首页 > 期刊投稿知识库 > 高速铁路无砟轨道论文

高速铁路无砟轨道论文

发布时间:

高速铁路无砟轨道论文

写某地区高铁安全管理制度

《新时代高速铁路的安全怎样去保障》以这样的题目展开铁路安全保障阐述。

这些选题你看下,我也不知道对你有没有用,你就参考下!1……某客运专线活动断裂综合勘察与评价研究2……华北地区高速铁路松软土地基变形特性3……吉图珲高速铁路GDK283段膨胀土深路堑工程滑坡分析4……河源断裂带对京九高速铁路工程安全影响研究5……黑云母花岗岩全风化层工程地质特性研究6……平板载荷试验在兰新客运专线中的应用研究7……蒙华铁路煤运通道襄阳至荆门段方案研究8……煤层采空区铁路工程地质综合勘察技术研究9……董志塬黄土冲沟溯源侵蚀对银西高铁的影响10……高速铁路明挖隧道下穿既有高速公路工后稳定性分析11……轨道交通运行振动对CFG桩复合地基影响分析12……高速铁路沉降与变形分析及对策13……山区高速铁路隧道高陡偏压洞口设计与实践14……大西客专跨越地裂缝对策与工程措施研究15……CRTSⅠ型板式无砟轨道路基沉降抬板维修技术研究16……综合地质分析法在工程滑坡预测整治中的应用17……成渝客专石材采空区的勘察与评价研究18……石武高铁黄淮平原区粉质土特性试验研究19……高速铁路在黄土高原沟壑区绕避滑坡方案分析20……宝兰客运专线湿陷性黄土分布规律及地基处理技术分析21……高速铁路桥梁钻孔桩基础设计22……我国高速铁路隧道技术要点与有关建议23……京沪高速铁路施工过程中结构物不均匀沉降原因分析及调整措施24……高速铁路隧道板岩膨胀特性及机理研究25……京沈客运专线引入北京铁路枢纽设计方案研究26……荆河特大桥岩溶塌陷危险性分析27……昆玉线陡坡地段工程设计的研究28……雪峰山1号隧道风险评估与管理29……山区高速铁路弃渣场选址分析30……铁路与高速公路地质勘察对比31……高速铁路隧道复杂地质条件下浅埋偏压洞口设计研究32……高速铁路桥隧相连段结构设计

城市轨道车挡防撞液压缓冲系统仿真研究,之前写的这个题目, 去年论文的时候,还是找文方网的老师帮忙的,很不错,从题目到最后的修改定稿,帮我省了好多事,学校老师一会让我改开题报告,一会让我给他看修改的稿件,文方网的王老师都不厌其烦的帮我弄好,搞得我都不好意思了。如果想了解这方面的文章,可以参考下纤维增强复合材料转向架的研发现状高速车辆动态脱轨临界状态评判方法400km·h-1高速铁路无砟轨道基床结构及关键参数研究基于深度置信网络的牵引电机轴承故障诊断方法铁道货车合成闸瓦国内外标准对比解析楚天技能名师工作室运行模式探讨——以铁道车辆专业建设为例“铁道车辆电气检修”课程思政改革初探铁道车辆专业工学结合人才培养模式的探索轨道车辆吹扫工艺现状分析防滑控制参数对高速车辆车轮磨耗的影响100m长钢轨普通平车矩形方案偏重原因分析及应对措施基于列车运行图的货运机车车辆配置数量计算方法研究70年来我国铁路机车车辆制动技术的发展历程(续)基于大数据的地铁车辆智能故障监测系统研究铁路车辆5T大数据分析的研究某高速铁路钢-混连续结合梁桥车桥动力响应分析一种自带升降作业平台的轨道旋挖车设计广州地铁直线电机车辆BM3000型转向架垂向连杆失效分析及优化轨道车辆橡胶弹簧压缩高受环境温度影响分析及预测方法研究空气阻力对铁路车辆和超级高铁Hyperloop节能影响研究铁路桥梁设计动力系数研究进展城际列车晃车机理试验研究基于地铁的城市物流配送路径优化对地铁和轻轨车辆受电弓特性与试验新旧国家标准主要内容的对比分析轨道车辆曲线通过时车钩摆角仿真计算研究杭深线钢轨交替侧磨成因探究立足新时代 奋进正当时——内蒙古第一机械集团铁路货车发展35年纪实铁道车辆用压电橡胶《铁道机车与动车》第二届理事会东南亚某国新建客货共线铁路荷载标准的研究机车标准化整备棚设置研究抗蛇行减振器倾斜角度对动车组运行性能的影响基于模块化设计的地铁车辆牵引逆变器大修流程优化基于轮轨动态测试的地铁列车运行平稳性异常问题分析铁道车辆轴承检测分机测微计调校数据分析低地板车体静强度分析中阿铁路车辆产品合作中的问题分析与思考基于多质点模型的重载列车制动策略基于信息技术的铁路车辆安全监控体系及关键技术探究新型铁路油压减振器耐久试验台设计铁道机车车辆制造工装改进三电平地铁能量回馈装置控制方法研究铁道车辆电机驱动系统的控制确保列车碰撞时安全性的研究车轴轴承微振磨损产生机理及防范措施

高速铁路轨道毕业论文

《新时代高速铁路的安全怎样去保障》以这样的题目展开铁路安全保障阐述。

广深港客运专线越珠江方案研究广深港客运专线广州至深圳段起于新广州站,途径广州、东莞、深圳三市,止于深港分界点,线路长度116 km。全线设5个站,速度目标值按线下350 km /h、运营速度300 km /h考虑;其中,跨越珠江是本线的控制工程。1 越珠江工程建设环境111 自然环境广深港客运专线跨越珠江段位于珠江三角洲平原地区,地属冲积、冲积- 海积平原区,地形平坦开阔,地面相对高差< 610 m,地表水发育,河流、湖塘纵横;珠江河床宽约4 km,地势起伏较大,并有小虎岛、沙仔岛、海鸥岛等江中岛屿。112 城市发展规划珠江西岸属广州市南沙经济开发区与番禺区交界处。根据广州市规划,拟在南沙经济开发区管辖区域建设国际汽车产业园,距越江线位较近的区域主要为规划汽车零部件生产用地;同时,在沙仔岛上正在建设广州港南沙沙仔岛汽车混装码头工程及汽车物流贸易区。根据东莞市规划,珠江东岸规划有虎门港沙田港区(12个5万t级集装箱泊位) ,并有配套物流园区,该园区包括全封闭监管保税仓储区和普通物流区。目前5号、6号泊位码头已开工建设。113 航道及规划线路经过处珠江为出海航道,目前该航道段维护水深为- 1115 m,航道宽160 m,可乘潮进出5万t级船舶。该段航道规划水深- 1410 m,底宽200 m,可乘潮进出8万t级船舶。114 工程地质条件根据地质勘察成果,该段位于东莞盆地西翼,该盆地由白垩第三系地层组成。珠江越江段地层主要由第四系新近期人工填土层及种植土层;第四系冲洪积流塑~软塑的淤泥及淤泥层,饱和,松散~中密粉细砂、中粗砂及软塑状粉质黏土组成;区内基岩为上第三系(N1)泥质砂岩、泥岩。第四系固结程度差,工程性能较差,具有压缩性较高而强度较低的特点,工程特性具不均匀性;下伏基岩第三系(N1)泥质砂岩,在河床中间基岩埋深为22~28 m,呈全风化~弱风化,承载力特征值fk = 200~400 kPa,具有弱透水性。115 地震根据外业原位测试,依据《铁道工程抗震设计规范》(GBJ—111)的有关规定,本线路场地土的类型为软弱场地土,建筑场地类别为Ⅲ类,本线路的抗震设防烈度为7度,地震动峰值加速度为0110g。2 越珠江方案研究越珠江工程是本线的控制工程,根据地方规划、航道通航等级要求、工程地质条件、技术标准、线形、投资、施工工期和运营等因素,对越江位置进行综合论证,同时对越江形式(桥梁还是隧道方案)进行研究比选。211 桥梁方案结合广深港客运专线大的线路走向、沿线经济点分布、珠江两岸港口布局、通航要求、工程技术条件及投资等控制因素,主要研究了海鸥岛方案、沙仔岛方案(中穿虎门港沙田港区) 、南绕虎门港沙田港区方案、大岭山方案等4个珠江桥位方案。(1)大岭山方案:因为该线路与广州市城市规划不协调,对广州新沙港区有一定影响,穿过城镇较多,拆迁工程较大,地方政府反对,且与河流成87°夹角,投资成本比其他桥位方案高6 000万元以上。(2)南绕虎门港沙田港区方案:该线路虽然避开了虎门港沙田港区,但又从规划的鱼窝头镇中心工业区中间穿过,穿越南沙经济开发区国际汽车产业园,与地方规划相矛盾;线路同时穿南沙港小虎岛危险品港区,距粤海小虎油库仅为270 m,不满足安全要求;线路于珠江呈86°交角,投资比海鸥岛方案多3 000万元,没有多大优势。(3)沙仔岛方案(中穿虎门港沙田港区方案) :该线路顺直,线型较好,桥位处与珠江正交,应该说是一个比较好的桥位,但该方案最大的问题是,中穿规划的虎门港沙田港区,对虎门港造成极大的干扰,地方政府强烈反对;同时桥位穿越69号、71号锚地,对船泊通航生产有较大影响,航道部门反对该方案;与南沙经济开发区国际汽车产业园用地有一定冲突;而投资比沙仔岛方案仅省111亿元。(4)海鸥岛方案:该线路能较好地与城市规划适应,基本上行走于跨江高压走廊内,与珠江两岸的城市建设规划干扰小,与广州市地铁4号线的庆盛站换乘方便,并存在与规划的珠二环公路进行公铁合建的条件,线路基本从虎门港沙田港区北侧经过,对沙田港区影响小;投资适中,为5118亿元。通过综合比较,由于海鸥岛方案与珠江两岸的城市建设规划干扰小,投资适中,并存在与规划的珠二环公路进行公铁合建的条件,推荐为最佳桥位方案。结合珠江三角洲城际轨道交通线网规划(主要是广深城际线和小揽至虎门联络线工程)和珠二环高速公路,研究了双线铁路桥、双线公铁合建桥、四线公铁合建桥3个桥梁方案。研究结论认为:城际线走向及预留还是不预留尚不确定;小榄至虎门联络线研究建议联络线不与广深港客运专线共用桥位,原则上应按取直方案修建。若铁路桥仅为两线,而公路桥为双向8车道,桥面宽度相差太大,主次关系发生变化,结构上合建难度很大。根据通航论证初步结论,桥式方案设计研究了连续钢桁拱(孔跨: 132 m + 132 m + 408 m + 408 m + 132m + 132 m)和斜拉柔性拱组合主(孔跨: 132 m + 132 m+ 408 m + 408 m + 132 m + 132 m)两种桥式方案,主通航孔净高60 m。212 隧址方案影响隧址方案的边界条件主要为:位于珠江西岸的广州南沙经济开发区、广州港南沙沙仔岛码头、珠江河床最低高程、船舶抛锚锚地(影响深度) 、虎门港沙田港区码头及东莞沙田规划区等。依据线路与以上边界条件的相互关系,并结合线路最大限坡方案,设计中进行了3 个线位(贯通线位、大岭山线位及立沙线位) 、5个隧址(贯通方案、小取直方案、大取直方案及大岭山方案、立沙方案)的比较,由于大岭山方案和立沙方案在线路上存在诸多缺点,与地方规划冲突,且隧址本身与贯通方案相比,施工难度更大、造价更高,因此不予推荐。在贯通隧址方案附近进行海鸥岛方案、沙仔岛小取直方案、沙仔岛大取直方案比较。3个隧址方案相距不远,地质条件相近。(1)海鸥岛方案,基本采用最佳桥位的线位,珠江隧道长11 020 m,线路长度比沙仔岛大取直方案长598m,工程投资5318亿元。(2)沙仔岛小取直方案,线路较海鸥岛方案短248m,但两端车站较难设置,珠江隧道长10 965 m,比较范围工程投资5315亿元。(3)沙仔岛大取直方案,线路最为顺直,珠江隧道长10 800 m,比较范围工程投资5219亿元。经综合比较,虽然沙仔岛大取直方案隧道要下穿虎门港沙田港区5号、6号泊位,但隧道位于地面45 m以下,不影响港区工程;以隧道下穿沙田港物流园区,保证了该园区的整体性,东莞市支持该方案。同时,该方案线形顺直,珠江隧道大部分位于直线上;隧道短,工程投资最省。故推荐沙仔岛大取直方案为最佳隧址方案。对沉管法与盾构法隧道方案进行了综合分析比较,两种修建方法各有优缺点,在实施上均是可行的,都能满足高速列车运行要求,国际上也都有类似工程实例。但盾构法隧道方案施工对通航及航道规划无影响,对环境影响小,运营安全性高,造价低,因此推荐采用盾构法隧道方案。盾构法采用由两头向中间同时盾构掘进,可满足工期要求。另外,研究了20‰、30‰和35‰不同坡度隧址方案比选。虽然采用35‰坡度隧址方案,投资可减少213亿元,但该方案与南沙经济开发区国际汽车产业园用地及其码头有冲突;广深港是武广客运专线的延伸线,武广客运专线最大坡度仅20‰,若广深港采用大于20‰坡度,既与武广标准不一样,同时可能会影响到今后车辆选型。运用TTISIM动力学仿真软件,对高速列车以300 /200 km /h 速度匹配条件下, 30‰和35‰坡度隧址方案轮轨横向相互作用出现了异常振动,导致列车的部分安全性指标值超出了安全限值,且舒适性指标也接近了合格限值之边缘;而采用20‰坡度隧址方案,其所有安全性指标及舒适性指标均能满足高速行车要求,动力学性能指标良好。故放弃30‰和35‰坡度隧址方案。3 桥梁和隧道方案综合比选在选出最佳桥梁桥址方案和最佳隧道隧址方案的基础上,对最佳桥梁桥址方案和最佳隧道隧址方案进行多方面论证;广泛征求航道、港务、地方规划、交通、水利等相关部门的意见,对最佳桥梁桥址方案和最佳隧道隧址方案,从航道、河道、城市环境与规划、两岸港口码头规划、建桥和建隧技术、桥梁孔跨、桥式方案、隧道断面、结构形式、施工组织方案、两端铁路接线条件等方面,进行比较分析。

写某地区高铁安全管理制度

国内外高铁现状以及高铁特点简介1964年,日本建成世界上第一条高速铁路——东海道新干线,并以时速210km/h投入商业运营。由于修建高速铁路可以带来巨大的社会经济效益,高速铁路的辉煌业绩深受世人瞩目,法国也及时发展了独具特色的可能是目前唯一没有任何盈利色彩而享誉世界的法国产品TGA高速技术,并在1981年率先建成西欧第一条高速铁路。从此TGV一直牢牢占据高速轮轨的速度桂冠,目前的纪录是2007年创下的578.4 公里/小时。欧洲有关部门做出的长远规划是到2015年,全欧高铁铁路总长达到3万公里,其中新建段9100公里,约占30%。 紧接日法之后,德国、意大利、西班牙等都相继修建了高速铁路。并且德国研制独自的ICE(Intercity-Express)机车,美国研制了具有美国特色的Acela。从1972年以后,又相继出现了磁悬浮和摆式列车,而其中的摆式列车由于其性价比较高,有可能是一种在大规模成熟铁路网基础上完成提速的高速铁路技术。 我国的高速铁路研发及建设均起步较晚,但是我国高速铁路建设近几年的发展速度有目共睹,从2008年8月1日我国第一条具有完全自主知识产权的高速铁路——京津城际铁路开通运营,到之后的武广高速铁路、郑西铁路等高速铁路的开工建设及投入运营,我国高铁建设一直得到国家大力的政策支持与资金投入。特别是在过去两年,我国多项高铁建设项目开工并建成投产,宁波~台州~温州、温州~福州、福州~厦门等客运专线相继建成通车,特别是世界上里程最长、时速350公里、全长1068.6公里的武广高速铁路开通运营,成为中国高速铁路的又一里程碑。 高速铁路在不长的时期内之所以能取得如此的发展势头,根本原因是基于轮轨系的高速技术充分发挥了既先进又实用的特点,特别是在中长距离的交通中的独特优势。实践表明,高速铁路已是当代科学技术进步与经济发展的象征。高速铁路虽然源于传统铁路,但借助于多项高新技术已全面突破常规铁路的概念,已形成一种能与既有路网兼容的新型交通系统。同时高铁还具有一些其他列车无法比拟的优点:(1)输送能力大:目前各国的高速铁路几乎都能满足最小行车间隔4分钟及其以下(日本可达3分钟)的要求。(2)速度快:法国、日本、德国、西班牙和意大利高速列车的最高运行时速分别达到了300公里、300公里、280公里、270公里和250公里。如果作进一步改善,运行时速可以达到350~400公里。(3)安全性好:高速铁路由于在全封闭环境中自动化运行,又有一系列完善的安全保障系统,所以其安全程度是任何交通工具无法比拟的。(4)受气候变化影响小,正确率高:高速铁路全部采用自动化控制,可以全天候运营,除非发生地震。由于高速铁路系统设备的可靠性和较高的运输组织水平,可以做到旅客列车极高的正点率。(5)方便快捷:高速铁路一般每4分钟发出一列车,日本在旅客高峰时每3分半钟发出一列客车,旅客基本上可以做到随到随走,不需要候车。(6)能源消耗低:如果以“人/公里”单位能耗来进行比较的话。高速铁路为1,则小轿车为5,大客车为2,飞机为7。(7)环境影响好(8)经济效益好:高速铁路投入运行以来,倍受旅客青睐,其经济效益也十分可观。日本东海道新干线开通后仅7年就收回了全部建设资金,自1985年以后,每年纯利润达2000亿日元。德国ICE城市间高速列车每年纯利润达10.7亿马克。法国TGV年纯利润达19.44亿法郎。

高速铁路与轨道交通杂志

「CRTS CHINA 2013国际轨道交通展」第九届中国国际轨道交通技术展览会 展会时间 2013年4月28– 30日 展会地点 中国 上海世博展览馆 主办及协办单位 中国土木工程学会 鸿与智工业媒体集团 中国铁道学会上海申通地铁集团有限公司江苏省轨道交通产业技术协会中国轨道交通促进联盟 海外支持机构 MAFEX (Grupo AGEX) | Railway Association from Spain 西班牙铁路协会American Railway Engineering and Maintenance-of-Way Association (AREMA) 美国铁路工程和养路协会RUSEXPO ECM Expo&Conference Management GmbhTurkel Fair Organization Inc.(土耳其独家代理) 展会背景「CRTS CHINA 国际轨道交通展」首办于2005年,拥有8届佳绩,每年分别在上海、北京举办年会和展览,是唯一曾获得科学技术部、住房和城乡建设部联合批准的轨道交通行业展会,是中国唯一集铁路与城市轨道交通于一体的综合行业展览会,亦是唯一立足于中国、关注亚洲采购市场的国际轨道交通展。海内外多个行业协会全力支持,「CRTS CHINA国际轨道交通展」已经成为各国企业进入中国及亚洲新兴市场、建立国际网路的重要平台。 展会亮点 逾18个国家和地区,超过400家实力展商齐聚一堂20,000位亚洲重点轨道领域专业采购商及品牌代理商的超强阵容20+同期论坛和峰会,200+高端演讲嘉宾,把握行业最新技术创新及产品研发信息100+权威媒体持续曝光,品牌影响力持续提升 展品范围 机车车辆设备及零部件:内燃机车、电力机车、动车组、地铁与轻轨车辆、有轨电车、直线电机列车、磁浮列车、单轨车辆、AGT 自动导向车辆、特殊用途车辆及其他等;车体材料、紧固件、牵引系统、制动系统、受电弓、行走装置、车载信息系统、转向架;机车及轨道零部件加工、机械加工、铝型材、机车配套及零部件;列车内部装饰:车门、车窗、车体车轴、车钩车轮、驾驶控制室及其他、地毯地垫、防夹系统、防火装置、地板材料、机车内饰设计系统、装饰材料、列车座椅、照明系统、监管系统、逃生系统、舒适系统、其他服务设施机电系统及设备:供电系统、通信系统、信号系统、自动售检票系统、升降系统、消防系统、安防系统、门禁系统、通风、空调与采暖系统、环境与设备监控系统、综合监控系统及其他高速铁路技术与装备:高速动车组技术与装备;高速列车行车控制技术与装备;客运专线修建技术与装备;动车组检修技术与装备等;基础建设及设施:基建工程、基建工程策划和监管、铁轨机械、工具、装置、车站建设、技术设备和建筑材料、信号控制系统、架空电缆设施、其他服务、隧道施工建设机械设备、配件、材料与技术、工程机械、安全装置及设备、地下交通检测、勘探技术、建设材料与技术设备、地下线路、信号、桥梁、隧道、供电网、站房等施工机械及配套设备及其他重载铁路货运技术与装备:吊机、吊车、叉车,发货管理系统、危险品运输、鉴定系统、无线射频视频追踪、装货追踪系统、装卸系统管理、计量设施、货运中转系统及其他;机车车辆装备制造技术:列车设计;列车外围物料;喷涂设备及保护涂料;客车内装饰设计与物料;钢轨铅热焊及闪光接触焊技术,卧式发电机,燃气涡轮机技术等。维修、运营及养护服务:轨道养护、桥隧养护、机车养护及其他、认证、咨询、发展、策划、研究所、媒体、商业运输、运输业专项服务、项目实施管理及其他服务 同期活动 2013年新产品新技术发布会2013高层技术论坛2013轨道技术设备采购会2012年度轨道交通创新力企业TOP50榜单发布暨颁奖典礼2013第四届"轨道人才与企业发展"交流大会暨人才招聘会

高速铁路轨道工程施工技术指南 铁建设2010241号 很全面的!

亚洲轨道交通第一展No.1 Rail Transit Exhibition in Asia基本信息:展览时间: 2011年8月22-24日展览地点: 中国 ● 上海新国际博览中心展出面积:36,000平米批 准: 中华人民共和国科学技术部 中华人民共和国住房和城乡建设部主 办: 中国土木工程学会 鸿与智工业传媒集团协 办: 北京铁道学会 上海市铁道学会 江苏省轨道交通产业技术协会指定媒体:RT《轨道交通》杂志 RT轨道交通网聚焦全球最大的轨道交通和铁路市场-中国Focus the Largest MetroRail Market – China目前中国正在运营轨道交通的有北京、上海、南京等十个城市。还有40多个城市在建或筹建地铁和轻轨等城市轨道交通设施,国家已经批准了其中28个城市的轨道交通计划。预计到2020年,将建设轨道交通线路177条,总长度6100公里,总投资将达到11568亿元,中国已经成为世界上规模最大、发展最快的轨道交通建设市场。《2003-2020中长期铁路网规划》2008年新调整方案:2020年全国铁路营业里程12万公里以上(调整前10万公里),电气化率60%。其中客运专线为1.8万公里(调整前1.2万公里),到2012年达到1.3万公里;铁路建设投资总规模将突破5万亿, 客运专线需要投资2万亿元以上。关于CRTS ChinaCRTS China中国国际轨道交通技术年会及展览会,自2005年由RT《轨道交通》杂志发起创办,是亚洲最大、世界最有影响力的轨道交通盛会之一。在2009年中华人民共和国科学技术部和中华人民共和国住房和建设部正式批准主办中国国际轨道交通技术展览会,CRTS China成为轨道交通行业最权威的官方展览之一,并为中国轨道交通行业技术贸易和信息交流搭建最佳的商贸平台。CRTS China 2011第七届中国国际轨道交通技术展览会将于2011年9月28-30日在中国-上海新国际博览中心隆重举行,届时来自全球近400家轨道交通行业知名供应商将集中展示当前轨道交通领域最为领先的技术及产品,展览总面积预计将超过36000平米;展会同期将举办多场高规格轨道交通行业国际峰会。上届回顾:CRTS China 2010 吸引了来自中国、美国、德国、加拿大、法国、英国、瑞士、西班牙、意大利、俄罗斯、韩国、日本、新加坡、台湾、香港等25 多个国家和地区的308家行业知名厂商, 展览总面积达到了28500平方米,展览期间接待海内外专业观众共计13050人次。CRTS China 2010展览同期举办了2010中国轨道交通高层发展论坛、中国轨道交通机车车辆高峰论坛、轨道交通机车车辆及配套产业采购大会、轨道交通车辆轻量化技术发展论坛、中国轨道交通安防发展论坛、中国轨道交通通信信号技术发展论坛、中国轨道交通装备制造技术发展论坛、中国轨道交通焊接技术论坛、铁路工程与信息化论坛、2010中国地下工程与隧道国际峰会等多场次高规格国际论坛,约2000名来自国内外轨道交通领域的精英人士汇聚一堂,共享轨道技术盛宴。历届知名展商:中国南车集团、中国北车集团、北控磁浮、庞巴迪、阿尔斯通、西门子、法维莱、中国铁路通信信号集团、中铁隧道、中铁电气化局、北京城建集团、上海城建集团、GE、青岛四方、中船重工、海瑞克、ABB、通用电气、史丹利、索克曼、阿海珐、安萨尔多、欧姆龙、摩托罗拉电子、朗进、松下、日立、美国MEI、小松、陶氏化学、北京交控、鼎汉技术、爱默生、爱姆卡、四川长虹、美的集团、汉高乐泰、罗杰斯、瑞士ELAG、交大微联、易程科技、金鑫集团、康比利、雷欧电器、阿美泰克、MTZ Transmash、成都运达、科华恒盛、荷贝克电源、埃克塞德、阿特拉斯、英特沃斯、海克力斯、捷安网络、一林铝业、肯纳五金、利达集团、华遂通、艾利中国等展品范围/Exhibitsn 轨道交通及铁路机车车辆设备及零部件:内燃机车、电力机车、动车组、地铁与轻轨车辆、有轨电车、直线电机列车、磁浮列车、单轨车辆、AGT 自动导向车辆等;机车配套及零部件;n 机电设备: 车辆段设备;供电系统;通信、信号系统;自动售检票系统;升降系统;火灾报警系统;通风、空调与采暖系统;环境与设备监控系统;综合监控系统;票务清分系统;屏蔽门安全系统等;n 列车内部装饰:内饰理念 、内饰更新、更换部件、装饰服务,门、窗帘,隔断,座椅、锁柜,、面料、地面铺装材料、层压板、安全设备、涂料,手推车,洗手间,照明、车上厨房设备、舒适产品、行李架、扶手杆,WiFi 无线上网及通信系统、制冷、电子显示、餐饮服务设备;n 基础设施建设:车站及站场设备,轨道线路铺设、养护、维修装备与技术;铁道土木工程、桥梁道路、给排水、环境工程、风景园林、公用工程等建设;轨道交通及铁路建设施工材料、装备、安全、节能、环保技术与维护;n 隧道建设:隧道施工建设机械设备、配件、材料与技术,工程机械,安全装置及设备等;地下交通检测、勘探技术、建设材料与技术设备等;地下线路、信号、桥梁、隧道、供电网、站房等施工机械及配套设备等;n 高速铁路技术与装备:高速动车组技术与装备;高速列车行车控制技术与装备;客运专线修建技术与装备;动车组检修技术与装备等;n 铁路重载运输技术与装备:机车操纵技术与装备;重载机车技术与装备;重载货车技术与装备;重载线路工务工程技术与装备等;n 机车车辆装备制造技术:列车设计;列车外围物料;喷涂设备及保护涂料;客车内装饰设计与物料;钢轨铅热焊及闪光接触焊技术,卧式发电机,燃气涡轮机技术等专题活动展示区 / Thematic Pavilion十一五铁路与轨道交通建设成果展区中国轨道交通企业自主创新50(RT TOP50)展示区

高速铁路轨道检测技术论文

铁路工务技术的主要目的就是维护和提高线路的质量,铁路线路施工的安全、质量直接关系着铁路运输工作的安全,我整理了铁路工务技师技术论文,欢迎阅读!

铁路工务管理与现状分析

摘要:对国内外铁路工务管理信息系统的应用现状进行了概述总结,分析了我国现有铁路工务管理新形势和铁路工务面临趋势,并对我国铁路工务管理进行了展望。

关键词:铁路 工务 形势 管理信息

中图分类号:F230 文献标识码:A 文章编号:1674-098X(2013)02(a)-0219-01

基于个人在铁路工务工作中的体会,在此梳理T我国铁路工务管理及形势,概述如下:时值中国铁路大发展。铁路工务设备是铁路的基础设施,直接影响到铁路运输的安全与效率。对铁路工务设施的有效管理,一直是国内外铁路工作者的研究重点。根据面临的严峻形势,今后工务工作的重点是:不断优化生产组织,夯实安全基础,保障提速线路的安全运营,实现其安全、高速、可靠性,以高标准、讲科学的态度抓好提速线路的养修管理,确保提速安全;实现线路质量均衡提高,全面提升安全保障能力;培养提速线路养修高技能人才'为铁路持续发展增添后劲。

1 铁路工务工作面临新形势

六次大面积提速调图的成功实施和时速350 km2城际铁路成功开通运营,以及多条时速200 km2及以上客运专线的成功开通运营,标志着我国迎来新一轮大规模的高速铁路建设高潮。在运输条件和铁路建设发生重大变化的情况下,铁路工务工作面临更复杂的形势和更高的要求。

1.1 高速、重载同步发展

重载铁路列车轴重大,对基础设施的破坏剧烈,其结构要求具有较高的强度和可维修性:高速铁路速度密度大,要求基础设施有很高的平顺性,其结构要求具有高可靠度,修理工作应尽量少。

1.2 有砟、无砟轨道并存

我国铁路既有线的轨道基本上都是有砟轨道,客运专线、高速铁路、城际铁路以无砟轨道为主,时速200 km客运专线以有砟轨道为主。工务部门既要应对有砟轨道的问题,又要解决无砟轨道的问题。

1.3 改革、建设同时进行

在新的形势下,管理模式的变化不可避免,而管理模式的变化对工务工作必然会带来巨大变化。无论是设备管理、技术管理、施工作业等各个方面都会带来深刻变化。

1.4 提高自主创新能力

提高自主创新能力、加快技术进步是工务管理关键环节。工务部门在观念、技术、管理等方面都面临创新的问题。

1.5 外部环境压力增大

列车速度提高、货车轴重加大、行车密度增加等都给工务工作带来了新难题。

2 我国铁路工务趋势

在铁路建设发生重大变化的形势下,我国铁路工务正展现出如下趋势。

2.1 铁路工务线桥结构现代化

近年来,铁道部大力实施轨道结构重型化,在换铺钢轨过程中,加大技术含量,基本实现主要干线铺设每米60 kg钢轨轨道结构,特别是跨区间和整区间无缝线路的铺设有了大幅度的增加。在进行线路换轨大修的同时,坚持条件匹配,结构等强的原则,重视大修配套工作,大力完成成段更换混凝土轨枕工作,增加轨枕配置,更换不符规定的道岔,铺设钢筋混凝土轨枕或使用各种新型轨下基础,提高了轨道结构的强度。

在路基病害整治中,十分重视新技术、新工艺的采用,改善碎石道床及路基工作条件,在桥梁大修中,积极采用钢梁新型涂装体系,桥上K型分开式扣件,新型钢纤维混凝土桥面防水层等新技术、新材料,提高了桥梁结构强度。通过线桥设备大修,线桥结构现代化取得了长足进展。

2.2 铁路养路机械新水平

随着我国铁路建设和大面积提速工程的实施,有力推动了大型养路机械的发展。采用高效、大型的养路机械开“天窗”进行线路作业,这既是解决我国运输繁忙线路维修作业的有效手段,也是现代化铁路线路维修发展的方向。所采用的新设备、新办法,对提高线路质量、保证运输安全和扩能具有保障作用。我国大型养路机械已形成一定规模,主型机械齐全,附属设备配套,不仅装备有捣固、清筛、动力稳定、配砟整形等机型,还装备有钢轨打磨车、道岔打磨车、道岔捣固车、大修列车、道岔铺换设备等新型机械。全路采用大型养路机械进行线路的大型维修作业。装备规模的扩大,极大地提高了大型养路机械的作业能力,保证了线路大修、维修工作的正常需要,在灾害抢险中尽快开通线路发挥重要作用,使新建线路提高开通速度成为可能,在全路五次大提速工程中,顺利完成了线路改线、调整超高等大量工程任务,线路达到目标速度得以实现等等。

2.3 铁路工务安全生产管理信息化

随着路网干线提速及高速、重载铁路的发展,路网维护已经成为运输生产组织、行车安全中的关键问题。以信息技术为手段,利用轨检车、动检车,车载式线路检查仪、添乘仪、探伤车等动态检测数据和轨检仪、线路精测、人工检测等静态检测数据,综合列车密度、载重、速度等多种影响轨道恶化因素,通过综合统计分析,找出线路质量变化趋势,探索轨道状态变化规律,辅助制定维修计划,落实“零误差”和“精检细修”维修历年,逐步实现铁路工务安全生产管理信息化已成为当前的一个重要目标。实现铁路工务安全生产管理信息化有助于工务部门落实“零误差”维修理念,有利于科学指导维修作业,及时消除故障隐患,确保线路质量良好、安全可靠,促进工务管理水平的提升,为铁路固定设备安全保障体系提供技术支撑,达到工务决策科学化、全面提升工务管理水平。

3 结语

在列车长时间运行和自然条件作用下,铁路线路会不可避免地发生变形或损坏。为了确保列车安全、平稳、快速运行,延长线路各组成部分的使用寿命,必须加强线路的养护和维修工作,使线路设备经常保持良好状态。工务部门的基本任务是铁路运输组织体系中的基础性的工作,成为确保运输安全、运输效率、运输服务的前提。为此,工务设备必须围绕运输发展的需要,依靠科技进步,实现线桥结构现代化,施工作业机械化,企业管理科学化,使工务设备逐步由限制型向适应型过渡,以达到最有利的综合技术经济效果。为了适应外部环境的变化和运输条件的要求,近年来工务部门的工作也在发生着深刻变化。对工务管理的变革不仅成为巨大的压力,同时也是促成工务管理进步的强大动力。

参考文献

[1]张金龙,王瑞么.南昌铁路局工务管理信息系统的研究开发[J].铁路计算机应用,2001(8).

[2]史柏生.上海局工务管理信息系统研究[J].上海铁道科技,1999(2).

点击下页还有更多>>>铁路工务技师技术论文

高速铁路信号是高速列车安全、高密度运行的基本保障。下面是我整理的高速铁路信号技术论文,希望你能从中得到感悟!

基于无线通信技术的高速铁路信号系统应用

摘 要

高速铁路信号系统是高速列车安全、高密度运行的基本保障。无线通信技术在铁路信号系统的应用,不但减少了高速铁路的信号系统成本,还较好的确保了高速铁路的安全。随着科学技术的进步,高速铁路不断的向着智能信息化转变,这就给无线通信技术领域提出了更加严格的要求,为了适应高速铁路的快速发展,各国都在潜心研究基于无线通信技术的新一代的铁路信号系统。本文介绍了国外无线通信系统在高速铁路信号系统中的发展情况,分析了运用无线通信技术的高速铁路信号系统的特点和问题,并探讨了无线通信技术在高速铁路信号系统中的应用。

【关键词】无线通信 高速铁路 信号系统

在整个高速铁路工程中,虽然信号系统的投资总额所占比率较小,但其起到的作用十分关键。由于轨道电路传输环境较差、传输信息的速率较低、设备更新维护费用高,所以基于轨道电路的列车控制系统已经不能满足高速铁路的快速发展要求。在80年代,国外开始研究基于无线通信的铁路信号系统TBS(Transmission Based Signalling),希望通过无线通信技术的应用来提高铁路的管理职能、缩短列车间隔时间、节约能源、降低系统的成本。1995年在关于TBS的国际会议中,会议代表分析了无线通信技术在铁路信号系统应用的的可行性,并指出了无线通信技术可能给铁路信号系统带来的积极影响,表明了TBS将会成为未来铁路信号系统的发展方向。

1 国外TBS的发展情况

1.1 北美TBS的发展情况

1983年,美国铁道协会和加拿大铁道协会共同最早提出了基于无线通信的先进列车控制系统ATCS。ATCS主要是通过数字数据通信手段和先进的微处理器获取列车的精确位置和速度等信息,并对列车进行安全控制。ATCS的运用不仅避免了很多地面信号设备的安装,节省了系统成本,还消除信号盲区,增强了列车的安全系数。ATCS是由中央控制系统、无线数据通信网络、车载设备、路旁设备和线路维护人员移动终端五个子控制系统构成的。它的系统结构设计和功能模块的划分为以后基于无线通信的铁路信号系统奠定了基础。随着无线通信技术的发展,在ATCS之后北美又出现了很多基于无线通信的铁路信号系统,其中ARES可以提供非常可靠的检查和平衡手段,在很大程度上降低了人为操作失误造成的错误,使列车行驶更加安全。另外,PTS、PTC、AATC、ITCS等系统也是比较著名的。

1.2 欧洲TBS的发展情况

1992年国际铁盟下属的欧洲铁路研究机构提出了一套欧洲的铁路运输管理系统,包括车票发售、各国铁路互操作性等多个方面,ETCS就是其中非常重要的一部分。在欧共体委员会设立标准化欧洲铁路控制系统项目ETCS之前,欧洲各国铁路标准和模式不尽相同,轨距、信号设备、供电设备也不一样,因此各国只能使用自己的ATP、ATC系统。各国铁路制式上的差异使得欧洲铁路很难形成连续运输。在设立了标准化欧洲铁路控制系统项目ETCS后,各国的铁路开始逐渐按照统一标准进行规范,并逐渐取代各国不同的列车自动控制系统和防护系统。ETCS的目标就是要实现欧洲铁路的统一,提高各国铁路的互操作性,使铁路控制系统的功能和设备更加规范。

1.3 日本TBS的发展情况

在日本铁路信号系统的发展历程中,先后出现了ATS、现行ATC、数字式ATC、计算机和无线通信辅助信息控制系统等。其中现行ATC作为一种列车超速防护系统,以良好的自动制动功能保护了列车的安全。但在系统工作时,采用的最强的自动制动,影响了乘客的舒适程度。在1987年,日本开始基于无线通信的铁路信号系统的研究,为CARAT的出现奠定了坚实的基础。CARAT的使用能够使列车连续测定自身位置和行驶速度,使地面系统能够很好的了解列车运行情况,保证列车的运输安全。

2 TBS的特点和问题

在速度比较高的高速铁路上,距离比较近时,可以采用红外、蓝牙等无线通信技术实现对列车的控制;在距离比较远时,则可以通过全球定位控制系统、信标、计轴装置等来测定列车的速度和位置。车载计算机可以通过无线收发装置将列车的速度、位置信息发送给调度控制计算机,通过调度控制计算机的处理,再将列车允许的最大速度等信息通过无线通信发回给列车计算机。列车司机可以根据车载计算机的提醒进行相应的操作,如果列车司机没有及时作出反应,信息控制系统还可以自行将车速降低到允许范围以内。

2.1 TBS的特点

(1)在TBS中,主控中心可以根据列车的运行状态和操作状态通过车载计算机来调整列车的运行,加大了高速铁路信号系统的管理职能,保证了列车的安全,提高了铁路线路的通行能力。

(2)在无线通信信号系统控制下,列车和地面的可靠信息量增大,列车运行变得更加稳定,且避免了不必要的加速和制动,节约了能源,也让旅客乘车变得更加舒适。

(3)无线通信技术的运用,省掉了大量的地面信号装备,大大减少了设备的安装、维护、修整费用。

(4)无线通信信号系统的适应能力极强,通过软件上的调整就可以使列车的运行速度提高,且能够自动调整运行图,大大的提高了铁路运输管理能力。

(5)无线通信信号系统还可以通过车地间的双向信息通道实现列车的闭锁控。

2.2 TBS的问题

(1)高铁信号系统使用轨道电路只能使用较低的信息发送频率,传输环境恶劣,很难让电码的传送速率满足高速铁路的运行速度要求。

(2)TBS通过环线设备和应答器件接受数据信息,列车进行操作可能会有时间上的延迟,可能会给列车的运行造成不良的影响。

(3)轨道间的电缆电线作为车地之间的双向信息通道,虽然传输信息量大,抗干扰能力强,但设备费用较高,且防盗能力很差,一旦丢失,后果严重。

3 无线通信技术在高速铁路信号系统中的应用 3.1 微机联锁

无线通信技术在微机联锁方面运用的可行性还需进一步研究,但ATCS中提出,可以将检测到的道岔、信号机闭锁状态发送给主控中心,并利用道旁接口单元来接收主控中心的控制命令,以实现控制一组道岔、信号机动作的目的。另外道旁接口单元可以利用无线信道联系控制中心,通过电缆连接现场设备,从而检测并控制一些辅助的子系统。目前看来,无线通信技术用于微机联锁的现场设备可能会增加一些投资,且大型站场道岔众多,干扰较大,但还是具有较好的发展前景。

3.2 集中调度

在调度集中系统中,调度中心职要根据车站到发线占用情况和区段内闭塞分区大概了解列车运行的状况,并根据得到的信息排列进路。但利用TBS,控制系统就能够准确的了解列车运行的位置、速度,并根据沿线的信号系统情况发送列车控制命令,保证列车在最短的实践间隔内高速、安全、稳定的运行。无线通信技术赋予列车与控制中心的双线数据通信,给列车的运行带来了很大的方便,且实现了行车指挥自动化。

3.3 中继器

在高速铁路的实际运行中,我不可能在所有的高速铁路中都设这无线通信基站,这样不但增加了设备投资,还使无线通信铁路信号系统失去了存在的真正意义。有了中继器,基站就可以通过中继器接受和发送一些射频信号,从而使基站不仅可以管理基站区域范围内的站区,还能够将管理中继器管理的一些车辆和线路。

3.4 提高平交道口的通过效率

为了提高平交道口的防护能力和和通过效率,防止由于无线设备故障造成不必要的损失,主控中心按照时间间隔不断的查询道口的运行状态,并将查询信息及时反馈给接近道口的列车。另外主控中心通过接收的列车位置、速度信息,可以计算列车通过道口的时间,并根据实际情况设定列车的最大允许速度和列车运行线路参考。这样,列车通过平交道口就有了安全保障,而且还大大提高了道口的通过效率。

3.5 加强维修处防护

在高速铁路某路段需要进行维修时,维修部门可以通过移动终端将维修点输入到系统中,通过主控中心的传送,列车就可以很好的了解路段情况。在实际的运行中,列车可以根据了解到的维修点信息对列车进行操作,另外在列车接近维修点事,移动终端接受到地面系统的警报信号,以保证列车能够及时在维修段之前停车。

4 总结

随着高速铁路的不断发展,要确保列车的安全,先进的信号系统成了高速铁路运行的重中之重。在高速铁路信息系统中,无线通信的运用仍处于初期阶段,在具体的TBS规划时应充分考虑其与全路运输管理系统的接口,使无线通信技术更充分的运用在高速铁路的发展当中。

参考文献

[1]闵耀兴.我国铁路列车安全控制系统的现状[J].哈铁科技通讯,1997(04).

[2]姚丽娟.我国铁路信号系统的现状与发展[J].铁道通信信号,2003(04).

[3]步兵.基于通信的列车控制系统的可靠性分析方法[J].交通运输工程学报,2001(01).

[4]杨绚,陈德旺,陈荣高.速铁路列控系统主动安全控制的分析与思考[J].铁路计算机应用,2012(08).

作者简介

孙屹枫(1982-),男,天津市人。中国民用航空大学大学本科毕业。研究方向:铁路信号。

作者单位

铁道第三勘察设计院集团有限公司电化电信处 天津市 300251

点击下页还有更多>>>高速铁路信号技术论文

高速铁路工程测量精度和测量模式论文范文

无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成。那么一般论文是怎么写的呢?下面是我整理的高速铁路工程测量精度和测量模式论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

根据摘要的介绍,我们对于高速铁路测量的现今发展状况有了一个简单的了解,首先,我们要知道,随着现代道路铁路工程的发展,国内外,特别是近几年国内的高速铁路的发展使铁道工程勘测、设计、施工和运营组织都发生了巨大变化。这些变化不仅体现在我们对于铁路工程的发展前景的一个预测,更加体现我们对于铁路发展的当前形势的一个把握,铁路工程的发展来势迅猛,测量工程师们还没来得及做好充分的技术准备,但我们的新的发展模式就已经被需要。迫于形势需要,除借鉴国外已有先进技术外,讨论得比较多的就是提高测量精度。其实除适当提高测量精度外,改进测量方法和流程,降低成本,提高效率,是当前铁路工程测量更为重要的课题。下面,本文就来具体的谈一谈这一内容,从它的问题的出现和解决措施作出一个叙述。

1、各设计院测量工程师的想法——从经济、效率、和质量各方面考虑有如下困难

1.1 控制测量每提高一个等级,其经费增长约40%,观测时间成倍增加。就目前情况来看,多数工程项目给予勘测的工期都十分紧张。对于各设计院的测量,有着许多方面的考虑因素,也在不断地解决中,首先,经费问题是一个重要问题,我们必须确保我们的经费被控制在一定的范围内,经费的有效合理的利用和规划对于我们的工程的实施有着非常重要的作用,没有经费的支持,我们的测量工程就不能得到一个很好的发展和顺利进行。

1.2 二、三等控制网精度

控制网的精度控制是保证我们的工程准确测量的一个重要方面,也是我们应该注意的方面,我们知道控制网是以对应十几至几十公里的长边为条件的,其密度不能满足铁路测量需要,当进一步用短边加密时,其精度回落到一级导线的精度。

1.3 布设高等级控制网除精度要求高外还面临其他难题:如起算联测的一等控制点少,平差、计算不同于低等级控制网,更复杂,要进行天文、重力测量需要更专业的部门来完成,铁路设计院和工程局一般不具备施测能力。这些问题就是需要我们亟待解决的,我们必须明白这些问题的出现原因和解决措施,才能从根本上解决这些问题,并且能够在很大程度上将这些问题控制在我们可以解决以及利用的范围内。

1.4 关于建立独立的高速铁路二、三等控制网,不强制闭合到国家等级控制网上的设想因下列原因而不可取:

1.4.1 独立坐标系统一般用于区域性小范围地区,地球面可近似当作平面,不需做高斯投影,长大铁路途经几省,其球面特性不可忽略。

1.4.2 不具备进行高精度天文、重力测量的能力,数百公里控制网呈狭窄线形,其精度不易控制。精度的控制是我们在工程测量过程中一个比较重要的方面,精度的控制也是我们可以切实实施的方面。

1.4.3 已有的各种比例尺地形图及沿途经由的道路、江河、城市、机构等,都是以国家统一大地坐标定位,铁路另辟蹊径,相关关系很难理顺。地形图的测量是以实际的情况来考虑的,同时也是我们对于铁路工程测量的重要途径,我们必须保证,我们对于铁路的测量有着一定的现实基础和研究支撑。

2、关于新测量流程的建议

对于新测量的实施,是我们解决高速铁路工程测量的一个重要方法,为了扭转这种状况,使得图纸上定线放样到实地后消除系统误差,需要改变铁路测量流程如下。

2.1 一次布网把原航外控、加密四等控制点、初测导线、定测交点,合并为3~5km一对GPS点或边长500 ~1 000m的导线,做相对精度为1/115~1/2万的一次布网,并对其作五等水准测量。除能消除地形图和实地同名点的系统差外,还有以下主要作用:

2.1.1 简化测量程序,减少测量工作量,我们要将测量的程序尽量的简化,将测量的工作量控制在我们可以掌握和控制的范围内,同时也使得我们对于工程的顺利进行更加有信心,以及实施的措施更加的有效,使得我们对于程序化的流程更加的了解。

2.1.2 勘测、设计、施工都只用一次布网的资料和控制桩,资料简单清晰,差错少。资料的支持是我们对于工程测量的基础保证,同时也是我们对于工程测量设计的一个重要考虑方面,资料的尽量简单化和对程序的简化是保证我们铁路工程顺利进行的重要方面,也是必要的解决方式。

2.2 从一次布网控制点直接测设中线,则可改变铁路测量的模式,铁路工程测量精度一直是一个倍受测量工程师关注的问题,但铁路测量从未因精度问题对设计和施工产生过影响。问题都出在测量错误、测量资料处理错误等方面。理清各个测量环节之间的关系,简化测量过程使其更简洁、明晰、规范,以容易控制的内业逐步取代难以控制的外业测量。

2.3 坐标控制测设中线具有明显的优越性

2.3.1 直接从一次布网控制点测设中桩,不用长距离,连续转点,避免了误差累积。一个工程的进行必定会伴随着工程误差的出现,如何迅速有效的处理好误差,是我们在工程测量过程中的必要步骤,也是我们应该尽可能避免的一步,我们不能保证零误差,但我们至少可以保证尽可能的减少误差的发生,以及对于误差的解决方案。

2.3.2 可以任何里程切入测量,只要不是改线都不会出现断链。这一特点使得中线测量能够不连续进行,可以先测设桥、隧地段,使地质、桥梁、隧道等专业能及早开展工作。提高航测精度后,还可以只对重点地段测设中桩,一般路基在航测模型上直接量测。

2.4 从航测模型量测横纵断面在航测模型上量测横纵断面,国外多家机构进行过研究且已投入使用。国外采用1/3 000~1/5000大比例尺摄影,或初测做小比例尺摄影,定测再做一次大比例尺摄影。国内有许多单位,特别是铁道部属各设计院进行过研究,但因精度达不到《新建铁路工程测量规范》的规定限差而未能进行下去。

3、结论

就如上面介绍的一样,笔者对于铁路工程测量的过程中的测量精度和测量模式的内容作出了一定的总结和看法,铁路工程的实施作为我们现代社会铁路的重要组成部分,同时铁路工程的测量又作为铁路工程实施的重要方面,这几点是息息相关的,同时也是需要我们联合在一起考虑的内容,只有做到了这些方面的准备工作,同时做好了一定的预防措施和误差分析,我们的铁路工程的测量过程中可能出现的.问题就会有一个很好的解决,同时也会使得我国的铁路工程发展的越来越好,我们的铁路工程测量开展的越来越顺利。

1 引言

交通运输业与国家经济的发展有很大的联系, 在高速发展的今天,我国大力发展高铁建设,国家对高速铁路工程测量的要求也不断提高, 对高速铁路测量中应用到的技术要求也越来越高。一般情况下,传统的测量技术都存在一些不足,甚至跟不上时代发展得脚步,因此,这就需要将先进的测量技术应用到高速铁路工程测量中。我国的高速铁路工程测量技术在不断提高,以适应我国高速铁路建设的发展,只有保证了工程测量的精度要求,才能够很好的满足高速铁路发展需求。

2 高速铁路工程测量

2.1 高速铁路工程测量的内容

就铁路建设来看,无论是铁路的勘测设计、工程施工,还是项目完成后的验收和维护, 这些都离不开对工程的精密测量工作。工程测量工作需要贯穿于整个高速铁路建设的过程中,其对高铁工程建设具有非常重要的意义。高速铁路工程测量的内容也包含了多个方面,例如对轨道施工的测量、对高速铁路平面高程控制的测量以及对铁路运行维护的测量等。这些测量内容的精确度都是确保高速铁路建设质量的重要依据,所以,铁路工程相关工作人员必须高度重视工程测量问题。

2.2 高速铁路工程测量的目的

在高速铁路工程建设过程中, 做的所有工作都是为了确保高铁工程的质量及安全,高速铁路工程测量也不例外。工程测量主要是根据高铁工程的实际情况, 合理设计各级平面高层控制网,然后在精密测量网的控制下,对工程建设中每个施工环节有效实施,最终顺利完成高速铁路的建设。由于高速铁路的建设在各方面的要求都很高,所以,在进行高速铁路工程测量的时候,应该根据铁路工程的实际情况,按照设计的线型对铁路线路进行施工。为了确保轨道的平顺性,精度要控制在毫米级的范围内,来确保在车辆行驶中具有舒适性和安全性。

2.3 高速铁路测量技术的要求

轨道是高速铁路的重点建设环节。高铁轨道一般可以分为有砟轨道和无砟轨道。无砟轨道较有砟轨道平顺性以及稳定性要好,轨道的耐久性也随之大幅提升。但应注意的是,无砟轨道对工程基础的质量有非常高的要求, 如果工程基础有沉降等问题,不仅会影响行车安全,甚至造成灾难。这就对工程测量精度提出了极高的要求。另外,对于无砟轨道而言,在施工完毕后,很难对其进行调整,所以,为避免多个环节的误差积累,高铁轨道工程测量必须具有严格的控制网标准。

3 高速铁路工程测量技术存在问题

3.1 测量仪器导致的质量问题

在实际铁路工程测量中, 测量仪器的质量问题以及使用不当是导致工程测量数据不准确的一个重要因素, 主要表现在:①测量仪器相对落后,达不到当前工程测量的标准要求。在一些工程施工中,为了节省成本,不能及时的换新的仪器,还在使用比较老式的测量仪器,这样难保证测量精度;②测量人员在使用测量仪器进行工程测量时, 往往凭借自己的经验对工程测量,没能够按照相关的规范来使用仪器,这很可能使测量的数据与实际不符,最终导致铁路工程出现质量问题;③没能按照相关的规定来管理仪器,造成仪器失真。而对于工程测量仪器来说,其管理及保养都需要专业人员来进行,不能让其他人员随意使用或放置,以防仪器失去精度。

3.2 未能控制好测量质量

对于高速铁路工程质量监控来说, 它既涉及到铁路工程的质量问题,又涉及到人们的生命和财产安全问题,不仅需要相关部门的监察,更加需要政府的职能监督。政府及社会监理要和相关部门协同进行工程验收, 高铁质量重中之重不可忽视。然而,许多工程监理没能担负起应尽的责任,没有按照监理要求对工程质量进行评估。其次有一些监理人员未使得当的测量仪器进行工程监理,这会很大程度上影响监理质量。

3.3 工程测量产生误差

3.3.1 GPS 测量误差

对于高铁工程测量的前两个阶段, 都是需要采用GPS 测量方式,而此种方式很容易出现误差,其误差的来源可以分为以下三类:

(1)与控制段相关的误差,包括星历误差和卫星时钟误差,指的是在卫星传播过程中导航电文的参数值产生误差。

(2)与接收机有关的误差,一般是接收机噪声引起的误差。

(3)与卫星信号有关的误差,指信号受到接收机和卫星之间的传播介质的影响而造成的误差。

3.3.2 CPⅢ控制测量误差

CPⅢ控制网测量方式是采用后方交会全站仪自由设站的形式。误差来源主要是:

(1)由观测值误差产生的自由设站点误差,主要原因是出现了方向观测误差;

(2)两相邻测站在平面位置和高程产生的相对误差;

(3)全站仪测量轨道各点的误差。

4 工程测量问题的解决措施

4.1 提高工程测量中的技术创新

我们的社会在不断进步发展, 对于铁路工程测量技术来说,也需要不断的创新。把先进的科学技术运用到工程测量之中,有效的提高铁路工程测量技术水平。科学技术是第一生产力,在一定意义上说,测量技术的提升以及测量标准的提升既能够降低高铁工程测量的花费, 又能够确保高铁工程施工的进度和质量。因此,我国要推动高速铁路工程测量技术的进一步发展与革新,保证我国高速铁路事业顺利发展。

4.2 加强对高速铁路工程测量中各项制度的制定与实施

这包含了在高速铁路工程测量取得成果的复测、交接、施工过程等环节上要严格遵守相关的管理办法, 进而使工程测量行为规范起来,确保高铁工程测量成果的质量。如今高速铁路工程建设不断发展, 铁路施工技术要求的精度也在不断增高。对此高铁工程的负责人要把眼光放长远,同时要根据实际发展情况,引进先进、实用的设备仪器,为提高高速铁路工程的测量质量打下一个良好的基础, 为我国的高速铁路工程事业提供推动力量。

4.3 要加强对工程测量工作的监督与管理

把高速铁路工程测量的监督工作放到首位。①工作人员必须了解高速铁路工程测量过程中的每一个细节, 遵守相应的标准规范, 施工人员也不能仅仅依赖自己的工作经验来测量。②高铁工程测量工作人员要担负起自身的责任,对测量数据严格把关,并反复审查所得数据,确保数据万无一失。在高速铁路工程测量的数据应用到实际中,必须要再次核实数据,数据的真实有效性是保证铁路工程质量的首要前提,因此,必须将监督工作有效落实。

4.4 减弱工程测量误差

4.4.1 GPS 测量误差的减弱措施

卫星时钟造成的误差是系统误差, 它包括时钟的随机误差及频偏、钟差等所产生的误差。对于这种误差往往可以通过差分技术和钟差改正法来减弱。此外还有星历误差,它可采用相位观测量求差法来获取高精度的相对坐标, 从而减弱或消除误差。对于高精度、长距离的测量可以采取精密星历法来削弱。另外,对于整体的星历误差还可以通过轨道改进法、同步求差法等来减弱误差。

要消除与卫星传播有关的误差, 可以通过倾斜因子系数来解决电离层的折射使得码相位测量变长, 载波相位变短的问题,也可以选择一个特定的时间段观测,然后使用同步观测量求差法来消除误差。

可采用差分法来处理与接收站有关的误差, 如果要求高精度定位,可以使用外接频标,给接收站提供高精度的时间标准。或者是在求解的时候把接收机的钟差作为独立未知数处理。

4.4.2 CPⅢ控制误差的减弱

我们不能完全的消除全站仪测量所造成的误差, 只能采取一定的方法来合理的减弱误差, 所测量的轨道各点在竖直方向的不平顺性跟观测高度角是有关的, 观测水平方向与在水平方向的不平顺性有关, 正矢误差与测量距离和误差角度有关,想要减弱正矢误差,就要控制观测距离和观测角度的误差,还要尽量缩小观测距离。

5 结语

工程测量对于工程施工来说是一个非常重要的环节,工程测量精度对工程项目施工质量会有着很大作用。施工前要运用工程测量技术重新核实测量结果, 一旦测量技术出现问题,整个工程可能就会出现严重的质量问题。高速铁路工程施工是一项系统且又复杂的工程项目, 必须保证铁路轨道的平顺性,才能确保高速运行的列车安全稳定运行。因此,对高速铁路工程测量技术要求非常高。想要使高速铁路发展的更好更快,就要继续深入研究工程测量技术,还要加大对高速铁路工程测量的监督力度,在严格的审查制度下,工作人员才会具有高度责任心的工作态度, 并且能够认真完成自己的工程测量任务,进而促进我国高铁工程事业的快速发展。

国内外高铁现状以及高铁特点简介1964年,日本建成世界上第一条高速铁路——东海道新干线,并以时速210km/h投入商业运营。由于修建高速铁路可以带来巨大的社会经济效益,高速铁路的辉煌业绩深受世人瞩目,法国也及时发展了独具特色的可能是目前唯一没有任何盈利色彩而享誉世界的法国产品TGA高速技术,并在1981年率先建成西欧第一条高速铁路。从此TGV一直牢牢占据高速轮轨的速度桂冠,目前的纪录是2007年创下的578.4 公里/小时。欧洲有关部门做出的长远规划是到2015年,全欧高铁铁路总长达到3万公里,其中新建段9100公里,约占30%。 紧接日法之后,德国、意大利、西班牙等都相继修建了高速铁路。并且德国研制独自的ICE(Intercity-Express)机车,美国研制了具有美国特色的Acela。从1972年以后,又相继出现了磁悬浮和摆式列车,而其中的摆式列车由于其性价比较高,有可能是一种在大规模成熟铁路网基础上完成提速的高速铁路技术。 我国的高速铁路研发及建设均起步较晚,但是我国高速铁路建设近几年的发展速度有目共睹,从2008年8月1日我国第一条具有完全自主知识产权的高速铁路——京津城际铁路开通运营,到之后的武广高速铁路、郑西铁路等高速铁路的开工建设及投入运营,我国高铁建设一直得到国家大力的政策支持与资金投入。特别是在过去两年,我国多项高铁建设项目开工并建成投产,宁波~台州~温州、温州~福州、福州~厦门等客运专线相继建成通车,特别是世界上里程最长、时速350公里、全长1068.6公里的武广高速铁路开通运营,成为中国高速铁路的又一里程碑。 高速铁路在不长的时期内之所以能取得如此的发展势头,根本原因是基于轮轨系的高速技术充分发挥了既先进又实用的特点,特别是在中长距离的交通中的独特优势。实践表明,高速铁路已是当代科学技术进步与经济发展的象征。高速铁路虽然源于传统铁路,但借助于多项高新技术已全面突破常规铁路的概念,已形成一种能与既有路网兼容的新型交通系统。同时高铁还具有一些其他列车无法比拟的优点:(1)输送能力大:目前各国的高速铁路几乎都能满足最小行车间隔4分钟及其以下(日本可达3分钟)的要求。(2)速度快:法国、日本、德国、西班牙和意大利高速列车的最高运行时速分别达到了300公里、300公里、280公里、270公里和250公里。如果作进一步改善,运行时速可以达到350~400公里。(3)安全性好:高速铁路由于在全封闭环境中自动化运行,又有一系列完善的安全保障系统,所以其安全程度是任何交通工具无法比拟的。(4)受气候变化影响小,正确率高:高速铁路全部采用自动化控制,可以全天候运营,除非发生地震。由于高速铁路系统设备的可靠性和较高的运输组织水平,可以做到旅客列车极高的正点率。(5)方便快捷:高速铁路一般每4分钟发出一列车,日本在旅客高峰时每3分半钟发出一列客车,旅客基本上可以做到随到随走,不需要候车。(6)能源消耗低:如果以“人/公里”单位能耗来进行比较的话。高速铁路为1,则小轿车为5,大客车为2,飞机为7。(7)环境影响好(8)经济效益好:高速铁路投入运行以来,倍受旅客青睐,其经济效益也十分可观。日本东海道新干线开通后仅7年就收回了全部建设资金,自1985年以后,每年纯利润达2000亿日元。德国ICE城市间高速列车每年纯利润达10.7亿马克。法国TGV年纯利润达19.44亿法郎。

高速铁路论文

针对我国高速铁路客运专线规划决策中的主要技术经济问题,本文在广泛分析国内外有关研究资料的基础上,结合作者承担或参与的国家高技术发展计划(863)课题和铁道部高速铁路研究课题,综合运用工程技术科学、宏观经济学、微观经济学、决策科学、数量经济学和统计学的理论和方法,对高速客运专线的客运需求、速度目标值、建设时机、技术系统选择、国民经济评价方法等问题进行了研究,研究方法均为国内首次采用。为我国高速铁路规划决策的科学化、定量化提供了有益的支持工具。主要研究成果如下: (1)在高速铁路客运市场份额研究方面,通过研究旅客对交通工具的选择行为,分析了影响旅客选择行为的经济、技术、心理和生理因素,首次将交通工具的多种技术特征引入效用函数中,建立了客运交通工具的效用评价理论;进而用多目标决策、数量经济学和统计学理论建立了交通工具市场份额分析模型。该模型从理论上避免了目前一些常用分析理论在某些交通走廊应用的误差较大甚至出现矛盾的现象。由该模型算出的客运需求变化规律与理论分析具有很好的一致,实例验证取得较好的结果。 (2)在高速铁路客运需求的长期变化规律方面,分析了社会经济发展规模、社会经济结构发展变化、信息传输技术进步等因素对社会客运需求影响,结合国内外社会经济和交通发展的统计资料,提出了社会客运需求长期变化规律的数学模型;从旅客对交通工具服务质量要求的提高、自然资源与环境保护、各种交通技术的发展趋势等方面,论证了高速铁路客运市场份额和客运需求的长期变化规律并建立相应模型。以京沪线为例进行的计算表明,高速铁路客运需求的长期变化规律是:首先因经济发展规模的增长而增加,后因旅客对服务质量的要求发生变化,市场份额降低,客运需求增速减缓甚至下降。这一规律符合培育、发展、饱和和停滞的商品经济规律。 (3)在国内首次系统地通过理论研究和总结实际定线资料,研究了高速铁路速度目标值与其客运需求、工程投资、机车车辆购置费、运营支出等技术经济指标的量化关系。为我国高速铁路项目的科学化、定量化决策提供了良好的研究基础。 (4)在速度目标值决策方面,考虑速度目标值对客运需求、土建工程投资、机车车辆购置费、运营有关支出、无关支出等基础数据的影响,以高速铁路项目的经济效益为目标,用技术经济学的理论研究速度目标值。以京沪线为例的计算结果证实了最佳速度目标值的存在。该最佳速度目标值是基于我国的经济发展水平和市场需求状况的结果,与国外发达国家的高速列车速度水平具有一定的差距。 (5)在高速铁路的建设时机决策方面,提出了以旅客对旅行时间节省的支付意愿为表征的高速铁路建设时机研究方法。以各种交通工具的技术经济特征为基础,运用本模型的计算结果表明,目前我国东部经济发达地区已进入建设高速铁路的合理时机。同时,以财务内部收益率为评价指标,通过分析高速铁路建设期和运营期的投入和产出,结合高速铁路市场需求长期变化规律的分析,以京沪线为例进行的计算表明:目前就是京沪高速铁路的最佳时机。上述研究结论与国内高速铁路技术的成熟性、经济发展对客货运输能力的综合要求、项目建设资金的供给条件等研究相结合,可为我国高速铁路的建设时机决策提供有益的参考。当然,本文算例结论的前提是各种交通方式的技术经济特征保持相对稳定。一旦某种交通工具的服务水平取得重大突破,或者有新的交通系统被引入,研究结论将可能发生变化。 (6)在铁路建设项目经济评价理论方面,本文分析了西方国家、联合国工业发展组织和我国的交通建设项目国民经济评价理论和方法,提出我国现行的铁路建设项目国民经济评价办法中效益计算部分尚待探讨。提出了计算交通建设项目国民经济效益的新观点。并对其中一些观点提出了算法。 (7)在高速磁悬浮铁路技术经济特征分析方面,全面研究了国外高速磁浮交通系统资料,在国内首次系统地总结了高速磁悬浮铁路的线路设计理论;提出了影响通过能力和输送能力的因素和磁浮列车追踪间隔的计算方法;全面分析了高速磁悬浮铁路的工程投资、运营支出等经济特征和能量消耗、土地占用与地表破坏、交通噪声、有害物质排放、磁辐射等环境影响特征。为我国开展高速磁悬浮交通系统的工程应用研究提供了良好的基础。 (8)在高速交通技术系统比较方面,针对我国对两种技术系统的研究基础相差很大,难以进行工程应用全面对比的情况,本文从两种系统的技术原理出发,通过理论分析、试验定线和试验设计,对土建投资、列车费用和运营支出进行了比较。另外,从市场适应性角度出发,分析了两种系统的综合服务质量,以旅客平均时间价值为指标,提出了各自适应的经济发展水平。 本文提出的研究成果,可作为我国高速铁路规划中科学化、定量化决策的辅助工具。本文重点研究辅助决策的技术经济学方法,在具体应用项目的技术经济决策分析中,尚应深化研究主要基础数据,以保证模型计算结果的可靠性。

高速铁路信号是高速列车安全、高密度运行的基本保障。下面是我整理的高速铁路信号技术论文,希望你能从中得到感悟!

基于无线通信技术的高速铁路信号系统应用

摘 要

高速铁路信号系统是高速列车安全、高密度运行的基本保障。无线通信技术在铁路信号系统的应用,不但减少了高速铁路的信号系统成本,还较好的确保了高速铁路的安全。随着科学技术的进步,高速铁路不断的向着智能信息化转变,这就给无线通信技术领域提出了更加严格的要求,为了适应高速铁路的快速发展,各国都在潜心研究基于无线通信技术的新一代的铁路信号系统。本文介绍了国外无线通信系统在高速铁路信号系统中的发展情况,分析了运用无线通信技术的高速铁路信号系统的特点和问题,并探讨了无线通信技术在高速铁路信号系统中的应用。

【关键词】无线通信 高速铁路 信号系统

在整个高速铁路工程中,虽然信号系统的投资总额所占比率较小,但其起到的作用十分关键。由于轨道电路传输环境较差、传输信息的速率较低、设备更新维护费用高,所以基于轨道电路的列车控制系统已经不能满足高速铁路的快速发展要求。在80年代,国外开始研究基于无线通信的铁路信号系统TBS(Transmission Based Signalling),希望通过无线通信技术的应用来提高铁路的管理职能、缩短列车间隔时间、节约能源、降低系统的成本。1995年在关于TBS的国际会议中,会议代表分析了无线通信技术在铁路信号系统应用的的可行性,并指出了无线通信技术可能给铁路信号系统带来的积极影响,表明了TBS将会成为未来铁路信号系统的发展方向。

1 国外TBS的发展情况

1.1 北美TBS的发展情况

1983年,美国铁道协会和加拿大铁道协会共同最早提出了基于无线通信的先进列车控制系统ATCS。ATCS主要是通过数字数据通信手段和先进的微处理器获取列车的精确位置和速度等信息,并对列车进行安全控制。ATCS的运用不仅避免了很多地面信号设备的安装,节省了系统成本,还消除信号盲区,增强了列车的安全系数。ATCS是由中央控制系统、无线数据通信网络、车载设备、路旁设备和线路维护人员移动终端五个子控制系统构成的。它的系统结构设计和功能模块的划分为以后基于无线通信的铁路信号系统奠定了基础。随着无线通信技术的发展,在ATCS之后北美又出现了很多基于无线通信的铁路信号系统,其中ARES可以提供非常可靠的检查和平衡手段,在很大程度上降低了人为操作失误造成的错误,使列车行驶更加安全。另外,PTS、PTC、AATC、ITCS等系统也是比较著名的。

1.2 欧洲TBS的发展情况

1992年国际铁盟下属的欧洲铁路研究机构提出了一套欧洲的铁路运输管理系统,包括车票发售、各国铁路互操作性等多个方面,ETCS就是其中非常重要的一部分。在欧共体委员会设立标准化欧洲铁路控制系统项目ETCS之前,欧洲各国铁路标准和模式不尽相同,轨距、信号设备、供电设备也不一样,因此各国只能使用自己的ATP、ATC系统。各国铁路制式上的差异使得欧洲铁路很难形成连续运输。在设立了标准化欧洲铁路控制系统项目ETCS后,各国的铁路开始逐渐按照统一标准进行规范,并逐渐取代各国不同的列车自动控制系统和防护系统。ETCS的目标就是要实现欧洲铁路的统一,提高各国铁路的互操作性,使铁路控制系统的功能和设备更加规范。

1.3 日本TBS的发展情况

在日本铁路信号系统的发展历程中,先后出现了ATS、现行ATC、数字式ATC、计算机和无线通信辅助信息控制系统等。其中现行ATC作为一种列车超速防护系统,以良好的自动制动功能保护了列车的安全。但在系统工作时,采用的最强的自动制动,影响了乘客的舒适程度。在1987年,日本开始基于无线通信的铁路信号系统的研究,为CARAT的出现奠定了坚实的基础。CARAT的使用能够使列车连续测定自身位置和行驶速度,使地面系统能够很好的了解列车运行情况,保证列车的运输安全。

2 TBS的特点和问题

在速度比较高的高速铁路上,距离比较近时,可以采用红外、蓝牙等无线通信技术实现对列车的控制;在距离比较远时,则可以通过全球定位控制系统、信标、计轴装置等来测定列车的速度和位置。车载计算机可以通过无线收发装置将列车的速度、位置信息发送给调度控制计算机,通过调度控制计算机的处理,再将列车允许的最大速度等信息通过无线通信发回给列车计算机。列车司机可以根据车载计算机的提醒进行相应的操作,如果列车司机没有及时作出反应,信息控制系统还可以自行将车速降低到允许范围以内。

2.1 TBS的特点

(1)在TBS中,主控中心可以根据列车的运行状态和操作状态通过车载计算机来调整列车的运行,加大了高速铁路信号系统的管理职能,保证了列车的安全,提高了铁路线路的通行能力。

(2)在无线通信信号系统控制下,列车和地面的可靠信息量增大,列车运行变得更加稳定,且避免了不必要的加速和制动,节约了能源,也让旅客乘车变得更加舒适。

(3)无线通信技术的运用,省掉了大量的地面信号装备,大大减少了设备的安装、维护、修整费用。

(4)无线通信信号系统的适应能力极强,通过软件上的调整就可以使列车的运行速度提高,且能够自动调整运行图,大大的提高了铁路运输管理能力。

(5)无线通信信号系统还可以通过车地间的双向信息通道实现列车的闭锁控。

2.2 TBS的问题

(1)高铁信号系统使用轨道电路只能使用较低的信息发送频率,传输环境恶劣,很难让电码的传送速率满足高速铁路的运行速度要求。

(2)TBS通过环线设备和应答器件接受数据信息,列车进行操作可能会有时间上的延迟,可能会给列车的运行造成不良的影响。

(3)轨道间的电缆电线作为车地之间的双向信息通道,虽然传输信息量大,抗干扰能力强,但设备费用较高,且防盗能力很差,一旦丢失,后果严重。

3 无线通信技术在高速铁路信号系统中的应用 3.1 微机联锁

无线通信技术在微机联锁方面运用的可行性还需进一步研究,但ATCS中提出,可以将检测到的道岔、信号机闭锁状态发送给主控中心,并利用道旁接口单元来接收主控中心的控制命令,以实现控制一组道岔、信号机动作的目的。另外道旁接口单元可以利用无线信道联系控制中心,通过电缆连接现场设备,从而检测并控制一些辅助的子系统。目前看来,无线通信技术用于微机联锁的现场设备可能会增加一些投资,且大型站场道岔众多,干扰较大,但还是具有较好的发展前景。

3.2 集中调度

在调度集中系统中,调度中心职要根据车站到发线占用情况和区段内闭塞分区大概了解列车运行的状况,并根据得到的信息排列进路。但利用TBS,控制系统就能够准确的了解列车运行的位置、速度,并根据沿线的信号系统情况发送列车控制命令,保证列车在最短的实践间隔内高速、安全、稳定的运行。无线通信技术赋予列车与控制中心的双线数据通信,给列车的运行带来了很大的方便,且实现了行车指挥自动化。

3.3 中继器

在高速铁路的实际运行中,我不可能在所有的高速铁路中都设这无线通信基站,这样不但增加了设备投资,还使无线通信铁路信号系统失去了存在的真正意义。有了中继器,基站就可以通过中继器接受和发送一些射频信号,从而使基站不仅可以管理基站区域范围内的站区,还能够将管理中继器管理的一些车辆和线路。

3.4 提高平交道口的通过效率

为了提高平交道口的防护能力和和通过效率,防止由于无线设备故障造成不必要的损失,主控中心按照时间间隔不断的查询道口的运行状态,并将查询信息及时反馈给接近道口的列车。另外主控中心通过接收的列车位置、速度信息,可以计算列车通过道口的时间,并根据实际情况设定列车的最大允许速度和列车运行线路参考。这样,列车通过平交道口就有了安全保障,而且还大大提高了道口的通过效率。

3.5 加强维修处防护

在高速铁路某路段需要进行维修时,维修部门可以通过移动终端将维修点输入到系统中,通过主控中心的传送,列车就可以很好的了解路段情况。在实际的运行中,列车可以根据了解到的维修点信息对列车进行操作,另外在列车接近维修点事,移动终端接受到地面系统的警报信号,以保证列车能够及时在维修段之前停车。

4 总结

随着高速铁路的不断发展,要确保列车的安全,先进的信号系统成了高速铁路运行的重中之重。在高速铁路信息系统中,无线通信的运用仍处于初期阶段,在具体的TBS规划时应充分考虑其与全路运输管理系统的接口,使无线通信技术更充分的运用在高速铁路的发展当中。

参考文献

[1]闵耀兴.我国铁路列车安全控制系统的现状[J].哈铁科技通讯,1997(04).

[2]姚丽娟.我国铁路信号系统的现状与发展[J].铁道通信信号,2003(04).

[3]步兵.基于通信的列车控制系统的可靠性分析方法[J].交通运输工程学报,2001(01).

[4]杨绚,陈德旺,陈荣高.速铁路列控系统主动安全控制的分析与思考[J].铁路计算机应用,2012(08).

作者简介

孙屹枫(1982-),男,天津市人。中国民用航空大学大学本科毕业。研究方向:铁路信号。

作者单位

铁道第三勘察设计院集团有限公司电化电信处 天津市 300251

点击下页还有更多>>>高速铁路信号技术论文

浅谈高速铁路施工项目风险控制论文

摘要: 高速铁路施工往往采用封闭施工的模式,但是施工的环境又比较开放,加之施工中需要分多个阶段进行,而且所涉及的专业众多,就必然会在项目施工受到风险因素的影响。笔者针对高速铁路施工项目的风险控制进行研究。

关键词: 高速铁路;施工项目;风险控制

风险就是受到不确定性因素的影响而导致的损失。高速铁路施工中,受到施工性质以及施工环境的影响,会导致施工中会面临各种风险,导致施工难以顺利展开,施工目标的实现较为困难。为了保证高速铁路施工项目的顺利展开,就要采取必要的风险控制措施。

一、高速铁路施工项目风险管理的内容

1.风险识别

高速铁路施工项目的风险识别旨在对项目实施过程中的风险因素进行判定、识别。目前的风险包括环境风险、技术风险、组织架构风险、经营与管理风险等。在风险识别中,要对这些风险予以定位。

2.风险评估

高速铁路施工项目的风险评估中,其一,需要对数据资料进行研究,采用风险预测方法对风险进行预测,确定风险发生的几率;其二,对风险因素导致的损失进行预测,包括对工期的.损失,因此所产生的直接费用和间接费用等,还要考虑到工程施工中对施工质量所产生的负面影响;其三,根据风险发生的概率以及造成的损失程度进行登记评定,并将应对措施制定出来。

3.风险响应

对于风险响应的对策有很多,常用的方法包括减弱风险、规避风险、转移风险以及对风险采取组合策略处理等。对于不可抗拒的风险,需要采用投保转移的方式。风险响应作为系统响应中的一种,需要风险实施系统化的应对措施。需要将风险相应目标确立下来之后,制定风险相应计划,设置风险相应范围,对管理方法进行科学化选择。将网络技术利用起来,对施工技术实施动态化的检测,启动跟踪式的风险管理措施,以提高风险应对效率。

二、高速铁路施工项目的风险控制措施

高速铁路施工项目往往规模是非常大的,施工的流程也相对复杂。在施工的过程中,为了保证施工进度,降低施工成本,还要采用交叉施工的方式,过程中必然会受到各种风险因素的影响。高速铁路施工项目运行中的风险源包括三个方面,即参与施工的人、施工方案以及施工设计文件、施工资金以及施工安全。

1.对参与施工的人进行合理配置、科学管理

高速铁路施工队伍如果整体素质非常高,参与施工的人员的专业素质也非常高,就必然会在施工中对技术工作和管理工作进行优化,提高工程施工质量和工程施工效率。但是,落实到具体的施工中,就会由于人员管理方面的不足对工程施工质量造成不良影响。参与施工的人员的专业能力有限、工作经验有限,加之人才自身所具备的特点,就必然会对施工质量造成一定的影响。因此,在参与施工人员的配置上,要求项目经理部中的主要领导中,至少有一名对高速铁路施工非常熟悉,且具有较高的专业技术水平,能作为整个工程项目的主要管理人物。专业人才在项目经理部所发挥的作用不只是对管理人员的领导,还要对工作人员进行培养、选拔领导干部,在项目运作的过程中能够及时地发现问题并及时采取措施弥补,以避免受到风险因素的影响导致损失扩大化。项目经理部要将管理机制、施工方案制定出来,所有的施工项目工作都要按照施工方案展开,并运行施工管理机制,以使施工项目中的风险得到有效控制。

2.对施工项目的分包队伍实施管理

高速铁路施工中,对于施工外包的方法通常会采用两种分包方法,即劳务分包和提点分包。施工的进度指标对所有参与施工的人员的整体素质息息相关,也决定了施工队伍的履约能力。施工队伍具有专业化强、缺乏稳定性的特点,如果施工管理不善,就会出现施工责任推诿的现象。因此,应对施工项目的分包队伍实施管理,主要的管理内容包括安排施工顺序、配置施工机械设备、划分施工段落、确定施工工序的最早开工时间与最早完工时间,定期地考核工作效率以及工序质量,对施工做好超前谋划工作,确保供应可靠,施工环境良好、资金运行顺畅、检查严格、奖罚分明,以确保施工项目按期完成,且保证施工质量。高速铁路施工项目建设期间,要优化施工方案,以加快施工进度,降低施工成本。施工项目的分包队伍的专业性强,就可以使工作效率高,施工进度也有所提高。

3.施工单位要积极地与设计单位进行协调

高速铁路施工项目存在风险,主要是设计风险。但是,一味地追求设计风险是远远不够的,还要对建设流程充分考虑。如果建设流程与工程施工实际不符合,就需要施工单位要与设计单位积极沟通沟通,包括涉及进展,与施工内容之间的矛盾等都要予以了解。施工材料、施工中所使用的机械设备进场方面的问题都要积极地沟通,对施工中的各个环节予以优化,以避免存在窝工的现象。对于本项目的前期涉及工作中所存在的问题以及解决方案都要收集起来存档,以作为后续施工风险控制的参考内容。

三、结语

综上所述,高速铁路施工中,会涉及很多的风险,对施工项目进行风险控制是保证铁路施工质量的关键。对高速铁路施工的各项风险控制内容进行分析,并具有针对性地提出风险控制措施,有助于高速铁路施工项目保质保量地完工。

作者:李若男 单位:黑龙江科技大学管理学院

参考文献:

[1]蓝燕强.高速铁路施工项目风险控制研究[D].成都:西南交通大学,2014.

[2]唐俊虎,王雅洁,王雪芳,等.新形势下我国高铁施工风险管理及对策[J].石家庄铁道大学学报,2013(2).

  • 索引序列
  • 高速铁路无砟轨道论文
  • 高速铁路轨道毕业论文
  • 高速铁路与轨道交通杂志
  • 高速铁路轨道检测技术论文
  • 高速铁路论文
  • 返回顶部