函数图像的教学研究论文
摘要: 数形结合的思想是数学中一种重要的思想方法,而在函数的教学中把刻画数量关系的数和具体直观的图形有机结合,用代数的语言揭示几何要素及其关系,同时将几何问题转化为代数问题,扬数之长,取数之优,使抽象思维与形象思维珠联璧合,不但可以提高学生对图形世界的直观感知而且可以使学生更好地理解函数,更加快捷准确的求解答案。
关键词: 函数图像 研究
从以往的教学经验来看,学习函数这部分内容要求学生进行数与形相结合的运算,即要求使符号语言、图形语言结合起来,使抽象思维和形象思维结合起来。学生会遇到很多需要“数”与“形”并举或转换的情形。因此,函数的学习是困扰很多学生的难点。作为教师,我们面临的突出问题是:如何在教学中针对学生的思维特点,制定有效的教学策略高质量地完成函数教学任务。笔者从一个数学教师的角度出发浅谈一下自己对函数教学方面的研究以及心得体会。
1加强学生对函数概念的理解
初中课本上运用“变量说”将函数描述为:设在一个变化过程中有两个变量x与y,如果变量y随着x的变化而变化,并对于x在某个变化范围内的每一个值,按照某个对应规则,都有唯一确定的y值和它对应,那么y就是x的函数,x称为自变量,x的取值范围称为函数的定义域,和x的值对应的y值称为函数值,函数值的全体称为函数的值域。高中阶段,运用“对应说”函数被定义为:设A,B是两个非空的数集,如果按某种对应法则f对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫做从A到B的一个函数记作:y=f(x),x∈A。
以上两种函数的定义,各有各的不同特点。“变量说”是最朴素、最根本的,便于和实际相结合,初学者更容易接受。“对应说”抽象化的`程度较高,对于研究函数的精细性质具有一定的优势。适合在高中阶段介绍给学生。
讲述函数概念时,我们需要注意以下细节问题。
1。1实现由静到动的转变
学生由于长期在常量范围内计算、思维,因此以为变量一直是变,常量永远是不变。在引入函数概念之前,需要完成从常量到变量的转变,这是函数教学的一个重点。
例如“一架飞机每小时飞行1000千米,问5小时此架飞机飞行的距离是多少?”小学生只能给出正确的答案,但很少能够注意到路程S和时间t的关系。对于初中生我们要能引导他得出S=1000t的函数公式。在高中的实际教学中,我们可以把S表示为数轴上的一个定点,而把t看成是一个动点。取自变量t的一系列特定值,列出相应的另一个变量S(t)的对应值,在坐标系上描绘出这些点,这样会使学生能够比较容易地感受到变量的真实意义。
1。2突出变量之间的依赖关系
自变量和因变量之间的依赖关系是函数。通常表示为y=f(x),f表示x和y之间的对应关系。对于定义域内的任意一个x,通过对应关系f,对应唯一的一个y值。我们可以例举生活中的例子,让学生找出自变量x,然后再找出依赖此变量x的变化而变化的因变量y,最后设法找出它们之间的对应关系。从实际事例中寻找函数关系,构造事物变化过程中的具体函数关系,有利于加强学生对函数的理解。
2加强学生对函数图像的应用
在函数的教学中,我们不但要让学生深刻的理解函数的概念。还要不断帮助学生归纳各种初等函数的图形性质,并且教会学生快速画出初等函数的图形,这样在其今后的解题中将会发挥重大的作用。函数一般分为一次函数、二次函数、指数函数、对数函数和幂函数,下面以二次函数为例,来谈一下函数教学的研究体会。
在教学中,我们要引导学生对函数的图像特征进行归纳总结。可以先介绍特殊的二次函数的表达式y=ax2(a≠0),通过赋予x特殊的数值来对其图像进行描绘,进而归纳图像特征:图像形状为抛物线;顶点为原点;对称轴为y轴;a决定其开口方向,a>0时开口向上,a<0时开口向下。进而通过将y=ax2(a≠0)的图像向上下左右平移,引出二次函数的一般表达式y=ax2+bx+c(a≠0),并将其配方为y=a(x+b a="">0时开口向上,a<0时开口向下;(2)函数的对称轴为x=—b c="">0时,图像与y轴交在正半轴,c<0,图像与y轴交在负半轴,c=0,图像与y轴交在原点;(5)△=b2—4ac决定图像与x轴的交点个数,△>0时,图像与x轴有两个交点,△<0时,图像与x轴无交点,△=0时,图像与x轴无交点。
掌握了函数的基本特征后,学生就能对任一个二次函数进行绘制了,进而在一些有关函数的解题过程中就可以通过数形结合进行求解,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其尤为重要,因此我们要引导学生加强对函数图形的掌握,培养数形结合的这种思想意识,做到胸中有图,见数想图,以开拓自己的思维视野。
参考文献
[1]吴志鹃。二次函数图像的教学设计[J]。希望月刊(上半月),2007(11):108。
[2]梁小瑜。加强函数图像教学,衔接初高中数学教学[J]。师道·教研,2010(6):27~28。
[3]付尚英。浅谈利用函数的图像特征解题[J]。金色年华(教学参考),2010(12):113。
浅谈初中函数教学方法论文
【摘要】 在初中数学中,二次函数占据了很大的比重.二次函数对学生来说既是难点又是重点.教学过程中的难点是学生对二次函数的很多概念并不理解,另外解题过程中出现的各种问题也会影响学生学习的积极性.针对教学中的这些问题,本文对二次函数的定义重新做了系统的注释,同时对教学过程中比较适合初中学生学习的教学方法进行讨论.
【关键词】 初中数学;二次函数;教学策略
初中数学在中考中占据了很大的比重,也是学生学习过程中的很重要的基础学科,在日常生活中,数学的运用也会带来很多的好处.二次函数的学习,不仅可以提升学生对数字的敏感度,也可以提升学生的逻辑思维,改善学生对于学习的态度以及方法,进而提高学习成绩.所以,要切实改进二次函数的教学方法.
一、二次函数的概念
二次函数的概念是一个“形式化”概念,在教学时教师不能直接给出概念,而是把教学重点放在二次函数概念的形成过程上.因此,我采用了几个问题情境将学生一步步引入到概念中来.
情境一:一粒石子投入到水中,激起的波纹不断向外扩展,扩大后的圆面积y与半径x有何关系?
情境二:用16米长的篱笆围成长方形的生物园饲养小兔.(1)如果长方形的长为y米、宽为x米,那么y和x之间有何关系?(2)如果长方形的面积为y平方米、宽为x米,那么y和x之间有何关系?
情境三:运动员进行5千米的比赛,甲每小时走x千米,乙比甲每小时多走1千米,比赛结束甲比乙多用y小时,则y和x之间的关系式是什么?
情境四:要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽米,那么总费用y为多少元?
以上的问题情境,都是函数的浓缩问题,尤其是最后两个问题就是从实际问题中找到两个变量,确定函数解析式,为形成二次函数概念做准备.所以,在二次函数的教学中,教师应该就二次函数的基础概念向学生进行详尽的阐述,使得学生对二次函数概念的理解达到较为深刻的层次.
二、二次函数的教学活动讨论
(一)课堂教学多样化
在实际教学中,单一的课堂会令学生的学习活动显露疲态,而多样化的课堂教学会提升学生的学习兴趣,同时加强学生对于知识点的掌握程度,尤其是对二次函数进行的教学活动,本来就需要学生有着很大的兴趣,不断地提出心中的疑惑,并且在教师的指导下展开验证并进行发散性的思考.所以,教师更应该在实际教学中不断地进行改进.比如,在学习二次函数的通式和其他变形形式时,可以就顶点式y=a(x+m)2+n与通式y=mx2+nx+c间的异同点展开教学.两种形式除了外在上的不同,在解题思路上也有着很大的差异.可以就二者的恒等变形进行推演,帮助学生更好地学习二次函数.
(二)数形结合,在图像中发现函数的规律
相比普通函数,二次函数的图像变化更为复杂.这里用顶点式作为例子,不同参数的变化都会对二次函数的图像产生很大的影响.而随着教学活动的日益繁重,初中数学教师现在很难有时间以及精力有机会领学生绘制二次函数的图像.这就使得学生很难对二次函数进行认真的学习,很难理解二次函数和其坐标之间的对应关系.所以,初中数学教学中二次函数图像的绘制是很有用的.同时,由于课时有限,为了保障教学质量,教师应使用坐标纸来带领学生进行图像的绘制,充分保障教学质量,并保障学生也可以熟练地画出相应二次函数的图像.比如,在教学活动中,教师可以先针对y=3x2,y=3x2+5,y=3x2-5,这三个二次函数的图像进行绘制,引导学生观察三个图像之间的位置变化,思考变化的原因.而后,带领学生绘制y=-x2,y=-(x-5)2,y=-(x+5)2的图像,然后让学生观察图像的变化,并找出规律.最后,引导学生对找到的规律进行归纳总结,使得学生做到数形结合,增强这方面的`意识,加强学生对于二次函数图像的认识,进而增加对二次函数性质的理解.
(三)激发学生兴趣,提高学习效率
相比其他学科的学习,数学学科的学习,尤其是二次函数的学习,是十分枯燥、抽象的.即使在进行图像绘制时,也需要大量的计算,这些机械性的学习都使得学生对数学学习、二次函数的学习提不起兴趣.为提高学生的学习兴趣,教师要主动进行趣味性的教学,如,利用现在日益普及的网络系统,借助多媒体设备进行教学,通过视频、图片进行趣味性教学.比如,通过FLASH动画技术来展现参数不同时图像的变化情况,使得学生对于二次函数的内在含义的掌握更加熟练.这些活动会使学生对二次函数的兴趣有着极大的改善.若教师在进行教学活动中发现学生已经有了厌学心理,要根据学生的实际情况,适当放宽对于学生的要求,以改善学生的厌学心理,避免进一步打击学生学习数学的积极性.初中阶段,学生正处于青春期,针对这一时期学生的特点,不要因为二次函数的学习受阻,进而影响学生对整个数学学科的学习热情.要充分引导学生进行学习,关注学生的心理变化,提升学生学习数学的积极性.
三、总结
因为二次函数在整个初中数学教学中扮演着很重要的角色,所以教师要充分重视在教学活动中加强学生对二次函数的理解.为了保障教学质量,教师要对教学活动进行详细的思考,根据所带学生的实际情况、二次函数的特性来进行有针对性的教学活动.通过数形结合的方法,加深学生对二次函数的图像的认知,减少学生因学习不到位而引发的厌学心理,充分保护好学生的求知欲,同时对学生不容易理解的部分以及容易混淆的部分加强教学.有效地改善教学质量,帮助学生在初中学习过程中可以开心有效地进行学习.
【参考文献】
[1]王正美.初中数学中“二次函数”的教学策略研究[J].学周刊,2014(22):47.
[2]贾靖林.信息化环境下初中数学函数教学的策略研究[J].中国教育技术装备,2011(5):85-86.
数学思想是人脑对现 /a>思想是人脑对现实世界的空间形式和数量关系的本质的反映,是思维加工的产物。函数思想是数学思想的重要组成部分,在高中数学中起到横向联系和纽带连结的主干作用。用变量和函数来思考问题的方法就是函数思想。这是一种考虑运动变化、相依关系,以一种状态确定地刻划另一种状态过渡到研究变化过程的思想方法。函数思想是函数概念、性质等知识更高层次的提炼和概括,是在知识和方法反复学习运用中抽象出的带有观念性的指导方法。 所谓函数思想的运用,就是对于一个实际问题或数学问题,构建一个相应的函数,从而更快更好地解决问题。构造函数是函数思想的重要体现,运用函数思想要善于抓住事物在运动过程中那些保持不变的规律和性质。下面简单介绍一下运用函数思想来解决方程、不等式、数列、参数的取值范围等问题。一、运用函数思想求解方程问题 函数与方程既是两个不同的概念,又存在着密切的联系。一个函数若能用一个解析式表达,则这个表达式就可看成一个方程;一个二元方程的两个未知数间存在着对应关系,如果这个对应关系是单值的,那么这个方程也可以看成一个函数。一个方程的两端可以分别看成函数,方程的解就是这两个函数图象交点的横坐标。因此,许多有关方程的问题都可用函数思想来解决。例1 求证:不论 a取什么实数,方程x2 - ( a2 + a ) x + a - 2=0必有两个不相等的实根。分析:此题若用常规解法,求出判别式△是一个关于a的一元四次多项式,符号不易判断。若用函数思想去分析题意,设函数f(x)=x2-(a2+a)x+a-2,要证明命题成立,只需证明函数y=f(x)的图象与x轴有两个交点,由于它的开口向上,只要找到一个实数X0,使f(x0)<0即可。比如f(1)=1-(a2+a)+a-2= - a2-1<0。故函数y=f(x) 的图象与x轴有两个交点,因此命题成立。例2 已知关于x的实系数二次方程x2+ax+b=0 有两个实数根α,β,证明:(I)如果 |α|< 2,|β |< 2,那么2| a |< 4+b且| b | < 4;(II)如果2| a |< 4+b且 | b | < 4,那么|α|< 2,|β| < 2;分析:本题表面上看是方程问题,方程的根的分布与参数a,b之间满足的关系式,如果用纯方程理论处理则十分繁琐;如果用函数思想来分析,将方程根的分布问题转化为函数图像与x轴交点问题,则可抓往本质。解:本题(I)(II)的结果是2 | a | < 4+b{ <==> α,β ∈(-2,2)| b | < 4可设函数f(x)=x2+ax+b( I )由二次函数的图像知f(2)>0α,β∈(-2,2) ==>{ f(-2)>0|b|=|α�6�1β|< 44+2a+b>0 2a> - (4+b)==>{ ==> {4-2a+b>0 2a< 4+b==> 2|a| <4+b且|b| < 42 |a| <4+b 4+2a+b>0 f(2)>0(Ⅱ) 如果{ ==> { ==>{ 则| b | < 4 4-2a+b>0 f(-2)>0α,β在(-2,2)之内或在(-2,2)之外,若α,β在(-2,2)之外,则 |α�6�1β| = b > 4,这与| b | < 4相矛盾,故α,β∈(-2,2)。二 、运用函数思想证明不等式例3 设 a , b , c 均为正数,且a+b>c,a b c求证:----- + ------ > -------1+a 1+b 1+ca b c分析:不等式左右两边,结构相似: -----, ------, -------,因1+a 1+b 1+c此可以联想函数f(x)=x / (1+x) (x>0)的单调性。证明:先证函数f(x)=x / (1+x) (x>0)的单调性。任取x1>0 , x2>0,不妨设x1
函数的导数表示函数在一点处(瞬时)随自变量变化快慢的程度。利用它,可以直接研究函数及其图像在一点处的变化性质(例如瞬时速度、切线斜率等)。为了应用导数研究函数在区间上的变化性质,先要熟悉微分学的中值定理。1. 中值定理微分学中有费马引理、罗尔定理和拉格朗日中值定理。拉格朗日定理 如果函数 满足:(ⅰ)在闭区间 , 上连续;(ⅱ)在开区间 , 内可导,则在 , 内至少存在一点 ,使或由图3容易理解,当函数 满足(ⅰ)、(ⅱ),即 是条连续曲线并且在 , 内的每点处有切线时,那么在曲线上(只要把弦AB平行移动)至少有一点P(在图中是 ),使得曲线在该点处的切线与弦AB平行,也就是说,P点处的切线斜率 和弦AB的斜率 相等。需要注意的是,拉格朗日定理并没有给出求 值的具体方法,它只是肯定了 值的存在,并且至少有一个。如图3中的函数 ,在 , 有 与 两个。拉格朗日定理的意义是:建立了函数 在区间 , 上的改变量 与函数在区间 , 内某一点 处的导数之间的关系,从而为用导数去研究函数在区间上的性质提供了理论基础。2. 用导数研究函数的性质为了使论述方便,我们将使用记号 和 ,它们分别表示开区间 , 和闭区间 , 。现在我们利用导数来研究函数的单调性。设函数 在 上连续,在 上可导。如果函数 在 上单调增加,那么,它的图形是一条沿 轴正向上升的曲线,如图(a)所示,这时曲线上各点的切线斜率大于等于零( );如果函数 在 上单调减少,那么,它的图形是一条沿 轴正向下降的曲线,如图(b)所示,这时曲线上各点的切线斜率小于等于零( )。由此可见,函数的单调性与其导数的符号有着密切的联系。反过来,我们是否可以有导数的符号来判定函数的单调性呢?一阶导数的符号在 上任取两点 、 ,其中 < ,在区间[ , ]上应用微分中值定理,得到 ( < < )有上式可见,若 , ,就有 ,于是 , , 在区间 上单调递增。同理可以说明 在区间 上单调递减。由此我们可以归纳出函数单调性的判别法。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数。(3) 如果函数 在区间 上满足 ,则函数 在区间 为常数。此外,导数的绝对值告诉我们变化率的大小。当 绝对值较大时,函数曲线就陡峭一些; 绝对值较小时,函数曲线就平坦一些。记住这些,你就可以从一个函数的导数情况判断出函数的一些性态。曲线的上下凹性设 在某一区间内可微,一阶导数告诉我们,如果在某一区间内 ,那么 在该区间式递增的;如果在某一区间内 ,那么 在该区间式递减的。如果 在某一区间内递增,则它的函数曲线向上弯曲或称为上凹,如果 在某一区间内递减,则它的函数曲线向下弯曲或称为下凹。当 向上弯曲时,曲线切线的斜率随着 增加而增加,如图所示;当 向下弯曲时,曲线切线的斜率随着 增加而减少, 点 为函数 的拐点,即函数曲线在区域内点 的左边向上凹,在点 的右边向下凹,它是曲线由向上凹变为向下凹的分界点。二阶导数的符号函数曲线的向上凹或向下凹、曲线的拐点可以用函数的二阶导数来确定。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数,函数曲线上凹;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数,函数曲线下凹。局部极值性我们说 在点 达到极大值,指的是在 的领域内 为最大,如图所示。 在点 处达到极大值,虽然 = 在整个图像中不是最大,它只是在点 领域内为最大,另一个最大值是B= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最大值。同样, 在点 达到极小值,指的是在 的领域内 为最小,如图所示。 在点 处达到极小值,虽然 = 在整个图像中不是最小,它只是在点 领域内为最小,另一个最小值是A= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最小值。函数的极大值和极小值概念是局部性的。如果 是函数 的一个极大值(或极小值),那只是就点 附近一个局部范围来说, 是函数 的一个极大值(或极小值),如果就函数 整个定义域来说, 不见得是函数 极大值(或极小值)。我们在微分中值定理一节曾经提到,如果函数 可导,并且点 是它的极值点,那么点 必定是它的驻点,但是函数的驻点未必是它的极值点。如函数 ,点 =0是它的驻点,但是在 内函数 是单调增加的,所以点 =0不是它的极值点,可见,函数的驻点只是可能的极值点。此外,函数在它不可导点处也可能取得极值,如函数 在点 =0处不可导,但是在该点取得极小值。最大值与最小值在前面讨论极值的基础上我们进一步讨论函数在一个区间上的最大值与最小值的求法。最大值与最小值的应用很广泛,人们做任何事情,小到日常用具的制作,大至生产科研和各类经营活动,都要讲究效率,考虑怎样以最小的投入得到最大的产出,这类问题在数学上往往可以归纳为求某一函数在某个区间内的最大与最小值的问题。现在设函数 在闭区间 , 上连续,在开区间 , 可导,根据闭区间上连续函数的性质可知,函数 在闭区间 , 的最大值、最小值必定存在;其次,如果最大值或最小值在开区间 , 内的某一点 取得,那么这个最大值或最小值 必定是函数 的一个极大值或极小值。于是,点 必定为函数 的驻点;最后,函数 的最大值或最小值也可能是在 或 处取得。我们通过一个例子来看一看最大值或最小值的求法过程。例5 求函数 在闭区间 , 上的最大值与最小值。
大学高数论我知道怎么做
1、任何涉及到时间的瞬时变化率、空间的逐点变化率,都是导数的应用;2、具体而言,只要涉及到比值的物理量,都存在导数的运用。 例如: 速度、角速度、加速度、角加速度、功率、压强、电流强度、电动势、 比热、压缩系数、膨胀系数、、、、、、、、3、在任何自然学科、工程学科、经济学科、人文学科、、、、处处都是运用, 写上一千万本书,也是冰山一角。4、微积分在几百年前就已经非常成熟了,我们对微积分的理论建立,没有一丝 半毫的贡献。庞大的现代数学、科学、工程、经济理论的建立,与我们毫不 相干。一切的一切,我们只是学习别人的理论,迄今依然到处充满歪解。5、导数的学习、运用,在英美是从初中开始的。比我们的高三学生学的内容要 深、广很多;他们的高中课程是我们大一大二的内容。6、楼主的问题,是被教师忽悠了。这完全谈不上是论文,至多只是初中生的读书 心得。夸张成论文,显示出的是出题教师的低劣,是对学生的智力的毁灭。这 种教师,百分之一百万是滥竽充数、害人子弟的货色!为有这样的教师,感到悲哀,感到愤怒!为可怜的学生,感到绝望!
函数图像的教学研究论文
摘要: 数形结合的思想是数学中一种重要的思想方法,而在函数的教学中把刻画数量关系的数和具体直观的图形有机结合,用代数的语言揭示几何要素及其关系,同时将几何问题转化为代数问题,扬数之长,取数之优,使抽象思维与形象思维珠联璧合,不但可以提高学生对图形世界的直观感知而且可以使学生更好地理解函数,更加快捷准确的求解答案。
关键词: 函数图像 研究
从以往的教学经验来看,学习函数这部分内容要求学生进行数与形相结合的运算,即要求使符号语言、图形语言结合起来,使抽象思维和形象思维结合起来。学生会遇到很多需要“数”与“形”并举或转换的情形。因此,函数的学习是困扰很多学生的难点。作为教师,我们面临的突出问题是:如何在教学中针对学生的思维特点,制定有效的教学策略高质量地完成函数教学任务。笔者从一个数学教师的角度出发浅谈一下自己对函数教学方面的研究以及心得体会。
1加强学生对函数概念的理解
初中课本上运用“变量说”将函数描述为:设在一个变化过程中有两个变量x与y,如果变量y随着x的变化而变化,并对于x在某个变化范围内的每一个值,按照某个对应规则,都有唯一确定的y值和它对应,那么y就是x的函数,x称为自变量,x的取值范围称为函数的定义域,和x的值对应的y值称为函数值,函数值的全体称为函数的值域。高中阶段,运用“对应说”函数被定义为:设A,B是两个非空的数集,如果按某种对应法则f对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫做从A到B的一个函数记作:y=f(x),x∈A。
以上两种函数的定义,各有各的不同特点。“变量说”是最朴素、最根本的,便于和实际相结合,初学者更容易接受。“对应说”抽象化的`程度较高,对于研究函数的精细性质具有一定的优势。适合在高中阶段介绍给学生。
讲述函数概念时,我们需要注意以下细节问题。
1。1实现由静到动的转变
学生由于长期在常量范围内计算、思维,因此以为变量一直是变,常量永远是不变。在引入函数概念之前,需要完成从常量到变量的转变,这是函数教学的一个重点。
例如“一架飞机每小时飞行1000千米,问5小时此架飞机飞行的距离是多少?”小学生只能给出正确的答案,但很少能够注意到路程S和时间t的关系。对于初中生我们要能引导他得出S=1000t的函数公式。在高中的实际教学中,我们可以把S表示为数轴上的一个定点,而把t看成是一个动点。取自变量t的一系列特定值,列出相应的另一个变量S(t)的对应值,在坐标系上描绘出这些点,这样会使学生能够比较容易地感受到变量的真实意义。
1。2突出变量之间的依赖关系
自变量和因变量之间的依赖关系是函数。通常表示为y=f(x),f表示x和y之间的对应关系。对于定义域内的任意一个x,通过对应关系f,对应唯一的一个y值。我们可以例举生活中的例子,让学生找出自变量x,然后再找出依赖此变量x的变化而变化的因变量y,最后设法找出它们之间的对应关系。从实际事例中寻找函数关系,构造事物变化过程中的具体函数关系,有利于加强学生对函数的理解。
2加强学生对函数图像的应用
在函数的教学中,我们不但要让学生深刻的理解函数的概念。还要不断帮助学生归纳各种初等函数的图形性质,并且教会学生快速画出初等函数的图形,这样在其今后的解题中将会发挥重大的作用。函数一般分为一次函数、二次函数、指数函数、对数函数和幂函数,下面以二次函数为例,来谈一下函数教学的研究体会。
在教学中,我们要引导学生对函数的图像特征进行归纳总结。可以先介绍特殊的二次函数的表达式y=ax2(a≠0),通过赋予x特殊的数值来对其图像进行描绘,进而归纳图像特征:图像形状为抛物线;顶点为原点;对称轴为y轴;a决定其开口方向,a>0时开口向上,a<0时开口向下。进而通过将y=ax2(a≠0)的图像向上下左右平移,引出二次函数的一般表达式y=ax2+bx+c(a≠0),并将其配方为y=a(x+b a="">0时开口向上,a<0时开口向下;(2)函数的对称轴为x=—b c="">0时,图像与y轴交在正半轴,c<0,图像与y轴交在负半轴,c=0,图像与y轴交在原点;(5)△=b2—4ac决定图像与x轴的交点个数,△>0时,图像与x轴有两个交点,△<0时,图像与x轴无交点,△=0时,图像与x轴无交点。
掌握了函数的基本特征后,学生就能对任一个二次函数进行绘制了,进而在一些有关函数的解题过程中就可以通过数形结合进行求解,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其尤为重要,因此我们要引导学生加强对函数图形的掌握,培养数形结合的这种思想意识,做到胸中有图,见数想图,以开拓自己的思维视野。
参考文献
[1]吴志鹃。二次函数图像的教学设计[J]。希望月刊(上半月),2007(11):108。
[2]梁小瑜。加强函数图像教学,衔接初高中数学教学[J]。师道·教研,2010(6):27~28。
[3]付尚英。浅谈利用函数的图像特征解题[J]。金色年华(教学参考),2010(12):113。
摘要:在深入学习领会新课程理念的基础上,本文通过三个教学案例论述了在进行指数函数教学设计时,如何改进新课引入、多媒体使用和指数函数性质发现过程以及相应的教学效果。 关键词:指数函数;教学设计;教学案例;多媒体;有效教学 指数函数是高中数学的重点内容之一,从教学要求看,一是理解指数函数的定义;二是掌握指数函数的图像与性质。下面是笔者在公开教学中对指数函数教学设计的三处改进。 案例一:新课引入的改进 (一)原始设计 1.复习旧知: ②函数y=x的定义域是 2.引入新课:师问:函数y=()与函数y=x,从形式上看有什么不同?生答:从形式上看,前者指数是自变量,后者底数是自变量。(引入课题) (二)改进设计 1.创设情境:有人说,将一张白纸对折50次以后,其厚度超过地球到月球的距离,你认为可能吗?设白纸每张厚度为,已知地球到月球的距离约为380000千米。 对折的层数y与对折次数x的函数关系式是什么?设纸的原面积为1,对折后纸的面积z与对折次数x又有什么关系?(y=2x,z=()x) 2.提出问题:师问:能发现y=2x,z=()x的共同点吗? 学生思考片刻,教师提示:从形式上,有什么共同点?并用红粉笔标出指数x。 生答:指数x是自变量,底数是大于0且不等于1的常数。(引入课题) (三)教学反思 凯洛夫的“五环节”教学理论:“复习旧课—导入新课—讲授新课—巩固—作业” 目前还深深地影响着我们的教学。但如果总是这样一成不变,就显得呆板与程式化。我们现在上课总喜欢说:“今天我们学习……”。教师不说,学生不问,教师怎么讲,学生就怎么学。我们知道,数学来源于生活,又应用于实践。在原始设计中,先复习与新授知识相关的内容,然后再从实际引入新课,与教材编排相一致,这样就数学讲数学,显得枯燥无味,很难调动学生的学习兴趣。为此,从学生感兴趣的一个生活实例出发,引起学生注意与争议,教师再创设实际问题情境,就激发了学生的学习兴趣,牢牢地吸引了学生的注意力,增强了学生的求知欲望,强化了学生内在的学习需求,巧妙地导入了新课。 案例二:多媒体使用的改进 (一)原始设计 1.电脑作图:教师用多媒体演示y=2x、y=()x的作图过程。 2.观察猜想:教师引导学生观察y=2x、y=()x的图像,猜想y=3x的图像形状。 3.电脑验证:教师用几何画板做出y=3x的图像,验证猜想。 4.归纳猜想:由特殊到一般,给出指数函数的图像分为01两类,并用多媒体演示它们的图像特征和性质。 (二)改进设计 1.学生作图:在教师的指导下学生分组后用几何画板作y=2x、y=()x的图像。然后,让学生在电脑上作y=3x,y=5x y=10x,y=等函数的图像,并对图像形状的变化加以观察与讨论。 2.猜想形状:让学生猜想函数y=8x,y=的图像形状,师生讨论,并列出有关观察结论。 3.分组探究1:一般地指数函数的图像大致有几类(几种走势)? 4.分组探究2:分别满足什么条件的指数函数图像大致是图1、图2? 5.电脑验证:用几何画板作y=ax(a>0且a≠1)图像,任意改变a的值,展示底变化对图像的影响。 (三)教学反思 原始设计,多媒体演示放在猜想之后,仅仅起了一个验证的作用,体现不了计算机辅助教学的目的,有点画蛇添足,成了一种花架子。 改进之后,按照“动手操作—创设情境—观察猜想—验证证明”的思路设计,首先电脑作图,为学生观察、交流创设情境;然后,引导学生深入细致地观察图像,学生在相互争论、研讨的过程中进行民主交流,倾听他人意见,分享研究成果,猜想出图像分两种情形;最后,再用多媒体验证猜想。这样设计符合学生的认知规律和思维习惯,激发了学生的求知欲,增强了学习的自信心,张扬了学生的个性,顺利地解决了这一教学难点。 我们在使用计算机辅助教学时,千万不要忘记“辅助”二字,辅助在不用多媒体教学时的难点处,辅助在点子上,而不能为了用多媒体而用多媒体案例三:指数函数的性质发现过程的改进 (一)原始设计 1.师生作图:教师作y=2x的图像,以作示范。然后学生模仿作y=()x的图像,以巩固作图方法。 2.电脑演示:教师用多媒体演示y=2x、y=()x的作图过程。 3.观察特征:教师引导学生观察上述两个图像的特征,并推广到一般情形。 4.归纳性质:根据图像特征,写出它们的性质。 (二)改进设计 在前面学生分组用多媒体做出y=2x,y=()x,y=3x,y=5x,y=10x,y=等函数图像的基础上,教师引导学生观察、讨论、归纳得出性质。 1.自主观察:对一般的指数函数,图像有哪些特征? 2.分组讨论:学生分组讨论后,展示讨论的结果。除得到图像的一般特征,更值得一提的是,有的学生还说出了函数y=2x与y=()x的图像关于y轴对称等特征。 3.归纳性质:根据图像特征,写出它们的性质。 4.作示意图:根据指数函数的性质,教师让学生作出y=8x,y=等函数图像的示意图。 师:观察与猜想是一种感性认识,并不表示结论一定正确,还需要进行理性证明…… (三)教学反思 新课程标准指出:要改变课程实施过于强调接受学习、死记硬背、机械训练的现象,倡导主动学习、乐于探究,勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析解决问题的能力及交流合作的能力。因此,教师要把学习过程中的发现、探究、研究等认知活动突显出来,使学习过程更多地成为学生发现问题、研究问题及解决问题的过程。 上述两种设计都注重让学生从事有意义的数学活动,都涉及了学生的探索活动和经常使用的研究方法,如从特殊到一般,再由一般到特殊,类比、联想、猜想等。 原始设计在实际教学中,活动缺乏内在联系,加上教师的束缚,活动单一,学生得出图像分两类显得较为生硬,接着研究的一般情形又似乎来得“突然”,从特例到一般情形并未起到搭桥引渡的作用,形成了一个认知难点。这样的设计没有真正发挥学生的主体作用,实际上还是教师主导着课堂,牵着学生走,还是在教知识、教教材,是一种主导性教学模式。 改进后,改变了教学方法,教师放弃了全程主导,把学习的主动权交给了学生,由他们自己去观察、去发现,在学生交流、研讨、互动的过程中,学生观察深入,思维活跃,富有创造性。教师则以学生伙伴的角色参与学生的认知学习,在与学生的互动交流中指导学生,并积极地关注、倾听学生的交流。这样设计符合学生的认知规律和思维习惯,为学生营造了安全的心理环境,学生非常顺利地学习了指数函数的性质,而且学生觉得这些思想方法是非常自然的,可以学到手且以后能用得上,为今后的学习作了必要的铺垫,这是一种典型的指导性教学模式。 学生是学习的主人,自主学习是他们的天然权利,任何硬性灌输和强制训练都是侵犯学生学习主权的行为。
欧拉,全名是莱昂哈德·欧拉(Leonhard Euler,1707-1783),1707年出生在瑞士的巴塞尔城。18世纪最优秀的数学家,也是历史上最伟大的数学家之一,被称为“分析的化身”。失明前莱昂哈德·欧拉小时候他就特别喜欢数学,不满10岁就开始自学《代数学》。这本书连他的几位老师都没读过,可小欧拉却读得津津有味,遇到不懂的地方,就用笔作个记号,事后再向别人请教。13岁就进巴塞尔大学读书,这在当时是个奇迹,曾轰动了数学界。小欧拉是这所大学,也是整个瑞士大学校园里年龄最小的学生。在大学里得到当时最有名的数学家微积分权威约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导,并逐渐与其 莱昂哈德·欧拉建立了深厚的友谊。约翰·伯努利后来曾这样称赞青出于蓝而胜于蓝的学生:“我介绍高等分析时,他还是个孩子,而你将他带大成人。”两年后的夏天,欧拉获得巴塞尔大学的学士学位,次年,欧拉又获得巴塞尔大学的哲学硕士学位。1725年,欧拉开始了他的数学生涯。欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点数学。由于小欧拉的才能和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖金后,他的父亲就不再反对他攻读数学了。1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡。1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授。1735年,欧拉解决了一个天文学的难题(计算彗星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了。 失明后过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明。不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了。沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来。欧拉完全失明以后,虽然生活在黑暗中,但仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。1783年9月18日,在不久前才刚计算完气球上升定律的欧拉,在兴奋中突然停止了呼吸,享年76岁。欧拉生活、工作过的三个国家:瑞士、俄国、德国,都把欧拉作为自己的数学家,为有他而感到骄傲。超人的记忆和心算能力欧拉的记忆力和心算能力是罕见的.比如,他能背诵前一百位质数的前十次幂,能背诵罗马诗人维吉尔(Virgil)的史诗Aeneil,能背诵全部的数学公式。直至晚年,他还能复述年轻时的笔记的全部内容;心算并不限于简单的运算,高等数学里的计算一样可以用心算去完成。有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来。欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题。 高尚的风格欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉。他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:“读读欧拉、读读欧拉,它是我们大家的老师!” 当欧拉64岁高龄之时,一场突如其来的大火烧掉了他几乎全部的著述,而神奇的欧拉用了一年的时间口述了所有这些论文并作了修订。一年以后,1783年9月18日的下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我要死了",欧拉终于"停止了生命和计算"。 渊博的知识欧拉是18世纪科学界的代表人物,是那个时代的巨人。他是历来最有才华、最博学的人物之一,也是历史上最多产的一位数学家。欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文。据统计他那不倦的一生,共写下了856篇论文,专著32部,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等数不胜数。欧拉的兴趣十分广泛,他研究过天文学、物理学、航海学、建筑学、地质学、化学等等,在这些领域,欧拉也留下了大量的论文、著作。 著作量惊人欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗。他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后, 也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文。19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法。"欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得人们学习的。欧拉在数学、物理、天文、建筑以至音乐、哲学方面都取得了辉煌的成就。在数学的各个领域,常常见到以欧来命名的公式、定理、和重要常数。课本上常见的如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),Σ(1755年),f(x)(1734年)等,都是他创立并推广的。歌德巴赫猜想也是在他与歌德巴赫的通信中提出来的。欧拉还首先完成了月球绕地球运动的精确理论,创立了分析力学、刚体力学等力学学科,深化了望远镜、显微镜的设计计算理论。欧拉一生能取得伟大的成就原因在于:惊人的记忆力;聚精会神,从不受嘈杂和喧闹的干扰;镇静自若,孜孜不倦。1726年,19岁的欧拉由于撰写了《论桅杆配置的船舶问题》而荣获巴黎科学院的资金。这标志着欧拉的羽毛已丰满,从此可以展翅飞翔。欧拉的成长与他这段历史是分不开的。当然,欧拉的成才还有另一个重要的因素,就是他那惊人的记忆力!,他能背诵前一百个质数的前十次幂,能背诵罗马诗人维吉尔(Virgil)的史诗Aeneil,能背诵全部的数学公式。直至晚年,他还能复述年轻时的笔记的全部内容。高等数学的计算他可以用心算来完成。尽管他的天赋很高,但如果没有约翰的教育,结果也很难想象。由于约翰·伯努利以其丰富的阅历和对数学发展状况的深刻的了解,能给欧拉以重要的指点,使欧拉一开始就学习那些虽然难学却十分必要的书,少走了不少弯路。这段历史对欧拉的影响极大,以至于欧拉成为大科学家之后仍不忘记育新人,这主要体现在编写教科书和直接培养有才华的数学工作者,其中包括后来成为大数学家的拉格朗日()。欧拉本人虽不是教师,但他对教学的影响超过任何人。他身为世界上第一流的学者、教授,肩负着解决高深课题的重担,但却能无视"名流"的非议,热心于数学的普及工作。他编写的《无穷小分析引论》、《微分法》和《积分法》产生了深远的影响。有的学者认为,自从1784年以后,初等微积分和高等微积分教科书基本上都抄袭欧拉的书,或者抄袭那些抄袭欧拉的书。欧拉在这方面与其它数学家如卡尔·弗里德里希·高斯()、艾萨克·牛顿()等都不同,他们所写的书一是数量少,二是艰涩难明,别人很难读懂。而欧拉的文字既轻松易懂,堪称这方面的典范。他从来不压缩字句,总是津津有味地把他那丰富的思想和广泛的兴趣写得有声有色。他用德、俄、英文发表过大量的通俗文章,还编写过大量中小学教科书。他编写的初等代数和算术的教科书考虑细致,叙述有条有理。他用许多新的思想的叙述方法,使得这些书既严密又易于理解。欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的。他证明了任一非零实数R有无穷多个对数。欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的。欧拉的定义使三角学跳出只研究三角表这个圈子。欧拉对整个三角学作了分析性的研究。在这以前,每个公式仅从图中推出,大部分以叙述表达。欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式。欧拉用a 、b 、c 表示三角形的三条边,用A、B、C表示第个边所对的角,从而使叙述大大地简化。欧拉得到的著名的公式,又把三角函数与指数函联结起来。在普及教育和科研中,欧拉意识到符号的简化和规则化既有有助于学生的学习,又有助于数学的发展,所以欧拉创立了许多新的符号。如用sin 、cos 等表示三角函数,用 e 表示自然对数的底,用f(x) 表示函数,用 ∑表示求和,用 i表示虚数等。圆周率π虽然不是欧拉首创,但却是经过欧拉的倡导才得以广泛流行。而且,欧拉还把e 、π 、i 统一在一个令人叫绝的关系式中。 重视教育,重视人才欧拉不但重视教育,而且重视人才。当时法国的拉格朗日只有19岁,而欧拉已48岁。拉格朗日与欧拉通信讨论"等周问题",欧拉也在研究这个问题。后来拉格朗日获得成果,欧拉就压下自己的论文,让拉格朗日首先发表,使他一举成名。欧拉19岁大学毕业时,在瑞士没有找到合适的工作。1727年春,在巴塞尔他试图担任空缺的教研室主任职务,但没有成功。这时候,俄国的圣彼得堡科院刚建立不久,正在全国各地招聘科学家,广泛地搜罗人才。已经应聘在彼得堡工作的丹尔·伯努利深知欧拉的才能,因此,他竭力聘请欧拉去俄罗斯。在这种情况下,欧拉离开了自己的祖国。由于丹尼尔的推荐,1727年,欧拉应邀到圣彼得堡做丹尼尔·伯努利的助手。在圣彼得堡科学院,他顺利地获得了高等数学副教授的职位。1731年,又被委任领导理论物理和实验物理教研室的工作。1733年,年仅26岁的欧拉接替回瑞士的丹尼尔,成为数学教授及彼得堡科学院数学部的领导人。在这期间,欧拉勤奋地工作,发表了大量优秀的数学论文,以及其它方面的论文、著作。古典力学的基础是牛顿奠定的,而欧拉则是其主要建筑师。1736年,欧拉出版了《力学,或解析地叙述运动的理论》,在这里他最早明确地提出质点或粒子的概念,最早研究质点沿任意一曲线运动时的速度,并在有关速度与加速度问题上应用矢量的概念。同时,他创立了分析力学、刚体力学,研究和发展了弹性理论、振动理论以及材料力学。并且他把振动理论应用到音乐的理论中去,1739年,出版了一部音乐理论的著作。1738年,法国科学院设立了回答热本质问题征文的奖金,欧拉的《论火》一文获奖。在这篇文章中,欧拉把热本质看成是分子的振动。 应用数学大师欧拉研究问题最鲜明的特点是:他把数学研究之手深入到自然与社会的深层。他不仅是位杰出的数学家,而且也是位理论联系实际的巨匠,应用数学大师。他喜欢搞特定的具体问题,而不象现代某些数学家那样,热衷于搞一般理论。正因为欧拉所研究的问题都是与当时的生产实际、社会需要和军事需要等紧密相连,所以欧拉的创造才能才得到了充分发挥,取得了惊人的成就。欧拉在搞科学研究的同时,还把数学应用到实际之中,为俄国政府解决了很多科学难题,为社会作出了重要的贡献。如菲诺运河的改造方案,宫延排水设施的设计审定,为学校编写教材,帮助政府测绘地图;在度量衡委员会工作时,参加研究了各种衡器的准确度。另外,他还为科学院机关刊物写评论并长期主持委员会工作。他不但为科学院做大量工作,而且挤出时间在大学里讲课,作公开演讲,编写科普文章,为气象部门提供天文数据,协助建筑单位进行设计结构的力学分析。1735年,欧拉着手解决一个天文学难题──计算彗星的轨迹(这个问题需经几个著名的数学家几个月的努力才能完成)。由于欧拉使用了自己发明的新方法,只用了三天的时间。但三天持续不断的劳累也使欧拉积劳成疾,疾病使年仅28岁的欧拉右眼失明。这样的灾难并没有使欧拉屈服,他仍然醉心于科学事业,忘我地工作。但由于俄国的统治集团长期的权力之争,日益影响到了欧拉的工作,使欧拉很苦闷。事也凑巧,普鲁士国王腓特烈大帝(Frederick the Great,1740-1786在位)得知欧拉的处境后,便邀请欧拉去柏林。尽管欧拉十分热爱自己的第二故乡(在这里他已经工作生活了14年),但为了科学事业,他还是在1741年暂时离开了圣彼得堡科学院,到柏林科学院任职,任数学物理所所长。1759年成为柏林科学院的领导人。在柏林工作期间,他并没有忘记俄罗斯,他通过书信来指导他在俄罗斯的学生,并把自己的科学著作寄到俄罗斯,对俄罗斯科学事业的发展起了很大作用。他在柏林工作期间,将数学成功地应用于其它科学技术领域,写出了几百篇论文,他一生中许多重大的成果都是这期间得到的。如:有巨大影响的《无穷小分析引论》、《微分学原理》,既是这期间出版的。此外,他研究了天文学,并与达朗贝尔('Alembert,)、拉格朗日一起成为天体力学的创立者,发表了《行星和彗星的运动理论》、《月球运动理论》、《日蚀的计算》等著作。在欧拉时代还不分什么纯粹数学和应用数学,对他来说,整个物理世界正是他数学方法的用武之地。他研究了流体的运动性质,建立了理想流体运动的基本微分方程,发表了《流体运动原理》和《流体运动的一般原理》等论文,成为流体力学的创始人。他不但把数学应用于自然科学,而且还把某一学科所得到的成果应用于另一学科。比如,他把自己所建立的理想流体运动的基本方程用于人体血液的流动,从而在生物学上添上了他的贡献,又以流体力学、潮汐理论为基础,丰富和发展了船舶设计制造及航海理论,出版了《航海科学》一书,并以一篇《论船舶的左右及前后摇晃》的论文,荣获巴黎科学院奖金。不仅如此,他还为普鲁士王国解决了大量社会实际问题。1760年到1762年间,欧拉应亲王的邀请为夏洛特公主函授哲学、物理学、宇宙学、神学、化理学、音乐等,这些通信充分体现了欧拉渊博的知识、极高的文学修养、哲学修养。后来这些通信整理成《致一位德国公主的信》,1768年分三卷出版,世界各国译本风靡,一时传为佳话。自从1741年欧拉离开彼得堡以后,俄国的政局一直不好,政权几次更迭,最后落入叶卡捷林娜二世的手中,她吸取了以往的教训,开始致力于文治武功。她一面与伏尔泰、狄德罗等法国启蒙学者通信,一面又四方招聘有影响的科学家去彼得堡科学院任职。欧拉自然成了她主要聘请的对象。1766年,年已花甲的欧拉应邀回到彼得堡,这次俄国为他准备了优越的工作条件。这时欧拉的科学研究工作已经是硕果累累,思想也已经成熟。除了一些专题还需继续研究外,他希望能在晚年对过去的成就作系统的总结,出版几部高质量的著作。然而,厄运再次向他袭来。由于俄罗斯气候严寒,以及他工作的劳累,欧拉的左眼又失明了,从此欧拉陷入伸手不见五指的黑暗之中。但欧拉是坚强的,他用口授、别人记录的方法坚持写作。他先集中精力撰写了《微积分原理》一书,在这部三卷本巨著中,欧拉系统地阐述了微积分发明以来的所有积分学的成就,其中充满了欧拉精辟的见解。1768年,《积分学原理》第一卷在圣彼得堡出版。1770年第三卷出版。同年,他又口述写成《代数学完整引论》,有俄文、德文、法文版,成为欧洲几代人的教科书,正当欧拉在黑暗中搏斗时,厄运又一次向他袭来。1771年,圣彼得堡一场大火,秧及欧拉的住宅,把欧拉包围在大火中。在这危急的时刻,是一位仆人冒着生命危险把欧拉从大火中背出来。欧拉虽然幸免于难,可他的藏书及大量的研究成果都化为灰烬。种种磨难,并没有把欧拉搞垮。大火以后他立即投入到新的创作之中。资料被焚,他又双目失明,在这种情况下,他完全凭着坚强的意志和惊人的毅力,回忆所作过的研究。欧拉的记忆力也确实罕见,他能够完整地背诵出几十年前的笔记内容,数学公式当然更能背诵如流。欧拉总是把推理过程想得很细,然后口授,由他的长子记录。他用这种方法又发表了论文400多篇以及多部专著,这几乎占他全部著作的半数以上。1774年,他把自己多年来研究变分问题所取得的成果集中发表一本书《寻求具有某种极大或极小性质的曲线的技巧》中。从而创立了一个新的分支──变分法。另外,欧拉对天文学中的"三体问题"月球运动及摄运问题进行了研究。后来,他解决了艾萨克·牛顿没有解决的月球运动问题,首创了月球绕地球运动地精确理论。为了更好地进行天文观测,他曾研究了光学,天文望远镜和显微镜。研究了光通过各种介质的现象和有关的分色效应,提出了复杂的物镜原理,发表过有关光学仪器的专著,对望远镜和显微镜的设计计算理论做出过开创性的贡献,在1771年他又发表了总结性著作《屈光学》。欧拉从19岁开始写作,直到逝世,留下了浩如烟海的论文、著作,甚至在他死后,他留下的许多手稿还丰富了后47年的圣彼得堡科学院学报。就科研成果方面来说,欧拉是数学史上或者说是自然科学史上首屈一指的。 平凡而伟大的人生作为这样一位科学巨人,在生活中他并不是一个呆板的人。他性情温和,性格开朗,也喜欢交际。欧拉结过两次婚,有13个孩子。他热爱家庭的生活,常常和孩子们一起做科学游戏,讲故事。欧拉旺盛的精力和钻研精神一直坚持到生命的最后一刻。1783年9月18日下午,欧拉一边和小孙女逗着玩,一边思考着计算天王星的轨迹,突然,他从椅子上滑下来,嘴里轻声说:“我死了。”一位科学巨匠就这样停止了生命。历史上,能跟欧拉相比的人的确不多,也有的历史学家把欧拉和阿基米德、艾萨克·牛顿、卡尔·弗里德里希·高斯列为有史以来贡献最大的四位数学家,依据是他们都有一个共同点,就是在创建纯粹理论的同时,还应用这些数学工具去解决大量天文、物理和力学等方面的实际问题,他们的工作是跨学科的,他们不断地从实践中吸取丰富的营养,但又不满足于具体问题的解决,而是把宇宙看作是一个有机的整体,力图揭示它的奥秘和内在规律。卡尔·弗里德里希·高斯说过:"对于欧拉工作的研究,将仍旧是对于数学的不同范围的最好的学校,并且没有别的可以替代它"。贡献欧拉是18世纪数学巨星,在微积分、微分方程、几何、数论、变分学等领域均做出了巨大贡献。在微积分方面。他整理了由伯努利家族继承、发扬的莱布尼兹学派的微积分学的内容。他先后发表了《无穷小分析引论》(1748)、《微分学》(1755)、《积分学》(1768)等著作。首先,他对函数概念进行了系统的探讨。给出了函数的新定义,定义了多元函数概念,引入了超越函数概念。其次,1770年前后,欧拉对由弧围成的有界区域上的二重定积分已有清楚的概念,并给出了用累次积分计算这种积分的程序。第三,欧拉研究了数列{(1+1/n)n}极限的存在性,并把这个极限记为e,后来又用e作为底数,建立了自然对数。第四,欧拉把实函数的许多结果形式地推广到复数域。推动了复变函数理论的发展。在微分方程方面。1727年,欧拉将一类二阶方程通过变量替换化为一阶方程,这是对二阶方程系统研究的开始。1739年他又研究了谐振子方程、谐振子的强迫振动方程,并得到了解答。1760年他将特殊的黎卡提方程化为线性方程。欧拉对偏微分方程的研究是开拓性的。1748年他指出弦的运动是周期性的,还用三角级数表出了解。在数论方面。二次互反律是欧拉首先发现的。欧拉还引入了以他名字命名的数论中的欧拉函数。在几何方面。他引入了曲线的参数表示,并提出了通过变换将曲面方程化成标准型的方法。1760年欧拉发表了题为《关于曲面上曲线的研究》的论文。文中得到许多重要结果。这些成果为曲面理论奠定了基础。在变分学方面。欧拉通过对函数极值问题的研究,解决了一般函数的极值问题之后,他于1734年研究了“最速降线”问题,并成功地找到了极值函数必须满足的常微分方程,即欧拉方程。1756年他把这个新学科命名为变分学。在初等数学方面。欧拉抛弃了陈旧的概念,采用新的思想方法去叙述、处理问题,建立了新的初等数学体系。
可以与RSA联系着写
欧拉生平欧拉(Euler,1707~1783),瑞士数学家及自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国的彼得堡去逝。欧拉出生于一个牧师家庭,自幼受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一·伯努利的特别指导,专心研究数学。18岁时,他彻底的放弃了当牧师的想法而专攻数学,并开始发表文章。1727年,在丹尼尔·伯努利的推荐下,欧拉到俄国的彼得堡科学院从事研究工作,并在1731年接替丹尼尔第一·伯努利,成为物理学教授。在俄国的14年中,他努力不懈地投入研究工作,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府的要求,解决了不少如地图学、造船业等的实际问题。1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士腓特烈大帝的邀请到德国科学院担任物理数学所所长一职,长达25年。他在柏林期间的研究内容更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学等等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何及其他数学领域均有开创性的发现。1766年,他应俄国沙皇喀德林二世的礼聘重回彼得堡。在1771年,一场重病使他的左眼亦完全失明,但他以其惊人的记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学著作,直至生命的最后一刻。欧拉是18世纪数学界最杰出的人物之一,他不但为数学界做出贡献,更把数学推至几乎整个物理的领域。此外,他是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》,《微分学原理》,以及《积分学原理》都成为数学中的经典著作。除了教科书外,欧拉平均以每年800页的速度写出创造性论文。他去世后,人们整理出他的研究成果多达74卷。欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支,如无穷级数、微分方程等的产生与发展奠定了基础。欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目。他计算出了ξ函数在偶数点的值,他证明了a2k是有理数,而且可以伯努利数来表示。此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,其值近似为……在18世纪中叶,欧拉和其他数学家在解决物理方面的问过程中,创立了微分方程这门学科。其中在常微分方程方面,他完整地解决了n阶常系数线性齐次方程的问题,对于非齐次方程,他提出了一种降低方程阶的解法;在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法。欧拉所写的《方程的积分法研究》更是偏微分方程在纯数学研究中的第一篇论文。在微分几何方面,欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达方式。在1766年,他出版了《关于曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑。他将曲面表为z=f(x,y),并引入一系列标准符号以表示z对x,y的偏导数,这些符号至今仍通用。此外,在该著作中,他亦得到了曲面在任意截面上截线的曲率公式。欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B函数,这证明了椭圆积分的加法定理,以及最早引入二重积分等等。在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式。欧拉还给出了费马小定理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果使得数论成为数学中的一个独立分支。欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积。而且还解决了著名的哥尼斯堡七桥问题,创立了拓扑学。欧拉对数学的研究如此广泛,因此在许多数学的分支中都能经常见到以他的名字命名的重要常数、公式和定理。
数学研究性学习报告 (妙趣横生的数学)一:数学史上的三次危机。毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。 第二次数学危机导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如翻掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。 罗素悖论与第三次数学危机。 十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……” 可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。 罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。 其实,在罗素之前集合论中就已经发现了悖论。如1897年,布拉利和福尔蒂提出了最大序数悖论。1899年,康托尔自己发现了最大基数悖论。但是,由于这两个悖论都涉及集合中的许多复杂理论,所以只是在数学界揭起了一点小涟漪,未能引起大的注意。罗素悖论则不同。它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。如G.弗雷格在收到罗素介绍这一悖论的信后伤心地说:“一个科学家所遇到的最不合心意的事莫过于是在他的工作即将结束时,其基础崩溃了。罗素先生的一封信正好把我置于这个境地。”戴德金也因此推迟了他的《什么是数的本质和作用》一文的再版。可以说,这一悖论就象在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。 危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”1908年,策梅罗在自已这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。公理化集合系统的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展等等。二:经典数学问题:七桥问题 著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。 有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。 当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。 Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。 后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。 七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成. 欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。 接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案! 1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。 数学的世界奥妙无穷,大家尽情驰骋吧!附录:永远的大师—欧拉欧拉(Euler,1707-1783),瑞士数学家及自然科学家。在1707年4月15日出生於瑞士的巴塞尔,1783年9月18日於俄国的彼得堡去逝。 欧拉出生於牧师家庭,自幼已受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。 欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一.伯努利的特别指导,专心 研究数学,直至18岁,他彻底的放弃当牧师的想法而专攻数学,於19岁时(1726年)开始创作文章,并获得巴黎科学院奖金。1727年,在丹尼尔.伯努利的推荐下,到俄国的彼得堡科学院从事研究工作。并在1731年接替丹尼尔第一.伯努利 ,成为物理学教授。在俄国的14年中,他努力不懈地投入研究,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府 的要求,解决了不少如地图学、造船业等的实际问题。1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士 腓特烈大帝的邀请到德国科学院担任物理数学所所长一职。他在柏林期间,大大的扩展了研究的内容,如行星运动、刚体运动、热力学、弹道学、人口学等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何 及其他数学领域均有开创性的发现。 1766年,他应俄国沙皇喀德林二世敦聘重回彼得堡。在 1771年,一场重病使他的左眼亦完全失明。但他以其惊人的 记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学着作,直至生命的最后一刻。 欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域。此外,他 是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》(1748),《微分学原理》(1755),以及《积分学原理》(1768-1770)都成为数学中的经典着作。 欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支(如无穷级数、微分方程等)的产生 与发展奠定了基础。 欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目。他计算出ξ函数在偶数点的值: 。他证明了a2k是有理数,而且可以伯努利数来表示。 此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,,其值近似为 ... 在18世纪中叶,欧拉和其他数学家在解决物理方面的问过程中,创立了微分方程学。当中,在常微分方程方面,他 完整地解决了n阶常系数线性齐次方程的问题,对於非齐次方程,他提出了一种降低方程阶的解法;而在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法。欧拉所写的《方程的积分法研究》更是 偏微分方程在纯数学研究中的第一篇论文。 在微分几何方面(微分几何是研究曲线、曲面逐点变化性质的数学分支),欧拉引入了空间曲线的参数方程,给 出了空间曲线曲率半径的解析表达方式。在1766年,他出版了《关於曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑。他将曲面表为 z=f(x,y),并引入一系列标准符号以表示z对x,y的偏导数 ,这些符号至今仍通用。此外,在该着作中,他亦得到了曲面在任意截面上截线的曲率公式。 欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B 函数,这证明了椭圆积分的加法定理,以及最早引入二重积 分等等。在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式。欧拉还给出了费马小定 理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果奠定了数论成为数学中的一个独立分支。欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积。而且还解决了着名的柯尼斯 堡七桥问题。欧拉对数学的研究如此广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。
在高中数学教学的过程中,数学的函数思想一直是我们从事教学的理念之一,函数的定义起始于初中阶段,进入到高中以后,不断的在原来的基础上增加了新的函数概念,主要是用映射的观点来阐明函数,这就要求我们学生对函数要有更加深层的理解,了解函数的思想,认清函数的理念,来解决函数中的各种问题.函数思想是指用函数的概念和性质去分析问题、转化问题和解决问题.学习函数要重点解决好以下三个问题:
一、准确、深刻理解函数的有关概念
函数是中学数学中的`一个重要概念,函数是高中数学的基础.学生学习函数的知识分四个阶段.第一个阶段是在初中,学生已经接受了初步的函数知识,掌握了一些简单函数的表示法、性质、图像.
第二个阶段(数学必修1),第三个阶段将学习三角函数(数学必修4)、数列(数学必修5),第四个阶段在选修课程中,如导数及其应用、概率(选修系列2)、参数方程(选修系列4)等都仍然要涉及函数知识的再认识,是对函数及其应用研究的深化和提高.
对于函数概念的引入,教材通过具体实例,让学生体会函数是数集之间的一种特殊的对应关系.教学应从学生已有的函数知识入手,引导学生联系自己的生活经历和实际问题,尝试列举各种各样的变化,在集合的基础上,构建函数的一般概念.如:
(1)随着二氧化碳的大量排放,地球正在逐渐变暖;
(2)打电话时,通话费用与通话时间之间的关系;
(3)中国的国内生产总值正在逐年增长;
等等.
二、揭示并认识函数与其他数学知识的内在联系
在解决函数综合问题时,要认真分析、处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决,尤其是注意等价转化、分类讨论、数形结合等思想的综合运用,综合问题的求解往往需要应用多种知识和技能.函数是研究变量及相互联系的数学概念,是变量数学的基础,利用函数观点可以从较高的角度处理式、方程、不等式、数列、曲线与方程等内容,在利用函数和方程的思想进行思维中,动与静、变量与常量如此生动的辩证统一,函数思维实际上是辩证思维的一种特殊表现形式.三、把握数形结合的特征和方法
数形结合的思想,在数学的几乎全部的知识中,处处以数学对象的直观表象及深刻精确的数量表达这两方面给人以启迪,为问题的解决提供简捷明快的途径.函数图像的几何特征与函数性质的数量特征紧密结合,有效地揭示了各类函数和定义域、值域、单调性、奇偶性、周期性等基本属性,体现了数形结合的特征与方法,为此,既要从定形、定性、定理、定位各方面精确地观察图形、绘制图形,又要熟练地掌握函数图像的平移变换、对称变换
例:如果f(x)=x2+bx+c对于任意实数t都有f(2+t)=f(2—t),那么()
A。f(2) C。f(2) 本题若用代数方法求解较为困难,可以引导学生由题设条件f(2+t)=f(2—t)所反映的几何特征,据此画出抛物线示意图,根据它的单调性就可分辨f(2) 例题是通过数形结合,利用函数图像的性质解题.数形结合又是解析几何的基本特征之一,坐标系的建立给数学提供了一个双向的工具:集合概念可以用代数表示,几何目标可以通过代数表达,通过数形结合,利用曲线方程图像的性质解题,可以收到意想不到的效果. 函数思想,就是用运动和变化的观点,分析和研究自然界中具体问题量的依存关系,剔除问题中的非数学因素,抽象其数学特征,用函数的形式把这种数量关系表示出来.它在高中数学的教学中起着很重要的作用,为很多问题的解决提供了方便,同时增强了学生解决问题的能力. 您好!希望我的回答对您有帮助~I、定义与定义式:自变量x和因变量y有如下关系:y=kx+b(k,b为常数,k≠0)则称y是x的一次函数。特别地,当b=0时,y是x的正比例函数。II、一次函数的性质:y的变化值与对应的x的变化值成正比例,比值为k即△y/△x=kIII、一次函数的图象及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。2.性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。3.k,b与函数图象所在象限。当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。IV、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。(1)设一次函数的表达式(也叫解析式)为y=kx+b。...三象限,直线必通过二,都满足等式y=kx+b:y1=kx1+b①和y2=kx2+b②,y1),请确定过点A,都满足等式;(3)连线;当k<0时。3.k!希望我的回答对您有帮助~I:通过如下3个步骤(1)列表。所以可以列出2个方程。设水池中原有水量S、四象限,y2),可以作出一次函数的图象——一条直线,得到k.当水池抽水速度f一定,y随x的增大而增大,当k>0时,比值为k即△y/;(2)描点,y是x的正比例函数。2、一次函数的图象及性质、四象限,直线必通过三,0)表示的是正比例函数的图象。s=vt:已知点A(x1、一次函数的性质、定义与定义式您好,直线通过原点O(0。这时、B的一次函数的表达式;△x=kIII、三象限,直线只通过二、一次函数在生活中的应用1,直线必通过一、确定一次函数的表达式。(4)最后得到一次函数的表达式;当k<0时;当b<0时。当b>0时.当时间t一定,并连成直线即可。(3)解这个二元一次方程:y的变化值与对应的x的变化值成正比例、四象限,k≠0)则称y是x的一次函数,b的值。g=S-ft:在一次函数上的任意一点P(x,y随x的增大而减小;B(x2。V,当b=0时,b与函数图象所在象限。因此。(1)设一次函数的表达式(也叫解析式)为y=kx+b,y),水池中水量g是抽水时间t的一次函数,b为常数。特别地:y=kx+b。II,距离s是速度v的一次函数:y=kx+b(k。IV,y),直线必通过一。(2)因为在一次函数上的任意一点P(x:1.作法与图形。2.性质。特别地,直线只通过一,当b=O时、二象限。当k>0时,作一次函数的图象只需知道2点:自变量x和因变量y有如下关系 研究性学习:“数学在生活中的应用”结题报告一、课题研究背景:数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,在早期一些古代文明社会中已产生了数学的开端和萌芽。在bc3000年左右巴比伦和埃及数学出现以前,人类在数学上没有取得更多的进展,而在bc600—bc300年间古希腊学者登场后,数学便开始作为一名有组织的、独立的和理性的学科登上了人类发展史的大舞台。如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解直角三角形有关知识的应用。由此可见,古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。二、课题研究目的和意义:1.感受数学,体会数学的价值。“数学在生活中的应用”的研究性学习让同学收集和开发自己生活中的素材,感受数学与我们现实生活的密切关系,让大家感受生活与数学同在,来体验数学自身价值。2.领悟数学,思想升华。“数学在生活中的应用”的研究性学习让学生经历知识的再创造,体验知识的形成过程,形成自身有效的知识,使自己的思想得到进一步的升华。3.会用数学。“数学在生活中的应用”的研究性学习让自己学会应用数学,达到直接为社会创造价值的最终目的。三、研究过程1.成立课题小组(第一学期第12周)。2.开题(第一学期第13周)。组织学生做好开题报告,介绍本课题的选题背景、立意、课题论证和实施计划。3.研究。(第一学期第14周至第二学期第15周)在老师的启发引导下,本课题小组同学积极参与,利用课余、课外时间,通过数学课本、化学资料等对“数学在生活中的应用”课题进行探索、研究和计算,还有部分同学对研究成果通过实验来验证,体现了大家严谨的科学态度。在老师的指导下,将有关“数学在生活中的应用”的研究成果和心得体会写成小论文。四、课题:“数学在生活中的应用”的研究成果小论文:不等式、数列、函数在生活中的应用(见附件1)五、心得体会通过这次研究性学习我们学会了很多东西,也懂得了很多。以前学数学一般是理论性的比较多,缺乏与实际的联系,学了不知道怎么用。这次研究性学习的最大所得,不在于取得什么成果,而是培养一种思维习惯,一种将现实生活中的现象转化为问题并进行研究的习惯。当我们在黑板上写字,用力过大而将粉笔折断时,是否想到了粉笔多长才是最优化长度;又当我们去打电话时,是否能够联想到这类似于“函数模型”,从而求出电话费与时间的函数。甚至当我们玩游戏时,能否用离散和概率的思想。不禁一笑后,你会发现,其实这些问题都来自于我们的生活,但是它们的复合与延伸,就可能涉及到今日科学的前沿。 另外感觉自己的知识面还是不够宽,例如老师给了很多有价值的问题,由于我们知识浅薄,最终我们选择了“函数、不等式、数列在生活中的应用”等进行探索、研究。对问题数据计算还可以,但对计出的数据找规律时,就遇到了困难,老师给我们作了指导。在如果平时学习时,多注意理论与实践的结合,学以致用,做起研究性学习就更能得心手。 研究性学习毕竟是个集体项目,它不仅培养了我们的合作精神,而且也培养了大家的团结友爱,互助协作的精神。所以组成小组后,我们组就常常在一起讨论题目,等到讨论成熟后,就进行计算研究。俗话说,三个臭皮匠顶个诸葛亮。大家在一起如果做出一些东西来,就会有一种成就感,这也是 研究性学习带给我们的乐趣所在。研究性学习培养的是一种创新精神,以及快速解决问题的能力。参加研究性学习小组,也给了我们一次简单的科学研究工作的体验。科学工作所需要的严谨,大胆都在这样活动中有着完整的体现。使我们体会到了科研工作的艰辛,这些将对我们今后的学习与工作产生积极的作用和深远的影响。