生物信息学是一门非常先进的科学,就业前景是很广阔的,适合于各行各业,如果学的好的话,会非常有发展。
学科:理学- 生物科学类说明:生物科学类共 4 个专业,生物信息学专业在生物科学类中排名 第2名 ,在理学大类36个专业中排名 第6位。本专业学生毕业后可在各级生物信息学的研究机构、高等学校、企事业单位以及在研究和成果产业化过程中涉及到生物信息学的相关部门,从事科学研究、教学和管理工作。
谁一个、、论文不才交么……生物信息在生物学研究中的作用。生物信息是指生物体中包含的全部信息,如基因组信息、蛋白质、核酸、糖类等生物大分子的结构等。生物信息对生物体的生存、繁殖都起着重要作用。生物信息包含的范围很广,除遗传物质、神经电冲动和激素之外,生物体发出的声音、气味、颜色以及生物的行为本身都含有信息,都对生物的个体和群体产生影响,和生物的生存与进化密不可分。生物信息的特点是消耗极少的能量和物质即可产生极大的生物效应。生物信息一般可分为遗传信息、神经和感觉信息及化学信息。虽然遗传信息和神经感觉信息的载体都属于化学物质,但通常所指的化学信息是除以上两类物质以外的化学物质所携带和传递的信息。高等生物的激素及昆虫外激素都属于这一类。遗传信息是指生物为复制与自己相同的东西、由亲代传递给子代、或各细胞每次分裂时由细胞传递给细胞的信息, 即碱基对的排列顺序(或指DNA分子的脱氧核苷酸的排列顺序) 。遗传信息以密码形式存储在DNA分子上,通过DNA的复制传递给子代。在后代生长发育过程中,遗传信息自DNA转录给RNA,后翻译成特异的蛋白质,以执行各种生命功能。从历史上看,首先是由G.J.Mendel(1866)的研究形成了概念,即相应于生物各种性状的因素(现在称为基因)中包含着相应的信息(以后G.Beadle等人(1941)所开创了遗传生物化学的研究,描绘出这样一个轮廓:基因和决定生物结构与功能的蛋白质之间具有一对一的对应关系。 关于基因的化学本质方面,根据O.T.Avery等(1944)进行的转化实验,以及A.Hershey和M.Chase(1952)用大肠杆菌噬菌体的DNA进行的性状表达实验,已阐明DNA是遗传信息的载体。附着DNA结构研究的进展,现在已经确立了这样的概念,即基因所具有的信息可将DNA的碱基排列进行符号化。信息在表达时,DNA的碱基排列首先被转录成RNA的碱基排列,然后再根据这种排列合成蛋白质。有的病毒的遗传信息的载体不是DNA,而是RNA。遗传信息不仅有相应于蛋白质的基因信息,也包括对信息解读所必需的信息、控制信息表达所必需的信息,以及生物为了复制与自己相同结构所必需的一切信息。神经和感觉信息靠电脉冲和神经递质携带和传递。神经系统接受内外环境中的信息,进行加工处理,调节和控制机体各部分功能。生物靠神经系统电脉冲和神经递质携带和传递。神经系统的功能是接收、传递内外环境中的信息,加以处理、分析,从而控制和调节机体各部功能,对环境作出适当的反应。因此,神经信息对于有机体的生存以及正常生活起着至关重要的作用。化学信息是除上述两类物质外由化学介质传递的信息。生物体的各种功能能够有条不紊地进行,对环境能及时做出反应,是由于生物体内存在着通过各种各样的化学信息分子进行传递的信息系统。生物信息在生物研究中有重要作用,然而,原始的生物信息资源挖掘出来后,生命科学工作者面临着严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学产业的高级阶段体现于此,人类从此进入了以生物信息学为中心的后基因组时代。结合生物信息学的新药创新工程即是这一阶段的典型应用。因此,生物信息学便是生物信息在生物研究中重要应用。 生物信息学是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。生物信息学研究对象是生物信息。其研究重点主要体现在基因组学和蛋白学两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。 具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:(1)新算法和统计学方法研究;(2)各类数据的分析和解释;(3)研制有效利用和管理数据新工具。 生物信息学作为基因组研究的有力武器,被广泛地用来加快新基因的寻找过程,以达到将“有用”新基因抢先注册专利的目的。在这场世界范围内的竞争中,中国科学家以及科研资金投向的决策部门如何结合我国科研水平的现状、优势领域等客观情况将有限的投资投入以求获得最大可能的科学研究以及商业回报,是一个无法回避的新课题。 生物信息学的主要研究方向: 基因组学 - 蛋白质组学 - 系统生物学 - 比较基因组学,随着包括人类基因组计划在内的生物基因组测序工程的里程碑式的进展,由此产生的包括生物体生老病死的生物数据以前所未有的速度递增,目前已达到每14个月翻一番的速度。同时随着互联网的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。然而这些仅仅是原始生物信息的获取,是生物信息学产业发展的初组阶段,这一阶段的生物信息学企业大都以出售生物数据库为生。以人类基因组测序而闻名的塞莱拉公司即是这一阶段的成功代表。 综上所述,对生物信息的研究对生物学的蓬勃发展具有重要作用。
生物信息学专业,就业前景很广阔,目前国内此专业的人才还是比较欠缺的。科技的发展也必将推动生物信息学的发展。
谁一个、、论文不才交么……生物信息在生物学研究中的作用。生物信息是指生物体中包含的全部信息,如基因组信息、蛋白质、核酸、糖类等生物大分子的结构等。生物信息对生物体的生存、繁殖都起着重要作用。生物信息包含的范围很广,除遗传物质、神经电冲动和激素之外,生物体发出的声音、气味、颜色以及生物的行为本身都含有信息,都对生物的个体和群体产生影响,和生物的生存与进化密不可分。生物信息的特点是消耗极少的能量和物质即可产生极大的生物效应。生物信息一般可分为遗传信息、神经和感觉信息及化学信息。虽然遗传信息和神经感觉信息的载体都属于化学物质,但通常所指的化学信息是除以上两类物质以外的化学物质所携带和传递的信息。高等生物的激素及昆虫外激素都属于这一类。遗传信息是指生物为复制与自己相同的东西、由亲代传递给子代、或各细胞每次分裂时由细胞传递给细胞的信息, 即碱基对的排列顺序(或指DNA分子的脱氧核苷酸的排列顺序) 。遗传信息以密码形式存储在DNA分子上,通过DNA的复制传递给子代。在后代生长发育过程中,遗传信息自DNA转录给RNA,后翻译成特异的蛋白质,以执行各种生命功能。从历史上看,首先是由G.J.Mendel(1866)的研究形成了概念,即相应于生物各种性状的因素(现在称为基因)中包含着相应的信息(以后G.Beadle等人(1941)所开创了遗传生物化学的研究,描绘出这样一个轮廓:基因和决定生物结构与功能的蛋白质之间具有一对一的对应关系。 关于基因的化学本质方面,根据O.T.Avery等(1944)进行的转化实验,以及A.Hershey和M.Chase(1952)用大肠杆菌噬菌体的DNA进行的性状表达实验,已阐明DNA是遗传信息的载体。附着DNA结构研究的进展,现在已经确立了这样的概念,即基因所具有的信息可将DNA的碱基排列进行符号化。信息在表达时,DNA的碱基排列首先被转录成RNA的碱基排列,然后再根据这种排列合成蛋白质。有的病毒的遗传信息的载体不是DNA,而是RNA。遗传信息不仅有相应于蛋白质的基因信息,也包括对信息解读所必需的信息、控制信息表达所必需的信息,以及生物为了复制与自己相同结构所必需的一切信息。神经和感觉信息靠电脉冲和神经递质携带和传递。神经系统接受内外环境中的信息,进行加工处理,调节和控制机体各部分功能。生物靠神经系统电脉冲和神经递质携带和传递。神经系统的功能是接收、传递内外环境中的信息,加以处理、分析,从而控制和调节机体各部功能,对环境作出适当的反应。因此,神经信息对于有机体的生存以及正常生活起着至关重要的作用。化学信息是除上述两类物质外由化学介质传递的信息。生物体的各种功能能够有条不紊地进行,对环境能及时做出反应,是由于生物体内存在着通过各种各样的化学信息分子进行传递的信息系统。生物信息在生物研究中有重要作用,然而,原始的生物信息资源挖掘出来后,生命科学工作者面临着严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学产业的高级阶段体现于此,人类从此进入了以生物信息学为中心的后基因组时代。结合生物信息学的新药创新工程即是这一阶段的典型应用。因此,生物信息学便是生物信息在生物研究中重要应用。 生物信息学是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。生物信息学研究对象是生物信息。其研究重点主要体现在基因组学和蛋白学两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。 具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:(1)新算法和统计学方法研究;(2)各类数据的分析和解释;(3)研制有效利用和管理数据新工具。 生物信息学作为基因组研究的有力武器,被广泛地用来加快新基因的寻找过程,以达到将“有用”新基因抢先注册专利的目的。在这场世界范围内的竞争中,中国科学家以及科研资金投向的决策部门如何结合我国科研水平的现状、优势领域等客观情况将有限的投资投入以求获得最大可能的科学研究以及商业回报,是一个无法回避的新课题。 生物信息学的主要研究方向: 基因组学 - 蛋白质组学 - 系统生物学 - 比较基因组学,随着包括人类基因组计划在内的生物基因组测序工程的里程碑式的进展,由此产生的包括生物体生老病死的生物数据以前所未有的速度递增,目前已达到每14个月翻一番的速度。同时随着互联网的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。然而这些仅仅是原始生物信息的获取,是生物信息学产业发展的初组阶段,这一阶段的生物信息学企业大都以出售生物数据库为生。以人类基因组测序而闻名的塞莱拉公司即是这一阶段的成功代表。 综上所述,对生物信息的研究对生物学的蓬勃发展具有重要作用。
一, 生物信息学发展简介生物信息学是建立在分子生物学的基础上的,因此,要了解生物信息学,就必须先对分子生物学的发展有一个简单的了解.研究生物细胞的生物大分子的结构与功能很早就已经开始,1866年孟德尔从实验上提出了假设:基因是以生物成分存在[1],1871年Miescher从死的白细胞核中分离出脱氧核糖核酸(DNA),在Avery和McCarty于1944年证明了DNA是生命器官的遗传物质以前,人们仍然认为染色体蛋白质携带基因,而DNA是一个次要的角色.1944年Chargaff发现了著名的Chargaff规律,即DNA中鸟嘌呤的量与胞嘧定的量总是相等,腺嘌呤与胸腺嘧啶的量相等.与此同时,Wilkins与Franklin用X射线衍射技术测定了DNA纤维的结构.1953年James Watson 和FrancisCrick在Nature杂志上推测出DNA的三维结构(双螺旋).DNA以磷酸糖链形成发双股螺旋,脱氧核糖上的碱基按Chargaff规律构成双股磷酸糖链之间的碱基对.这个模型表明DNA具有自身互补的结构,根据碱基对原则,DNA中贮存的遗传信息可以精确地进行复制.他们的理论奠定了分子生物学的基础.DNA双螺旋模型已经预示出了DNA复制的规则,Kornberg于1956年从大肠杆菌(E.coli)中分离出DNA聚合酶I(DNA polymerase I),能使4种dNTP连接成DNA.DNA的复制需要一个DNA作为模板.Meselson与Stahl(1958)用实验方法证明了DNA复制是一种半保留复制.Crick于1954年提出了遗传信息传递的规律,DNA是合成RNA的模板,RNA又是合成蛋白质的模板,称之为中心法则(Central dogma),这一中心法则对以后分子生物学和生物信息学的发展都起到了极其重要的指导作用.经过Nirenberg和Matthai(1963)的努力研究,编码20氨基酸的遗传密码得到了破译.限制性内切酶的发现和重组DNA的克隆(clone)奠定了基因工程的技术基础.正是由于分子生物学的研究对生命科学的发展有巨大的推动作用,生物信息学的出现也就成了一种必然.2001年2月,人类基因组工程测序的完成,使生物信息学走向了一个高潮.由于DNA自动测序技术的快速发展,DNA数据库中的核酸序列公共数据量以每天106bp速度增长,生物信息迅速地膨胀成数据的海洋.毫无疑问,我们正从一个积累数据向解释数据的时代转变,数据量的巨大积累往往蕴含着潜在突破性发现的可能,"生物信息学"正是从这一前提产生的交叉学科.粗略地说,该领域的核心内容是研究如何通过对DNA序列的统计计算分析,更加深入地理解DNA序列,结构,演化及其与生物功能之间的关系,其研究课题涉及到分子生物学,分子演化及结构生物学,统计学及计算机科学等许多领域.生物信息学是内涵非常丰富的学科,其核心是基因组信息学,包括基因组信息的获取,处理,存储,分配和解释.基因组信息学的关键是"读懂"基因组的核苷酸顺序,即全部基因在染色体上的确切位置以及各DNA片段的功能;同时在发现了新基因信息之后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行药物设计[2].了解基因表达的调控机理也是生物信息学的重要内容,根据生物分子在基因调控中的作用,描述人类疾病的诊断,治疗内在规律.它的研究目标是揭示"基因组信息结构的复杂性及遗传语言的根本规律",解释生命的遗传语言.生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿.二, 生物信息学的主要研究方向生物信息学在短短十几年间,已经形成了多个研究方向,以下简要介绍一些主要的研究重点.1,序列比对(Sequence Alignment)序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似性.从生物学的初衷来看,这一问题包含了以下几个意义[3]:从相互重叠的序列片断中重构DNA的完整序列.在各种试验条件下从探测数据(probe data)中决定物理和基因图存贮,遍历和比较数据库中的DNA序列比较两个或多个序列的相似性在数据库中搜索相关序列和子序列寻找核苷酸(nucleotides)的连续产生模式找出蛋白质和DNA序列中的信息成分序列比对考虑了DNA序列的生物学特性,如序列局部发生的插入,删除(前两种简称为indel)和替代,序列的目标函数获得序列之间突变集最小距离加权和或最大相似性和,对齐的方法包括全局对齐,局部对齐,代沟惩罚等.两个序列比对常采用动态规划算法,这种算法在序列长度较小时适用,然而对于海量基因序列(如人的DNA序列高达109bp),这一方法就不太适用,甚至采用算法复杂性为线性的也难以奏效.因此,启发式方法的引入势在必然,著名的BALST和FASTA算法及相应的改进方法均是从此前提出发的.2, 蛋白质结构比对和预测基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性.蛋白质的结构与功能是密切相关的,一般认为,具有相似功能的蛋白质结构一般相似.蛋白质是由氨基酸组成的长链,长度从50到1000~3000AA(Amino Acids),蛋白质具有多种功能,如酶,物质的存贮和运输,信号传递,抗体等等.氨基酸的序列内在的决定了蛋白质的3维结构.一般认为,蛋白质有四级不同的结构.研究蛋白质结构和预测的理由是:医药上可以理解生物的功能,寻找dockingdrugs的目标,农业上获得更好的农作物的基因工程,工业上有利用酶的合成.直接对蛋白质结构进行比对的原因是由于蛋白质的3维结构比其一级结构在进化中更稳定的保留,同时也包含了较AA序列更多的信息.蛋白质3维结构研究的前提假设是内在的氨基酸序列与3维结构一一对应(不一定全真),物理上可用最小能量来解释.从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构.同源建模(homology modeling)和指认(Threading)方法属于这一范畴.同源建模用于寻找具有高度相似性的蛋白质结构(超过30%氨基酸相同),后者则用于比较进化族中不同的蛋白质结构.然而,蛋白结构预测研究现状还远远不能满足实际需要.3, 基因识别,非编码区分析研究.基因识别的基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.非编码区由内含子组成(introns),一般在形成蛋白质后被丢弃,但从实验中,如果去除非编码区,又不能完成基因的复制.显然,DNA序列作为一种遗传语言,既包含在编码区,又隐含在非编码序列中.分析非编码区DNA序列目前没有一般性的指导方法.在人类基因组中,并非所有的序列均被编码,即是某种蛋白质的模板,已完成编码部分仅占人类基因总序列的3~5%,显然,手工的搜索如此大的基因序列是难以想象的.侦测密码区的方法包括测量密码区密码子(codon)的频率,一阶和二阶马尔可夫链,ORF(Open Reading Frames),启动子(promoter)识别,HMM(HiddenMarkov Model)和GENSCAN,Splice Alignment等等.4, 分子进化和比较基因组学分子进化是利用不同物种中同一基因序列的异同来研究生物的进化,构建进化树.既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化,其前提假定是相似种族在基因上具有相似性.通过比较可以在基因组层面上发现哪些是不同种族中共同的,哪些是不同的.早期研究方法常采用外在的因素,如大小,肤色,肢体的数量等等作为进化的依据.近年来较多模式生物基因组测序任务的完成,人们可从整个基因组的角度来研究分子进化.在匹配不同种族的基因时,一般须处理三种情况:Orthologous: 不同种族,相同功能的基因Paralogous: 相同种族,不同功能的基因Xenologs: 有机体间采用其他方式传递的基因,如被病毒注入的基因.这一领域常采用的方法是构造进化树,通过基于特征(即DNA序列或蛋白质中的氨基酸的碱基的特定位置)和基于距离(对齐的分数)的方法和一些传统的聚类方法(如UPGMA)来实现.5, 序列重叠群(Contigs)装配根据现行的测序技术,每次反应只能测出500 或更多一些碱基对的序列,如人类基因的测量就采用了短枪(shortgun)方法,这就要求把大量的较短的序列全体构成了重叠群(Contigs).逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配.从算法层次来看,序列的重叠群是一个NP-完全问题.6, 遗传密码的起源通常对遗传密码的研究认为,密码子与氨基酸之间的关系是生物进化历史上一次偶然的事件而造成的,并被固定在现代生物的共同祖先里,一直延续至今.不同于这种"冻结"理论,有人曾分别提出过选择优化,化学和历史等三种学说来解释遗传密码.随着各种生物基因组测序任务的完成,为研究遗传密码的起源和检验上述理论的真伪提供了新的素材.7, 基于结构的药物设计人类基因工程的目的之一是要了解人体内约10万种蛋白质的结构,功能,相互作用以及与各种人类疾病之间的关系,寻求各种治疗和预防方法,包括药物治疗.基于生物大分子结构及小分子结构的药物设计是生物信息学中的极为重要的研究领域.为了抑制某些酶或蛋白质的活性,在已知其蛋白质3级结构的基础上,可以利用分子对齐算法,在计算机上设计抑制剂分子,作为候选药物.这一领域目的是发现新的基因药物,有着巨大的经济效益.8, 其他如基因表达谱分析,代谢网络分析;基因芯片设计和蛋白质组学数据分析等,逐渐成为生物信息学中新兴的重要研究领域;在学科方面,由生物信息学衍生的学科包括结构基因组学,功能基因组学,比较基因组学,蛋白质学,药物基因组学,中药基因组学,肿瘤基因组学,分子流行病学和环境基因组学.从现在的发展不难看出,基因工程已经进入了后基因组时代.我们也有应对与生物信息学密切相关的如机器学习,和数学中可能存在的误导有一个清楚的认识.三, 生物信息学与机器学习生物信息的大规模给数据挖掘提出了新课题和挑战,需要新的思想的加入.常规的计算机算法仍可以应用于生物数据分析中,但越来越不适用于序列分析问题.究竟原因,是由于生物系统本质上的模型复杂性及缺乏在分子层上建立的完备的生命组织理论.西蒙曾给出学习的定义:学习是系统的变化,这种变化可使系统做相同工作时更有效[4].机器学习的目的是期望能从数据中自动地获得相应的理论,通过采用如推理,模型拟合及从样本中学习,尤其适用于缺乏一般性的理论,"噪声"模式,及大规模数据集.因此,机器学习形成了与常规方法互补的可行的方法.机器学习使得利用计算机从海量的生物信息中提取有用知识,发现知识成为可能[5].机器学习方法在大样本,多向量的数据分析工作中发挥着日益重要的作用,而目前大量的基因数据库处理需要计算机能自动识别,标注,以避免即耗时又花费巨大的人工处理方法.早期的科学方法—观测和假设----面对高数据的体积,快速的数据获取率和客观分析的要求---已经不能仅依赖于人的感知来处理了.因而,生物信息学与机器学习相结合也就成了必然.机器学习中最基本的理论框架是建立在概率基础上的,从某种意义来说,是统计模型拟合的延续,其目的均为提取有用信息.机器学习与模式识别和统计推理密切相关.学习方法包括数据聚类,神经网络分类器和非线性回归等等.隐马尔可夫模型也广泛用于预测DNA的基因结构.目前研究重心包括:1)观测和探索有趣的现象.目前ML研究的焦点是如何可视化和探索高维向量数据.一般的方法是将其约简至低维空间,如常规的主成分分析(PCA),核主成分分析(KPCA),独立成分分析(Independent component analysis),局部线性嵌套(LocallyLinear embedding).2)生成假设和形式化模型来解释现象[6].大多数聚类方法可看成是拟合向量数据至某种简单分布的混合.在生物信息学中聚类方法已经用于microarray数据分析中,癌症类型分类及其他方向中.机器学习也用于从基因数据库中获得相应的现象解释.机器学习加速了生物信息学的进展,也带了相应的问题.机器学习方法大多假定数据符合某种相对固定的模型,而一般数据结构通常是可变的,在生物信息学中尤其如此,因此,有必要建立一套不依赖于假定数据结构的一般性方法来寻找数据集的内在结构.其次,机器学习方法中常采用"黑箱"操作,如神经网络和隐马尔可夫模型,对于获得特定解的内在机理仍不清楚.四, 生物信息学的数学问题生物信息学中数学占了很大的比重.统计学,包括多元统计学,是生物信息学的数学基础之一;概率论与随机过程理论,如近年来兴起的隐马尔科夫链模型(HMM),在生物信息学中有重要应用;其他如用于序列比对的运筹学;蛋白质空间结构预测和分子对接研究中采用的最优化理论;研究DNA超螺旋结构的拓扑学;研究遗传密码和DNA序列的对称性方面的群论等等.总之,各种数学理论或多或少在生物学研究中起到了相应的作用.但并非所有的数学方法在引入生物信息学中都能普遍成立的,以下以统计学和度量空间为例来说明.1, 统计学的悖论数学的发展是伴随悖论而发展的.对于进化树研究和聚类研究中最显著的悖论莫过于均值了,如图1:图1 两组同心圆的数据集图1是两组同心圆构成的数据集,显然,两组数据集的均值均在圆点,这也就说明了要采用常规的均值方法不能将这两类分开,也表明均值并不能带来更多的数据的几何性质.那么,如果数据呈现类似的特有分布时,常有的进化树算法和聚类算法(如K-均值)往往会得错误的结论.统计上存在的陷阱往往是由于对数据的结构缺乏一般性认识而产生的.2, 度量空间的假设在生物信息学中,进化树的确立,基因的聚类等都需要引入度量的概念.举例来说,距离上相近或具有相似性的基因等具有相同的功能,在进化树中满足分值最小的具有相同的父系,这一度量空间的前提假设是度量在全局意义下成立.那么,是否这种前提假设具有普适性呢我们不妨给出一般的描述:假定两个向量为A,B,其中,,则在假定且满足维数间线性无关的前提下,两个向量的度量可定义为:(1)依据上式可以得到满足正交不变运动群的欧氏度量空间,这也是大多数生物信息学中常采用的一般性描述,即假定了变量间线性无关.然而,这种假设一般不能正确描述度量的性质,尤其在高维数据集时,不考虑数据变量间的非线性相关性显然存在问题,由此,我们可以认为,一个正确的度量公式可由下式给出:(2)上式中采用了爱因斯坦和式约定,描述了变量间的度量关系.后者在满足(3)时等价于(1),因而是更一般的描述,然而问题在于如何准确描述变量间的非线性相关性,我们正在研究这个问题.五, 几种统计学习理论在生物信息学中应用的困难生物信息学中面对的数据量和数据库都是规模很大的,而相对的目标函数却一般难以给出明确的定义.生物信息学面临的这种困难,可以描述成问题规模的巨大以及问题定义的病态性之间的矛盾,一般从数学上来看,引入某个正则项来改善性能是必然的[7].以下对基于这一思想产生的统计学习理论[8],Kolmogorov复杂性[98]和BIC(Bayesian Information Criterion)[109]及其存在的问题给出简要介绍.支持向量机(SVM)是近来较热门的一种方法,其研究背景是Vapnik的统计学习理论,是通过最大化两个数据集的最大间隔来实现分类,对于非线性问题则采用核函数将数据集映射至高维空间而又无需显式描述数据集在高维空间的性质,这一方法较之神经方法的好处在于将神经网络隐层的参数选择简化为对核函数的选择,因此,受到广泛的注意.在生物信息学中也开始受到重视,然而,核函数的选择问题本身是一个相当困难的问题,从这个层次来看,最优核函数的选择可能只是一种理想,SVM也有可能象神经网络一样只是机器学习研究进程中又一个大气泡.Kolmogorov复杂性思想与统计学习理论思想分别从不同的角度描述了学习的性质,前者从编码的角度,后者基于有限样本来获得一致收敛性.Kolmogorov复杂性是不可计算的,因此由此衍生了MDL原则(最小描述长度),其最初只适用于离散数据,最近已经推广至连续数据集中,试图从编码角度获得对模型参数的最小描述.其缺陷在于建模的复杂性过高,导致在大数据集中难以运用.BIC准则从模型复杂性角度来考虑,BIC准则对模型复杂度较高的给予大的惩罚,反之,惩罚则小,隐式地体现了奥卡姆剃刀("Occam Razor")原理,近年也广泛应用于生物信息学中.BIC准则的主要局限是对参数模型的假定和先验的选择的敏感性,在数据量较大时处理较慢.因此,在这一方面仍然有许多探索的空间.六, 讨论与总结人类对基因的认识,从以往的对单个基因的了解,上升到在整个基因组水平上考察基因的组织结构和信息结构,考察基因之间在位置,结构和功能上的相互关系.这就要求生物信息学在一些基本的思路上要做本质的观念转变,本节就这些问题做出探讨和思索.启发式方法:Simond在人类的认知一书中指出,人在解决问题时,一般并不去寻找最优的方法,而只要求找到一个满意的方法.因为即使是解决最简单的问题,要想得到次数最少,效能最高的解决方法也是非常困难的.最优方法和满意方法之间的困难程度相差很大,后者不依赖于问题的空间,不需要进行全部搜索,而只要能达到解决的程度就可以了.正如前所述,面对大规模的序列和蛋白质结构数据集,要获得全局结果,往往是即使算法复杂度为线性时也不能够得到好的结果,因此,要通过变换解空间或不依赖于问题的解空间获得满意解,生物信息学仍需要人工智能和认知科学对人脑的进一步认识,并从中得到更好的启发式方法.问题规模不同的处理:Marvin Minsky在人工智能研究中曾指出:小规模数据量的处理向大规模数据量推广时,往往并非算法上的改进能做到的,更多的是要做本质性的变化.这好比一个人爬树,每天都可以爬高一些,但要想爬到月球,就必须采用其他方法一样.在分子生物学中,传统的实验方法已不适应处理飞速增长的海量数据.同样,在采用计算机处理上,也并非依靠原有的计算机算法就能够解决现有的数据挖掘问题.如在序列对齐(sequence Alignment)问题上,在小规模数据中可以采用动态规划,而在大规模序列对齐时不得不引入启发式方法,如BALST,FASTA.乐观中的隐扰生物信息学是一门新兴学科,起步于20世纪90年代,至今已进入"后基因组时代",目前在这一领域的研究人员均呈普遍乐观态度,那么,是否存在潜在的隐扰呢不妨回顾一下早期人工智能的发展史[11],在1960年左右,西蒙曾相信不出十年,人类即可象完成登月一样完成对人的模拟,造出一个与人智能行为完全相同的机器人.而至今为止,这一诺言仍然遥遥无期.尽管人工智能研究得到的成果已经渗入到各个领域,但对人的思维行为的了解远未完全明了.从本质来看,这是由于最初人工智能研究上定位错误以及没有从认识论角度看清人工智能的本质造成的;从研究角度来看,将智能行为还原成一般的形式化语言和规则并不能完整描述人的行为,期望物理科学的成功同样在人工智能研究中适用并不现实.反观生物信息学,其目的是期望从基因序列上解开一切生物的基本奥秘,从结构上获得生命的生理机制,这从哲学上来看是期望从分子层次上解释人类的所有行为和功能和致病原因.这类似于人工智能早期发展中表现的乐观行为,也来自于早期分子生物学,生物物理和生物化学的成就.然而,从本质上来讲,与人工智能研究相似,都是希望将生命的奥秘还原成孤立的基因序列或单个蛋白质的功能,而很少强调基因序列或蛋白质组作为一个整体在生命体中的调控作用.我们因此也不得不思考,这种研究的最终结果是否能够支撑我们对生物信息学的乐观呢 现在说肯定的话也许为时尚早.综上所述,不难看出,生物信息学并不是一个足以乐观的领域,究竟原因,是由于其是基于分子生物学与多种学科交叉而成的新学科,现有的形势仍表现为各种学科的简单堆砌,相互之间的联系并不是特别的紧密.在处理大规模数据方面,没有行之有效的一般性方法;而对于大规模数据内在的生成机制也没有完全明了,这使得生物信息学的研究短期内很难有突破性的结果.那么,要得到真正的解决,最终不能从计算机科学得到,真正地解决可能还是得从生物学自身,从数学上的新思路来获得本质性的动力.毫无疑问,正如Dulbecco1986年所说:"人类的DNA序列是人类的真谛,这个世界上发生的一切事情,都与这一序列息息相关".但要完全破译这一序列以及相关的内容,我们还有相当长的路要走.(来源 ------[InfoBio.org | 生物信息学研讨组])生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。其研究重点主要体现在基因组学(Genomics)和蛋白学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。生物信息学是一门利用计算机技术研究生物系统之规律的学科。目前的生物信息学基本上只是分子生物学与信息技术(尤其是因特网技术)的结合体。生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。1990年代以来,伴随着各种基因组测序计划的展开和分子结构测定技术的突破和Internet的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。对生物信息学工作者提出了严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学的另一个挑战是从蛋白质的氨基酸序列预测蛋白质结构。这个难题已困扰理论生物学家达半个多世纪,如今找到问题答案要求正变得日益迫切。诺贝尔奖获得者W. Gilbert在1991年曾经指出:“传统生物学解决问题的方式是实验的。现在,基于全部基因都将知晓,并以电子可操作的方式驻留在数据库中,新的生物学研究模式的出发点应是理论的。一个科学家将从理论推测出发,然后再回到实验中去,追踪或验证这些理论假设”。生物信息学的主要研究方向: 基因组学 - 蛋白质组学 - 系统生物学 - 比较基因组学 姑且不去引用生物信息学冗长的定义,以通俗的语言阐述其核心应用即是:随着包括人类基因组计划在内的生物基因组测序工程的里程碑式的进展,由此产生的包括生物体生老病死的生物数据以前所未有的速度递增,目前已达到每14个月翻一番的速度。同时随着互联网的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。然而这些仅仅是原始生物信息的获取,是生物信息学产业发展的初组阶段,这一阶段的生物信息学企业大都以出售生物数据库为生。以人类基因组测序而闻名的塞莱拉公司即是这一阶段的成功代表。 原始的生物信息资源挖掘出来后,生命科学工作者面临着严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学产业的高级阶段体现于此,人类从此进入了以生物信息学为中心的后基因组时代。结合生物信息学的新药创新工程即是这一阶段的典型应用。
生物信息学我有来头
关于信息技术发展的论文
导语:现代信息技术的发展与运用,改变了传统教育教学的手段、方法与内容,促进了教育思想和教育观念方面转变,以下是我为大家整理的关于信息技术发展的论文,欢迎大家阅读与借鉴!
一、信息技术对总体性要求原则的冲击
1.重要性原则
现如今的会计工作能够大规模地运用到信息技术使原本复杂繁琐的一系列会计工作能够简便快捷地进行,提高运行效率,并且能够有效使会计信息经济的成本最大化地降低。针对一些原本存在需求,但由于各方面条件的限制未能得以考虑的信息事项,可以重新进行考虑,如此地进行核算,原本没有太过关注的一些事项就会变得相当重要,对于一些信息就有必要重新进行核算计量和确认。会计信息对各种事项的处理能力由于信息技术逐步增强,从而可以发展越来越多的事项能够符合重要性地条件。因此,选择的范围能够广泛扩大,对于一些重点就需要会计人员进行深入研究。
2.真实性原则
互联网经历了几十年的发展已经遍布全世界,而且深入人心,当下网络迅猛发展,人们在网络上以虚拟的身份自由发表言论,因此网络上也存在大量的真真假假的信息。作为一个专业的会计人员,对于信息的真假性也不能在短时间内迅速地做出判断,大量的丰富杂乱的信息充斥着人们的眼球,会计人员的判断能力也或多或少受到一定的'影响,单纯地依靠自己主观的判断和认知把一系列的信息与会计工作相融合,引发会计信息的真实度降低。
二、信息技术对会计信息质量要求原则的冲击
1.一贯性原则
在企业运行时,首先要树立起正确地经营理念,使市场份额得到扩大,尽早地发展“走出去”,走向广阔的国际经营市场,从而与激烈的国际市场进行竞争,但是就这样的形式来讲,对于财务经营必然会增大一定的风险。国内外相关的风险在企业中为了能够使能力增强,应该时刻关注国际市场的需要,进行有效地并更坏账损失准备,准确计量固定资产后续累计折旧。在发展的信息化时代下,经济的发展特征也逐渐走向全球化,也更加朝着网络化数字化发展,更重要的是颠覆了传统的会计核算,改变了它的社会和经济发展环境,对于会计的基本原则能够在修改上达到及时性,最大化地适应社会经济发展。
2.相关性原则
在会计工作中,准确的会计确认和会计计量在某个项目中的信息系统的操作上起着至关重要的作用。严格的确认标准的制定,出现的项目仅仅符合其中的某个标准但是不符合全部标准,对于此类的项目不能被纳入会计系统。但是有些项目对信息的使用者的决策起到至关重要的作用却没能考虑到位,会计信息的有用性就会降低。关于相关性地含义,就是说它提供的信息在会计核算的过程中对于使用者的需要能够得到有效且及时地满足。此外,它还被称为充分披露的原则,对于企业当下所公布的一些财务报表、补充报表以及附注等。对于企业各方面的财务状况和现金流以及企业的经营成果等在反映时都要真实且全面,不能违反职业道德和法律,不论出于何种原因在财务数据上面进行任何的纂改,也不能故意无视忽略。当下变幻莫测的社会经济环境,愈加复杂,经济风险在经营发展过程中也会具有一定的传染性和危险性,甚至还会发生扩散的现象,投资者们在操作时也越来越小心谨慎,理性地处理突发事件,所有的一系列变化都能够整体地表现出披露会计信息的重要性。
三、结语
现代社会下,企业的发展和经营过程中,财务会计的重要性不可小觑。在进行财务管理和会计核算的过程中,会计基本的理论广泛地受到信息技术的影响。在这种改变的影响下,核算财务系统正在被决策型财务系统所改变。全面应用新的信息科技,突破传统的核算理念,大力实现信息技术的会计核算。
作者:邹大志 单位:中国人寿保险股份有限公司
随着信息技术的不断成熟与发展,越来越多的现代信息技术运用于我国农业的建设中,在农业植物保护中,现代信息技术起到了重要的作用。
第一篇:学校档案管理信息技术的应用
摘要:信息技术在各个领域都得到广泛应用,智能化发展已经成为各个行业的主流发展。
特别对于学校的档案管理工作来说,利用信息化技术能促进学校管理模式以及教学模式的效率性。
因此本文以信息技术为依托,对传统性的学校档案管理进行分析,阐述信息技术在学校档案管理工作中的意义,并提出有效决策予以解决。
关键词:信息技术;学校;档案管理
应用学校档案是学校广大教职工在从事教育活动、教学管理和学生学习等活动中凝聚而成具有保存或参考价值的档案资料,是从事教育教学活动、学校管理、教学科研工作和教育督导评估必不可少的资料,也是学校历史发展的真实写照。
在信息技术背景下,学校档案管理工作能够实现数字化以及智能化,不仅能提高档案管理制度以及工作效率,还能实现学校档案管理的完整性,以促进学校的可持续发展。
一、学校档案管理在传统方式中产生的问题
传统的档案管理方式主要产生的问题体现在三个方面。
其一,档案管理更新工作难度比较大。
目前,学校的档案管理工作多数呈现卷宗式的档案保存,由于档案保存的时间比较久、档案数量多,学校在对档案管理期间,就会形成较大难度。
而且,学校保存的档案一般为纸质性的,长久保存会容易出现腐烂等现象,从而为学校的档案管理与更新工作带来较大难度。
其二,档案管理的保密性相对较低。
因为学校的档案管理工作都是人为操作的,不仅人员流动性比较大,在档案管理工作中还会发生一些意外事故,特别是信息泄露事件时常发生,从而降低了档案管理工作的安全性。
其三,对档案的查找方式也比较复杂,降低了实际的工作效率。
主要是由于学校领导对档案管理工作的重视度不够,在一定程度上抑制了学校的积极发展,而且,也不利于学校对师生思想管理、生活管理以及学校实际情况的管理。
学校档案管理工作受较多因素的制约,在对资料进行查找期间,主要是利用人工进行操作的,面对大量的卷宗材料,不仅降低了实际的工作效率,也降低了档案管理工作的质量。
二、信息技术在学校档案管理中的意义
高校档案的内容在一般情况下,主要包括为:学生的就业通知书,学生的毕业登记表以及与学生相关的成绩单等。
对于一些师范院校的学生,还具有的专业的教师资格证。
对于医学类的学生,还会增加学生的实习档案等。
由于学生的专业不同,相关的档案信息也不同。
因此,高校档案内容呈现较大复杂性,在管理工作中具有重要意义。
1.科学决策的合理性
信息技术在学校档案中的应用能够为学校做出有利的决策。
因为学校制定的决策与学校的事业发展形成直接关系,所以,管理层制定的决策与学校的可持续发展具有紧密联系。
学校档案是学校发展的重要材料,其中掌握着学校发展的各种信息,根据信息内容作出正确的发展决策,能够有利于学校的积极发展。
因此,实现学校档案管理的信息化,提高信息的利用效率,不仅能为学校增加信息支撑,还能保证决策的合理性、科学性。
2.社会需求的时代性
当今时代属于信息、网络时代,信息技术在世界各国领域都得到广泛应用。
无论在社会需求发展、各国商业领域以及教育行业等都得到广泛应用。
在教育活动中,信息技术实施的主要手段是利用多媒体、办公自动化等技术实施教学的,在一定程度上,促进了学校档案管理信息化的发展历程。
学校的档案管理能够发挥学校的整体性,只有将信息技术应用在学校档案管理工作中,才能使学校适应社会发展。
3.信息资源的共享性
信息技术在档案管理工作中的利用,能实现信息资源的有效共享。
在传统的档案管理工作中,不仅档案管理工作内容比较多,实际利用的手段也比较复杂。
而利用信息技术能打破时间与空间的限制,促进用户在不同时间、不同空间能够实现信息的共享、交流,从而创建了信息交流的共享平台。
在这种信息技术平台建立下,不仅保证了学校档案管理的安全性,通过信息资源的有利共享,在更大条件上,提高了档案的利用效率。
4.档案管理的效率性
在学校的日常教学活动中,形成的各种教学任务、学籍管理以及相关的教学活动都存在较多的档案信息,其中具有较高利用价值以及保存价值。
因此,学校实现的信息化管理模式应优化传统的档案管理模式,不仅要提高档案管理的工作效益,还要提升档案管理工作的效率水平。
三、信息技术在学校档案管理的重要举措
1.建立信息化办公系统信息技术
在学校中的利用能够建立信息化办公系统,因为学校的档案管理工作并不是单纯的对档案进行管理,还要对档案信息进行采集,明确相应的工作职责。
信息化办公系统的建立能够为各个部门提供有利信息,并能够对相关信息进行收集、整理以及归档等,从而保证档案信息在管理期间的全面化发展。
这种系统的建立,不仅能加强各个部门之间的信息共享以及交流、沟通,还能提升学校整体的办公效率。
而且,学校在传统管理方式中,各个部门是独立发展的,而信息技术的利用正是打破了该现象,使学校在真正意义上实现了多媒体的信息化档案管理方式。
2.加大领导的重视
要发挥档案管理工作的信息化、自动化发展,要加大学校领导者的认识与重视。
学校管理者以及档案管理人员都应充分理解信息技术在档案管理工作中发挥的重要性,认识到信息技术在档案管理工作中实现的应用价值。
根据学校在档案管理中的实际发展情况,不仅要对各个阶段的信息发展情况进行记录,完善学校的教育活动,还要促进教学研究以及教学改革发展的积极形式。
而且,将档案管理工作中的信息技术与学校的管理形式有效结合,能够为档案管理工作形成有效的绩效考评方式。
3.规范档案信息的收录与整理
在信息技术利用形式下,对档案工作进行管理能够实现整体性以及持续性的发展情况。
信息技术的.有效利用将学校的档案管理工作由传统的整理、收录形式发展为自动化的信息管理方向。
利用信息技术,档案管理人员能够将纸质档案进行保存、归档,然后利用网络形式对档案资料进行审核、传阅,最后实现归档形式。
根据信息技术的整理、归档形式,不仅保证了信息收录的完整化,还促进了校园发展的网络化形式。
利用校园网促进了档案管理的标准化,不仅提高了档案管理工作的质量,还提升了档案管理工作效率。
4.提高人员素养
提高工作人员的专业素养,主要对档案管理人员在工作中的实际情况进行考核,特别是工作人员掌握的计算机知识、掌握的信息技术基础进行考评,还要具有较强的责任意识以及组织意识,培养工作人员掌握的知识能力、创新能力以及信息的整理能力等,不仅提升了工作人员的真实管理,信息技术在学校档案管理中的应用杨东燕德宏职业学院还促进了管理人员综合素质水平的有效提升。
综上所述,学校已经成为社会发展的主体部分,利用信息技术能够促进社会的经济发展。
在学校管理中,利用信息技术对档案工作进行管理,不仅优化了系统的档案管理模式,还发挥了档案管理的时效性,从而为社会发展以及经济效益水平的提升创造有利条件。
参考文献
[1]苏友华.浅谈信息技术在学校档案管理中的应用[J].黑龙江档案,2012(3):104-104
[2]郑玉环.浅析信息技术在学校档案管理中的应用[J].中国信息技术教育,2014(6):84-85
[3]于霞.刍议学校档案管理中信息技术的应用[J].新校园(上旬刊),2014(8):233-233
[4]杨丽丽.试析信息技术在学校档案管理中的应用[J].网络安全技术与应用,2014(5):209,211
[5]韩玲.信息技术在学校档案管理中的有效应用研究[J].商,2015(19):74-74
第二篇:植物保护过程中现代信息技术探讨
摘要:随着信息技术的不断成熟与发展,越来越多的现代信息技术运用于我国农业的建设中,在农业植物保护中,现代信息技术起到了重要的作用。
本文从现代信息技术的理念与重要性入手,对现代信息技术在植物保护中的若干应用进行分析与探讨。
关键词:现代信息技术;植物保护;应用分析
对于植物保护这个新兴学科而言,只有抓住了信息技术这个强大助力,才会在未来发展中取得更好成果,才能为我国农业事业的建设提供更大的帮助。
因此,对现代信息技术在植物保护中的应用进行探讨与分析是有必要的。
1现代信息技术的理念及其重要性
对于现代信息技术而言,核心理念就是信息化。
换言之就是通过使用先进、科学的信息技术、信息资源,对相关工作进行规划、管理与决策。
随着我国各项建设事业的不断发展,这种理念正在逐步贯彻于各个领域当中,而植物保护就是其中之一。
对于植物保护工作而言,它的信息化过程实际上就是将日常植物信息采集、处理工作,转变成以各种信息设备与信息技术为支撑的现代化工作的过程。
这个过程不仅改变了传统植物保护的工作方式,更是改变了植物保护的传统理念,给我国植物保护工作带来了巨大变化。
现代信息技术在植物保护工作中是非常重要且极为必要的。
对于新时期下植物保护工作而言,其所涉及的信息技术与信息资源非常多,这些技术和资源对于如何优化植物保护、提高植物保护的成功率非常重要。
而在我国传统植物保护时期,人们只能通过人工采集、分析等方式来对信息进行处理,这样的处理方式所获得的保护方案相比而言效率较低,对植物保护工作的促进效果较差。
在现代信息技术的支持下,植物生长的状况可以得到实时的检测,极为有效的提高了植物保护工作的效率。
2现代信息技术在植物保护中的应用及分析
2.1现代信息技术中数据库技术的应用与分析
在大数据时代,数据库技术的使用越来越广泛,而植物保护的现代信息技术中,数据库的作用不容小觑。
一般情况下,数据库技术的主要工作是对植物保护工作中所采集到的数据进行分类、传递、存储等,当相关数据智能化登记入库之后,研究人员可以通过对比、分析数据来得到最新的植物生长状况,并根据植物的生长状况对植物保护的方案进行调整。
目前,根据相关调查不难发现,在植物信息数据库的建立和使用过程中,国外的数据库明显更为完整、科学,因为这些数据库除了对植物的数据进行存储之外,还对影响植物生长的病毒、虫害进行了较为详尽记录、分析与鉴定,并且可以根据这些信息提出相应的解决方案。
因此,为了使得我国数据库技术在植物保护工作中取得更大的成效,我国相关研究人员应该多多吸纳国外数据库的优点,使得我国数据库技术在植物保护中的发展与应用跟上时代的步伐。
2.2现代信息技术中地理信息系统技术的应用与分析
地理信息系统技术是一项新兴技术,它是在计算机技术的基础上结合GIS技术而产生的,这项技术的产生使得植物生长过程中病虫害的防治取得了较好的效果。
其主要内容是通过运用计算机的软件平台和GIS技术,对一定范围内的空间数据进行采集、检索、存储、分析与表达,从而实现对该范围内病虫害进行和治理的最终目的。
对于植物保护工作而言,病虫害的防止是重点工作之一,而通过地理信息系统技术对保护范围内的病虫害状况进行检测,是对病虫害问题进行预警重要方法之一。
目前,这项技术主要运用于蝗虫的防治与研究工作之中。
2.3现代信息技术中遥感技术的应用与分析
除了地理信息系统技术之外,遥感技术也是目前主要使用的病虫害防治技术之一,相比于地理信息系统技术而言,遥感技术更为成熟,且目前运用的范围更加广泛。
这项技术实现病虫害防治的方法主要有以下3种:通过遥感设备对病虫害的生存环境进行检测,并根据检测的数据对病虫害爆发的概率进行预测;通过遥感设备跟踪病虫害对植物的影响状况,以此来确定植物保护的方案;通过遥感设备对影响植物生长的害虫的活动状况进行直接研究,以实现病虫害的动态监测。
这项技术是目前能够较为准确、快速判断植物保护区域内病虫害灾情状况的有效手段之一,因此其发展前景非常广阔。
3结语
植物保护是我国农业建设工作中的重要工作之一,相关人员只有对植物提供较好的保护,才可能有效的提高植物的经济价值和绿色价值,因此,我国应该加快现代信息技术在植物保护工作中的研究与应用,争取尽快实现植物保护现代化的目标。
参考文献
[1]宋喜贵,柳建仪.植物保护与现代科学技术[J].中学生物教学,2011(09).
生物信息学我有来头
给你两个网站吧,里面有些范文
最好先阅读几篇相应文章和相今似的论文,比如你的课题是油菜,你可以搜有关其他物种如小麦的。根据论文写作步骤制定实验计划。要练习使用一些常用软件,如NCBI,GenBank,在用时最好先下载安装有道词典,因为是英文网站,不容易懂,专业名词也太多!不要怕,万事开头难!好好准备,入了门就好了!
1,序列比对(Sequence Alignment) 序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似性.从生物学的初衷来看,这一问题包含了以下几个意义:从相互重叠的序列片断中重构DNA的完整序列.在各种试验条件下从探测数据(probe data)中决定物理和基因图存贮,遍历和比较数据库中的DNA序列比较两个或多个序列的相似性在数据库中搜索相关序列和子序列寻找核苷酸(nucleotides)的连续产生模式找出蛋白质和DNA序列中的信息成分序列比对考虑了DNA序列的生物学特性,如序列局部发生的插入,删除(前两种简称为indel)和替代,序列的目标函数获得序列之间突变集最小距离加权和或最大相似性和,对齐的方法包括全局对齐,局部对齐,代沟惩罚等.两个序列比对常采用动态规划算法,这种算法在序列长度较小时适用,然而对于海量基因序列(如人的DNA序列高达109bp),这一方法就不太适用,甚至采用算法复杂性为线性的也难以奏效.因此,启发式方法的引入势在必然,著名的BALST和FASTA算法及相应的改进方法均是从此前提出发的. 2, 蛋白质结构比对和预测 基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性.蛋白质的结构与功能是密切相关的,一般认为,具有相似功能的蛋白质结构一般相似.蛋白质是由氨基酸组成的长链,长度从50到1000~3000AA(Amino Acids),蛋白质具有多种功能,如酶,物质的存贮和运输,信号传递,抗体等等.氨基酸的序列内在的决定了蛋白质的3维结构.一般认为,蛋白质有四级不同的结构.研究蛋白质结构和预测的理由是:医药上可以理解生物的功能,寻找dockingdrugs的目标,农业上获得更好的农作物的基因工程,工业上有利用酶的合成.直接对蛋白质结构进行比对的原因是由于蛋白质的3维结构比其一级结构在进化中更稳定的保留,同时也包含了较AA序列更多的信息.蛋白质3维结构研究的前提假设是内在的氨基酸序列与3维结构一一对应(不一定全真),物理上可用最小能量来解释.从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构.同源建模(homology modeling)和指认(Threading)方法属于这一范畴.同源建模用于寻找具有高度相似性的蛋白质结构(超过30%氨基酸相同),后者则用于比较进化族中不同的蛋白质结构.然而,蛋白结构预测研究现状还远远不能满足实际需要. 3, 基因识别,非编码区分析研究. 基因识别的基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.非编码区由内含子组成(introns),一般在形成蛋白质后被丢弃,但从实验中,如果去除非编码区,又不能完成基因的复制.显然,DNA序列作为一种遗传语言,既包含在编码区,又隐含在非编码序列中.分析非编码区DNA序列目前没有一般性的指导方法.在人类基因组中,并非所有的序列均被编码,即是某种蛋白质的模板,已完成编码部分仅占人类基因总序列的3~5%,显然,手工的搜索如此大的基因序列是难以想象的.侦测密码区的方法包括测量密码区密码子(codon)的频率,一阶和二阶马尔可夫链,ORF(Open Reading Frames),启动子(promoter)识别,HMM(Hidden Markov Model)和GENSCAN,Splice Alignment等等. 4, 分子进化和比较基因组学 分子进化是利用不同物种中同一基因序列的异同来研究生物的进化,构建进化树.既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化,其前提假定是相似种族在基因上具有相似性.通过比较可以在基因组层面上发现哪些是不同种族中共同的,哪些是不同的.早期研究方法常采用外在的因素,如大小,肤色,肢体的数量等等作为进化的依据.近年来较多模式生物基因组测序任务的完成,人们可从整个基因组的角度来研究分子进化.在匹配不同种族的基因时,一般须处理三种情况:Orthologous: 不同种族,相同功能的基因;Paralogous: 相同种族,不同功能的基因;Xenologs: 有机体间采用其他方式传递的基因,如被病毒注入的基因.这一领域常采用的方法是构造进化树,通过基于特征(即DNA序列或蛋白质中的氨基酸的碱基的特定位置)和基于距离(对齐的分数)的方法和一些传统的聚类方法(如UPGMA)来实现. 5, 序列重叠群(Contigs)装配 根据现行的测序技术,每次反应只能测出500 或更多一些碱基对的序列,如人类基因的测量就采用了短枪(shortgun)方法,这就要求把大量的较短的序列全体构成了重叠群(Contigs).逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配.从算法层次来看,序列的重叠群是一个NP-完全问题. 6, 遗传密码的起源 通常对遗传密码的研究认为,密码子与氨基酸之间的关系是生物进化历史上一次偶然的事件而造成的,并被固定在现代生物的共同祖先里,一直延续至今.不同于这种"冻结"理论,有人曾分别提出过选择优化,化学和历史等三种学说来解释遗传密码.随着各种生物基因组测序任务的完成,为研究遗传密码的起源和检验上述理论的真伪提供了新的素材. 7, 基于结构的药物设计 人类基因工程的目的之一是要了解人体内约10万种蛋白质的结构,功能,相互作用以及与各种人类疾病之间的关系,寻求各种治疗和预防方法,包括药物治疗.基于生物大分子结构及小分子结构的药物设计是生物信息学中的极为重要的研究领域.为了抑制某些酶或蛋白质的活性,在已知其蛋白质3级结构的基础上,可以利用分子对齐算法,在计算机上设计抑制剂分子,作为候选药物.这一领域目的是发现新的基因药物,有着巨大的经济效益. 8.生物系统的建模和仿真 随着大规模实验技术的发展和数据累积,从全局和系统水平研究和分析生物学系统,揭示其发展规律已经成为后基因组时代的另外一个研究 热点-系统生物学。目前来看,其研究内容包括生物系统的模拟(Curr Opin Rheumatol,2007,463-70),系统稳定性分析(Nonlinear Dynamics Psychol Life Sci,2007,413-33),系统鲁棒性分析(Ernst Schering Res Found Workshop, 2007,69-88)等方面。以SBML(Bioinformatics,2007,1297-8)为代表的建模语言在迅速发展之中,以布尔网络 (PLoS Comput Biol,2007,e163)、微分方程(Mol Biol Cell,2004,3841-62)、随机过程(Neural Comput,2007,3262-92)、离散动态事件系统等(Bioinformatics,2007,336-43)方法在系统分析中已经得到应 用。很多模型的建立借鉴了电路和其它物理系统建模的方法,很多研究试图从信息流、熵和能量流等宏观分析思想来解决系统的复杂性问题(Anal Quant Cytol Histol,2007,296-308)。当然,建立生物系统的理论模型还需要很长时间的努力,现在实验观测数据虽然在海量增加,但是生物系统的模型辨 识所需要的数据远远超过了目前数据的产出能力。例如,对于时间序列的芯片数据,采样点的数量还不足以使用传统的时间序列建模方法,巨大的实验代价是目前系 统建模主要困难。系统描述和建模方法也需要开创性的发展。 9.生物信息学技术方法的研究 生物信息学不仅仅是生物学知识的简单整理和、数学、物理学、信息科学等学科知识的简单应用。海量数据和复杂的背景导致机器学习、统 计数据分析和系统描述等方法需要在生物信息学所面临的背景之中迅速发展。巨大的计算量、复杂的噪声模式、海量的时变数据给传统的统计分析带来了巨大的困难, 需要像非参数统计(BMC Bioinformatics,2007,339)、聚类分析(Qual Life Res,2007,1655-63)等更加灵活的数据分析技术。高维数据的分析需要偏最小二乘(partial least squares,PLS)等特征空间的压缩技术。在计算机算法的开发中,需要充分考虑算法的时间和空间复杂度,使用并行计算、网格计算等技术来拓展算法的 可实现性。 10, 生物图像 没有血缘关系的人,为什么长得那么像呢? 外貌是像点组成的,像点愈重合两人长得愈像,那两个没有血缘关系的人像点为什么重合? 有什么生物学基础?基因是不是相似?我不知道,希望专家解答。 11, 其他 如基因表达谱分析,代谢网络分析;基因芯片设计和蛋白质组学数据分析等,逐渐成为生物信息学中新兴的重要研究领域;在学科方面,由生物信息学衍生的学科包括结构基因组学,功能基因组学,比较基因组学,蛋白质学,药物基因组学,中药基因组学,肿瘤基因组学,分子流行病学和环境基因组学,成为系统生物学的重要研究方法.从现在的发展不难看出,基因工程已经进入了后基因组时代.我们也有应对与生物信息学密切相关的如机器学习,和数学中可能存在的误导有一个清楚的认识.
这种最基本的东西没必要求论文啊,自己随便写写就好了,用个DNAMAN,随便挑个基因,分分钟搞出来。再者没人会拿这种东西单独去发一篇论文吧?这点东西根本不够资格,只够在某篇论文里的两句话的分量。
1,序列比对(Sequence Alignment) 序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似性.从生物学的初衷来看,这一问题包含了以下几个意义:从相互重叠的序列片断中重构DNA的完整序列.在各种试验条件下从探测数据(probe data)中决定物理和基因图存贮,遍历和比较数据库中的DNA序列比较两个或多个序列的相似性在数据库中搜索相关序列和子序列寻找核苷酸(nucleotides)的连续产生模式找出蛋白质和DNA序列中的信息成分序列比对考虑了DNA序列的生物学特性,如序列局部发生的插入,删除(前两种简称为indel)和替代,序列的目标函数获得序列之间突变集最小距离加权和或最大相似性和,对齐的方法包括全局对齐,局部对齐,代沟惩罚等.两个序列比对常采用动态规划算法,这种算法在序列长度较小时适用,然而对于海量基因序列(如人的DNA序列高达109bp),这一方法就不太适用,甚至采用算法复杂性为线性的也难以奏效.因此,启发式方法的引入势在必然,著名的BALST和FASTA算法及相应的改进方法均是从此前提出发的. 2, 蛋白质结构比对和预测 基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性.蛋白质的结构与功能是密切相关的,一般认为,具有相似功能的蛋白质结构一般相似.蛋白质是由氨基酸组成的长链,长度从50到1000~3000AA(Amino Acids),蛋白质具有多种功能,如酶,物质的存贮和运输,信号传递,抗体等等.氨基酸的序列内在的决定了蛋白质的3维结构.一般认为,蛋白质有四级不同的结构.研究蛋白质结构和预测的理由是:医药上可以理解生物的功能,寻找dockingdrugs的目标,农业上获得更好的农作物的基因工程,工业上有利用酶的合成.直接对蛋白质结构进行比对的原因是由于蛋白质的3维结构比其一级结构在进化中更稳定的保留,同时也包含了较AA序列更多的信息.蛋白质3维结构研究的前提假设是内在的氨基酸序列与3维结构一一对应(不一定全真),物理上可用最小能量来解释.从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构.同源建模(homology modeling)和指认(Threading)方法属于这一范畴.同源建模用于寻找具有高度相似性的蛋白质结构(超过30%氨基酸相同),后者则用于比较进化族中不同的蛋白质结构.然而,蛋白结构预测研究现状还远远不能满足实际需要. 3, 基因识别,非编码区分析研究. 基因识别的基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.非编码区由内含子组成(introns),一般在形成蛋白质后被丢弃,但从实验中,如果去除非编码区,又不能完成基因的复制.显然,DNA序列作为一种遗传语言,既包含在编码区,又隐含在非编码序列中.分析非编码区DNA序列目前没有一般性的指导方法.在人类基因组中,并非所有的序列均被编码,即是某种蛋白质的模板,已完成编码部分仅占人类基因总序列的3~5%,显然,手工的搜索如此大的基因序列是难以想象的.侦测密码区的方法包括测量密码区密码子(codon)的频率,一阶和二阶马尔可夫链,ORF(Open Reading Frames),启动子(promoter)识别,HMM(Hidden Markov Model)和GENSCAN,Splice Alignment等等. 4, 分子进化和比较基因组学 分子进化是利用不同物种中同一基因序列的异同来研究生物的进化,构建进化树.既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化,其前提假定是相似种族在基因上具有相似性.通过比较可以在基因组层面上发现哪些是不同种族中共同的,哪些是不同的.早期研究方法常采用外在的因素,如大小,肤色,肢体的数量等等作为进化的依据.近年来较多模式生物基因组测序任务的完成,人们可从整个基因组的角度来研究分子进化.在匹配不同种族的基因时,一般须处理三种情况:Orthologous: 不同种族,相同功能的基因;Paralogous: 相同种族,不同功能的基因;Xenologs: 有机体间采用其他方式传递的基因,如被病毒注入的基因.这一领域常采用的方法是构造进化树,通过基于特征(即DNA序列或蛋白质中的氨基酸的碱基的特定位置)和基于距离(对齐的分数)的方法和一些传统的聚类方法(如UPGMA)来实现. 5, 序列重叠群(Contigs)装配 根据现行的测序技术,每次反应只能测出500 或更多一些碱基对的序列,如人类基因的测量就采用了短枪(shortgun)方法,这就要求把大量的较短的序列全体构成了重叠群(Contigs).逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配.从算法层次来看,序列的重叠群是一个NP-完全问题. 6, 遗传密码的起源 通常对遗传密码的研究认为,密码子与氨基酸之间的关系是生物进化历史上一次偶然的事件而造成的,并被固定在现代生物的共同祖先里,一直延续至今.不同于这种"冻结"理论,有人曾分别提出过选择优化,化学和历史等三种学说来解释遗传密码.随着各种生物基因组测序任务的完成,为研究遗传密码的起源和检验上述理论的真伪提供了新的素材. 7, 基于结构的药物设计 人类基因工程的目的之一是要了解人体内约10万种蛋白质的结构,功能,相互作用以及与各种人类疾病之间的关系,寻求各种治疗和预防方法,包括药物治疗.基于生物大分子结构及小分子结构的药物设计是生物信息学中的极为重要的研究领域.为了抑制某些酶或蛋白质的活性,在已知其蛋白质3级结构的基础上,可以利用分子对齐算法,在计算机上设计抑制剂分子,作为候选药物.这一领域目的是发现新的基因药物,有着巨大的经济效益. 8.生物系统的建模和仿真 随着大规模实验技术的发展和数据累积,从全局和系统水平研究和分析生物学系统,揭示其发展规律已经成为后基因组时代的另外一个研究 热点-系统生物学。目前来看,其研究内容包括生物系统的模拟(Curr Opin Rheumatol,2007,463-70),系统稳定性分析(Nonlinear Dynamics Psychol Life Sci,2007,413-33),系统鲁棒性分析(Ernst Schering Res Found Workshop, 2007,69-88)等方面。以SBML(Bioinformatics,2007,1297-8)为代表的建模语言在迅速发展之中,以布尔网络 (PLoS Comput Biol,2007,e163)、微分方程(Mol Biol Cell,2004,3841-62)、随机过程(Neural Comput,2007,3262-92)、离散动态事件系统等(Bioinformatics,2007,336-43)方法在系统分析中已经得到应 用。很多模型的建立借鉴了电路和其它物理系统建模的方法,很多研究试图从信息流、熵和能量流等宏观分析思想来解决系统的复杂性问题(Anal Quant Cytol Histol,2007,296-308)。当然,建立生物系统的理论模型还需要很长时间的努力,现在实验观测数据虽然在海量增加,但是生物系统的模型辨 识所需要的数据远远超过了目前数据的产出能力。例如,对于时间序列的芯片数据,采样点的数量还不足以使用传统的时间序列建模方法,巨大的实验代价是目前系 统建模主要困难。系统描述和建模方法也需要开创性的发展。 9.生物信息学技术方法的研究 生物信息学不仅仅是生物学知识的简单整理和、数学、物理学、信息科学等学科知识的简单应用。海量数据和复杂的背景导致机器学习、统 计数据分析和系统描述等方法需要在生物信息学所面临的背景之中迅速发展。巨大的计算量、复杂的噪声模式、海量的时变数据给传统的统计分析带来了巨大的困难, 需要像非参数统计(BMC Bioinformatics,2007,339)、聚类分析(Qual Life Res,2007,1655-63)等更加灵活的数据分析技术。高维数据的分析需要偏最小二乘(partial least squares,PLS)等特征空间的压缩技术。在计算机算法的开发中,需要充分考虑算法的时间和空间复杂度,使用并行计算、网格计算等技术来拓展算法的 可实现性。 10, 生物图像 没有血缘关系的人,为什么长得那么像呢? 外貌是像点组成的,像点愈重合两人长得愈像,那两个没有血缘关系的人像点为什么重合? 有什么生物学基础?基因是不是相似?我不知道,希望专家解答。 11, 其他 如基因表达谱分析,代谢网络分析;基因芯片设计和蛋白质组学数据分析等,逐渐成为生物信息学中新兴的重要研究领域;在学科方面,由生物信息学衍生的学科包括结构基因组学,功能基因组学,比较基因组学,蛋白质学,药物基因组学,中药基因组学,肿瘤基因组学,分子流行病学和环境基因组学,成为系统生物学的重要研究方法.从现在的发展不难看出,基因工程已经进入了后基因组时代.我们也有应对与生物信息学密切相关的如机器学习,和数学中可能存在的误导有一个清楚的认识.
给你两个网站吧,里面有些范文