“数学是美的。”经常有数学家这么讲,那么,数学到底美不美呢?大一第二学期我们接触了高数这门课,本来觉得应该比高中的数学稍微难一点吧,可是一上课才发现并不是难一点,而是难很多很多,比高中的数学更加抽象,更加难理解。但是慢慢的你会发现其实高数是一门学问,而且这门学问也有他的美。仔细想了想,发现数学的美体现在方方面面,就比如自然之美,简洁之美,对称之美,逻辑之美等等,中国悠久历史所积淀出来的文学底蕴,为中国的数学染上了一层夺目的别样的颜色,这就是数学之美,总之,数学并不像有些人认为的那般鼓噪乏味,他不是定理公式的积累,而是一种美的学科。在中国书香四溢的文学背景下,数学也闪烁着不一样的光辉。也经常听到有同学发出这样的疑问:“我们为什么要学数学?”不知道这些人当中有没有认真思考过这个问题,我倒是稀里糊涂读到大学才明白一点的。数学,我们学的应该是一种严谨的思维,一种观念。出了学校门,如果我们还能经常使用数学的眼光来观察周围事物,那么,这个数学才没有白学。我一直觉得,如果你把函数真学懂了,对已知和未知的依存关系就会特别敏感,社会上的许多看似纷繁复杂的事件,在你眼里就能看到关键因素,形成函数式。你会有另一种看待万事万物人视野。我们学数学,目的是学解题技巧?是挤进名校的砝码?还是将来能谋份不错的职业?数学的发源地在希腊,注定数学的性格就是超越的,我们把它作为换取利益的工具时,一开始这条路就走岔来的。所以,要培养好我们学数学,最初就要培养我们有良好的数学素养,求真,求美,求善。当然,数学一直是人类文明发展的主要文化力量,同时人类文化的发展又极大地影响了数学的进步;而且,数学还是一种艺术,因此,数学不但具有科学价值,还具有文化和艺术的价值。那么,这就需要我们一步步的认知到数学的各种价值,可以从生活中的数学学得数学思想方法与文化以及数学与人文精神、文化素质间的联系。总之学好高数,此生不后悔。
像这种论文的话,你可以到网上搜索一下相关的范文来参考一下,你可以输入一些关键字关键词来进行查找。
确定论文题目:一般来说,论文题目需要具体而有限,以便准确定位论文研究范围,同时需要能够吸引读者的兴趣。
搜集和阅读相关文献:了解前人研究的成果和方法,可以有助于确定论文研究方向,避免重复研究,同时还能够帮助你深入理解高等数学的相关概念和理论。
确定论文研究范围和方法:根据论文题目和已有文献,确定论文的研究范围和方法,可以考虑使用具体的数学定理或方法来解决问题,或者进行数学建模、数值计算等实际应用研究。
开展研究和分析:根据确定的研究方向和方法,进行具体的数学分析、计算和证明等研究工作,需要使用逻辑清晰、严密的数学语言来表述。
撰写论文:根据论文规范,撰写高数论文,需要遵循科学的论文写作规范和语言规范,同时还需要注意语言表达、论据逻辑、结论的准确性等方面的问题。
总之,写好高数论文需要全面掌握高等数学的相关理论和方法,同时还需要具备严密的逻辑思维能力和科学的论文写作能力。如果你需要写高数论文,可以参考以上步骤,同时可以向导师或同学寻求帮助和意见。
随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。
一、高等数学在地方高等职业教育中遇到的问题及解决办法
(一)数学师资力量短缺,教师学历偏低
地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。
(二)学生对数学课重要性认识不够,学习热情不高
目前,在高职院校学生中普遍存在着“专业至上”的观念。他们片面地认为只要专业课学好了,其他的文化课无足轻重。所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。
(三)高等数学课程设置不合理,教学与实际应用脱节
由于高等职业教育的教学内容和教材体系不同,高职院校数学课程的安排与普通大学有明显的区别。它的课程设置应根据培训目标、教学计划等内容,合理安排教学方法和步骤。高职数学课程改革的目标应以培养高级技术应用型人才为建设目标,从教学内容和课程体系中择优选择,并围绕这一目标有层次有步骤地实施。比如,高职院校的数学课程设置,在统计、公共管理类的专业上,就应当凸显数学学科特点,强化概率论与数理统计等数学基础课程的教学;在涉及计算机类的高等数学课程设置时,就应该加强数学逻辑思维和离散数学的课堂教学,让学生认识到数学的重要性,从而缩短理论与实践的距离;在涉及到医学类的教学时,应开设“模糊数学”和“线性代数”两部分内容,其目的是在高职阶段让学生在基本掌握微积分知识的前提下,拓宽学生的数学视野,为今后相关的科学研究提供多样性的数学方法,同时培养学生缜密清晰的思维、严谨科学的方法和能力。
二、总结
高职教育是以培养学生应用能力为主的教育方式,所以在高职数学教学中应当强调以实际应用为主要目标,这既适应了数学教学改革的要求,也是今后的发展方向。课程改革既要侧重基础性、应用性,又要增强科学性和理论性;既要加强数学在实际当中的应用,又不应忽视数学作为独立学科的学科特色;既要把握“适度够用”原则,又要把握好它在高职教育中的重新地位,以做好数学课的学科建设工作。
一、网络教育高等数学的现状分析
1.学生方面。通过笔者多年来从事高等数学的网上教学工作来看,网络教育学院上的培养目标主要是面向成人在职人员,为社会培养更多的适用性、应用型人才。然而网络教育学生普遍数学基础较差,个别人甚至严重匿乏。包括有一部分学生没有参加过高考等高中阶段的学习,有一部分学生已参加工作多年早已将有关高等数学知识遗忘。面对这种情况,如果网络教育教师只是单纯地辅导高等数学知识,就会存在一部分学生由于基础差而跟不上高等数学的学习。另外厂部分学生不仅基础较差而且学习方法都很难适应高等数学的学习,再加上对网络教育学习环境不适应严重影响学习质量。
2.教师方面。根据网络教育的目前情况来看很多高校聘用的网络教育教师都是来自其他院校的兼职人员,他们很难把大部分精力用于网络教育高等数学的教学中。从长远发展看,网络教育学院应该拥有自己的专职教师队伍。有的高校聘用的大批高学历、高素质的教师队伍均为刚毕业的优秀人才。他们年龄较小掌习能力较强对工作充满极大热情。但由于他们从小受到传统教育观的影响,对网络教育的学生要求习惯同高校全日制统招生进行比较,而且教师队伍最初成立无历史借鉴周此缺乏一定的教学和实践经验。这就需要教师逐渐掌握网络教育学生的实际水平和个人要求充分利用网络教育的现代化教学水平遵循教学原则顺利实现高等数学的教学目的。
二、网络教育高等数学的教学初探
教学原则是有效进行教学必须遵循的基本要求。它既指导教师的教也指导学生的学应贯彻于教学过程的各个方面和始终。那么根据高等数学的教学特点,教学原则应贯彻以下几个方面:
1.科学性和思想性统一原则。网络教育学院的培养对象是成人在职人员,他们学习的侧重点偏向于跟自己职业相关的专业知识对高等数学等基础课缺乏重视肩个别学生会认为基础课无用,没有什么学习价值。这些都是学习态度不够端正掌习思想不够明确的表现。针对这种情况,可以通过网上教学向学生说明高等数学学习的重要性和必要性指出数学也是一种思想方法掌习数学的过程就是思维训练的过程。人类社会的进步与数学这门科学的广泛应用是分不开的。尤其到了现代现代数学正成为科技发展的强大动力同时也广泛和深入地渗透到各个领域。通过这些讲述河以提高学生的学习意识,为高等数学的学习奠定思想基础。另外还有很多学生学习的主动性很强但缺少科学合理的学习方法,即使花费很多的学习时间却没有达到良好的学习效果。这就需要教师加以引导通过网上教学同学生积极交流和讨论高等数学有益的学习方法,提高学生的学习能力。个人认为学习高等数学之前要对初等数学知识有一定的了解。如基本初等函数及其计算公式会在高等数学中再次重述常用的几何公式、不等式和数学归纳法会对微积分的学习有所帮助;方程的解法是学会微分方程的基础二项式定理、数列公式、因式分解公式是求有关无穷级数相关知识的基本方法等等。这些都是有益的学习方法经过实践认证得到了学生的充分肯定。
2.理论联系实际原则。传统高等数学的教学过于注重理论忽视概念产生的实际背景和数学方法的实际应用。网上教学就应该在淡化理论的同时,加深对数学概念的理解和应用。高等数学的概念可以从学生熟悉的生活实例或与专业相关联的实例引出从而激发学生的学习兴趣。如讲解导数概念时河以通过求变速直线运动瞬时速度的过程归纳出求解方法步骤撇开具体意义得到“导数(变化率)”的概念。还可根据不同专业的学生同时介绍与变化率有关的问题。适用于机电类专业学生河介绍圆周运动的角速度是转角对时间的导数、非恒定电流的电流强度是电量对于时间的导数等变化率问题适用于经济类专业学生河介绍产品总产量对时间的导数就是总产量的变化率、产品总成本对产量的导数就是产品总成本的变化率(边际成本)等等。在引用实例讲述知识后还可以引入典型例题。通过实际问题引出数学知识,再反过来论证数学知识在生活实际中应用这不仅提高了学生学习的兴趣减少了数学学习的枯燥性同时也给学生建立了一种数学建模的思想使学生所学的理论知识能够进一步联系生产实际并为其他学科服务。
大学数学论文范文
导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。
论文题目: 大学代数知识在互联网络中的应用
摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。
关键词: 代数;对称;自同构
一、引言与基本概念
《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。
互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。
下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。
设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:
e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。
●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。
●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。
●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。
一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。
二、三类网络的对称性
先来看n维超立方体网络的对称性。
定理一:n维超立方体网络Qn是顶点和边对称的。
证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。
下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。
利用和定理一相似的办法,我们进一步可以得到如下定理。
定理二:n维折叠立方体网络FQn是顶点和边对称的。
最后,来决定n维交错群图网络的对称性。
定理三:n维交错群图网络AGn是顶点和边对称的。
证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。
下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。
因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。
至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:
1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?
2、完全决定这些网络的全自同构群。
实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。
三、小结
大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。
结束语
本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。
【摘要】
随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。
【关键词】
数学史;大学数学教育;作用
一、引言
数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:
第一,数学史研究方法论的相关问题;
第二,数学的发展史;
第三,数学史各个分科的历史;
第四,从国别、民族、区域的角度进行比较研究;
第五,不同时期的断代史;
第六、数学内在思想的流变与发展历史;
第七,数学家的相关传记;
第八,数学史研究之中的文献;
第九,数学教育史;
第十,数学在发展之中与其他学科之间的关系。
二、数学史是在大学数学教学之中的作用
数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。
笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。
从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。
再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。
三、数学史在大学数学教学之中的应用
第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。
第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。
作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。
一、高等数学教学的现状
(一)教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二)教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
(一)在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二)讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三)组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
大表哥高等代数资源好不好大表哥高等代数资源非常不错,它提供了大量的高等代数资源,包括课程讲义、习题集、论文和书籍等。它的资源都是经过精心挑选的,可以帮助学生们学习高等代数。同时,它还提供了一些高等代数课程的视频讲解,可以更好地帮助学生理解这门学科。
行列式、矩阵、矩阵的进一步讨论、多项式与矩阵等章节对中学数学解方程有很重要的作用!可以拓展学生的视野,使他们快乐的解枯燥无味的方程组.向量空间、线性方程组、线性变换欧式空间等也主要对解方程有重要作业!
大表哥高等代数资源还是不错的,有很多课程视频、习题和讲义,可以帮助学生更好地理解高等代数的概念和解决问题。
课程论文选题参考1.《高等代数》课程学习感悟2.《高等代数》中的。。。。思想3.《高等代数》中的。。。。方法4.高等代数与解析几何的关联性5.高等代数有关理论的等价命题6.高等代数有关理论的几何描述7.高等代数有关理论的应用实例8.高等代数知识在有关课程学习中的应用9.数学软件在高等代数学习中的应用10.应用高等代数知识的数学建模案例11.高等代数理论在金融中的应用12.反例在高等代数中的应用13.行列式理论的应用性研究14.一些特殊行列式的应用15.行列式计算方法综述16.范德蒙行列式的一些应用17.线性方程组的应用;18.线性方程组的推广——从向量到矩阵19.关于向量组的极大无关组20.向量组线性相关与线性无关的判别方法21.线性方程组求解方法综述 22.求解线性方程组的直接法与迭代法23.向量的应用24.矩阵多项式的性质及应用25.矩阵可逆的若干判别方法26.矩阵秩的不等式的讨论(应用)27.关于矩阵的伴随矩阵28.矩阵运算在经济中的应用29.关于分块矩阵30.分块矩阵的初等变换及应用31.矩阵初等变换及应用32.矩阵变换的几何特征33.二次型正定性及应用34.二次型的化简及应用35.化二次型为标准型的方法36.矩阵对角化的应用37.矩阵标准形的思想及应用38.矩阵在各种变换下的不变量及其应用39.线性变换的应用40.特征值与特征向量的应用41.关于线性变换的若干问题42.关于欧氏空间的若干问题43.矩阵等价、合同、相似的关联性及应用44.线性变换的命题与矩阵命题的相互转换问题45.线性空间与欧氏空间46.初等行变换在向量空间Pn中的应用47.哈密顿-凯莱定理及其应用48.施密特正交化方法的几何意义及其应用49.不变子空间与若当标准型之间的关系50.多项式不可约的判别方法及应用51.二次型的矩阵性质与应用52.分块矩阵及其应用53.欧氏空间中的正交变换及其几何应用54.对称矩阵的性质与应用55.求两个子空间的交与和的维数和一个基的方法56.关于n维欧氏空间子空间的正交补57.求若当标准形的几种方法58.相似矩阵的若干应用59.矩阵相似的若干判定方法60.正交矩阵的若干性质61.实对称矩阵正定性的若干等价条件62.欧氏空间中正交问题的探讨63.矩阵特征根及其在解题中的应用64.矩阵的特征值与特征向量的应用65.行列式在代数与几何中的简单应用66.欧氏空间内积不等式的应用67.求标准正交基的若干方法研究68.高等代数理论在经济学中的应用69.矩阵中的最小二乘法70.常见线性空间与欧式空间的基与标准正交基的求法
数学论文分两种,一种称为纯数学论文,另一种为数学教学论文。很多从事数学教育工作者很难拥有大量时间从事纯数学研究,而职称聘任制又需要公开发表论文,这样一来很多人将自己工作经验加以总结转而写一些数学教研论文。 数学教研论文是对课程论,教学法,教育思想,教材及教育对象心理加以研究。但无论哪一种数学论文都要遵从论文格式及写作规律。1撰写数学论文应具有原则创新性作为发表研究结果的一种文体,应反映作者本人所提供的新的事实,新的方法,新的见解。论文选题不新颖,实验没有值的报道的成果,即使有高超写作技巧,也不可能妙笔生花,硬写出新东西来。基础性研究最忌低水平重复,如受试对象,处理因素,观测指标,结果与前人雷同,毫无新意,这样论文不值得发表。科学性科技论文的生命在于它的科学性。没有科学性论文毫无价值,而且可能把别人引入歧途,造成有害结果。撰写论文应具备:(1)反映事实的真实性;(2)选题材料的客观性;(3)分析判定的合理性;(4)语言表达的准确性。规范性规范性是论文在表现形式上的重要特点。科技论文已形成一种相对固定的论文格式,大体上由文题,一般不超过20字;摘要(应用的方法,得到的结果,具有意义等);索引关键词;引言;研究方法,讨论,结果等部分组成。这种规范化的程序是无数科学家经验总结。它的优越性在于:(1)符合认识规律;(2)简洁明快,较少篇幅容纳较多信息;(3)方便读者阅读。2撰写数学论文忌讳大题小作论文不是书,如论文题目选的过大,那么泛论,浅论就在所难免。数学教育论文基本特征:有数学内容,讲数学教育问题,具有论文形态,不贪大,不求空,具有新见解。这样作者应将课题选的小一些,写出特色。关门写稿一本学术杂志中的论文,单独拿出来看自然是独立完整的。就杂志的整个体系来看就会有一些联系,它们或是构成一个小专题或是使讨论不断深入。这样作者就要对你准备投稿刊物有所了解,以免无的放矢。不能缺乏事实凭空捏造,夸大结论。首先应该知道别人做了些什么,写了些什么,避免在自己的 论文中重复。同时可以借鉴别人成果,在他人研究成果基础上进一步研究,避免做无用功。形式思维混乱科学发展到今天,科技论文的基本格式在世界范围内已趋向统一。论文要求规范化,标准化。有的论文东拼西抄,前后矛盾,这样的论文很难教人读懂。所以撰写论文应遵守形式逻辑基本规律,正确使用逻辑推理方法尤为重要。3关于数学论文选题 数学论文选题是找“热门”还是“冷门”?“热门”课题从事研究的人员众多,发展迅速。如果作者所在单位基础雄厚,在这个领域占有相当地位,当然要从这一领域深入研究或向相关领域扩展。如果自己在这方面基础差,起步晚又没有找到新的突破,就不宜跟在别人后面搞低水平重复。选择“冷门”,知识的空白处及学科交叉点为研究目标为较好的选择。无论选“冷门”还是“热门”,选题应遵循以下原则:(1)需要性 选题应从社会需要和科学发展的需要出发。(2)创新性 选题应是国内外还没有人研究过或是没有充分研究过的问题。(3)科学性 选题应有最基本的科学事实作依据。(4)可行性 选题应充分考虑从事研究的主客观条件,研究方案切实可行。4关于数学论文文风语言表达确切从选词,造句,段落,篇章,标点符号都应正确无误。语言表达清晰简洁语句通顺,脉络清楚,行文流畅,语言简洁。语言朴实语言朴实无华是科技论文本色。对于科学问题阐述无须华丽词藻也不必夸张修饰。总之撰写论文应有感而写,有为而写,有目的而写。借鉴他人成果,博采众长,涉足实践,提炼新意,在你的论文中拿出你的真实感受,不简单重复别人的观点,这样的论文才可能发表,并为广大读者接受。
为了要求题目新颖,现在的中学数学中很多都是取自大学的某些结论。与大学不同的是大学要做的是完整,严谨的论证这些结论,而中学的题目是证明结论中部分简单的结论或者给出一些半成的结论去证明。 你可以去查查近些年的新颖高考题,看看哪些是取自高等代数的某些结论,整理,总结。总的来说你的你的这个论文题目还是可以去写写自己的东西的。
呵呵```我高数最烂了帮不了你
这个问题也不太难啊,你可以向你的学长和学姐们请教一下,或者向你的老师问问
线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 九章算术线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。
数码相机里变焦算不算 图像的旋转算不算 模式识别算不算
陈怀琛与龚杰民两位教授所编写的《线性代数实践与MATLAB入门》由科学计算软件MATLAB入门与线性代数实践两篇共九章所组成。书末有一个附录,对美国国家科学基金项目——“用软件工具增强线性代数教学(ATLAST)”进行了简单的介绍。线性代数是围绕求解线性方程组而发展起来的一门学问,它的基本概念有向量、行列式、矩阵、线性变换、特征值和线性空间等,解析几何是线性方程组的几何背景。随着线性代数的发展,人们发现,使用它的基本概念,许多学科和许多数学分支中的问题有了几何意义,或者几何意义更加丰富凸显,不少深入而复杂的题目可以用简洁的形式来表述;还有,借助于符号的可比性,常常能够启发人们发现有效的求解方法,即算法。在历史上,人们曾经研究过这样一个题目:如果只用直尺,不用圆规,能够解决哪些作图题?今天,在这里,也设想一个问题:如果不准使用线性代数的概念和理论,许多学科将会变得如何的支离破碎,达不到今日的深度。所以我们说不仅理工科专业,甚至大学的几乎所有专业,线性代数是一门必修课,是一门基础课。线性代数由理论和计算两部分所组成。20世纪50年代我国在理工科各专业开设线性代数课程时,以介绍理论部分为主。那时,人们已经认识到,线性代数有广泛的应用,但教材中往往限于讲授在二次型中的应用。这是因为当时计算机和编制相关程序的工作离我国的实际情况甚远。虽然已经认识到计算机能够快速高效地求解线性代数中的各种数字题目,但在教材中只能淡淡地指出这个方向而已。改革开放以来,虽然提倡直接使用国外的教材(也就是说,采用国外的教学大纲),注意计算机的应用,提倡开设使用科学计算软件的数学实验课程,开设某些科学计算软件的师资培训班等,但是除了使用国外教材外,还远没有改变各个课程,线性代数课依然是一片“宁静的沃土”。现在的科学计算软件已经发展到使用非常方便、功能异常强大,一经使用便令人惊叹不已的地步,科学计算软件已经成为科学工作者的高级计算器。实验室和编写程序的良好的环境,加上我国经济迅速发展,计算机广泛普及,让大学各个专业的学生全都学会使用这些软件应该是刻不容缓的事情。本书介绍了大量的实际应用题目,把科学计算软件和线性代数密切结合,充分利用软件的可视化功能产生的图形和动画补充了现行教材的不足。它明显地接受了美国ATLAST计划所产生的先进成果影响,是一本有特色的配套教材;因此,它的出版无疑是非常及时的。值得指出的是,比照美国的实践,我国原有的教材内容和教学水平应该说是落后了十几年。正在或者已经学过线性代数的人员(大学生,研究生,各方工程技术人员),定能从学习本书而加深理解线性代数和软件MATLAB这两门学问的知识以及它们之间联系的重要性,并从大量应用实际问题拓宽思路。本书每章末有足够练习题,读者可以从上机做实验中培养技能和乐趣,提高学习线性代数的积极性。此外,本书还可成为使用软件MATLAB解决有关线性代数问题的人员的上机参考手册。我赞成线性代数理论和实践两部分由同一个教师施教,并相信讲授线性代数的教师对于本书中的各个方面的内容,例如令人深思的学术观点,有趣的历史资料,众多有用的应用题,附录中介绍的美国学者的敬业精神、集体主义和工作经验等,都会产生极大的兴趣。使用本书时可能发生的困难有两点:一是在增加不多的学时中,如何组织这个实验任务。按本书参考文献[1],美国实施这门课程总共用35学时(他们也喊学时不够),可见理论和实际的结合可能产生事半功倍的效果,这当然有一个探索的过程。二是少数教师可能对使用软件MATLAB进行教学感到困难。我在过去二十多年的教学生涯中,曾经几次随班听课,甚至随班参加考试过高级算法语言Pascal、C。虽然多次企盼自己能够编写某些程序,可是事情就那么困难,几个回合败下阵来,再加工作忙碌,无奈放弃,而后畏难情绪迟迟不能消去。近几年,为科研工作所迫,硬着头皮,熬!摸索三个月,算是开始能为我编制程序服务了。科学计算软件和数学的关系非常密切。有人说大同小异。殊不知,许多时候,所编程序之所以通不过,错误就出在那些小异上。毕竟是要进入一个崭新的学科,我们当然要认真学习;它既是一门科学,当然一定能够学会,而且那么多的人已经学会了。今天的科学计算软件和算法语言已经大不一样了。打一个不那么恰当的比喻:改革开放初期,曾经流行过一本英语教材,叫《英语会话900句》。它分成若干个部分,包含各个场合所常用的句子,问路、学习、买东西,还有开会等。现在流行的科学计算软件也是这么一种模式,它们都有自己的“900句”。由若干个函数库所组成,分别为各个任务提供种种函数和命令。当您拿起一个软件,首先按照教材中的例题,边读边在计算机上试算一些最基本的语句,以初步了解该软件的功能。当您学习线性代数时,无需全面熟悉其他各个分支的语句。随着学习的进程,每次学习四、五个语句,就能让计算机开始为您服务。当您掌握若干个语句之后,发现某些规律,学习不仅更加容易,而且延展到别的问题往往也能沿着同一思路得到解决。当您找不到现成的语句解决所提的题目,则需要组合若干基本语句来完成。为了我们的教学工作,也为了今后自身的科研工作,花一定时间来逐步掌握一两个科学计算软件,让它们成为自己的一个终生的学术助手和伙伴,无论如何都是值得的。我也是一名数学老师,即便在“熬”的日子里,也不断地从中得到许多的乐趣,现在,在我写书,算题,科研等工作的过程中,面对屏幕显示的结果,不时自言自语地惊叹说:“太好了!”深深感激科学计算软件给我的帮助。本书作者陈怀琛教授是计算机科学、机械、电子和控制等学科的专家。具有丰富的教学实践经验和教学管理经验,对我国21世纪大学工科专业学生如何培养的问题,有许多很有价值的见解。作者对当前国内外的工科线性代数课程的施教情况十分关心。龚杰民教授是软件专家,二十年前就出版了关于C语言的教材。他们不仅亲自执笔编写这本教材,还正面提出了具体改革的见解。听说西安电子科技大学领导已经决定教改立项,将由陈教授亲自负责使用本书书稿,先对该校全体线性代数教师组织培训研讨班,再点面结合地对部分一年级大学生用本教材进行施教,有系统地开展试验,实在是一件大好的事情。祝这项工作成功!秦裕瑗2005年 中秋节于武汉科技大学前 言线性代数的重要性现在比过去任何时候都更加令人刮目相看。在20世纪后半期,线性代数的应用继续扩大到了越来越多的新领域。它在数学课程中的角色已经上升到可与微积分相匹敌。线性代数的这种发展首先是由于人们所研究问题的规模愈来愈大,愈来愈复杂,牵涉的变量成百上千,这样复杂的问题,目前只能把变量之间的关系简化为线性才有可能求解。所以大规模的线性代数问题就成为热门的数学工具。除了上述的“需求牵引”之外,线性代数发展的另一个动力是“技术推动”,那就是计算机技术的推动。几十年来计算机硬软件的飞速发展给线性代数的研究和教学提供了前所未有的空间和机遇,线性代数课程教学上的许多新面貌、新方法都来自于计算机技术的新发展。计算机如何推动了线性代数的应用线性代数是一门应用性很强,但又在理论上进行了高度抽象的数学学科。一方面,中学生就学过了二元一次代数方程的解法,代入法和消去法大概每个人都会记忆一辈子,这就是最简单的线性代数。当把方程的阶次提高到了三元一次以上时,它不但要求较高级的抽象思维能力,而且也要求用十分烦琐的计算步骤才能解决问题。对于数学家,他们重视前者,这无可厚非;但对于大多数工科学生,他们更需要的是能应用它的理论,指导完成实际的计算。事实上,线性代数的那种单调、机械、枯燥的运算,只是由于计算机的出现才赋予了在应用方面的生命力。举一个典型的例子,Wassily Leontief教授把美国的经济用500个变量的500个线性方程来描述。1949年夏,由于当时大学的计算机(Mark II)能力所限,Leontief把系统简化为42个变量的42个线性方程,编程并用穿孔卡输入程序和数据就用了几个月,最后计算机运行了56小时才求出了解。当Leontief在1973年成为诺贝尔经济学奖得主时,这项工作以“第一个有实际意义的利用计算机求解大规模数学模型”列为其得奖的理由之一。他的成就和获奖成为各国科学界用线性代数建立工程和经济模型的巨大动力,推动了这门科学的迅速发展。可以看出,离开了计算机,线性代数在工程中就很难有用武之地。这也反映在美国的大学工科教育中,表现出对这门课的日益重视;课堂上固然着重讲线性代数理论,但同时给学生加上大作业或课程设计等实践环节。大学中的大型计算机很大程度上也支持了这门课的实践环节,使用的软件主要是FORTRAN或COBOL语言。线性代数的教学不能离开计算机是美国工科教育界的共识。20世纪80年代,出现了个人计算机并迅速普及。新的硬件也带动了新的软件,出现了新颖的科学计算语言,也称为数学软件,因为它具有高效、可视化和推理能力等特点,故在大学教育和科学研究中,迅速地取代了FORTRAN和BASIC语言。这类软件中商品化的有MATLAB、MATHEMATICA、MATHCAD、MAPLE等,它们的功能大同小异,但各有所长。目前在美国大学工科中,流行最广的是MATLAB语言。MATLAB是“矩阵实验室”(Matrix Laboratory)的缩写,它是一种以矩阵运算为基础的交互式程序语言,当然它特别适合于线性代数,并能更广泛地适应科学和工程计算及绘图的需求。与其他计算机语言相比,MATLAB的特点是简捷和智能化,适应科技专业人员的思维方式和书写习惯,使得编程和调试效率大大提高。它用解释方式工作,键入程序立即得出结果,人机交互性能好,易于调试并为科技人员所乐于接受。特别是它可适应多种平台,并且随计算机硬软件的更新及时升级,因此MATLAB语言在国外的大学工学院中,特别是数值计算用得最频繁的电子信息类学科中,已成为每个学生必须掌握的工具。它大大提高了课程教学、解题作业、分析研究的效率。我们学习掌握MATLAB,不仅可以直接帮助学习线性代数,而且也可以说是在科学计算工具上与国际接轨。国内外线性代数教学的差距从美国在线性代数教学中使用计算机的历史可以看出,个人计算机和科学计算软件的普及迅速推动了这门课程的教学方法改善,使得计算机的使用不限于大作业,也可以用于日常课程教学。1990年,美国成立了线性代数课程研究组(Linear Algebra Curiculum Study Group-LACSG),然后,在国家科学基金会(NSF)资助下组织了数学和工科专家的一次会议,提出了线性代数课程改革的五点建议,简称为LACSG Recommendations(见参考文献[3]),其要点是:(1)首先要满足非数学专业面向应用的需要;(2)要以矩阵运算为基础;(3)要从学生的水平和需求出发;(4)要采用最新的软件工具;(5)对想要数学学位的学生应另开相关课程以提高其抽象性。1992年美国国家科学基金会(NSF)资助了一个ATLAST计划,ATLAST是Augment The Teaching of Linear Algebra through the Use of Software Tools(用软件工具增强线性代数教学)的缩写。该计划在1992年到1997年六个暑期组织了十八个教师研讨班。共有来自各大学的425名教师参加。参加者接受了使用MATLAB软件包的训练,详情可参阅附录B。在使用MATLAB方面,从他们的教材发展来看,在1995年算起的头几年,主要反映在采用MATLAB的习题并介绍MATLAB入门,见参考文献[7]~[9]。到近十年就开始把MATLAB掺合到线性代数的各章中去,主要是对有些理论提供计算机的演示和验证,反映在参考文献[1]~[5]中。当然线性代数的整个理论体系,并不受使用计算机而有所改变。在我国,线性代数课在理工科本科教学的加强开始于改革开放以后,是学习国外先进经验的结晶。当时大学中还没有计算机,虽然利用世行贷款,花了不少钱买了一些大型计算机,但线性代数课并没有用。因为课程内容不作改革,有计算机也用不成,当前的情况就足以为证。如果说以前是出于无奈,那么在个人计算机已经如此普及的情况下,还不用计算机,那就是固步自封了。所以线性代数课中不谈计算机、教线性代数的老师几乎不使用计算机,已经成为我国线性代数教育界与发达国家的明显差距。于是我国的线性代数课程出现了不尽如人意的状况——理论抽象愈来愈深,应用和实际计算很少结合,它成了一门学生感到抽象、冗繁而枯燥的课程。由于缺乏感性的、实践的基础和应用的推动,后续课程又往往怕烦而避开矩阵方程,教出来的学生当然是理论上害怕矩阵、实践中不会用矩阵算题的。可以做一个测试:在学生学完线性代数课以后,让他们解一个四元一次代数方程,看他们用什么工具解?要多少时间?做对的有多少比例?按现在的教材和教法,绝大多数学生解这个题用的完全是中学里学的方法:用计算器一个数一个数地算乘法和加法,谁也不会用线性代数去解。而且计算的效率和正确率极低。要知道,许多后续课程都需要用线性代数,比这个四元一次方程要复杂得多,解这么简单的题目还这样的少慢差费,大学工科后续课程怎么能用线性代数呢?又怎么谈得上为工科教育打好数学基础呢?如果在课程中增加4~6学时的实践内容,情况就会完全不同。像上面的测试题,用计算机解,一分钟就可解决问题,正确率100%。对复杂的问题,提高效率更为明显。通过实践不仅方便了计算,而且对理论和概念的理解也会加深,并节省很多时间。本来,线性代数的理论和实践是应该融合并在一起实施的,因为这门课的特点就应该理论与实际相结合。不过现在在我国实现这个任务似乎还相当艰巨,首先要从上到下达成共识,然后要修改教学计划,接着还要编写新的教材和培养大批合格的师资。本书的内容安排在我国,每年学习线性代数课程的大学生大概有100万人之多,教这门课的老师应该有上万人。要推动“用计算机提高线性代数教学水平”的事业,不是一两年就能做到的,美国还花了六年时间呢!现在我们的线性代数教学水平比美国已经落后了十多年,所以要奋起直追。我的建议是分两步走。第一步是单独开设“线性代数实践课”,与线性代数同步实施。其好处是暂时不影响原来教师们的备课和教材,并且让少量的实践领头老师能集中精力,给更多的学生讲课,也培训现有的老师;这些老师也同时承担实践课的辅导任务,这有利于提高他们的计算机使用水平,为以后全面承担这门课程创造条件。第二步是把实践课与理论课合并实施,除了师资外,最主要的是编一本把理论与实践紧密结合的好教材。在我们的方案中,实践课的计划是一个学分,按16学时计算。考虑到我国线性代数课程大都放在大学一年级,此前大一新生未必学过MATLAB,而且以线性代数作为学习MATLAB的切入点有很大的好处,所以把线性代数实践与MATLAB入门合成一门课实施比较合适。初步安排讲课约10~12学时,其中介绍MATLAB语言入门约4学时,讲解线性代数实践原理和程序6~8学时,上机时间预计10~12小时。我们根据这样一个思路编写了这本教材。这本书虽然有实践的部分,但它是从实际应用的角度对线性代数的概念进行了整体的剖析和归纳,并与工程实践有大量的联系,其范围超出了一般的数学实验,故取名为“线性代数实践”。本教材中MATLAB入门部分基本上就是参考文献[4]、[5]两本书中的语言篇,对于线性代数实践而言,主要用到的是第2章和第4章节;虽然书的篇幅多了一些,但这样可以维持MATLAB基本函数的完整性,使这本书兼有MATLAB的手册功能,同时也便于利用本书作者的一套四小时讲课光盘,让老师不必花时间为MATLAB备课。实验课安排的时间最好在线性代数开课一个月以后,这样衔接比较好。这门课程可促进学生用计算机的经常化,故不要速战速决,以拉开到八周以上为好。线性代数部分则是参考国外2000年后新出版的教材(见参考文献[1]~[4])和2003年出版的ATLAST Manual(见参考文献[7])等资料编写的,其中也利用了作者在多本著作中用矩阵建模和解决难题的实例(见参考文献[10]~[12])。为了尽量加强与线性代数理论部分的衔接,能帮助学生既避免烦琐刻板的四则运算,又能真正体会到线性代数中的推理思路,我们设计了一些简单的MATLAB子程序,来完成高斯消元、行阶梯简化、行交换等任务。为了加强线性代数的几何形象教学,我们又设计了一些快速简便绘制直线和平面图形的函数;另外,还采用了ATLAST Manual提供的某些矩阵生成子程序和演示程序。因为全国各大学的差别很大,例如专业不同、上课的学期不同(大一上、大一下、大二上都有),造成学生的基础不同,所以书中的实例就不得不取宽一些,并尽量避开微积分。实例并不需要全讲,有的可留给后续课程中让学生自学,书中的小字部分在初学时也可跳过。我们认为,工科大学生能用计算机和MATLAB解线性代数方程的问题,那么这门实践课的主要目标可以说基本达到了。本书由陈怀琛负责总的策划与编写,龚杰民担任国外教材资料的翻译及部分习题的选编。由于我们还没见过同类书名的书籍和教材,写书时很难找到可以直接参考的体系,这个新生事物,还缺乏实践经验,再加上要赶上2005级部分新生进行试点,编写时间紧迫。我们的想法和做法,肯定有很多不当之处,欢迎批评指正。更希望各方面的专家和读者通过自己的教学实践向我们提出改进的建议。我们的电子邮件地址为致谢本书荣幸地由武汉科技大学秦裕瑗教授审阅,作为一位在欧美7国14校进行过讲学、有多部专著的我国数学界前辈,他不但博学,而且其严肃认真的治学态度和不断接受新事物的进取精神给我们以很大的激励。在年逾80之际,他仍在孜孜不倦地学习科学计算软件(Mathematica和MATLAB)并把它用到自己的著作《运筹学简明教程》中,实在令人肃然起敬。与此相反,我们看到有些年纪不过四五十岁的中年教师,已经不想学计算机了。在这里,我们特别希望广大的线性代数课老师,能以秦教授为榜样,把自己用科学计算语言武装起来,尽快把我国的线性代数课程用计算机武装起来,创造一个崭新的教学局面。作 者2005-8-28于西安电子科技大学