
★数学概念的教与学
★优化课堂教学推进素质教育
★数学教学中的情商因素
★浅谈创新教育
★培养学生的数学兴趣的实施途径
★论数学学法指导
★学生能力在数学教学中的培养
★浅论数学直觉思维及培养
★论数学学法指导
★优化课堂教学焕发课堂活力
★浅谈高初中数学教学衔接
★如何搞好数学教育教学研究
★浅谈线性变换的对角化问题
本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法
生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。
1数学建模在煤矿安全生产中的意义
在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。
只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。
2煤矿生产计划的优化方法
生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。
2.1基于数学模型的方法
(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。
(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。
2.2基于人工智能方法
(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。
(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。
3煤矿安全生产中数学模型的优化建立
根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。
3.1建立简化模型
3.1.1模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。
很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式
式中x2---B工作面瓦斯体积分数;
u2---B工作面采煤进度;
w1---B矿井所对应的空气流速;
w2---相邻A工作面的空气流速;
a2、b2、c2、d2---未知量系数。
CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】
式中x3、x4---C、D工作面的瓦斯体积分数;
e1、e2---A、B工作面的瓦斯体积分数;
a3、b3、c3、d3---未知量系数:
f1、f2---A、B工作面的瓦斯绝对涌出量。
3.1.2系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。
3.2模型的转型及其离散化
因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】
在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=0.5就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若0.5表示通风口的开通程度是0.5,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。
依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。
3.3模型的应用效果及降低瓦斯体积分数的措施
以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。
综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。
4结语
应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。
参考文献:
[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.
[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.
[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.