首页 > 论文发表知识库 > 正极材料的论文怎么发到期刊

正极材料的论文怎么发到期刊

发布时间:

正极材料的论文怎么发到期刊

期刊论文的发表有好多种类,有的纯属爱好,有的是各方面需要,如个人鉴定、职称的评定等等。个人爱好的一般是不希望付出任何费用,所以一般都是寻求一些可以得到稿酬的刊物。然而其他的则是要付出一定的金钱为代价的。条件嘛,也是视具体刊物而定的,一般的程序为:1.投稿(部分刊物需要审稿费)——审阅以及文章的修订——获取审核结果:录用——汇相关费用——排版出刊 未采用——结束

1. 准备论文:如果论文已经准备好了,按照论文找合适的期刊就好;如果论文没写好,建议还是先找合适的期刊,然后参照期刊的要求进行论文的写作,这样能更容易通过审核。2.投稿:将论文通过各种途径送到期刊编辑部。3.审核:核心期刊一般是同行评审制度,编辑部会把你的论文转发给三个这个领域的专业人士,由他们提出意见,编辑部会举行会议研究这三个专家的意见后作出录用或者修改或者退稿的决定。这也是核心期刊审稿时间长的原因。普通期刊一般由编辑部自己审核,速度比较快。4.录用:审核通过后,编辑部会开一个录用证明给作者,作者支付相关版面费后就可以安排发表了。5.出刊:热门期刊的刊期通常排在一年以后了,而冷门的刊经常还在收上一年的版面。一般的出刊时间是在3-6个月左右,出刊后编辑部会付费邮寄给作者一本样刊。6.上网:如果是上知网的期刊,那么出刊1-3个月后,作者就可以在知网上检索到自己的文章了。至此,整个发表流程完成。

论文发表流程有哪些?完成一篇SCI论文后,下一个任务是如何准备和组织所需的文件和提交的材料。稿件提交后,总刊编辑将进行正式审稿,检查稿件在格式和内容上是否符合本刊要求。稿件通过正式评审后,即可进入实质性评审阶段。因此,应高度重视提交文件的准备工作。投稿前,在选择投稿期刊后,首先要认真阅读期刊作者主页指南上的每一个细节要求,并严格按照目标期刊投稿指南准备相关投稿材料。如果投稿指南上的描述不清楚,你可以下载最新一期的期刊供阅读和参考。许多杂志都会在提交指南页面提供免费下载的样本供作者参考。不同的杂志需要准备不同的文件,但它们也有某些共同点。例如,提交材料通常包括:正文(手稿或正文)、扉页(全称或扉页)、附件、图片(图)、表格(表)、补充资料文件(辅助资料或补充材料)及其他相关文件等。以下是提交文件的准备和注意事项的简要说明:文本(text)正文是对一篇论文的完整描述,按优先顺序,通常包括标题、摘要、导言、材料与方法、结果、讨论、致谢、参考文献、表格、图片说明(图例或图注)等主要部分。材料、方法和结果往往内容丰富。每个段落都可以设置副标题。副标题可以加粗或斜体,以便于阅读。少数杂志要求表格和图片说明不能放在全文中,而是放在单独的Word文档中。在正常情况下,提交指南将对文章的结构、格式和字数作出规定和详细介绍。整个稿件的每一部分都必须严格按照投稿指南的要求编写。标题页(完整标题或标题页)标题页包含文章的标题、所有作者信息(姓名、最高学位、单位及其通信地址)以及相应作者的联系信息(单位、地址、电话、传真和电子邮件)。大多数SCI期刊要求文章标题不得超过100个印刷体字符(包括字母、标点符号和空格),应为10-12个(不超过25个)英文单词的名词性短语或句子。作者排名的顺序应根据论文的写作贡献来决定。共同第一作者或共同通讯作者通常用“*”等符号标记,并单独解释。有些杂志需要在标题页上写基金支持,通常在标题页的下半部分。此外,大多数SCI期刊要求作者提供不超过40个印刷字符的标题(行标题、短标题)。求职信期刊编辑通常允许作者简要介绍论文的亮点和价值,作者也希望能为编辑提供一些信息,帮助他们的论文进行评审和决策。以上信息可写在提交信中,一封好的投稿信必须特别注意内容和格式。一些医学期刊在作者指南中对投稿信的内容和格式有具体要求。送审函的格式与一般公函相似,包括标题、标题、正文、背书、签名和附件等,正文是送审函的主体部分。在这一部分,你需要:完整地列出文章的标题。并简要介绍了本研究的主要意义、创新点、投稿意愿和适合期刊稿件的栏目。

发布论文可以通过以下两种方法:

1、通过导师介绍;

2、自主选择论文代发机构发表。

发表文章论文大致流程:

1、准备稿件

文章大家都会写,但是写出来的文章却不一定适合发表,所以发表论文之前可以阅读一些跟自己相关的论文作为参考。 既然是要发表的论文,就要自己提出观点,验证自己的观点,总结出自己的观点,这样的论文才言之有物。

而且,论文篇幅不可过长,能少的尽量不要多,期刊版面的大小固定,字数太多只会增加编辑的工作量。一篇好的论文可以大幅度缩短发表的时间。

2、选择期刊

准备投稿在投稿之前首先要选择自己想要发表的期刊,特别需要注意的是,每个期刊都有自己的风格和特点,筛选出符合自己论文领域的期刊,这样才能够更容易发表。我国的期刊成百上千,每个期刊都有自己的要求。

通常来说,每个期刊的主页都可以下载论文写作模版和要求,作者可以根据模板和要求写论文,避免格式不符合造成直接拒稿。

3、等待初审结果选择好期刊后就要进行投稿了,大多数期刊都可以通过在线系统提交论文,投稿过程中需要特别注意期刊的要求,有的期刊会要求提供版权协议等材料。不同的期刊初审时间不一样,有的需要一周,有的需要一个月,只需要静心等待即可。

4、修改稿件

论文通过初审后,期刊编辑会与作者取得联系,一般来说,论文不会一次性就通过,需要多次的修改,编辑会对稿件提出意见和要求,这时只需要按照编辑的要求进行修改就可以了。

在与责任编辑交谈的时候,态度切记要诚恳,虚心请教,这样有利于拉近两个人的距离,给你提供一些更好的建议,能够更顺利的出版。

5、支付费用如果有幸走到这一步,说明论文已经投稿成功了。所需要支付的费用就是向杂志社支付版面费,要及时支付费用才能够保证论文顺利的发表。当然如果你的论文写得非常好,杂志社也会向你支付一定的稿费。

扩展资料:

发表文章论文注意事项:

1、注意时间,不要耽误l递交材料的时间。一般学术期刊从投稿到出刊再到邮递杂志到手,之间需要1-2个月的时间。核心期刊和双核心期刊需要提前半年甚至一年准备。杂志一般为定期出刊,但不定期截稿,部分投稿较多的杂志,截稿会比出刊时间提前2-4个月。

2、鉴别杂志,非法的期刊杂志发表的论文无效。正规期刊当在国家新闻出版总署查询系统里可以查询到,凡查询不到的,均为非法期刊。作者选择杂志的时候,应当先在新闻出版总署的查询系统里查询后再决定,以防发表论文到非法期刊上而使论文发表无效。

3、控制字符数(计空格),杂志都有版面字符要求。第一次发表论文的作者,常不了解杂志的版面要求而使文章没有通过或多花很多冤枉钱。一般杂志一个版面字符数在2200-2800字符间,如果作者文章字符太多和容易遇到高昂的版面费。

比如某杂志一个版面要求2500字符,而作者文章3000字符,多了500字符,但版面费用却要加一倍,需要付或2个版面的费用。实在有点冤。而又有作者把文章写成1万多字或不足2000字符,这样的文章都不符合发表要求,常会被杂志社审核不通过。

所以,发表论文,投稿前了解杂志的字符数要求是必要的。

4、论文写作应规范。论文要有标题,作者,作者单位,摘要,关键词,正文,参考文献,作者简介等。论文内容要有论点,一些结题类,课堂备案类的文章最不容易通过审核的。尤其文章含有过多的专业公式或符号的,杂志往往考虑排版的问题儿给予否定。

5、注意联系方式,让编辑能随时与你沟通。一般情况下,作者投稿说明自己联系方式及通讯地址,这涉及到了杂志邮递,文章沟通等问题。这类联系方式内容是不会被刊登出来的,但必须要添加,一般添加再文章的最后。

参考资料来源:百度百科-期刊

参考资料来源:人民网-研究生是如何发表5篇CSSCI期刊论文的?

锂电池正极材料研究论文

“‘低钴’和‘无钴’是未来电池正极材料的发展趋势。” 谈及电池产业的未来发展,清华大学车辆与运载学院助理教授、电池安全实验室主任冯旭宁指出。对此,中国科学院物理研究所博士生导师、天目湖先进储能技术研究院首席科学家吴凡也表达了相同的观点:“对锂离子电池正极材料而言,‘高镍低钴’或‘无钴’化是大势所趋。” 在过去 20 年里,半导体行业发展一路突飞猛进,如 CPU 工艺技术一直遵循摩尔定律,性能每隔两年就能翻一倍。 然而,电池技术却没有取得太大突破,纵然每年都会有各种 “XX 新型电池” 的新闻冲上热搜,但最终还是沦为 “PPT 电池”:或是因为技术工艺,或是因为成本造价,或是因为安全性等各种因素,始终走不出实验室,难以大规模量产和普及。 就现阶段而言,不管新能源行业怎么 “大放豪言”,电池一直都是挡在电动 汽车 发展道路上的绊脚石。 随着 2020 年特斯拉 “电池日” 上 4680 电池的正式亮相,电池界又多了一位 “新玩家”,更确切地说应该是 “搅局者”。按照马斯克以往的 “风格”,他每进入到一个行业必定会掀起一场腥风血雨。 电池占据整车成本的大头,那接下来特斯拉造电池的成本如何控制呢?这就不得不提到电池中的重要成分 —— 钴。这种原子序数为 27,在化学元素周期表中位于第 4 周期、第 Ⅷ 族的金属,是电池制造中必不可少的正极原材料(至少现阶段依然不可或缺)。 “电池行业对钴的消费量最大,占比超 50%。钴是活性物质,既能稳定材料的层状结构,又能减小阳离子混排,便于材料深度放电,从而提高材料的放电容量、循环性和倍率性能;镍可以提高材料活性,提高能量密度。” 吴凡表示。 在自然界矿石中,钴和镍是共生的关系,其占比为 1:10,即从矿石里面提纯一份的钴,同时能得到十份的镍。“但钴这种元素存在两个缺点。第一,钴具有一定的毒性;第二,钴的提纯比较困难。” 冯旭宁说道。 另外,钴资源的缺乏也是不利因素。“目前全球已探明陆地钴资源量约 2500 万吨,储量 720 万吨,主要集中在刚果(金)、澳大利亚和古巴,三国储量之和占全球总储量的 68%。刚果(金)储量居世界首位,达 340 万吨。” 吴凡指出,“钴由于其稀缺性已成为战略性稀有金属资源,同时其供应链结构集中化、不稳定,已成为新能源 汽车 发展的掣肘。” 产量少 + 提纯难造成了钴的价格不断攀升,也就造成了电池的成本居高不下。 那电池能不能 “无钴” 呢?答案是可以的。 “低钴” 乃至 “无钴” 既是特斯拉接下来要走的路线,也是需要克服的难题,这一点马斯克在 2020 年 “电池日” 上也已经明确表态。据了解,早在 2019 年 1 月,Jeff Dahn(现为特斯拉首席科学家)曾发表过一篇论文指出锂电池正极材料 “无钴高镍” 的可行性,毕竟镍在自然界比钴多得多,提纯也相对容易一些。无疑,正是 Jeff Dahn 的观点极大地坚定了马斯克要造 “无钴电池” 的信心。 谈及 Jeff Dahn,冯旭宁告诉 DeepTech:“关于锂电池材料尤其是无钴材料,Dahn 先生课题组很早就开展研究了。Jeff Dahn 先生是少数经历过锂电技术全程研发且仍在技术一线的科学家之一。” 对于电池 “无钴” 化,冯旭宁表示:“‘低钴’和‘无钴’是未来电池正极材料的发展趋势。但在电池‘无钴’化的同时需要添加其他的离子来替代钴在电池充放电过程中的作用。” 尽管特斯拉现阶段的电池还离不开钴,但纵观过往其历代电池,其钴含量正在不断降低,最终实现电池 “无钴” 化指日可待。 作为新能源 汽车 领域的 “大哥”,特斯拉知晓固态电池和石墨烯电池的优势,但未来几年特斯拉之所以不打算做固态和石墨烯,而是继续 “深耕” 锂离子电池,原因主要归结为两点。 第一,受制于供应商的电池技术。 在电池供应方面,特斯拉和松下、LG 化学、宁德时代都有合作,特斯拉 汽车 所使用的 1865 电池和 2170 电池皆由他们提供,但受制于性能、安全、规模、价格等综合因素的权衡,圆柱形锂离子电池是目前供应商能给特斯拉的最好电池。 显然,这离特斯拉心目中的 “理想电池” 还有一些差距。既然自己想要的电池供应商给不了,于是特斯拉便走向了 “自研 + 自产” 电池的道路。 所谓 “术业有专攻”,特斯拉在电池领域的积累显然不如松下等老牌供应商,故此其花重金请来锂离子电池界的祖师级人物 ——Jeff Dahn 亲自挂帅担任特斯拉首席科学家,开发 “不可能三角” 电池,这是一种能量密度更高、充电速度更快、制造成本更低的锂离子电池。 Jeff Dahn 也不辱使命,时隔一年便交上一份让马斯克满意的答卷,尽管 4680 电池还存在些许不足,但它的综合性能很好地提振了行业信心。 从第三方采购、到合资建厂、再到自研自产,特斯拉在电池道路上俨然走出了自己的步伐。可以预见,未来几年内特斯拉将继续沿着现有成熟路线使用圆柱形电池的多并联方案、继续开发大容量锂离子电池。 第二,特斯拉的商业策略。 特斯拉归根结底是一家车企,是企业就要盈利,想盈利就要控制成本。固态电池虽然无比优越,但现阶段不论是技术还是工艺都存在瓶颈,完全不具备规模化量产的可能,而且成本高高在上,没有商业化的实用价值。在特斯拉看来,使用成熟的锂离子电池是当下更优的解决方案。 特斯拉的商业策略是 “低价抢市场” ,以加速全球市场拓展。随着苹果等互联网大厂也宣布要造车,现阶段特斯拉要做的是尽快抢占市场,靠的就是低价。对广大消费者而言,价格依然还是众多因素中最优先考虑的,比如之前特斯拉宣布降价时,官网一度瘫痪、线下门店挤得水泄不通。 和国内一些新能源车企不惜代价大搞 “千公里续航” 不同,特斯拉更看重电池的成本。前有电池技术瓶颈的掣肘,后有来自互联网大厂的围攻,该公司现在最想做的是尽快降低电动 汽车 价格,以更低的价格占领市场,让市场快速达到饱和。 对于特斯拉 4680 电池,吴凡表达了自己的看法:“特斯拉主要通过优化电池结构件、简化电池生产工艺流程等,提升电池标准化生产能力,达到降低电池成本的目的。这种通过增加单块电池体积来增加电池包能量密度的技术路线或思路在本质上与比亚迪的刀片电池、还有宁德时代的 CTP 技术是一致的。” 电池并联太多会导致出现发热、效率低等不良影响,大容量电池可以有效减少并联数,系统管理层面也变得更加简单。“大容量化是整个新能源 汽车 电池行业的趋势。” 冯旭宁表示。 单看特斯拉的 PPT 介绍,4680 电池的性能表现着实令人赞叹,仿佛再次让业界看到了希望。然而在业内人士看来,这种电池并没有达到预期。 严格意义来讲,特斯拉 4680 电池更像是一次 “优化升级”,而非 “革命”。 另外,特斯拉的这种圆柱形锂电池容量也有 “天花板”。“主要是因为圆柱形锂电池需要卷芯,外围部分性能较好,但越靠近核心位置曲率越大,易出现应力集中的现象,造成活性物质不可用,进而形成浪费。所以这种电池容量是有上限的,没办法做得特别大。” 冯旭宁表示。未来,转向其他电池,比如业界普遍看好的固态电池或许是更好的出路。 目前的固态电池和石墨烯电池其实正处于过渡阶段,即固态电解质和石墨烯还只是属于 “添加剂” 性质。“比如在锂离子电池中添加固体电解质以增加能量密度、提升安全性;在负极添加石墨烯以增强导电性、提高充电速度。两者添加得越多,性能就越好,但相应的工艺难度和制造成本也就越高。” 冯旭宁说道。 显然,不论是固态电池还是石墨烯电池,现阶段都不具备量产的可能性。 电池直接关系到 汽车 整体性能表现,而日常驾驶让车主感到焦虑的,除了续航里程,再就是充电速度。 “续航里程对应的是电池的能量密度,充电速度对应的是电池的功率密度。” 冯旭宁说,“想提高能量密度可以电极做得厚一些,想提高功率密度可以电极做得薄一些,但这两者是矛盾的,这就需要电池厂商在设计电池的过程中去综合考量,进行权衡和取舍。” 他补充道。 “快充技术,电池厂商和车企各负责一半。” 冯旭宁表示。电池厂商能做的是 “电池先天的” 导电能力强,比如添加导电剂,控制电芯预紧力,将电极做成梯度电极或薄电极等;车企能做的是 “电池后天的” 充电过程中对电流进行控制,让电池充电过程中不过热,不损坏电极材料。“目前,行业的目标是充电 5 分钟能跑 200 公里。” 他说。 特斯拉的快充技术业内领先,其采用 “高功率直流电” 模式,充电功率达 40kW 以上,比如特斯拉超级充电站可以实现 30 分钟充一半,80 分钟完全充满。在充电站 / 桩建设方面,特斯拉更是走在世界前列。据统计,特斯拉在全球范围拥有超过 2 万个超级充电桩。在中国大陆拥有 750 余个超级充电站、6000 余个超级充电桩,覆盖 300 个以上的城市。 关于电动 汽车 淘汰下来的废旧电池污染问题。冯旭宁表示,“废旧电池是污染源主要指的是重金属污染,比如铅酸电池里的铅,镍镉电池里的镉,而锂离子电池内部的原料毒性较低(锂离子电池中钴的占比大约为 1-3%,),一般不会对土壤造成重金属残留。” 马斯克在 2020 年 “电池日” 上也曾公开表示:“废旧电池可以进行收回利用,用于低配车型或者太阳能等有储能需求的领域,这样也能进一步降低电池的使用成本。” 对此,冯旭宁说:“电池回收一般分两类,一类是在高负荷下用完之后,到低负荷下继续使用,比如一些 5G 通信基站可以利用电动 汽车 淘汰下来的旧电池;另一类就是直接报废,通过物理法破碎成原材料,分离出电池中的有用金属,比如铜、铝、钴、镍等,再重新送回电池厂加工成电池,这方面回收效率非常高,接近 100%。” 与此同时,吴凡也指出了现阶段电池回收产业存在的一些问题:“第一,电池厂商多且使用很分散,废电池收集缺乏有效渠道;第二,电池剩余寿命以及回收价格评估难;第三,电池拆解难度大,且存在一定安全隐患;第四,电池回收涉及行业众多,商业模式需要进一步 探索 和完善。” 以往,人们对于传统燃油 汽车 的认知仅仅停留在 “硬件” 层面,认为 汽车 只是一个代步工具而已。到了如今的新能源 汽车 时代,人们发现原来 汽车 也是可以搭载操作系统,可以实现智能化的。 在电动 汽车 的硬件中,电池无疑是最为核心的部分;而在软件中,全自动驾驶是核心,比如特斯拉的 FSD(Full Self-Driving)在业内就像标杆一般的存在,且收费不菲。据了解,目前特斯拉 FSD 套件在中国的售价高达 万元。“特斯拉的业务布局将会变得和苹果越来越像,未来,特斯拉可能会变成一个服务商,不单靠卖 汽车 硬件,更多的是通过软件服务实现盈利。” 一位业内资深人士告诉 DeepTech。 从电动 汽车 硬件到车载系统软件,从电池技术、整车组装,到 FSD 以及软件生态,不难看出,特斯拉正在下一盘大棋。

锂电池正极材料主要为含有锂的过渡金属化合物, 并且以氧化物为主。主要分为锂钴系( LiCoO2 )、锂镍系( LiNiO2 )、锂镍钴二元系(Li(Co,Ni)O2)、锂镍钴锰三元系( Li(Co,Ni,Mn)O2 ) 、 锂锰系( LiMn2O4 ) 、 锂铁系( LiFePO4 ,磷酸锂铁) 等。

各国对锂电池的高度重视掀起了一场能源革命和产业革命,这也将改变未来世界汽车竞争格局 首先锂电池在新能源汽车产业中利润最高。市场容量最大。安全行极高,具有投资价值,锂电池产业链下的电池、电极材料将具有制造业特点,盈利能力将呈现下降趋势;上矿产品、冶炼等将具有采掘业特点,盈利能力随原材料价格波动。当这些优点与汽车结合,新能源汽车时代由此开启了 其次有券商研究员认为,整个锂电池产业链是新能源汽车投资的重点,而锂电池正极材料将成为这条产业链中最耀眼的明珠。而且中国发展锂电汽车既有可与发达国家竞争的技术优势,又有发达国家所没有的资源优势和市场优势,是中国在激烈的国际竞争中难得的一次历史机遇。资本市场中,锂电池所驱动的新能源汽车产业链更成为一场财富盛宴。整车制造厂商福田汽车(600166,股吧)(600166),拥有上锂资源的西藏矿业(000762,股吧)(000762),锂电池组件及电解液供应商杉杉股份(600884,股吧)(600884)、中国宝安(000009)、江苏国泰(002091,股吧)(002091),包括另一条技术路径——镍氢电池生产厂商科力远(600478)等各相关上市公司股价均涨幅巨大 再者以丰田的镍氢混合动力汽车Prius为代表的日本,在新能源汽车领域起步较早,其厂商的战略核心就是发展混合动力车。2006年,混合动力车的市场份额占日本全部新能源汽车销量的%。 从美国2001—2007年混合动力汽车销售数据来看,其复合增长率达到%,处于高速增长期。奥巴马就任后宣布,到2015年,美国混合动力汽车的保有量将超过100万辆。 科技部部长万钢在“2008中国绿色能源汽车发展高峰论坛”也给出了中国新能源汽车的发展目标——到2012年,国内有10%新生产的汽车将是节能与新能源汽车。 照此推算,2008年中国汽车产量约为930万辆,即使2012年产量增至1000万辆,新能源汽车也将达到年产100万辆的规模。 按每辆混合动力轿车电池成本5万元,正极磷酸铁锂材料50公斤,负极材料40公斤,电解液40公斤计算。100万辆混合动力汽车将带动5万吨正极材料,4万吨负极材料,4万吨电解液的需求。 对于国内电池厂商而言,这将是一个总产值500亿元的大蛋糕。而如果按客车计算,这一数值还将提高3倍——每辆混合动力客车的电池需求是轿车的 4倍。目前,中国汽车保有量已达到万辆,如果未来每年有10%的车辆更换动力电池,又将创造出一个更具想象空间的市场。《证券市场周刊》调查发现,国内新能源汽车产业链各环节相互制约,甚至存在断链。在混合动力汽车产业链上,电池、电机、动力系统生产企业才是最大的受益者。对于整车厂商而言,既然无法追求高利润,市场占有率就成为首要争夺目标。从某种意义上说,谁能率先实现新能源电池在汽车上的产业化应用,谁就能占据先机。磷酸铁锂电池方面缺乏资金批量生产业内人士认为,锂电池行业的市场竞争力很大程度依赖于长期发展的技术积累,而非单纯的资金投资,同样,锂电池材料具有较高的技术壁垒,各细分行业领先企业大多为较早进入行业者。掌握了规模化生产磷酸铁锂和磷酸铁锂电池技术的企业,将在未来的电动汽车产业竞争中处于领先地位。比亚迪梦想照耀现实业内人士介绍,锂电池产业链中,市场容量最大、附加值最高的是正极材料,占锂电池成本的30%以上,根据材料不同,毛利率低则15%,高则70%以上。 我国小功率锂电池早已产业化,形成上下结合的完整产业链,电池产品超过世界市场的1/3,与日韩形成三足鼎立之势。而我国有相对富饶的锂矿资源,还有制造成本优势,在新能源汽车制造领域完全有可能迅速赶超日韩。(太多了你自己在看一道)

发表到期刊的论文怎么

发表期刊论文的整体流程:1.投稿先根据自己的论文研究方向,选择合适的期刊,写作后进行投稿。2.三审三校初审责任编辑对已登记编号的来稿进行初审,初审的主要内容为:1. 有无政治性和政策性问题;2. 是否违反保密性和著作权的有关法规;3. 是否符合办刊方向;4. 论文的学术性、科学性如何,确定有无必要请专家复审;5.论文组成的各要素是否齐全,图表是否符合要求,格式是否规范;复审即专家评审。通过初审的论文,及时送评审专家库中的有关专家评审,复审的重点是学术水平。为保证审稿的公平、公正,采用“内稿外审,外稿内审”的原则。审稿专家建议“修改后发表”,并有重要修改意见时,应将稿件作退修处理,必要时再次复审。复审时间为两个月。终审主编(或常务副主编)在前二审的基础上作进一步审理,并提出拟用稿清单,供常务编委会会议定稿。3.录用通知有些录用通知就在官网系统里,有些录用通知通过邮件发送,收到录用通知后就静等出刊就好啦。4.出刊期刊出版后,杂志社会把纸质版样刊寄给作者。5.检索文章出刊后1-3个月被网站收录,比如知网、维普、万方、龙源,可以上网检索到。(有需要文章上网朋友要注意这一点)如何投稿:投稿是有技巧的,而不是说写完学术论文就大功告成,而且还有可能,一不小心就前功尽弃。例如; 如果你所在的单位是金融行业,那你就投稿在相关领域的期刊社上,又或者你是为了评定职称,那你就要根据当地的政策文件来选择,核心还是普刊。千万别小看了这一步,这是很多新手小白第一次发表期刊论文最容易踩的坑。哪些行业可以准备期刊论文?教师、工程师、经济师等发表期刊论文通常是为了每年的职称评定,而像医生、大学生、金融行业、科研人员等,都可以根据自身领域的发展空闲去规划发表期刊论文。以上就是发表期刊论文的整体流程啦,论文投稿并不难,但是过程很复杂,准备的时间也很长,所以如果是邻近毕业或者即将参加评审的小伙伴,论文一定要提前准备!

为什么我们要撰写期刊论文呢?因为没有发表的研究等于不存在的研究。那么期刊论文怎么写呢?下面我们就来具体看看。一、选择论文类型:1、会议论文此类论文主要的目的在于传播研究的前期成果或正在进行的研究成果,不是一个完整的论文,正文部分往往只有4-8页,2-4个图,5-8个参考文献。主要用于参加会议,会议的主办方在会后可能会将参会者的文章整理成册,或者制成会议光盘。2、期刊论文Full-length的原创性论文,传播已完成的研究发现。此类论文即是本文中的研究重点,此类论文必须具有原创性且有足够的写作空间来发表成果。此类论文往往8-12页正文,5-10个图,20篇左右的参考文献。3、研究短讯较简短,对重要的和原创性成果做迅速报道和前期讨论。此类文章(这里用文章这个说法比论文恰当),往往审批时间短,见刊快。4、文献综述此类文章在国外期刊一般是先由编辑向撰稿人约稿,然后撰稿人再撰写文章。撰稿人如有撰写文献综述的计划或想法,应先与编辑沟通,看其期刊近段时间是否需要这一方面的文献综述。在写文献综述的过程中必须保证文章有作者自己的观点,分析问题要有理有据,并且应做到述评结合。15页以上,5个以上图表,80个参考文献。注:文献综述类文章不是人人都能发表,能够撰写文献综述类文章的作者应该是在该研究领域德高望重或是经验丰富的研究者。一个研究者能够在一个很有影响力的期刊上发表一篇文献综述类文章往往象征着自己学术上的一个里程碑。二、文章撰写1、开始写文章前一定要有一个写作框架。2、文章需要具有一定的格式。一般的不同类型的研究论文具有不同的格式要求,例如心理学的APA格式要求。一般先写主体部分。①文章标题的写作文章的标题应该用最简短的文字表达自己文章的主旨(例如在冲击力学中,有人研究为什么猫从9楼坠下,不管以什么姿势,最后总是四脚着地的这个现象,其文章的标题就叫做猫的旋转)。文章的标题不应该太广太泛,这样不利于自己的写作。注:中文中有一类文章的题目是《关于的研究》,在翻译成英语是不能使用A reach on这个说法,因为reach这个次在英文中是一个十分广泛的词,指很大的研究。而一般只能使用A study of这样的描述。②文章摘要的写作何为摘要摘要就是整篇文章的广告,你有见过又烂又长的广告吗答案是NO.因此摘要的写作必须遵循简短精悍的理念,摘要的整体篇幅不应该超过一页纸的1/2,最好控制在1/3左右。注:摘要很重要,一篇文章能否被审稿人第一眼看中凭的就是摘要的内容。因为在编辑给审稿人发送文章时,第一次只会发送摘要,没有正文,所以摘要的质量直接决定了审稿人会不会审你的稿子。③文章引言的写作在引言部分主要阐述的是你为什么要做这项研究,必须说明自己这个研究的价值与意义(用处)。一个好的研究应该是有用+有趣的研究。引言部分的内容顺序一般是:我们研究的问题是什么--研究的价值在哪里--关于这个问题目前已有的研究有哪些--这些研究还有什么局限--自己对于这个问题又是有何高见--最后阐释自己研究的意义。注:引言不是罗列别人的研究,而是需要分析别人的研究。④文章方法部分的写作方法部分是整个文章的核心,即是要告诉读者这个研究是怎么进行的。因此方法部分一定要注意细节的描述,以便同行可以重复自己的研究。在这里需要说明的是,如果是引用一个已经很成熟的方法或范式来做实验则不需要详细描述。在方法部分如果是实验类文章,需要写明关键的实验刺激以及实验条件,如果是模拟数据类的文章则需要说明这种数据模拟存在的

硬碳正极材料的储锂机理研究论文

研究亮点(1)利用原位磁性监测技术研究了一个典型的Fe3O4/Li电池内部电子结构的演化;(2)揭示了Fe3O4/Li体系中,表面电荷容量是额外容量的主要来源;(3)金属纳米粒子的表面电容机制可以推广到大范围的过渡金属化合物中。图文导读1.结构表征和电化学性能用传统的水热法合成了单分散的空心Fe3O4纳米球,在100 mA g−1电流密度下充放电(图1a),第一次放电容量为1718 mAh g−1,在第二次和第三次分别为1370 mAh g−1和1364 mAh g−1,远远超过926 mAh g−1的理论预期。完全放电产物的BF-STEM图像(图1b-c)表明,经锂还原后,Fe3O4纳米球转化为尺寸约为1-3nm的更小的Fe纳米颗粒,分散在Li2O中。为了证明在电化学循环过程中磁性的变化,获得了完全放电至后的磁化曲线(图1d),显示了由于纳米铁颗粒的形成而产生的超顺磁性行为。图1(a)在100 mA g−1电流密度下循环的Fe3O4/Li电池的恒流充放电曲线;(b)全锂化Fe3O4电极的BF-STEM图像;(c)团聚体中存在Li2O和Fe的高分辨率BF-STEM图像;(d)Fe3O4电极在锂化过程前(黑色)和之后(蓝色)的磁滞曲线,以及后者(紫色)的Langevin拟合曲线。2.结构和磁演化的实时检测为了将电化学与Fe3O4的结构和磁性变化联系起来,对Fe3O4电极进行了原位X射线衍射(XRD)和原位磁性监测。在从开路电压(OCV)到的初始放电过程中,一系列XRD衍射图中的Fe3O4衍射峰在强度和位置上都没有明显的变化(图2a),表明Fe3O4只经历了Li插层过程。当充电到3V时,Fe3O4的反尖晶石结构仍然保持完好,这表明在这个电压窗口中的过程是高度可逆的。进一步进行了与恒流充放电试验相结合的原位磁性监测,以研究磁化是如何实时演变的(图2b)。图2原位XRD和磁性监测表征。(a)原位XRD图;(b)研究了Fe3O4在3 T外加磁场下的电化学充放电曲线及相应的可逆原位磁响应。为了从磁化强度变化的角度对这种转换过程有一个更基本的了解,实时收集了磁性响应,以及伴随电化学驱动反应的对应相变(图3)。很明显,第一次放电时,Fe3O4电极的磁化响应与其他循环不同,这是由于第一次锂化过程中Fe3O4发生不可逆相变所致。当电位降至时,Fe3O4的反尖晶石相转变为含Li2O的FeO类盐石结构,Fe3O4相在充电后无法恢复。相应地,磁化强度迅速下降至μbFe−1。随着锂化的进行,没有新相形成,(200)和(220)类FeO衍射峰的强度开始减弱。当Fe3O4电极完全锂化时,没有明显的XRD峰保留(图3a)。注意到当Fe3O4电极从放电到时,磁化强度(从 μb Fe−1增加到μbFe−1),这归因于FeO到Fe的转化反应。然后,在放电结束时,磁化强度缓慢下降至 μB Fe−1。这一发现表明,完全还原的金属Fe0纳米颗粒仍可能参与锂存储反应,从而降低电极的磁化强度。图3相变和磁响应的原位观测。(a)Fe3O4电极第一次放电过程中采集的原位XRD图;(b)Fe3O4/Li电池在外加磁场3 T下电化学循环的原位磁力测定。体系的表面电容Fe3O4电极的磁性变化发生在低电压下,在该电压下最有可能产生额外的电化学容量,这表明电池内存在未发现的电荷载体。为了探索潜在的储锂机理,利用XPS、STEM和磁性能谱等手段,研究了Fe3O4电极在、和的磁化峰,以确定磁性变化的来源。结果表明,磁矩是影响磁性变化的关键因素,因为测量到的Fe0/Li2O体系的Ms不受磁各向异性和粒子间耦合的影响。为了进一步了解Fe3O4电极在低压下的动力学性质,在不同的扫描速率下进行了循环伏安测量。如图4a所示,矩形循环伏安曲线出现在和1V之间的电压范围内(图4a)。图4b表明Fe3O4电极上发生了电容响应。伴随恒流充放电过程的高度可逆磁响应(图4c),电极的磁化强度在放电过程中从1V下降到,在充电过程中又重新增加,说明Fe0的类电容表面反应是高度可逆的。图4在–1 V下的电化学性能和原位磁性表征。(a)循环伏安曲线。(b)利用峰值电流与扫描速率的相关性确定b值;(c)在5 T外加磁场下,磁化强度相对于充放电曲线的可逆变化。上述Fe3O4电极的电化学、结构和磁性特征表明,额外的电池容量是由Fe0纳米粒子的自旋极化表面电容引起的,并伴随磁性变化。自旋极化电容是界面上自旋极化电荷积累的结果,在充放电过程中可以显示磁响应。对于Fe3O4基电极,在第一次放电过程中,分散在Li2O基底中的细Fe纳米颗粒具有较大的表体积比,由于高度局部化d轨道,可实现费米能级的高状态密度。根据Maier的空间电荷储存理论模型,作者提出在金属Fe纳米粒子的自旋分裂带中,可以储存大量电子,这可能会在Fe/Li2O纳米复合材料中产生自旋极化表面电容(图5)。图5Fe/Li2O界面自旋极化电子的表面电容示意图。(a)铁磁性金属颗粒表面(放电前后)的自旋极化态密度示意图,与铁的体自旋极化相反;(b)超储锂表面电容模型中空间电荷区的形成。总结与展望通过先进的原位磁性监测,研究了TM/Li2O纳米复合材料内部电子结构的演变,以揭示该锂离子电池额外存储容量的来源。结果表明,在Fe3O4/Li模型电池系统中,电化学还原的Fe纳米颗粒能够储存大量的自旋极化电子,导致过大的电池容量和明显改变的界面磁性。实验进一步验证了CoO、NiO、FeF2和Fe2N电极材料中存在这种电容,说明锂离子电池中金属纳米粒子的自旋极化表面电容的存在,并为这种空间电荷存储机制在其它过渡金属化合物基电极材料上的应用奠定了基础

锂电池中,应该是储锂恰当。将电能以化学能的形式储存起来,但是又不能直接“储存电子”,因此以可逆脱嵌的“Li+”“Na+”的形式储存于host structure的正负极材料中另外,楼上说的“锂离子从正极脱出,穿过电解液和隔膜,来到了负极”,是一个经常被误解的概念。感兴趣的同学可以算算,一个Li+从正极“跑到”负极得花多久的时间,是否符合电池的正常充放电周期。一般是认为,Li+从正极脱出,通过cathode/electrolyte interface进入电解液,同时另一端,电解液中的Li+通过anode/electrolyte interface嵌入负极,这就是为什么在锂电(其它输运过程其实都差不多)中,界面反应被那么看重的原因锂离子电池已经广泛应用到社会生活bai的各个方面,给人们的生活带来便利。但锂离子电池中还存在一些基础科学问题不是很清楚,其中,进一步揭示储锂材料的储锂机理对改善锂离子电池性能和探索新材料有着至关重要的作用。

1990年以来发表的论文(Eng.):新世纪1. Surface-modified Graphite as an improved intercalating Anode for Lithium ion Batteries,, , e l,Electrochem. & Solid State Lett. , 6 (2003).A30-A332. Possible use of ferrocyanide as a redox additive for prevention of electrolyte decomposition in overcharged nickel batteries, Electrochem. Acta, (2003)3. Temperature Effects on the Electrodeposition of Zinc, u, e l ,J. Electrochem. Soc., 150 (2003) . Hydrogen production from catalyzed hydrolysis of sodium borohydride solution using nickel boride catalyst,, e l,Int. J. Hydrogen Energy 28 (2003)10955. A Mechanistic Study of Electrocatalytic Reduction of Oxygen on Manganese Dioxides in Alkaline Aqueous Solution, Y. L. Cao, H. X. Yang*, X. P. Ai, and L .F .Xiao, J. Electroanal. Chem.,(2003) ,6. Structural and electrochemical characterization of calcium zincate mechanochemically synthesized as rechargeable anodic materials,, H. Yang, X. Ai, J. Yu and Y. Cao, J. Appl. Electrochem., 33(2003)6077. A study of calcium zincate as negative electrode materials for secondary batteries, u, l, J. Power Sources, 103 (2001) 938. Effects of Anions on the Zinc Electrodeposition onto Glassy-Carbon Electrode, u, e l,, Russ. J. Electrochemistry, 38 (2002) . Modeling and prediction for discharge lifetime of battery systems using hybrid evolutionary algorithms, , J. Yu et al., Computer and Chem., 25(2001)251上世纪10. The influences of organic additives on Zinc electrocrystallization from KCl solution, u, , , l, J. Electrochem. Soc., 146 (1999)178911. A new approach to the estimation of electrocrystallization parameters, J. Electroanal. Chem., 474 (1999)6912. Preparation and characterization of LiNiO2 synthesized from Ni(OH)2 and , , , u, i, J. Power Souces, 79(1999)25613. A study of LiMn2O4 synthesized from LiCO3 and MnCO3, u, i, , i, J. Power Sources, 74(1998)24014. The kinetic study on the electrolytic hydrogenation of nitrobenzene on the hydrogen-storage alloy electrode, S. Lu, i, u, iu, , J. Electroanal. Chem., 457(1998)14915. Initial activation of hydrogen storage alloy electrode by chemical modification, J. Rare earth metals, S. Lu, i, u, iu, u, . Rare Earths,16( 4), 307(1998)16. Effects of lanthanum and neodymium hydroxides on secondary alkaline zinc electrode, J. L. Zhou, Y. H. Zhou , H. X. Yang , J. Power sources, 69,(1997)16917. Polypyridine complexes of iron used as redox shuttles for overcharge protection of secondary lithium batteries. C. S. Cha , X. P. Ai, and H. X. Yang , J. Power Sources , 54, (1995)25518. In-situ ESR study on electrochemical lithium intercalation into petrulum coke , L. Zhuang, J. Lu, X. Ai, H. Yang , J. Electroanal. Chem. , 397, (1995)31519. Powder Microelectrodes, C. S. Cha, C. M. Li , H. X. Yang , P. F. Liu , J. Electroanal. Chem. , 368, (1994)4720. Electrochemical and structural studies of the composite MnO2 cathode doped with metal oxides , H. X. Yang, X. P. Ai , M .Lei ,S. X. Li , J. Power sources , 43-44, (1993)53321. Recent advances in experimental methods applied to lithium battery researches , J. Power Sources , C. S. Cha , H. X. Yang, J. Power sources , 43-44, (1993). Fractal structure structure of colloidal silver and its effects on SERS intensities of crystal violet , Chinese Chem. Letters, 3, (1992)91923. The observation of enhanced RAMAN scattering of gaseous molecules by Hg microdroplets, Chinese Chem. Letters, 2, (1991)54924. A novel optically transparent thin layer electrode for in situ IR spectroelectrochemistry , Chinese Chem. Letters, 2, (1991)25. Fiber optic thin-layer electrode cell for in situ transmission spectro- electrochemistry , Chinese Chem. Letters, 2, (1991)329 1990年以来发表的论文(中文):21世纪1. 联苯用作锂离子电池过充保护剂的研究, 肖利芬, 艾新平, 曹余良, 杨汉西, 电化学, 9(1), 23(2003)2. 塑料化聚合物电解质的导电性质, 艾新平,董全峰,杨汉西, 电池,32(S1), 48(2002)3. 尖晶石型ZnMn_2O_4的合成及其电化学行为, 李升宪,李保旗,杨汉西,艾新平, 电池,32, 3( 2002)4. 锌酸钙的制备与电化学性能研究, 喻敬贤,杨汉西,朱晓明,艾新平, 电池, 31(2) 65(2001)5. 圆柱型锌空气电池研究, 李升宪,周贵茂,艾新平,杨汉西, 电化学,6(3), 341(2000).6. 塑料化薄膜锂离子电池的制造技术, 艾新平,洪昕林,董全峰,李升宪,杨汉西, 电化学, 6(2), 193(2000)上世纪90年代7. LiMn2O4正极在高温下性能衰退现象的研究, 胡晓宏,杨汉西,艾新平,李升宪,洪昕林, 电化学, 5(2), 224(1999)8. 纳米光亮镀锌层的结构研究, 喻敬贤,陈永言,黄清安,杨汉西, 高等学校化学学报,20(1),107 (1999)9. 添加剂对锌结晶行为的影响及参数的演化优化, 化学学报, 57,953(1999)10. 锡基非晶态材料的化学合成及其嵌锂性能的初步研究, 刘立,杨汉西,孙聚堂,艾新平, 电化学,4(4), 362 (1998)11. 石墨负极锂嵌碳机理的研究, 周震涛,黄静,汪国杰,艾新平,杨汉西,, 华南理工大学学报(自然科学版) 1998年07期12. 贮氢合金用作有机加氢反应新型催化剂研究进展, 卢世刚,杨汉西,杨聪智, 化学通报 12, 1(1998)13. 电阻应变法用于密封电池内压变化的动态检测, 杨汉西, 胡容辉,艾新平,杨聪智,李升宪, 电化学, 4(3), 318(1998)14. 薄膜塑料锂离子电池的初步研究, 董全峰, 杨汉西, 艾新平, 胡晓宏,李升宪, 电化学, 4(1), 9(1998)15. 电化学制备Ni-Cu/Cu超晶格多层膜, 喻敬贤,陈永言,黄清安,杨汉西, 武汉大学学报(自然科学版) 1998年06期16. 氢气在贮氢合金电极上析出反应机理的研究, 卢世刚,李群,刘庆国,路春,党兵,杨汉西, 电化学,4(3),265 (1998)17. 非水介质中Zn-MnO_2的可充性研究, 李保旗,杨汉西,李升宪,杜米芳,艾新平, 电化学,3(3), 277 (1997)18. 泡沫镍的电沉积制备技术, 何细华,胡蓉晖,杨汉西,左正忠, 电化学,2(1), 66 (1996)19. 微电极定量方法评价贮氢合金的电化学性质, 胡蓉晖,杨汉西,刘金成,李升宪,查全性, 电化学,2(4), 391(1996)20. 贮氢合金电极的活化方法和作用机理研究, 胡蓉晖,杨汉西,卢世刚,李升宪,刘金城,杨聪智, 电化学,2(2), 170 (1996)21. 电沉积泡沫铜, 何细华,左正忠,杨汉西, 材料保护 1996年11期22. 无氟微酸性体系镀铅研究, 何细华,左正忠,杨汉西, 电镀与环保 1995年05期23. 贮氢合金用作硝基苯电解加氢的催化电极研究, 卢世刚,杨汉西,王长发, 电化学, 1(1), 15(1995)24. 金属氢化物-镍电池充电过程消气反应研究, 刘金城, 杨汉西, 胡蓉辉, 吴锋, 电源技术, 19(4), 1(1995)25. 超薄层红外光透电解池的设计和应用, 肖以金,杨汉西,查全性,, 分析化学 1994年02期26. 电化学石英晶体微天平对银电极氧化还原过程的研究, 陈胜利, 吴秉亮, 杨汉西, 高等学校化学学报, 15(1), 103(1994)27. 炭材料作为储锂负极的研究, 杨汉西, 雷鸣,李升宪,艾新平, 应用化学, 10(1), 113(1993)28. Li/SOCl2 电池的拉曼光谱电化学研究, 钟发平, 杨汉西, 查全性等, 高等化学学报, 14, 265(1993)29. 简易多功能光谱电化学池的设计, 肖以金, 杨汉西, 冯之刚, 伏亚萍, 光谱学与光谱分析, 13(6), 103(1993)30. 激光拉曼光谱的光纤采样技术, 钟发平, 吴国帧, 杨汉西等, 光谱学与光谱分析, 13(6), 29(1993)31. 甲基吡啶电氧化过程的表面增强RAMAN光谱研究, 钟发平, 杨汉西, 查全性, 化学学报, 51, 273(1993)32. 阴极限制型Li/SOCl2电池过放电产物的热分析, 肖以金, 杨汉西, 查全性, 应用化学, 10(3), 54(1993)33. C60 电化学还原的稳态性质研究,杨汉西, 肖以金, 朱凌等, 物理化学学报, 8, 580(1992)34. 微型拉曼电解池现场研究硫酰氯的电化学还原, 钟发平, 杨汉西, 徐知三, 查全性, 物理化学学报, 8, 266(1992)35. 锌离子在λ-MnO2中的电化学嵌入, 吴智远, 杜米芳, 杨汉西等, 应用化学, 9(2), 99(1992)36. 锂电化学嵌入尖晶石二氧化锰研究, 吴智远, 杨汉西, 石中等, 电池, 22(1), 13(1992)37. 锂离子电池炭负极研究, 杨汉西, 艾新平, 雷鸣, 李升宪, 电源技术, 5, 2(1992)38. MnO2作为二次锂电池阴极材料研究, 李升宪, 杨汉西, 吴智远, 汪振道, 电源技术, 4, 7(1991)39. AA-型Li/λ-MnO2 二次电池研究, 李升宪, 杨汉西, 吴智远等, 电池,21(5), 10(1991)40. 锂/硫酰氯电池体系的初步研究, 杨汉西,钟发平, 汪振道等, 电源技术, 2, 5(1990)41. 大功率锂/亚硫酰氯电池高效炭阴极研究, 汪振道, 杨汉西, 范玉章, 雷鸣, 电源技术, 1, 3(1990)

材料学论文发什么期刊好

关于材料期刊排名有以下几个回答:

1、cta materialia 材料学报 751C0006 英国

2 、Synthetic metals 合成金属 751LD053 瑞士

3、 Scripta materialia 材料学刊 751C0009 英国

4、 Applied surface science 应用表面科学 539LB051 荷兰

5 、Metallurgical and materials transactions.A,Physical metallurgy and materials science 冶金学与材料汇刊.A辑,物理冶金学与材料科学 751B0002-1 美国

6、 Journal of alloys and compounds 合金与化合物杂志 764LD001 瑞士

7、 International materials reviews 国际材料评论 751C0011 英国

8、 Intermetallics 金属间化合物 751C0069 英国

9、 Materials transactions 日本金属学会材料汇刊 751D0055 日本

10、 JOM 矿物、金属与材料学会会刊 764B0001 美国

11、 Metallurgical and materials transactions.B,Process metallurgy and materials processing science 冶金学与材料汇刊.B辑,生产冶金学与材料处理科学 751B0002-2 美国12、 Zeitschrift fÜr Metallkunde 金属学杂志 751E0003 德国

13、 ISIJ international 日本钢铁学会杂志国际版 752D0054 日本

14、 日本金属学会志日本金属学会志 751D0053 日本

15、 International journal of refractory metals and hard materials 国际高熔点金属与硬质材料杂志 751C0019 英国

16、 Materials characterization 材料特性 751B0010 美国

17、 Hydrometallurgy 湿法冶金学 75lLB001 荷兰

18 、铁と钢 铁和钢 752D0001 日本

19、 Journal of phase equilibria and diffusion 相平衡与扩散杂志 751B0012 美国

20、 International Journal of powder metallurgy 国际粉末冶金杂志 751B0007 美国

21、 Ironmaking &steelmaking 钢铁冶炼 752C0003 英国

22、 Powder metallurgy 粉末冶金学

一般来说,做材料的人心中大概有四个顶刊:nature、Science、ACS Publications、Advanced Materials。(NSAA)。

其中nature(IF=)≈Science(IF=),nature子刊nature materials(IF=)和nature nanotechnology(IF=)认可度也很高。

ACS的期刊例如JACS(IF=)、ACS NANO(IF=)、NANO LETTERS(IF=)、Applied Materials & Interfaces(IF=)等。

Advanced Materials(IF=)>ACS。(还有一些期刊如small等暂时不讨论)。

材料是人类可以利用的物质,通常是指固体。而材料学是研究材料的制备或加工工艺、材料结构与材料性能三者之间的相互关系的科学。

涉及的理论包括固体物理学,材料化学,与电子工程结合,则衍生出电子材料,与机械结合则衍生出结构材料,与生物学结合则衍生出生物材料等等。

综上:

nature(IF=)≈Science(IF=)>Advanced Materials(IF=)≈nature materials(IF=)≈nature nanotechnology(IF=)。

JACS(IF=)≈ACS NANO(IF=)>NANO LETTERS(IF=)。

可以投的期刊有《热科学与技术》。材料类的科学期刊很多的,包括:玻璃钢/复合材料杂志,材料保护,材料导报,材料工程,材料科学与工艺材料,科学与工程学报,材料开发与应用,新材料新装饰,稀有金属材料与工程,材料研究学报。

  • 索引序列
  • 正极材料的论文怎么发到期刊
  • 锂电池正极材料研究论文
  • 发表到期刊的论文怎么
  • 硬碳正极材料的储锂机理研究论文
  • 材料学论文发什么期刊好
  • 返回顶部