你好夸张,不用把我们学校竞赛题一模一样拿来问吧
不知道理解对着没哈。我先写下:设到公办餐厅长期就餐的学生百分比为x。则有x*0.6+(1-x)*0.5=x解得x=5/9=55.6%
运用多元统计来解决。首先你得抽样调查。然后因子分析法看看
和校长讨论讨论撒。。。
数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。 2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。 学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程: 现实原型问题 数学模型 数学抽象 简化原则 演算推理 现实原型问题的解 数学模型的解 反映性原则 返回解释 列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。 3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。 高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。 例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。 时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145 分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。 通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。 四、培养学生的其他能力,完善数学建模思想。 由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想: (1)理解实际问题的能力; (2)洞察能力,即关于抓住系统要点的能力; (3)抽象分析问题的能力; (4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力; (5)运用数学知识的能力; (6)通过实际加以检验的能力。 只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。 例2:解方程组 x+y+z=1 (1) x2+y2+z2=1/3 (2) x3+y3+z3=1/9 (3) 分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。 方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根 t3-t2+1/3t-1/27=0 (4) 函数模型: 由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3) 平面解析模型 方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。 总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
重点:数模论文的格式及要求 难点:团结协作的充分体现 一、 写好数模论文的重要性 1. 数模论文是评定参与者的成绩好坏、高低、获奖级别的惟一依据. 2. 数模论文是培训(或竞赛)活动的最终成绩的书面形式。 3. 写好论文的训练,是科技论文写作的一种基本训练。 二、数模论文的基本内容 1,评阅原则: 假设的合理性; 建模的创造性; 结果的合理性; 表述的清晰程度 2,数模论文的结构 0、摘要 1、问题的提出:综述问题的内容及意义 2、模型的假设:写出问题的合理假设,符号的说明 3、模型的建立:详细叙述模型、变量、参数代表的意义和满足的条件,进行问题分析,公式推导,建立基本模型,深化模型,最终或简化模型等 4、模型的求解:求解及算法的主要步骤,使用的数学软件等 5、模型检验:结果表示、分析与检验,误差分析等 6、模型评价:本模型的特点,优缺点,改进方法 7、参考文献:限公开发表文献,指明出处 8、 附录:计算框图、计算程序,详细图表 三、需要重视的问题 0.摘要 表述:准确、简明、条理清晰、合乎语法。 字数300-500字,包括模型的主要特点、建模方法和主要结果。可以有公式,不能有图表 简单地说,摘要应体现:用了什么方法,解决了什么问题,得到了那些主要结论。还可作那些推广。 1、 建模准备及问题重述: 了解问题实际背景,明确建模目的,搜集文献、数据等,确定模型类型,作好问题重述。 在此过程中,要充分利用电子图书资源及纸质图书资源,查找相关背景知识,了解本问题的研究现状,所用到的基本解决方法等。 2、模型假设、符号说明 基本假设的合理性很重要 (1)根据题目条件作假设; (2)根据题目要求作假设; (3)基本的、关键性假设不能缺; (4)符号使用要简洁、通用。 3、模型的建立 (1)基本模型 1) 首先要有数学模型:数学公式、方案等 2) 基本模型:要求完整、正确、简明,粗糙一点没有关系 (2)深化模型 1)要明确说明:深化的思想,依据,如弥补了基本模型的不足…… 2)深化后的模型,尽可能完整给出 3)模型要实用,有效,以解决问题有效为原则。数学建模面临的、是要解决实际问题,不追求数学上的高(级)、深(刻)、难(度)。 ▲能用初等方法解决的、就不用高级方法; ▲能用简单方法解决的,就不用复杂方法; ▲能用被更多人看懂、理解的方法,就不用只有少数人看懂、理解的方法。 4)鼓励创新,但要切实,不要离题搞标新立异,数模创新可出现在 ▲建模中:模型本身,简化的好方法、好策略等; ▲模型求解中; ▲结果表示、分析,模型检验; ▲推广部分。 5)在问题分析推导过程中,需要注意的: ▲分析要:中肯、确切; ▲术语要:专业、内行; ▲原理、依据要:正确、明确; ▲表述要:简明,关键步骤要列出; ▲忌:外行话,专业术语不明确,表述混乱、繁琐,冗长。 4、模型求解 (1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,论证要尽可能严密; (2)需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,要说明采用此软件的理由,软件名称; (3)计算过程,中间结果可要可不要的,不要列出。 (4)设法算出合理的数值结果。 5、模型检验、结果分析 (1) 最终数值结果的正确性或合理性是第一位的 ; (2)对数值结果或模拟结果进行必要的检验。 当结果不正确、不合理、或误差大时,要分析原因,对算法、计算方法、或模型进行修正、改进; 作者:千寻王子 2007-6-29 00:26 回复此发言 -------------------------------------------------------------------------------- 2 如何写好数学建模论文 暴强 不看会后悔哦 ! (3)题目中要求回答的问题,数值结果,结论等,须一一列出; (4)列数据是要考虑:是否需要列出多组数据,或额外数据;对数据进行比较、分析,为各种方案的提出提供可依赖的依据; (5)结果表示:要集中,一目了然,直观,便于比较分析。(最好不要跨页) ▲数值结果表示:精心设计表格;可能的话,用图形图表形式。 ▲求解方案,用图示更好 (6) 必要时对问题解答,作定性或规律性的讨论。 最后结论要明确。 6.模型评价 优点要突出,缺点不回避。若要改变原题要求,重新建模则可在此进行。推广或改进方向时,不要玩弄新数学术语。 7、参考文献 限于公开发表的文章、文献资料或网页 规范格式: [1] 陈理荣,数学建模导论(M),北京:北京邮电大学出版社,1999. [2] 楚扬杰,快速聚类分析在产品市场区分中的应用(J),武汉理工大学学报,2004,23(2),20-23. 8、附录 详细的数据、表格、图形,计算程序均应在此列出。但不要错,错的宁可不列。主要结果数据,应在正文中列出。 9、关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题 问题以怎样的方式回答――结果以怎样的形式表示 每个问题要列出哪些关键数据――建模要计算哪些关键数据 每个量,列出一组还是多组数――要计算一组还是多组数…… 10、答卷要求的原理 ▲ 准确――科学性 ▲ 条理――逻辑性 ▲ 简洁――数学美 ▲ 创新――研究、应用目标之一,人才培养需要 ▲ 实用――建模。实际问题要求。 四、建模理念 1. 应用意识:要让你的数学模型能解决或说明实际问题,其结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。 2. 数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。相同问题上要能够推广。 3. 创新意识:建模有特点,要合理、科学、有效、符合实际;要有普遍应用意义;不单纯为创新而创新 五、格式要求 参赛论文写作格式 论文题目(三号黑体,居中) 一级标题(四号黑体,居中) 论文中其他汉字一律采用小四号宋体,单倍行距。论文纸用白色A4,上下左右各留出2.5厘米的页边距。 首页为论文题目和作者的专业、班级、姓名、学号,第二页为论文题目和摘要,论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字“1”开始连续编号。 第四页开始论文正文 正文应包括以下八个部分: 问题提出: 叙述问题内容及意义; 基本假设: 写出问题的合理假设; 建立模型: 详细叙述模型、变量、参数代表的意义和满足的条件及建模的思想; 模型求解: 求解、算法的主要步骤; 结果分析与检验:(含误差分析); 模型评价: 优缺点及改进意见; 参考文献: 限公开发表文献,指明出处; 参考文献在正文引用处用方括号标示参考文献的编号,如[1][3]等。参考文献按正文中的引用次序列出,其中 书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:出版年 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日) 附录:计算框图,原程序及打印结果。 六、分工协作取佳绩 最好三人一组,这三人中尽量做到一人数学基础较好,一人应用数学软件和编程的能力较强,一人科技论文写作水平较好。科技论文的写作要求整篇论文的结构严谨,语言要有逻辑性,用词要准确。 三人之间要能够配合得起来。若三人之间配合不好,会降低效率,导致整个建模的失败。 在合作的过程中,最好是能够找出一个组长,即要能够总揽全局,包括任务的分配,相互间的合作和进度的安排。 在建模过程中出现意见不统一时,要尊重为先,理解为重,做到 “给我一个相信你的理由”和“相信我,我的理由是……”,不要作无谓的争论。要善于斗争,勇于妥协。 还要注意以下几点: 注意存盘,以防意外 写作与建模工作同步 注意保密,以防抄袭 数学建模成功的条件和模型: 有兴趣,肯钻研;有信心,勇挑战;有决心,不怕难;有知识,思路宽;有能力,能开拓;有水平,善协作;有办法,点子多;有毅力,轻结果。
浅析数学建模在小学数学中的应用
【论文关键词】小学数学数学模型抽象概念实际应用 【论文摘要】 学校教育由于长期受“应试教育”的影响,学生中存在着知识技能强,实际应用差的情况.为此,本文引入了“数学模型”这一概念,就此讨论如何帮助学生建立数学模型以及建立数学模型的意义,旨在促进学生的学习兴趣,提高他们的实际应用能力。 一、数学教学中数学模型应用的缺乏 数学课程改革的思路之一就是数学应强化应用意识,允许非形式化。事实上,数学课程中数学的应用意识早已成为发达国家的共识,而我国目前应用意识却十分淡薄,与世界数学课程的发展潮流极不合拍。 当前使用的数学教材中的习题多是脱离了实际背景的纯数学题,或者是看不见背景的应用数学题,这样的训练,久而久之,使学生解现成的数学题能力很强,而解决实际问题的能力却很弱。教师要独具慧眼,善于改造教材,为学生创造一个可操作,可探索的数学情境,引领他们探索知识的生成过程,再现数学知识的生活底蕴。因此,引入“数学模型”这一概念。 二、概念界定 何谓数学模型?数学模型可描述为:对于现实世界的一个特定对象,为了一个特定的目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到一个数学结构,而建立数学模型的过程,则称之为数学建模。 三、数学建模在小学数学中的应用 1、 让学生经历数学概念形成的过程,探索数学规律。《新课标》的总体目标中提出,要让学生“经历将一些实际问题抽象为数与代数的问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题。”让学生经历就必须有一个实际环境。学生在实际环境中通过活动体会数学、了解数学、认识数学。 在教学中“鱼段中烧”常常存在。没有在教学的应用上给予足够的.注意和训练,即没有着意讨论和训练如何从实际问题中提炼出数学问题(鱼头)以及如何应用数学来满足实际问题中的特殊需求(鱼尾),很少给学生揭示有关数学概念及理论的实际背景和应用价值。为了避免这一情况,教师要帮助学生建立数感,在自己的水平上探索不同的数学模型。比如:在教学连减应用题时,可以让学生进行模拟购物。小售货员讲一讲自己怎样算帐,体会两种方法的不同:小强带了90元钱去买了一只足球45元,一只排球26元,要找回几元?大部分小售货员都这样算:先用90元钱去减一只足球的钱,再减去一只排球的钱,求出来的就是要找回的钱。算式是90-45-26=19(元)。也有一小部分售货员列出了这样的算式:45+26=71(元) 90-71=19(元)两种方法我都给予肯定,并总结:遇到求剩余问题的题目时都用减法来做。并总结出求大数用加法,求小数用减法的模型。学生只要在做题中知道求的是大数还是小数就可以了,从而培养了学生从数学的角度去观察和解释生活。 2、 开设数学活动课,重视实践活动,为学生解决问题积累经验。开设数学活动课,让学生自己动脑、动手解决问题,可以使他们获取数学实际问题的背景、情境,理解有关的名词、概念,有助于学生正确理解题目意思,建立数学模型,是培养学生主动探究精神和实践能力的自由天地。 比如:在上“几个与第几个”的拓展课时,出现一道题:从左往右数,小华是第9个,从右往左数,小华是第8个,这一排有多少人?在解这道题之前,我让一个组6个人站起来,数其中的一个人,发现就直接3+4=7,会多出一人来。为什么会这样?学生讨论后得出:其中的那个人多数一次了,要把他减掉。于是,得到一个模型:左边数过来的数+右边数过来的数-1=总人数。有了这个模型之后,解决这一类问题就容易多了。 3、 引导学生用图形解决问题,确立从代数到几何的过渡。代数与几何并不是孤立的两块。他们也有相通之处。我们可以用几何的观念来解代数问题。图形对于低段学生来说是更直观、更有效的形式。 例:让学生观察热水瓶、茶杯、可乐罐、电线杆、大树、房屋柱子等,通过现代教学手段(如用CAI课件或实物投影仪),学会撇开扶手柄、树枝、颜色等非本质特征,分析主体部分的形状,再配以必要的假设,得出它们的共同属性:只能往一个方向滚动,且上下两个底面是大小相同的圆面,抽象出“圆柱体”这一数学模型。这样通过向学生展示上述数学建模的过程,使学生知道数学来源于实际生活,生活处处有数学,在此基础上再引导学生把数学知识运用到生活和生产的实际中去。又如,在教学应用题时,我们往往借助线段图来解,将文字题有效地转化为图形,使题目变得浅显易懂。 四、数学模型在小学数学中的现实意义 1、 通过数学建模理论的学习研讨,有利于提高教师的数学素养。一般地说,在建模过程中,原始问题中的本质特征应被保留下来,当然也要简化,这种简化基于科学,而不完全基于数学,另一方面,一定的简化又是必须的,以便得到的数学体系是易处理的。这就需要教师必须具备精深的专业知识,能帮助学生建立准确的数学模型 2、 建立数学模型能有效地激发学生的求知欲望。数学模型是数学基础知识与数学应用之间的桥梁,建立和处理数学模型的过程,更重要的是,学生能体会到从实际情景中发展数学,获得再创造数学的绝好机会,学生更加体会到数学与大自然和社会的天然联系。因而,在小学数学教学中,让学生从现实问题情景中学数学、做数学、用数学应该成为我们的一种共识。 3、 数学建模是培养学生建模能力的重要途径。数学建模就是找出具体问题的数学模型,求出模型的解,验证模型解的全过程。由于小学生以形象思维为主,因此他们的数学模型大多和形象图有关。引导学生从画实物图、矩形图、线段图开始,逐步做到自觉主动地构建数学模型,并把它作为一种极好的解决问题的工具,使他们在这个过程中提高兴趣,增强能力。 五、结束语 学生的建模思想的培养是长期的、复杂的过程,采用的方法是多样、灵活的。只要教师用心设计,耐心诱导,全体学生都能建立不同水平的数学模型。 参考文献: 1、 张奠宙主编《数学教育研究导引》 2、 严士键主编《面向21世纪的中国数学教育》 3、 胡炯涛《数学教学论》
数学来源于生活而最终服务于生活,尤其是小学数学知识,基本在生活中都能找到原型。关于小学数学的教学,你有什么研究成果呢?本文是我为大家整理的小学数学教学优秀论文,欢迎阅读! 小学数学教学优秀论文篇1:浅谈如何上好小学的数学课 数学这门学科,自古以来就被认为为是理性最强的学科,需要聪明的大脑和天赋才能学好的,其实不然,对于天真浪漫的小学生来讲,他们接受各种 文化 知识的能力是等同的,那么如何才能学好数学呢?我认为关键在于如何调动学生学习数学的兴趣。通过分析,不论学生自身的因素还是学校、家庭环境对学生自身兴趣的影响都与教师有直接关系,就像邓小平曾说的:“一个学校能不能为社会主义建设培养合格人才,培养德、智、体全面发展、有社会主义觉悟的、有文化的劳动者,关键在教师。”同样,能否调动学生学习的兴趣,关键也是在教师,如何调动学生学数学的积极性呢?教师在学生学习中又处于什么地位呢?下面是本人在教学中的几点浅见: 一、先从本身着手,让学生喜欢上你,从而喜欢上你的课。 作为教者本身来讲,要从各方面来完善自己,比如,师德修养,文体方面等等,让学生从内心尊重你,要和学生结交成各方面的朋友,从而使他们喜欢你的同时,也喜欢你所教的学科。现在很多教师在思考如何让学生学好数学时,经常考虑的是如何激发学生的兴趣,却忽视了自身的素质要求,如果自身不修边幅、口无遮拦的,如何让学生喜欢上你,更不用说喜欢上你的课了。学生一开始就抵触你,即使你再如何调动学生的学习兴趣,都只是“剃头担子一头热”。 二、其次先要诱发兴趣,通过游戏性活动,让学生喜欢上你上的数学课。 兴趣是学生最好的老师,也是 智力开发 的原动力,“良好的开端是成功的一半”,诱发学生从新课刚开始时就产生强烈的求知欲是至关重要的。愉快的游戏能唤起学生的愉悦感,引起学生的直接兴趣,并由无意注意引导到有意注意,发展间接兴趣。因此,教师导入新课时,根据教学内容,可选择组织学生做数学游戏的 方法 ,让学生人人参加,能很快地激发学生的学习热情,比如,在学习100以内二位数加减二位数中,我让一部分学生当作售货员,一部分学生当作买东西的顾客,让他们从实际出发,从一买一卖中得到乐趣,更在不知不觉中学到了知识,让学生在玩中学,在学中玩,更让学生们懂得了学习数学的重要性,何乐而不为呢? 三、再次要设计疑点,激发思维火花,“勾引”出学生的学习兴趣。 “学起于思,思起于源”。心理学认为。疑是最容易引起探究反射,思维也就应运而生。例如:我在教学中,经常会问,如果是你,你会怎么样?通过换位思考,改变以前学生被动学习的境况,让学生设身处地的思考问题,让学生产生“疑”。引起思考,是需要学习的开始。疑问使学生萌发出求知的欲望。同学们跃跃欲试,开始了对新知识的探求。 四、通过让学生进行“争吵”,在争论中提出问题,开拓思维能力升华兴趣。 学习数学是一项艰苦而又细致的劳动。学习的直接兴趣不是与生俱有的,而是学生在刻苦学习,认真钻研的学习活动中得到发展升华的。一个懒于学习,不愿思考的学生,是很难对数学产生兴趣的。因此,在教学中教师首先要创设条件,让学生有充分施展才能的机会,鼓励学生质疑问难,大胆发表与教师不同的看法;培养学生善于独立思考的习惯,要求学生遇事要勤于思考,善于思考,丰富想象,开拓思维。这样,对升华学生学习数学的兴趣,能起到一定的促进作用。其次,课堂上组织学生讨论是开拓学生思维能力,升华兴趣的一个好办法。因此,教师可采用同桌、小组、全班等讨论形式,组织学生对某一个问题进行开放式的讨论,让学生思维的火花互相触发,交流各自对问题的不同看法,最后由教师进行 总结 概括。利用这个方法的目的是引起更深入地钻研某些问题的更高兴趣。 五、最后通过表扬、鼓励,让学生体验喜悦,延长学习的兴趣。 学生有了兴趣,还要想方设法使兴趣持久。因为小学生的兴趣既不稳定,又不长久。一位心理学家曾说过:“一个人只要体验一次成功的意念和胜利的欣慰,便会激发追求无休止成功的意念和力量。”这种无休止成功的意念和力量也就是学生兴趣的源泉。对学生来说,老师的一点点鼓励,一次的肯定,一次表扬,都是他成功的标志,他都能从中体验成功的喜悦,这时学生的兴趣就如同永不枯竭的源泉,就会浓厚、持久。综上所述,是我在教学中的点滴体会。 总之,在数学教学过程中,只要我们认真钻研教材,把握学生的学习心态,运用灵活多样的 教学方法 ,精心设计每一个教学环节,就能激发和增强学生的学习兴趣。 小学数学教学优秀论文篇2:浅谈小学数学教学生活化 摘要:数学即生活,只有将学生引到生活中去,切实地感受数学的价值,才能使学生真正地理解数学,从而使他们从小更加热爱生活、热爱数学。 关键词:数学教学 新课标 生活情趣 孔子曰:知之者不如好之者,好之者不如乐之者。随着教学改革的深入,我们的数学课堂教学开始变得更自由、更灵活,学生也始终在愉快的状态下积极地学习数学,这的确是我们数学教学改革的一个可喜变化。著名数学家华罗庚曾说:“就数学本身来说,是壮丽多彩、千姿百态、引人入胜的……”入迷才能叩开思维的大门,智力和能力才能得到发展。新的《数学课程标准》更多地强调学生用数学的眼光从生活中捕捉数学问题、探索数学规律,以及主动运用数学知识分析生活现象、解决生活中的实际问题。在教学中,教师应注重从学生的生活中抽象数学问题,从学生已有的生活 经验 出发,挖掘学生感兴趣的生活素材,以丰富多彩的形式展现给学生。 具体可以从以下几个方面做起: 一、数学语言运用生活化,从生活经验入手,调动课堂气氛。 数学 教育 家斯拖利亚尔曾说过,数学教学也就是数学语言的教学。同一堂课,不同的教师教出来的学生,接受程度也不一样,这主要取决于教师的语言水平。尤其是数学课堂教学,要学生接受和理解枯燥、抽象的数学知识,没有高素质语言艺术的教师是不能胜任的。鉴于此,结合学生的认知特点、 兴趣 爱好 、心理特征等个性心理倾向,将数学语言生活化是引导学生理解数学、学习数学的重要手段。如在“利息”一课的教学中,教师说:“我家里有10000元钱暂时不用,可是现金放在家里不安全,请同学们帮老师想个办法,如何更好地处理这些钱?”学生回答的办法很多,这时再趁机引导学生:“选择储蓄比较安全。在储蓄之前,我还想了解一下关于储蓄的知识,哪位同学能够介绍一下吗?”学生们竞相发言。在充分感知了“储蓄”的益处之后,学生们又主动介绍了“储蓄的相关事项”,在不知不觉中学到了知识,体会到了生活与数学休戚相关。 二、创设课堂教学生活化情境 心理学研究表明:当学习的内容与 儿童 的生活经验越接近时,学生自觉接受知识的程度也就越高。在课堂教学中,教师应从学生熟悉的生活情境和感兴趣的事情出发设计数学活动,使学生身临其境,激发学生去发现、探索和应用,学生们就会发现原来熟视无睹的事物竟包含着这么丰富的数学知识。例如老师可以把学生春游中的情境拿到教学中来,“同学们去春游,争着要去划船,公园里有7条小船,每船乘6个人,结果还有18个人在岸上等候。”在课上,让学生根据情境自己编题,自己列式解题。这样,不但把教材中缺少生活气息的题材变成了来自生活的、生动的数学问题,还促使学生能够主动投入、积极探究。 三、数学问题生活化,感受数学价值 数学教材呈现给学生的大多是抽象化、理性化、标准化的数学模型,教师如果能将这些抽象的知识和生活情景联系起来,引导学生体验数学知识产生的生活背景,学生就会感到许多数学问题其实就是生活中经常遇到的问题。这样,不仅把抽象的问题具体化,激发了学生解决问题的热情,还使他们切实地感受到数学在生活中的原型,让学生真正理解了数学,感受到现实生活是一个充满数学的世界,从而更加热爱生活、热爱数学。 例如教学《植树问题》一课,教师可以为学生展示马路边植树、小朋友排队、路灯等一些生活中的现象,让学生体会间隔的含义。这样,不仅增强了学生的探究欲,而且使他们体会到只要用数学眼光留心观察广阔的生活情境,就能发现在平常事件中蕴含着的数学规律。教学时,让学生为自己的校园设计植树方案,可以进一步帮助学生体会在现实生活中许多事情都有与植树问题相同的数量关系,感悟数学建模的重要意 四、将数学知识应用于生活 数学来源于生活而最终服务于生活,尤其是小学数学知识,基本在生活中都能找到原型。教师要教会学生把所学的知识应用到生活中,使他们能用数学的眼光去观察生活,去解决生活中的实际问题。如学过了“长方体、正方体体积”的有关知识后,让学生去计算教室的空间大小、学校喷水池的容积、为家庭的装潢设计一个购物计划;又如学过“人民币”后,可指导学生到超市购物等。 总之,数学即生活,只有将学生引到生活中去,切实地感受数学的价值,才能使他们真正地理解数学,从而更加热爱生活、热爱数学。 小学数学教学优秀论文篇3:如何提高课堂的有效性思维 有效的课堂教学是通过课堂教学活动,让学生在认知和情感上均有所发展。从事小学数学教学的过程中,对于其有效性有以下几点思考: 一、重视情境创设充分调动学生有效的学习情感 构建良好的师生关系,调动有效的学习情感,对于维持学生的学习兴趣和注意力至关重要。调动有效的学习情感,既能培养学生的学习信心,调动其学习的主动性,又能切实提高课堂教学的有效性。 在情境创设中,应注意以下几点: 1、情境创设应目的明确 每一节课都有一定的教学任务。情境的创设,要有利于学生数学学习,有利于促进学生认知技能、数学思考、情感态度、价值观等方面的发展。所以,教学中既要紧紧围绕教学目标创设情境,又要充分发挥情境的作用,及时引导学生从情境中运用数学语言提炼出数学问题。如果是问题情境, 提出的问题则要具体、明确,有新意和启发性,不能笼统地提出诸如“你发现了什么”等问题。? 2.教学情境应具有一定的时代气息 作为教师,应该用动态的、发展的眼光来看待学生。在当今的信息社会里,学生可以通过多种 渠道 获得大量信息,教师创设的情境也应具有一种时代气息,让他们学会关心社会,关心国家发展。如教学《百分数的应用》, 创设了中国北京申奥成功的情境:出示第二轮得票统计图(北京56票,多伦多22票,巴黎18票,伊斯坦布尔9票)请学生根据统计图用学的百分数知识来提出问题,解决问题。? 3.情境的内容和形式应根据学生的生活经验与年龄特征进行设计? 教学情境的形式有很多,如问题情境、 故事 情境、活动情境、实验情境、竞争情境等。情境的创设要遵循不同年龄儿童的心理特征和认知规律,要根据学生的实际生活经验而设计。对低、中高年级的儿童,可以通过讲故事、做游戏、直观演示等形式创设情境,而对于高年级的学生,则要创设有助于学生自主学习、合作交流的问题情境,用数本身的魅力去吸引学生。? 二、深钻教材,确保知识的有效性。 知识的有效性是保证课堂教学有效的一个十分重要的条件。对学生而言,教学知识的有效是指新观点、新材料,他们不知不懂的,学后奏效的内容。教学内容是否有效和知识的属性以及学生的状态有关。第一,学生的知识增长取决于有效知识量。教学中学生知识的增长是教学成败的关键。第二,学生的智慧发展取决于有效知识量。发展是教学的主要任务,知识不是智慧,知识的迁移才是智慧。在个体的知识总量中并不是所有的知识都具有同样的迁移性,而是其中内化的、熟练的知识才是可以随时提取,灵活运用,这一部分知识称为个体知识总量中的有效知识,是智慧的象征。第三,学生的思想提高取决于有效知识量。这种知识是指教学中学生获得的、融会贯通深思熟虑的、实在有益的内容,即有效知识。第四,教学的心理效应取决于有效知识量。通过对知识的获取产生愉悦的心理效应,才能成为活动的原动力和催化剂。 三、探究有效的学习过程。 课堂教学的核心是调动全体学生主动参与学习全过程,使学生自主地学习、和谐地发展。学习过程是否有效,是课堂教学是否有效的关键。学生是学习的主体,但我们也不得不承认,处于成长发展中的小学生,是不成熟的学习主体。由于受年龄、经验、知识、能力的限制,他们提出问题、分析问题的能力毕竟是有限的。因此,只有发挥教师作为组织者、引导者、点拔者的作用,才能发挥学生的主体性、主动性,让学生学会学习。尤其在学生疑难处、意见分歧处,或在知识、方法归纳概括时,更要及时加以点拔指导。有效的学习过程还可以通过游戏实施。小学生注意的特点是无意占优势,尤其是低年级往往表现出学前儿童所具有的那种对游戏的兴趣和足劲要求,他们能一连几小时地玩,却不能长时间地一动不动地坐在一个地方。新课程要求“面向每一个学生,特别是有差异的学生”。因此针对差异性,可以实施分层教学策略,最大限度地利用学生的潜能实施教学过程分层,放手让学生独立思考,展示学生个性,从而使每一个学生都得到发展。使数学课堂教学真实有效。 四、联系生活实际,创设有效的生活情境 创设有效的生活情境是提高课堂教学有效性的重要条件。《数学课程标准》指出:“力求从学生熟悉的生活情景与童话世界出发,选择学生身边的、感兴趣的数学问题,以激发学生学习的兴趣与动机,使学生初步感受数学与日常生活的密切联系。”数学教学中,教师要不失时机创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情景,使学生从中感悟到数学的乐趣,产生学习的需要,激发探索新知识的积极性,主动有效地参与学习。在创设生活教学情境时,一要选取现实的生活情境。教师可直接选取教材中提供的学生熟悉的日常生活情境进行加工或自己创设学生感兴趣的现实生活素材作为课堂情境。二要构建开放的生活情境。教师要对课内知识进行延伸与拓展,将抽象知识学习过程转变为实践性、开放性的学习过程,引导学生发现问题,大胆提出猜想,不断形成、积累、拓展新的数学生活经验。要创设多元的生活情境。 可以通过对学生生活及兴趣的了解,对教学内容进行二次加工和整合,再次创设生活情境。真正实现课的导入“生活化”——教学的导入仿佛是优美乐章的“序曲”;例题教学“生活化”——例题教学是优美乐章的主旋律;知识运用“生活化”——综合运用知识的能力仿佛是动听的“交响乐”。 生产和生活实际是数学的渊源和归宿,其间大量的素材可以成为数学课堂中学生应用的材料。 要做有心人,不断为学生提供生活素材,让生活走进课堂。真正让文本的“静态”数学变成生活的“动态”数学。要让学生觉得数学不是白学的,学了即可用得上,是实实在在的。这样的课堂教学才是有效的。 五、注重教学 反思 ,促进课堂教学质量 记得有人说过“教无定法,教学是一门遗憾的艺术”。因为我们的教师不是圣人,一堂课不会十全十美。所以我们自己每上一节课,都要进行深入的剖析、反思,对每一个教学环节预设与实际吻合、学生学习状况、 调控状况、课堂生成状况等方面认真进行总结,找出有规律的东西,在不断“反思”中学习。我们反思的主要内容有:思考过程、解题思路、分析过程、运算过程、语言的表述、教学的思想方法进行反思等。以促进课堂教学质量,教学效果也一定会更好。 教学作为一种有明确目的性的认知活动,其有效性是广大教师所共同追求的。无论课程改革到哪一步,“有效的课堂”是我们
全国大学生数学建模竞赛论文格式规范 本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。 论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。 论文第一页为承诺书,具体内容和格式见本规范第二页。 论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。 论文题目和摘要写在论文第三页上,从第四页开始是论文正文。 论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。 引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。 在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。 本规范的解释权属于全国大学生数学建模竞赛组委会。[注]赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。全国大学生数学建模竞赛组委会2009年3月16日修订数学建模论文一般结构1摘要 (单独成页)主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3。2、问题重述和分析3、问题假设假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。作假设的两个原则:① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。② 贴近原则:贴近实际。以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。4、符号说明 (3.4可以合并)5、模型建立与求解(重要程度 :60%以上)6、模型检验(误差一般指均方误差)7、结果分析 (6.7可以合并)8、模型的进一步讨论 或 模型的推广9、模型优缺点10、参考文件11、附件(结果千万不能放在附件中)论文最佳页面数:15-21页 论文结构一题目摘要1.问题的重述2.合理假设3.符号约定4.问题的分析5.模型的建立与求解6.模型的评价与推广1、误差分析2、模型的改进与推广对XXXX切实可行的建议和意见:1.……2.…………7.参考文献8.附录 数学建模论文一般格式 摘要(主要理解、主要方法、主要结果、主要特点)或(背景、目标、方法、结果、结论、建议) 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模型优缺点优秀论文要点:1. 语言精练、有逻辑性、书写有条理2. 文字与图形相结合,使内容直观、清晰、明了、容易理解3. 切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章4. 对论文中所引用或用到的知识、软件要清晰地予以说明。5. 在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去各步骤解释摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)作用:了解文件重要性,对文件有大致认识最佳页副:页面2/3问题重述与分析: 一向导、对题意的理解、 建模的创造性创造性是灵魂,文章要有闪光点。好创意、好想法应当既在人意料之外,又在人意料之中。新颖性(独特性)与合理性皆备。误区之一:数学用得越高深,越有创造性。解决问题是第一原则,最合适的方法是最好的方法。误区之二:创造性主要体现在建模与求解上。创造性可以体现在建模的各个环节上,并且可以有多种表现形式。误区之三:好创意来自于灵感,可遇不可求。好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。 表达的清晰性好的文章 = 好的内容 + 好的表达 替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。 写好摘要,包括:建模主要方法、主要结果,模型主要优点。 专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。 适当采用图表,增加可读性。
数学建模论文写作 一、写好数模答卷的重要性 1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。 2. 答卷是竞赛活动的成绩结晶的书面形式。 3. 写好答卷的训练,是科技写作的一种基本训练。 二、答卷的基本内容,需要重视的问题 1.评阅原则 假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。 2.答卷的文章结构 题目(写出较确切的题目;同时要有新意、醒目) 摘要(200-300字,包括模型的主要特点、建模方法和主要结论) 关键词(求解问题、使用的方法中的重要术语) 1)问题重述。 2)问题分析。 3)模型假设。 4)符号说明。 5)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。 6)模型求解(计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。) 7)进一步讨论(结果表示、分析与检验,误差分析,模型检验) 8)模型评价(特点,优缺点,改进方法,推广。) 9)参考文献。 10)附录(计算程序,框图;各种求解演算过程,计算中间结果;各种图形,表格。) 3. 要重视的问题 1)摘要。 包括: a. 模型的数学归类(在数学上属于什么类型); b. 建模的思想(思路); c. 算法思想(求解思路); d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……); e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。 ▲ 注意表述:准确、简明、条理清晰、合乎语法、要求符合文章格式。务必认真校对。 2)问题重述。 3)问题分析。 因素之间的关系、因素与环境之间的关系、因素自身的变化规律、确定研究的方法或模型的类型。 5)模型假设。 根据全国组委会确定的评阅原则,基本假设的合理性很重要。 a. 根据题目中条件作出假设 b. 根据题目中要求作出假设 关键性假设不能缺;假设要切合题意。 6) 模型的建立。 a. 基本模型: ⅰ)首先要有数学模型:数学公式、方案等; ⅱ)基本模型,要求完整,正确,简明; b. 简化模型: ⅰ)要明确说明简化思想,依据等; ⅱ)简化后模型,尽可能完整给出; c. 模型要实用,有效,以解决问题有效为原则。 数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。 ⅰ)能用初等方法解决的、就不用高级方法; ⅱ)能用简单方法解决的,就不用复杂方法; ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。 d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在: ▲ 建模中,模型本身,简化的好方法、好策略等; ▲ 模型求解中; ▲ 结果表示、分析、检验,模型检验; ▲ 推广部分。 e.在问题分析推导过程中,需要注意的问题: ⅰ)分析:中肯、确切; ⅱ)术语:专业、内行; ⅲ)原理、依据:正确、明确; ⅳ)表述:简明,关键步骤要列出; ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。 7)模型求解。 a. 需要建立数学命题时: 命题叙述要符合数学命题的表述规范,尽可能论证严密。 b. 需要说明计算方法或算法的原理、思想、依据、步骤。 若采用现有软件,说明采用此软件的理由,软件名称。 c. 计算过程,中间结果可要可不要的,不要列出。 d. 设法算出合理的数值结果。 8) 结果分析、检验;模型检验及模型修正;结果表示。 a. 最终数值结果的正确性或合理性是第一位的; b. 对数值结果或模拟结果进行必要的检验; 结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进。 c. 题目中要求回答的问题,数值结果,结论,须一一列出; d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据; e. 结果表示:要集中,一目了然,直观,便于比较分析。 ▲ 数值结果表示:精心设计表格;可能的话,用图形图表形式。 ▲ 求解方案,用图示更好。 9)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。 10)模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。 11)参考文献 12)附录 详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。检查答卷的主要三点,把三关: a. 模型的正确性、合理性、创新性 b. 结果的正确性、合理性 c. 文字表述清晰,分析精辟,摘要精彩 三、关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题; 问题以怎样的方式回答――结果以怎样的形式表示; 每个问题要列出哪些关键数据――建模要计算哪些关键数据; 每个量,列出一组还是多组数――要计算一组还是多组数。 四、答卷要求的原理 1. 准确――科学性; 2. 条理――逻辑性; 3. 简洁――数学美; 4. 创新――研究、应用目标之一,人才培养需要; 5. 实用――建模、实际问题要求。 五、建模理念 1. 应用意识 要解决实际问题,结果、结论要符合实际; 模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。 2. 数学建模 用数学方法解决问题,要有数学模型; 问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。 3. 创新意识 建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。
数学建模论文模板 介绍数学建模论文的格式和模板 介绍数学建模论文的格式和模板数学建模论文基本格式摘要 (200-300字,包括模型的主要特点、建模方法和主要结果。)关键词(求解问题、使用的方法中的重要术语) 内容较多时最好有个目录1。问题重述 2。问题分析3。模型假设与约定4。符号说明及名词定义5。模型建立与求解 ①补充假设条件,明确概念,引进参数; ②模型形式(可有多个形式的模型);6。进一步讨论(参数的变化、假设改变对模型的影响)7。模型检验 (使用数据计算结果,进行分析与检验)8。模型优缺点(改进方向,推广新思想)9。参考文献及参考书籍和网站10。附录 (计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格。)小经验:1。随时记下自己的假设。有时候在很合理的假设下开始了下一步的工作,就应该顺手把这个假设给记下 来,否则到了最后可能会忘掉,而且这也会让我们的解答更加严谨。2。随时记录自己的想法,而且不留余地的完全的表达自己的思想。3。要有自己的特色,闪光点。如何撰写数学建模论文 当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。 首先要明确撰写论文的目的。数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的。其次,要注意论文的条理性。 下面就论文的各部分应当注意的地方具体地来做一些分析。 (一) 问题提出和假设的合理性 在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届数学建模竞赛的试题可以看作是情景说明的范例。 对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面: (1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。 (2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。 (3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。 (二) 模型的建立 在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件。论文中用到的各种数学符号,必须在第一次出现时加以说明。总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。 (三)模型的计算与分析把实际问题归结为一定的数学问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出)。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。 有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论。 在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。 (四) 模型的讨论 对所作的数学模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。 通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。 除正文外,论文和竞赛答卷都要求写出摘要。我们不要忽视摘要的写作。因为它会给读者和评卷人第一印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。 语言是构成论文的基本元素。数学建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把一句句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。 最后,论文的书写和附图也都很重要。附图中的图形应有明确的说明,字迹力求端正。参加数学建模竞赛的十大秘诀1 诚信是最重要的 数学建模竞赛是考查学生研究能力和实践能力的一场综合性比赛,有很多方面的知识和能力可以考查,但其中我觉得最重要的是诚信。我感到中国在这方面的教育还远远不够,我知道有很多同学写论文并不是实事求是地去做,而是编造数据、修改结论,明明自己没法编程实现却硬说自己做出来了,还编了一些数据。这些行为也许能够过评委,也许可以因“此”而获奖,但是这对他们将来是很不利的,希望能够引起足够的注意。2 团队合作是能否获奖的关键 在三天的比赛中,团队交流所占用的时间可能会超过一半。在一个小组中,出现意见不一是非常正常的,如果一个队意见完全一致,我想他们肯定不会拿奖。出现分歧的时候应当如何解决是很关键的,甚至直接决定你是否可以获奖,我的建议是“妥协”,这似乎是个贬义词,但我的意思是说不要总认为自己的观点是正确的,多听听别人的观点,在两者之间谋求共同点。如果三个人都是自傲类型的人,也许每个人都非常强,但一旦合作,分歧就无法解决,做出来的就是一团糟,也就是说“三个诸葛亮顶不上一个臭皮匠”。我奉劝这样的话最好别组成一队了。合作在竞赛前就应当培养,比如一块儿做模拟题什么的,充分利用每个人的优点,也可以张三准备图论,李四准备最优化方法,然后几天后大家一块交流,这些都是可以磨合团队之间的关系的。通常在比赛时,三个人的分工是明确的,一个是领军人物,主要是构建整个问题的框架并提出有创意的idea,自然其他部分比如论文写比如程序设计比如计算他也能参加,应该算是一名全能型的人物;第二个是算手,顾名思义,主司计算方面的问题,比如编程计算一个微积分或者手工计算一条最优路径等。优秀的团队算手一般会精通(是精通不是入门)一个软件的应用,比如C比如MATLAB比如LINGO;最后一个是写手,主要工作在于论文的写作和润色上。好的论文要让人一眼就明了其中的意思,所以写手的工作还是需要一定的技巧的。当然,最重要的还是三个队员之间的讨论和交流,同心协力,在整个比赛过程中形成一种良好的交流氛围。3 时间和体力的问题 竞赛中时间分配也很重要,分配不好可能完不成论文,所以开始时要大致做一下安排。不必分的太细,比如第一天做第一小题,第二天做第二小题,这样反而会有压力,一切顺其自然。开始阶段不忙写作,可以将一些小组讨论的要点记录下来,不要太工整,随便写一下,到第三天再开始写论文也不迟的。也不要到第三天晚上才开始。另外要说的就是体力要跟上,三天一般睡眠只有不到10 个小时,所以没有体力是不行的,建议是赛前熬夜编程几次,既训练了自己的建模能力,也达到了训练体力的目的,赛前锻炼身体我觉得没什么用处,多熬夜就行了,但比赛前一天可不许熬。4 重视摘要 摘要是论文的门面,摘要写的不好评委后面就不会去看了,自然只能给个成功参赛奖。摘要首先不要写废话,也不要照抄题目的一些话,直奔主题,要写明自己怎样分析问题,用什么方法解决问题,最重要的是结论是什么要说清楚,在中国的竞赛中结论如果正确一般得奖是必然的,如果不正确的话评委可能会继续往下看,也可能会扔在一边,但不写结论的话就一定不会得奖了,这一点不比美国竞赛,所以要认真写。摘要至少需要琢磨两个小时,不要轻视了它的重要性。很有必要多看看优秀论文的摘要是如何写的,并要作为赛前准备的内容之一。5 论文写作要正规 论文一定要大致按照摘要、问题重述、模型假设、符号说明、问题分析、(建立、分析、求解模型)、模型检验、参考文献、附录等等的方式来写。一篇论文结构上如果失败的话,比赛也一定不会成功,一般初评会先淘汰一些结构失败的文章,如果论文没有好的结构,内容再好也没有用。论文前面的结构一般都不会变,后面可以按照实际情况来安排,省略的部分可以有结果说明、灵敏度分析、其他模型、模型扩展、优缺点分析等等,多看些优秀论文就知道还有哪些形式了。附录可以贴一些算法流程图或比较大的结果或图表等等。6 分析问题要认真 一般竞赛题目自己肯定没有见过,而且我发现近些年来的赛题都不是书上哪个模型可以直接套成功的,很多根本就没有固定的模型可以参考,所以分析问题不是一个去找书本的过程,依赖书本就意味着自己的思想被束缚起来。可以完全按照自己的分析去完成,平时练习的时候学习的是一种方法,通过以前学到的方法来解决,不是套用书本来解决,没有模型套怎么办,只有靠自己去实际分析。我估计在前面说的五点也许会有三分之一的队可以做到,而且可以做的很好,但是这一点上就需要真本事了,平时多努力,比赛发挥正常,这一点做好是没有问题的。7 编程求解是重要手段 美国竞赛时,美国学生中的论文很多是编程数据的说明,比如99 年A 题行星撞地球那题,他们也能够模拟出撞击后果,这对我们来说简直是不可思议的。美国学生实践能力较强,而中国学生擅长理论分析,所以我把编程放在了分析的后面是有中国特色的。数学建模竞赛特别强调计算机编程解决实际问题的能力,最近几年尤其强调,编程方面的能力不是一朝一夕可以练成的,需要长期刻苦的训练,常用的工具有MATLAB、Mathematica、C/C++ 等等,一个人只需要会一门语言就行了,但需要精通它。比如要画柱状图该怎么做,要用Floyd 算法怎么办,赛前不准备是没有办法在比赛中很好运用的,因此每个常用的算法都自己去编程实现一下。8 模型的假设与模型的建立 评委看完摘要后紧接着就是看模型假设了,有一个万能的方法就是可以抄题目中可以作为假设的几句话,这样会给人留下好的印象,毕竟说明你审题了。但不能全抄,要加上自己的一些假设。一般假设用文字描述就行了,最好不要太具体了,一些重要参数不要被定死只能取某些值,否则会让人感觉论文的局限性较强。模型的建立是根据你对问题分析而来的,提出的数学符号和建立模型最好要比较接近,在同一页最好,以便评委可以对照符号来看,数学公式要严谨,推导要严密,这些都反映了参赛者的数学素质和能力,即使你推导不对,别人看到你的阵势也首先会误以为你是对的。那么多的试卷,评委不可能顺着你的公式一直推下去,但你要写得显得有数学修养才行。9 图文表并貌可以增色 我听说一个不确切的信息是评委老师喜欢用MATLAB 编程的论文,不知道有没有这回事,但这说明了老师需要看一个具有图或表在其中的论文,一篇如果像政治书那样写的论文估计没有人会对它感兴趣的,尤其是科技论文。MATLAB 编程之所以受到青睐是因为MATLAB 提供的图形处理能力很强大。图表的说明性特别强,如果结论有很多数据的话,最好做成图表的形式加以说明,会令你的论文更有说服力,也更容易受到评委的好评。10 其他 其他内容还是有很多的,说也说不完,挑几个重要的讲。比如不要上网讨论,网上的人水平参差不齐,你不知道谁是对的,而且很多人想得奖,不会告诉你正确的,反而你说相反的,有时真理往往掌握在少数人手里。还有就是论文写作中灵敏度分析不要写太多,大致说明一下就可以了,不要喧宾夺主。最后想到的就是要使用数学公式编辑器来写论文,不要用什么上下标来表示,论文字体用小四,分标题用四号黑体等等。
你好,已经给你发送过去了,不是我自己写的,是上图书馆资源数据库搜索的。6篇文章题名为:《浅析数学建模》《酒后驾车问题的数学模型》《大学生数学建模障碍分析与对策》《数学建模教学模式的研究与实践》《数学建模教学模块认识与示例》《数学建模思维方法论》希望对你有帮助~知道举手之劳团队队长:晓斌
去数学中国网站上下载一篇适合你的文章,仿照着格式来写。 数学中国
预测的类型灰色预测一般有四种类型:1、数列预测。对某现象随时间的顺延而发生的变化所做的预测定义为数列预测。例如对消费物价指数的预测,需要确定两个变量,一个是消费物价指数的水平。另一个是这一水平所发生的时间。2、灾变预测。对发生灾害或异常突变时间可能发生的时间预测称为灾变预测。例如对地震时间的预测。3、系统预测。对系统中众多变量间相互协调关系的发展变化所进行的预测称为系统预测。例如市场中替代商品、相互关联商品销售量互相制约的预测。4、拓扑预测。将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测未来该定值所发生的时点
你可以把邮箱给我,我给你发一些写作模板。我刚参加完数学建模的国内赛和国际赛,有一定的经验哦
可以发表的,我前几天有个同事的论文获得过一等奖,然后还拿去发表了,还发表在核心期刊上呢,既然你的论文可以获得一等奖,说明你论文的质量不差的,直接找个核心期刊杂志社,肯定会录用的,因为论文质量好啊,数学类的,就投河南大学主办的<数学季刊>吧,核心期刊,希望你有好运
数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。
数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用
一、高等数学教学的现状
(一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二) 教学 方法 传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体 措施
(一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献
[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.
[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.
[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.
数学建模论文范文二:数学建模教学中数学素养和创新意识的培养
前言
创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.
因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].
在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.
而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.
近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].
所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.
因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].
因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.
1掌握数学语言独有的特点和表达形式
准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.
用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.
现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.
2借助数学建模教学使学生学会使用数学语言构建数学模型
根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.
而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.
对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.
3借助数学实验教学,展示高度抽象
的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.
因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.
配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.
选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.
教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.
教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.
数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.
4突出学生的主体作用,循序渐进培养学生学习、实践到创新
实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.
在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.
再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.
同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.
通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.
5具体的教学策略和途径
数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:
1)注重背景的阐述
让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.
2)注重模型建立与求解过程中的数学语言的使用
在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.
3)注重经典算法的数学软件的实现和改进
由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.
参考文献:
[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.
[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。
[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.
[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.
[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.
[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.
[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.