问题一:多元线性回归分析论文中的回归模型怎么分析 根据R方最大的那个来处理。(南心网 SPSS多元线性回归分析) 问题二:谁能给我列一下多元线性回归分析的步骤,这里正在写论文,第一部分是研究方法,多谢 10分 选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。 需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。 问题三:用SPSS做多元线性回归,之后得到一些属于表格,该怎样分析这些数据? 200分 你的分析结果没能通过T检验,这可能是回归假设不满足导致的,需要进一步对数据进行验证,有问题可以私信我。 问题四:过于多元线性回归分析,SPSS操作 典型的多重共线。 多元回归分析中,一定要先进行多重共线检验,如VIF法。 对于存在多重共线的模型,一个办法是逐步回归,如你做的,但结果的删除变量太多,所以,这种方法效果不好。 此外,还有其它办法,如岭回归,主成分回归,这些方法都保留原始变量。 问题五:硕士毕业论文中做多元线性回归的实证分析,该怎么做 多元线性,回归,的实证分析 问题六:用SPSS做多元回归分析得出的指标结果怎么分析啊? 表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在0.01的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于0.05,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。 ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。 问题七:如何对数据进行多元线性回归分析? 5分 对数据进行多元线性回归分析方法有很多,除了用pss ,可以用Excel的数据分析模块,也可以用Matlab的用regress()函数拟合。你可以把数据发到我的企鹅邮箱,邮箱名为百度名。 问题八:经济类论文 多元线性回归 变量取对数 40分 文 多元线性回归 变量取对数 知道更多 多了解
1、多元线性回归的理论主体。2、多元线性回归模型的标准形式,多元线性回归模型的参数估计。3、多元线性回归模型的检验和预测原理。
你的邮箱不存在?
实验三 多元回归模型【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。【实验内容】建立我国国有独立核算工业企业生产函数。根据生产函数理论,生产函数的基本形式为: 。其中,L、K分别为生产过程中投入的劳动与资金,时间变量 反映技术进步的影响。表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。表3-1 我国国有独立核算工业企业统计资料年份 时间 工业总产值Y(亿元) 职工人数L(万人) 固定资产K(亿元)1978 1 3289.18 3139 2225.701979 2 3581.26 3208 2376.341980 3 3782.17 3334 2522.811981 4 3877.86 3488 2700.901982 5 4151.25 3582 2902.191983 6 4541.05 3632 3141.761984 7 4946.11 3669 3350.951985 8 5586.14 3815 3835.791986 9 5931.36 3955 4302.251987 10 6601.60 4086 4786.051988 11 7434.06 4229 5251.901989 12 7721.01 4273 5808.711990 13 7949.55 4364 6365.791991 14 8634.80 4472 7071.351992 15 9705.52 4521 7757.251993 16 10261.65 4498 8628.771994 17 10928.66 4545 9374.34资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、建立多元线性回归模型一建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:⒈建立工作文件: CREATE A 78 94⒉输入统计资料: DATA Y L K⒊生成时间变量 : GENR T=@TREND(77)⒋建立回归模型: LS Y C T L K则生产函数的估计结果及有关信息如图3-1所示。 图3-1 我国国有独立核算工业企业生产函数的估计结果因此,我国国有独立工业企业的生产函数为: (模型1) =(-0.252) (0.672) (0.781) (7.433) 模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为0.6667,资金的边际产出为0.7764,技术进步的影响使工业总产值平均每年递增77.68亿元。回归系数的符号和数值是较为合理的。 ,说明模型有很高的拟合优度,F检验也是高度显著的,说明职工人数L、资金K和时间变量 对工业总产值的总影响是显著的。从图3-1看出,解释变量资金K的 统计量值为7.433,表明资金对企业产出的影响是显著的。但是,模型中其他变量(包括常数项)的 统计量值都较小,未通过检验。因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除 统计量最小的变量(即时间变量)而重新建立模型。二建立剔除时间变量的二元线性回归模型; 命令:LS Y C L K则生产函数的估计结果及有关信息如图3-2所示。 图3-2 剔除时间变量后的估计结果因此,我国国有独立工业企业的生产函数为: (模型2) =(-2.922) (4.427) (14.533) 从图3-2的结果看出,回归系数的符号和数值也是合理的。劳动力边际产出为1.2085,资金的边际产出为0.8345,表明这段时期劳动力投入的增加对我国国有独立核算工业企业的产出的影响最为明显。模型2的拟合优度较模型1并无多大变化,F检验也是高度显著的。这里,解释变量、常数项的 检验值都比较大,显著性概率都小于0.05,因此模型2较模型1更为合理。三建立非线性回归模型——C-D生产函数。C-D生产函数为: ,对于此类非线性函数,可以采用以下两种方式建立模型。方式1:转化成线性模型进行估计;在模型两端同时取对数,得: 在EViews软件的命令窗口中依次键入以下命令:GENR LNY=log(Y)GENR LNL=log(L)GENR LNK=log(K)LS LNY C LNL LNK则估计结果如图3-3所示。 图3-3 线性变换后的C-D生产函数估计结果即可得到C-D生产函数的估计式为: (模型3) = (-1.172) (2.217) (9.310) 即: 从模型3中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,而且拟合优度较模型2还略有提高,解释变量都通过了显著性检验。方式2:迭代估计非线性模型,迭代过程中可以作如下控制:⑴在工作文件窗口中双击序列C,输入参数的初始值;⑵在方程描述框中点击Options,输入精度控制值。控制过程:①参数初值:0,0,0;迭代精度:10-3;则生产函数的估计结果如图3-4所示。 图3-4 生产函数估计结果此时,函数表达式为: (模型4) =(0.313)(-2.023)(8.647) 可以看出,模型4中劳动力弹性 =-1.01161,资金的产出弹性 =1.0317,很显然模型的经济意义不合理,因此,该模型不能用来描述经济变量间的关系。而且模型的拟合优度也有所下降,解释变量L的显著性检验也未通过,所以应舍弃该模型。②参数初值:0,0,0;迭代精度:10-5; 图3-5 生产函数估计结果从图3-5看出,将收敛的误差精度改为10-5后,迭代100次后仍报告不收敛,说明在使用迭代估计法时参数的初始值与误差精度或迭代次数设置不当,会直接影响模型的估计结果。③参数初值:0,0,0;迭代精度:10-5,迭代次数1000; 图3-6 生产函数估计结果此时,迭代953次后收敛,函数表达式为: (模型5) =(0.581)(2.267)(10.486) 从模型5中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理, ,具有很高的拟合优度,解释变量都通过了显著性检验。将模型5与通过方式1所估计的模型3比较,可见两者是相当接近的。④参数初值:1,1,1;迭代精度:10-5,迭代次数100; 图3-7 生产函数估计结果此时,迭代14次后收敛,估计结果与模型5相同。比较方式2的不同控制过程可见,迭代估计过程的收敛性及收敛速度与参数初始值的选取密切相关。若选取的初始值与参数真值比较接近,则收敛速度快;反之,则收敛速度慢甚至发散。因此,估计模型时最好依据参数的经济意义和有关先验信息,设定好参数的初始值。二、比较、选择最佳模型估计过程中,对每个模型检验以下内容,以便选择出一个最佳模型:一回归系数的符号及数值是否合理;二模型的更改是否提高了拟合优度;三模型中各个解释变量是否显著;四残差分布情况以上比较模型的一、二、三步在步骤一中已有阐述,现分析步骤一中5个不同模型的残差分布情况。分别在模型1~模型5的各方程窗口中点击View/Actual, Fitted, Residual/ Actual, Fitted, Residual Table(图3-8),可以得到各个模型相应的残差分布表(图3-9至图3-13)。可以看出,模型4的残差在前段时期内连续取负值且不断增大,在接下来的一段时期又连续取正值,说明模型设定形式不当,估计过程出现了较大的偏差。而且,模型4的表达式也说明了模型的经济意义不合理,不能用于描述我国国有工业企业的生产情况,应舍弃此模型。模型1的各期残差中大多数都落在 的虚线框内,且残差分别不存在明显的规律性。但是,由步骤一中的分析可知,模型1中除了解释变量K之外,其余变量均为通过变量显著性检验,因此,该模型也应舍弃。模型2、模型3、模型5都具有合理的经济意义,都通过了 检验和F检验,拟合优度非常接近,理论上讲都可以描述资本、劳动的投入与产出的关系。但从图3-13看出,模型5的近期误差较大,因此也可以舍弃该模型。最后将模型2与模型3比较发现,模型3的近期预测误差略小,拟合优度比模型2略有提高,因此可以选择模型2为我国国有工业企业生产函数。 图3-8 回归方程的残差分析 图3-9 模型1的残差分布图3-10 模型2的残差分布图3-11 模型3的残差分布图3-12 模型4的残差分布图3-13 模型5的残差分布
实验三 多元回归模型【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。【实验内容】建立我国国有独立核算工业企业生产函数。根据生产函数理论,生产函数的基本形式为: 。其中,L、K分别为生产过程中投入的劳动与资金,时间变量 反映技术进步的影响。表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。表3-1 我国国有独立核算工业企业统计资料年份 时间 工业总产值Y(亿元) 职工人数L(万人) 固定资产K(亿元)1978 1 3289.18 3139 2225.701979 2 3581.26 3208 2376.341980 3 3782.17 3334 2522.811981 4 3877.86 3488 2700.901982 5 4151.25 3582 2902.191983 6 4541.05 3632 3141.761984 7 4946.11 3669 3350.951985 8 5586.14 3815 3835.791986 9 5931.36 3955 4302.251987 10 6601.60 4086 4786.051988 11 7434.06 4229 5251.901989 12 7721.01 4273 5808.711990 13 7949.55 4364 6365.791991 14 8634.80 4472 7071.351992 15 9705.52 4521 7757.251993 16 10261.65 4498 8628.771994 17 10928.66 4545 9374.34资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、建立多元线性回归模型一建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:⒈建立工作文件: CREATE A 78 94⒉输入统计资料: DATA Y L K⒊生成时间变量 : GENR T=@TREND(77)⒋建立回归模型: LS Y C T L K则生产函数的估计结果及有关信息如图3-1所示。 图3-1 我国国有独立核算工业企业生产函数的估计结果因此,我国国有独立工业企业的生产函数为: (模型1) =(-0.252) (0.672) (0.781) (7.433) 模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为0.6667,资金的边际产出为0.7764,技术进步的影响使工业总产值平均每年递增77.68亿元。回归系数的符号和数值是较为合理的。 ,说明模型有很高的拟合优度,F检验也是高度显著的,说明职工人数L、资金K和时间变量 对工业总产值的总影响是显著的。从图3-1看出,解释变量资金K的 统计量值为7.433,表明资金对企业产出的影响是显著的。但是,模型中其他变量(包括常数项)的 统计量值都较小,未通过检验。因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除 统计量最小的变量(即时间变量)而重新建立模型。二建立剔除时间变量的二元线性回归模型; 命令:LS Y C L K则生产函数的估计结果及有关信息如图3-2所示。 图3-2 剔除时间变量后的估计结果因此,我国国有独立工业企业的生产函数为: (模型2) =(-2.922) (4.427) (14.533) 从图3-2的结果看出,回归系数的符号和数值也是合理的。劳动力边际产出为1.2085,资金的边际产出为0.8345,表明这段时期劳动力投入的增加对我国国有独立核算工业企业的产出的影响最为明显。模型2的拟合优度较模型1并无多大变化,F检验也是高度显著的。这里,解释变量、常数项的 检验值都比较大,显著性概率都小于0.05,因此模型2较模型1更为合理。三建立非线性回归模型——C-D生产函数。C-D生产函数为: ,对于此类非线性函数,可以采用以下两种方式建立模型。方式1:转化成线性模型进行估计;在模型两端同时取对数,得: 在EViews软件的命令窗口中依次键入以下命令:GENR LNY=log(Y)GENR LNL=log(L)GENR LNK=log(K)LS LNY C LNL LNK则估计结果如图3-3所示。 图3-3 线性变换后的C-D生产函数估计结果即可得到C-D生产函数的估计式为: (模型3) = (-1.172) (2.217) (9.310) 即: 从模型3中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,而且拟合优度较模型2还略有提高,解释变量都通过了显著性检验。方式2:迭代估计非线性模型,迭代过程中可以作如下控制:⑴在工作文件窗口中双击序列C,输入参数的初始值;⑵在方程描述框中点击Options,输入精度控制值。控制过程:①参数初值:0,0,0;迭代精度:10-3;则生产函数的估计结果如图3-4所示。 图3-4 生产函数估计结果此时,函数表达式为: (模型4) =(0.313)(-2.023)(8.647) 可以看出,模型4中劳动力弹性 =-1.01161,资金的产出弹性 =1.0317,很显然模型的经济意义不合理,因此,该模型不能用来描述经济变量间的关系。而且模型的拟合优度也有所下降,解释变量L的显著性检验也未通过,所以应舍弃该模型。②参数初值:0,0,0;迭代精度:10-5; 图3-5 生产函数估计结果从图3-5看出,将收敛的误差精度改为10-5后,迭代100次后仍报告不收敛,说明在使用迭代估计法时参数的初始值与误差精度或迭代次数设置不当,会直接影响模型的估计结果。③参数初值:0,0,0;迭代精度:10-5,迭代次数1000; 图3-6 生产函数估计结果此时,迭代953次后收敛,函数表达式为: (模型5) =(0.581)(2.267)(10.486) 从模型5中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理, ,具有很高的拟合优度,解释变量都通过了显著性检验。将模型5与通过方式1所估计的模型3比较,可见两者是相当接近的。④参数初值:1,1,1;迭代精度:10-5,迭代次数100; 图3-7 生产函数估计结果此时,迭代14次后收敛,估计结果与模型5相同。比较方式2的不同控制过程可见,迭代估计过程的收敛性及收敛速度与参数初始值的选取密切相关。若选取的初始值与参数真值比较接近,则收敛速度快;反之,则收敛速度慢甚至发散。因此,估计模型时最好依据参数的经济意义和有关先验信息,设定好参数的初始值。二、比较、选择最佳模型估计过程中,对每个模型检验以下内容,以便选择出一个最佳模型:一回归系数的符号及数值是否合理;二模型的更改是否提高了拟合优度;三模型中各个解释变量是否显著;四残差分布情况以上比较模型的一、二、三步在步骤一中已有阐述,现分析步骤一中5个不同模型的残差分布情况。分别在模型1~模型5的各方程窗口中点击View/Actual, Fitted, Residual/ Actual, Fitted, Residual Table(图3-8),可以得到各个模型相应的残差分布表(图3-9至图3-13)。可以看出,模型4的残差在前段时期内连续取负值且不断增大,在接下来的一段时期又连续取正值,说明模型设定形式不当,估计过程出现了较大的偏差。而且,模型4的表达式也说明了模型的经济意义不合理,不能用于描述我国国有工业企业的生产情况,应舍弃此模型。模型1的各期残差中大多数都落在 的虚线框内,且残差分别不存在明显的规律性。但是,由步骤一中的分析可知,模型1中除了解释变量K之外,其余变量均为通过变量显著性检验,因此,该模型也应舍弃。模型2、模型3、模型5都具有合理的经济意义,都通过了 检验和F检验,拟合优度非常接近,理论上讲都可以描述资本、劳动的投入与产出的关系。但从图3-13看出,模型5的近期误差较大,因此也可以舍弃该模型。最后将模型2与模型3比较发现,模型3的近期预测误差略小,拟合优度比模型2略有提高,因此可以选择模型2为我国国有工业企业生产函数。 图3-8 回归方程的残差分析 图3-9 模型1的残差分布图3-10 模型2的残差分布图3-11 模型3的残差分布图3-12 模型4的残差分布图3-13 模型5的残差分布
最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。( 作出相应的说明 )3、确定理论模型或函数式(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)(二)数据的收集和整理(三)数据处理和回归分析(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)(四)回归结果分析和检验(写出模型估计的结果)1、回归结果的经济理论检验,方向正确否?理论一致否?2、统计检验,t检验 F 检验 R2— 拟合优度检验3、模型设定形式正确否?可试试其他形式。4、模型的稳定性检验。(五)模型的修正(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)(六)确定模型(七)预测
多元线性回归模型表示一种地理现象与另外多种地理现象的依存关系,这时另外多种地理现象共同对一种地理现象产生影响,作为影响其分布与发展的重要因素。设变量Y与变量X1,X2,…,Xm存在着线性回归关系,它的n个样本观测值为Yj,Xj1,Xj2,…Xjm�(j=1,2,n),于是多元线性回归的数学模型可以写为:可采用最小二乘法对上式中的待估回归系数β0,β1,…,βm进行估计,求得β值后,即可利用多元线性回归模型进行预测了。计算了多元线性回归方程之后,为了将它用于解决实际预测问题,还必须进行数学检验。多元线性回归分析的数学检验,包括回归方程和回归系数的显著性检验。回归方程的显著性检验,采用统计量:式中: ,为回归平方和,其自由度为m; ,为剩余平方和,其自由度为(n-m-1)。利用上式计算出F值后,再利用F分布表进行检验。给定显著性水平α,在F分布表中查出自由度为m和(n-m-1)的值Fα,如果F≥Fα,则说明Y与X1,X2,…,Xm的线性相关密切;反之,则说明两者线性关系不密切。回归系数的显著性检验,采用统计量:式中,Cii为相关矩阵C=A-1的对角线上的元素。对于给定的置信水平α,查F分布表得Fα(n-m-1),若计算值Fi≥Fα,则拒绝原假设,即认为Xi是重要变量,反之,则认为Xi变量可以剔除。多元线性回归模型的精度,可以利用剩余标准差来衡量。S越小,则用回归方程预测Y越精确;反之亦然。
最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。( 作出相应的说明 )3、确定理论模型或函数式(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)(二)数据的收集和整理(三)数据处理和回归分析(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)(四)回归结果分析和检验(写出模型估计的结果)1、回归结果的经济理论检验,方向正确否?理论一致否?2、统计检验,t检验 F 检验 R2— 拟合优度检验3、模型设定形式正确否?可试试其他形式。4、模型的稳定性检验。(五)模型的修正(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)(六)确定模型(七)预测
最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。(作出相应的说明)3、确定理论模型或函数式(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)(二)数据的收集和整理(三)数据处理和回归分析(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)(四)回归结果分析和检验(写出模型估计的结果)1、回归结果的经济理论检验,方向正确否?理论一致否?2、统计检验,t检验F检验R2—拟合优度检验3、模型设定形式正确否?可试试其他形式。4、模型的稳定性检验。(五)模型的修正(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)(六)确定模型(七)预测
问题一:多元线性回归分析论文中的回归模型怎么分析 根据R方最大的那个来处理。(南心网 SPSS多元线性回归分析) 问题二:谁能给我列一下多元线性回归分析的步骤,这里正在写论文,第一部分是研究方法,多谢 10分 选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。 需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。 问题三:用SPSS做多元线性回归,之后得到一些属于表格,该怎样分析这些数据? 200分 你的分析结果没能通过T检验,这可能是回归假设不满足导致的,需要进一步对数据进行验证,有问题可以私信我。 问题四:过于多元线性回归分析,SPSS操作 典型的多重共线。 多元回归分析中,一定要先进行多重共线检验,如VIF法。 对于存在多重共线的模型,一个办法是逐步回归,如你做的,但结果的删除变量太多,所以,这种方法效果不好。 此外,还有其它办法,如岭回归,主成分回归,这些方法都保留原始变量。 问题五:硕士毕业论文中做多元线性回归的实证分析,该怎么做 多元线性,回归,的实证分析 问题六:用SPSS做多元回归分析得出的指标结果怎么分析啊? 表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在0.01的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于0.05,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。 ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。 问题七:如何对数据进行多元线性回归分析? 5分 对数据进行多元线性回归分析方法有很多,除了用pss ,可以用Excel的数据分析模块,也可以用Matlab的用regress()函数拟合。你可以把数据发到我的企鹅邮箱,邮箱名为百度名。 问题八:经济类论文 多元线性回归 变量取对数 40分 文 多元线性回归 变量取对数 知道更多 多了解
1、论点(证明什么)论点应该是作者看法的完整表述,在形式上是个完整的简洁明确的句子。从全文看,它必能统摄全文。表述形式往往是个表示肯定或否定的判断句,是明确的表态性的句子。A.把握文章的论点。 中心论点只有一个(统率分论点)⑴明确:分论点可以有N个(补充和证明中心论点)⑵方法①从位置上找:如标题、开篇、中间、结尾。②分析文章的论据。(可用于检验预想的论点是否恰当)③摘录法(只有分论点,而无中心论点)B.分析论点是怎样提出的:①摆事实讲道理后归结论点;②开门见山,提出中心论点;③针对生活中存在的现象,提出论题,通过分析论述,归结出中心论点;④叙述作者的一段经历后,归结出中心论点;⑤作者从故事中提出问题,然后一步步分析推论,最后得出结论,提出中心论点。2、论据(用什么证明)⑴论据的类型:①事实论据(举例后要总结,概述论据要紧扣论点);②道理论据(引用名言要分析)。⑵论据要真实、可靠,典型(学科、国别、古今等)。⑶次序安排(照应论点);⑷判断论据能否证明论点;⑸补充论据(要能证明论点)。3、论证(怎样证明)⑴论证方法 (须为四个字)①举例论证(例证法)事实论据记叙②道理论证(引证法和说理)道理论据 议论③对比论证(其本身也可以是举例论证和道理论证)④比喻论证 比喻在说明文中为打比方,散文中为比喻。⑵分析论证过程:①论点是怎样提出的;②论点是怎样被证明的(用了哪些道理和事实,是否有正反两面的分析说理);③联系全文的结构,是否有总结。⑶论证的完整性(答:使论证更加全面完整,避免产生误解)⑷分析论证的作用:证明该段的论点。4、议论文的结构⑴一般形式:①引论(提出问题)―――②本论(分析问题)―――③结论(解决问题)。⑵类型:①并列式②总分总式③总分式④分总式⑤递进式。6、驳论文的阅读⑴作者要批驳的错误观点是什么?⑵作者是怎样进行批驳的,用了哪些道理和论据;⑶由此,作者树立的正确的观点是什么?7、常见考点①、议论文的论点考点:第一,分清所议论的问题及针对这个问题作者所持的看法(即分清论题和论点)。第二,注意论点在文中的位置:(1)在文章的开头,这就是所谓开宗明义、开门见山的写法。(2)在文章结尾,就是所谓归纳全文,篇末点题,揭示中心的写法。这种写法在明确表达论点时大多有。所以,总之,因此,总而言之,归根结底等总结性的词语。第三、分清中心论点和分论点:分论一般位于段首或有标志性词语:首先、其次、第三等第四、要注意论点的表述形式:有时题目就是中心论点。一篇议论文只有一个中心论点。第五、通过论据来反推论点:论据是为证明论点服务的,分析论据可以看出它证明什么,肯定什么,支持什么,这就是论点。②、议论文的论据考点:论据是论点立足的根据,一般全为事实论据和道理论据。1、用事实作论据。事例必须真实可靠,有典型意义,能揭示事物本质并与论点有一定的逻辑联系。议论文中,对所举事例的叙述要简明扼要,突出与论点有直接关系的部分。明确论据时,不仅要知道文中哪些地方用了事实论据,还要会概括事实论据。概括时,要做到准确,必须依据论点将论据本质特点把握住,然后用确切的语言进行表述。 2、用作论据的言论,应有一定的权威性,直接引用时要原文照录,以真核对,不能断章取义;间接引用时不能曲解原意。③、议论文的结构、层次考点:结构有:并列式结构、对照式结构、层进式结构、总分式结构。此考点的基本形式:作者如何证明论点的?
最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。(作出相应的说明)3、确定理论模型或函数式(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)(二)数据的收集和整理(三)数据处理和回归分析(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)(四)回归结果分析和检验(写出模型估计的结果)1、回归结果的经济理论检验,方向正确否?理论一致否?2、统计检验,t检验F检验R2—拟合优度检验3、模型设定形式正确否?可试试其他形式。4、模型的稳定性检验。(五)模型的修正(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)(六)确定模型(七)预测
问题一:多元线性回归分析论文中的回归模型怎么分析 根据R方最大的那个来处理。(南心网 SPSS多元线性回归分析) 问题二:谁能给我列一下多元线性回归分析的步骤,这里正在写论文,第一部分是研究方法,多谢 10分 选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。 需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。 问题三:用SPSS做多元线性回归,之后得到一些属于表格,该怎样分析这些数据? 200分 你的分析结果没能通过T检验,这可能是回归假设不满足导致的,需要进一步对数据进行验证,有问题可以私信我。 问题四:过于多元线性回归分析,SPSS操作 典型的多重共线。 多元回归分析中,一定要先进行多重共线检验,如VIF法。 对于存在多重共线的模型,一个办法是逐步回归,如你做的,但结果的删除变量太多,所以,这种方法效果不好。 此外,还有其它办法,如岭回归,主成分回归,这些方法都保留原始变量。 问题五:硕士毕业论文中做多元线性回归的实证分析,该怎么做 多元线性,回归,的实证分析 问题六:用SPSS做多元回归分析得出的指标结果怎么分析啊? 表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在0.01的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于0.05,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。 ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。 问题七:如何对数据进行多元线性回归分析? 5分 对数据进行多元线性回归分析方法有很多,除了用pss ,可以用Excel的数据分析模块,也可以用Matlab的用regress()函数拟合。你可以把数据发到我的企鹅邮箱,邮箱名为百度名。 问题八:经济类论文 多元线性回归 变量取对数 40分 文 多元线性回归 变量取对数 知道更多 多了解
那肯定没有的啊
梁广1,2邵长高1,2
(1.广州海洋地质调查局 广州 510760;2.国土资源部海底矿产资源重点实验室 广州 510760)
第一作者简介:梁广(1972—),男,工程师,主要从事网络管理和数据管理工作,E-mail:。
摘要 近年来资源勘探已经覆盖大部分陆地区域,越来越多的国家把目光投向海洋。海洋作为一个巨大的能源和资源宝库在国民经济、军事战略等的重要性也日益显现。各个国家竞相制定海洋科技开发规划、战略计划,优先发展海洋新技术[1]。如何有效的从海量海洋地质调查数据中获取有用信息是海洋新技术研究中的重要研究内容。论文针对海洋地质调查数据研究技术应用需求,引入了回归分析模型到海洋地质调查数据库中,详细介绍了回归分析的技术方法和在海洋地质调查数据库研究中的应用优势,为海洋科学研究提供了技术支持。
关键词 海洋地质 回归分析 数据库
1 前言
随着陆地资源的消耗和人类对能源越来越强烈的需求,海洋作为一个尚待大规模开发的能源和资源宝库引起各国越来越多的关注。我国作为世界上最大的发展中国家对能源的需求也在大幅增加,近年来我国石油进口数量急剧增长,据估计到2020年我国石油进口依存度将达到60%。党和国家领导人多次提出“资源、能源、特别是油气资源,已成为我国经济和社会发展的重要因素,解决后备能源问题是保证国家经济安全的大事”。随着我国国土资源大调查和海洋地质专项调查的开展,大量的海洋地质数据被收集和积累,并建立了多个满足各自业务需求的信息系统和数据源[2]。如何有效的从海量海洋地质调查数据中获取有用信息是海洋新技术研究中的重要研究内容。论文针对海洋地质调查数据研究技术应用手段的需求,引入了回归分析技术到海洋地质调查数据库中,详细介绍了回归分析的技术方法和在海洋地质调查数据库研究中的应用优势,为海洋科学研究提供了技术支持。
2 回归分析概述
2.1 概述
回归分析是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析[3]。回归分析预测法可以从各数据之间的相互关系出发,通过对与预测对象有联系的现象变动趋势的分析,推算预测对象未来状态数量表现的一种预测方法,通过对与预测对象(y)有联系的多个因素X1,X2,……,Xk建立回归模型。求出的回归模型是否合理,是否符合变量之间的客观规律性,引入相关因素是否有效,变量之间是否存在线性相关关系,模型能否付诸应用,这要通过检验决定。本文给出了两方面的检验:一方面为实际意义检验。即利用理论所拟定的期望值与实际结果相比较是否相符。另一方面为统计检验:分别为拟合优度检验(R平方检验)、方程显著性检验(F检验)、变量显著性检验(t检验)[4]。论文主要介绍一元线性回归分析在海洋地质调查数据库中的应用。
2.2 一元线形回归分析模型
线性回归分析可以描述两个要素之间的回归关系。线性回归分析公式为:yi=a+bxi+εi.其中a和b为参数.εi是误差.我们定义Q(a,b)a为总误差。则:
南海地质研究(2014)
对公式两边的a和b求导得:
南海地质研究(2014)
南海地质研究(2014)
x表示x的平均值.y表示y的平均值.
关系系数R2求值方法为[5]:
南海地质研究(2014)
2.3 多元线形回归分析模型
研究对象y受多个因素x1,x2,x3,…xn的影响,假定各个影响因素与y的关系是线性的,则可建立多元线性回归模型:
y=β0+β1x1+β2x2+…+βkxk+ε
式中:x1,x2,……,xk代表影响因子;ε 为随机误差;y 代表所研究的对象,即预测目标[3]。
2.4 统计检验
统计检验是运用数理统计的方法,对方程进行检验、对模型参数估计值的可靠性进行检验。这主要包括拟合优度检验、方程显著性检验、变量显著性检验,即常用的R2检验、F检验和t检验。
2.4.1 拟合优度检验(检验):
拟合优度检验就是检验回归方程对样本观测值的拟合程度。又称为复相关系数检验法,它是通过对总变差(总离差)的分解得到。
南海地质研究(2014)
其中
南海地质研究(2014)
总变差平方和S总是各个观察值与样本均值之差的平方和,反映了全部数据之间的差异;残差平方和S残是总变差平方和中未被回归方程解释的部分,由解释变量x1,x2……,xk中未包含的一切因素对被解释变量y的影响而造成的;回归平方和S回是总变差平方和中由回归方程解释的部分。对于一个好的回归模型,它应该较好地拟合样本观测值,S总中S残越小越好。于是可以用:
南海地质研究(2014)
求得[4]。
2.4.2 方程显著性检验(F 检验):
对于多元线性回归方程,方程显著性检验就是对总体的线性关系是否显著成立作出推断,即检验被解释变量y与所有解释变量X1,X2,……,Xk之间的线性关系是否显著,
南海地质研究(2014)
即F统计量服从以(k,n-k-1)为自由度的F分布。首先根据样本观测值及回归值计算出统计量F,于是在给定的显著性水平a下,若F>Fa(k,n-k-1),则拒绝H0,判定被解释变量y与所有解释变量x1,x2,……,xk之间的回归效果显著,即确实存在线性关系;反之,则不显著[4]。
2.4.3 变量显著性检验(t检验):
对于多元回归模型,方程的显著性并不意味每个解释变量对被解释变量y的影响都是重要的。如果某个解释变量并不重要,则应该从方程中把它剔除,重新建立更为简单的方程。所以必须对每个解释变量进行显著性检验。
在给定的显著性水平a下,若|ti|>ta/2(n-k-1),则拒绝H0,说明解释变量xi对被解释变量y有显著影响,即xi是影响y的主要因素;反之,接受H0,说明解释变量xi对被解释变量y无显著影响,则应删除该因素[4]。
3 应用实例
论文利用线形回归分析模型对南海海域海洋沉积物温度进行了分析,其中散点图显示如图1所示,回归分析结果见表1。
图1 水深与沉积物温度散点图
Fig.1 Water depth vs.sediment temperature
表1 水深沉积物温度回归分析结果Tab.1 The regression analysis result for Water depth vs.sediment temperature
读取回归结果如下:
截距:a=17.56;斜率:b=-0.0014;相关系数:R=0.276;测定系数:R2=0.076;F值:F=89.54。
建立回归模型,并对结果进行检验
模型为: 。
F值的计算公式和结果为:
南海地质研究(2014)
其中P<0.0001。回归结果证明,沉积物温度与海水深度有着密切的关系,但是通过散点图显示,并不是温度越深沉积物温度越低。而是受到其他例如海底热流,海洋环流等因素的影响。
4 结语
本文介绍了回归分析在海洋地质调查研究中的应用,同时提供了回归分析的技术原理及实现方法,并通过对南海沉积物与海水深度关系模型进行了应用分析,回归结果显示了两者具有密切但是存在不确定性的关系。实验结果得到有效的应用。
参考文献
[1]单宝强,毛永强.2005.GIS中的坐标系定义与转换[J].黑龙江国土资源,11,38-39
[2]苏国辉,孙记红,等.2011.海洋地质数据集成中的关键问题和方案[J].海洋地质前沿,11(27):51
[3]百度百科.回归分析.http://baike.baidu.com/view/145440.htm
[4]沈聪.2009.基于EXCEL的回归分析在足迹分析上的应用[M].辽宁警官高等专科学校本科毕业论文
[5]Cottrell A.Regression Analysis:Basic Concepts.http://www.wfu.edu/~cottrell/ecn215/regress.pdf
The Marine Geological Survey Based on Regression Analysis
Liang Guang1,2,Shao Changgao1,2
(1.Guangzhou Marine Geological Survey,Guangzhou,510760;2.Key Laboratory of Marine Mineral Reasources,MLR,Guangzhou,510760)
Abstract:The new resources survey had covered most of the continental area at present.So,the ocean resources have attracted more and more attention now as it is a huge resource and energy reservoir that had a profound meaning to national economy and military strategy.The energy competition made manly countries developed new technology project and put the new ocean technology as the primary study area.However,how to abstract useful information from marine geological survey data is one of the most important study technologies.This paper focuses on the study of the deficit of marine database technology and introduces regression analysis model and the application advantage of it.The purpose of this paper is to provide the technology support for marine study.Key word:Marine geology;Regression analysis model;Database
课题不是很难,之前遇见过,可,。,解决