首页 > 期刊投稿知识库 > 硕士毕业论文的显著性水平

硕士毕业论文的显著性水平

发布时间:

硕士毕业论文的显著性水平

假设检验是围绕对原假设内容的审定而展开的。如

果原假设正确我们接受了(同时也就拒绝了备择假设),或原假设错误我们拒绝了(同时也就接受了备择假设),这表明我们作出了正确的决定。但是,由于假设检验是根据样本提供的信息进行推断的,也就有犯错误的可能。

有这样一种情况,原假设正确,而我们却把它当成错误的加以拒绝。犯这种错误的概率用α表示,统计上把α称为假设检验中的显著性水平,也就是决策中所面临的风险。

扩展资料

假设检验的意义:

假设检验是抽样推断中的一项重要内容。它是根据原资料作出一个总体指标是否等于某一个数值,某一随机变量是否服从某种概率分布的假设,然后利用样本资料采用一定的统计方法计算出有关检验的统计量。

依据一定的概率原则,以较小的风险来判断估计数值与总体数值(或者估计分布与实际分布)是否存在显著差异,是否应当接受原假设选择的一种检验方法。

用样本指标估计总体指标,其结论有的完全可靠,有的只有不同程度的可靠性,需要进一步加以检验和证实。

通过检验,对样本指标与假设的总体指标之间是否存在差别作出判断,是否接受原假设。这里必须明确,进行检验的目的不是怀疑样本指标本身是否计算正确,而是为了分析样本指标和总体指标之间是否存在显著差异

参考资料来源:百度百科-显著性水平

参考资料来源:百度百科-假设检验

显著性水平是估计总体参数落在某一区间内,可能犯错误的概率,用α表示。显著性是对差异的程度而言的,程度不同说明引起变动的原因也有不同:一类是条件差异,一类是随机差异。它是在进行假设检验时事先确定一个可允许的作为判断界限的小概率标准。显著性水平是在进行假设检验时事先确定一个可允许的作为判断界限的小概率标准。检验中,依据显著性水平大小把概率划分为二个区间,小于给定标准的概率区间称为拒绝区间,大于这个标准则为接受区间。事件属于接受区间,原假设成立而无显著性差异;事件属于拒绝区间,拒绝原假设而认为有显著性差异。对显著水平的理解必须把握以下二点:1、显著性水平不是一个固定不变的数值,依据拒绝区间所可能承担的风险来决定。2、统计上所讲的显著性与实际生活工作中的显著性是不一样的。

显著性水平是估计总体参数落在某一区间内,可能犯错误的概率,用α表示。

显著性是对差异的程度而言的,程度不同说明引起变动的原因也有不同:一类是条件差异,一类是随机差异。它是在进行假设检验时事先确定一个可允许的作为判断界限的小概率标准。

假设检验是围绕对原假设内容的审定而展开的。如果原假设正确我们接受了(同时也就拒绝了备择假设),或原假设错误我们拒绝了(同时也就接受了备择假设),这表明我们作出了正确的决定。但是,由于假设检验是根据样本提供的信息进行推断的,也就有犯错误的可能。

显著性水平的理解

显著性水平是在进行假设检验时事先确定一个可允许的作为判断界限的小概率标准。检验中,依据显著性水平大小把概率划分为二个区间,小于给定标准的概率区间称为拒绝区间,大于这个标准则为接受区间。

事件属于接受区间,原假设成立而无显著性差异;事件属于拒绝区间,拒绝原假设而认为有显著性差异。对显著水平的理解必须把握以下二点:

1、显著性水平不是一个固定不变的数值,依据拒绝区间所可能承担的风险来决定。

2、统计上所讲的显著性与实际生活工作中的显著性是不一样的。

硕士毕业论文不显著

找到原因,重新做实验。如果做出的结果不显著,要分析一下,找出原因,重新做实验得结果。

整改单调。硕士论文调节由于整改单调导致效应不显著,需要重新整改。硕士论文是硕士研究生所撰写的学术论文,具有一定的理论深度和更高的学术水平。

您是想问硕士论文不显著改成显著了可以吗?硕士论文不显著改成显著了不可以,属于数据造假。是学术不端行为,会拖累导师。硕士论文不显著原因:数据收集不准确、预期结论存在一定错误都有可以造成结果与预期不符。

毕业论文的显著性数值

如果回归结果中有1%或者5%的变量,其他的一些非核心的变量10%显著性水平在核心期刊里也是用的。调节变量如果变量Y与变量X的关系是变量M的函数,称M为调节变量。就是说Y与X的关系受到第三个变量M的影响。调节变量可以是定性的(如性别、种族、学校类型等),也可以是定量的(如年龄、受教育年限、刺激次数等),它影响因变量和自变量之间关系的方向(正或负)和强弱。中介变量( mediator) 是一个重要的统计概念,如果自变量X通过某一变量M对因变量Y产生一定影响,则称M为X和Y的中介变量。研究中介作用的目的是在已知X和Y关系的基础上,探索产生这个关系的内部作用机制。

论文中显著性水平标注方法:(1) 先将平均数由大到小排列(从上到下排列),在最大平均数后标记字母 a 。(2)用该平均数依次与各平均数相比(向下过程),凡差异不显著都标记同一字母 a,直到遇到与其差异显著的平均数,其后标记字母 b,向下比较停止;(3)再以标有字母b的该平均数为标准,依次与上方比它大的各个平均数比较(向上过程),凡差异不显著一律再加标b,直至显著为止(开始“掉头”向下);(4)再以标记有字母 b 的最大平均数为标准(向下过程),依次与下面各未标记字母的平均数相比,凡差异不显著,继续标记字母 b,直至遇到某一个与其差异显著的平均数标记 c;(5) 如此循环下去,直到最小的平均数被标记、且比较完毕为止。“招式”的标注方法:数据为不同病原真菌菌株侵染植物叶片后的病斑直径,SPSS数据、分析结果已经上传到论坛,大家可下载下来练一练。用SPSS做完多重比较需得到3个表格,分别是“描述性”,“方差同质性检验”,“多重比较”。从Levene方差齐性检验的结果(p=0.496>0.05)表明,适于用LSD法(Least Significant Difference,最小显著性差异法)进行多重比较。接下来将“描述性”表格,复制粘贴到Excel中,稍作整理后以平均值做倒序排序。差异显著性的知识延展定义:差异显著性即是显著性差异(significant difference),是一个统计学名词。它是统计学(Statistics)上对数据差异性的评价。通常情况下,实验结果达到0.05水平或0.01水平,才可以说数据之间具备了差异显著或是极显著。原理:当数据之间具有了显著性差异,就说明参与比对的数据不是来自于同一总体(Population),而是来自于具有差异的两个不同总体,这种差异可能因参与比对的数据是来自不同实验对象的,比如一些一般能力测验中,大学学历被试组的成绩与小学学历被试组会有显著性差异。也可能来自于实验处理对实验对象造成了根本性状改变,因而前测后测的数据会有显著性差异。

显著性检测毕业论文

不可以。经济类本科毕业论文的实证结果要么不显著,要么显著的部分低于20%的显著程度,在学术上很没有说服力,会影响论文通过。综上,经济类本科毕业论文10%显著性水平是不可以用得,不否和要求。

论文中显著性水平标注方法:(1) 先将平均数由大到小排列(从上到下排列),在最大平均数后标记字母 a 。(2)用该平均数依...

毕业论文改模型显著性

看你是什么方法了,有的可以改

首先来回答你的问题:1. 非标准化系数就是回归方程的斜率,表示每个自变量变化1个单位,因变量相应变化多少个单位,该系数与自变量所取的单位有关,一般不用来衡量自变量的影响力大小。2. 标准化系数消除了自变量单位的影响,其大小可以衡量每个自变量对因变量的影响力之大小,一般来说,标准化系数的绝对值越大,该自变量对因变量的影响力就越大。其次,大致给你提出点分析和建议(2-4条的前提是样本量够大):1. 样本太小,只有5组数据,得到的结果往往不可靠,强烈建议增大样本量,否则统计分析可能毫无意义,甚至造成错误。2. 从自变量t检验结果来看,逗其来石含量地与逗颈部密度地对应的sig值均超过了0.05,用统计专业的话来说,这意味着逗在0.05的显著性水平下,这两个自变量与因变量不显著相关地,通俗的说,在自变量平均孔径存在的前提下,这两个变量基本可以排除出方程了。3. 从偏相关性来看,3个自变量之间有极强的相关性(或共线性),因为强相关的自变量往往会导致不合理的统计分析结果,因此理论上他们不可以一起放入方程。4. 建议你在做多元线性回归分析的时候采用多元逐步回归,这样可以按自变量影响力的大小自动排除强相关的变量,也可以自动排除对因变量无显著影响的自变量,从而得到更可靠的分析结果。

  • 索引序列
  • 硕士毕业论文的显著性水平
  • 硕士毕业论文不显著
  • 毕业论文的显著性数值
  • 显著性检测毕业论文
  • 毕业论文改模型显著性
  • 返回顶部