首页 > 学术发表知识库 > 负数在生活中的应用实践研究论文

负数在生活中的应用实践研究论文

发布时间:

负数在生活中的应用实践研究论文

1、温度中表示零下的温度。

例如:零下6℃就用-6℃。

2、建筑的地下部分,地下一层用-1层表示。

例如:地下一楼的停车场可以表示为:-1楼。

3、海拔低于海平面的用负数表示。

例如:珠穆朗玛峰的高度是海拔8844米; 吐鲁番盆地的高度是海拔-155米.

4、负债可以用负数表示。

例如:小张欠小杨100块钱,表示为:-100元。

5、水位上升用正数表示,水位下降用负数表示。

例如:水位下降就用-10CM表示。

6、增产/减产可以用负数表示。

例如:减产用-500斤表示。

7、得分/扣分可以用负数表示。

例如:扣5分用-5来表示。

扩展资料:

人们在生活中经常会遇到各种相反意义的量。比如,在记账时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。可见正负数是生产实践中产生的。

根据《正、负几何论》和实践生活中的应用。建筑施工前,在平整地平面设定正负零并以零为(水)平面时: 平面的零下存在着的空间,须要回填的容积有多少通常称为负方。也就是由负数来表示,负多少立方米为负体。 空间的容积则为负体 ;空间的空积则为负面;空间的距离则为负线。容积、空积和距离都可以用负数表示。 平面的零上存在着的土方,须要清除的体积有多少通常称为正方。也就是由正数来表示,正多少立方米为正体。物体的体积则为正体;物体的面积则为正面;物体的长度则为正线。体积、面积和长度都可以用正数表示。

人们在生活中经常遇到的量相反的意思。例如,以上会计亏损,计算粮仓储存米,有时必须牢记,牢记食品摄入的食物,有时。为方便起见,人们必须考虑相反的意思表示的数。所以,人们正数和负数的概念引入到遗留食物的钱,记住,要赔钱的一点是,食品阴性。在生产实践中产生可见的正数和负数。 据史料记载,早在两千多年前,我国将有正数和负数的概念,掌握了许多正面和负面的算法。人们计算一些小竹竿把各种数字来计算。例如,投入356 | | | 3056投入。这些小竹棍称为“芯片”的芯片数量也可以用来制造骨骼和象牙。 三国时期的概念的建立一个负重大贡献的中国学者刘辉。刘辉首先,正数和负数的定义,他说:“现在相反的两个计数的利弊,作出正面和负面的名称。”这意味着,在计算过程中的量与相反的意思的相遇,使用数和负数来区分它们。 刘辉第一次正面和负面的区别正数和负数。他说:“正算红,黑负,否则病原体ISO”是指与红棒,把正数的数量,把一些负面黑棒,摆杆斜说阴性,表示正数摆动坚持中国著名的古代数学专着“九章算术”(写于公元一世纪),第一次提出的法律正数和负数的加减法:正数和负数。 ,他说:除以具有相同名称的,有益的同义词,是不为负,负没有成雅;除以各自不同的名称,相同名称的相对利益,是没有进入负雅的名字没有进入负是“否”,“除”是“保存”,“相位增益”,“分化”这两个数字的绝对值“和”,“减法”,“无”是“零”。 p>用现在的话:“正数和负数的加法和减法的规则是减法:减去两个数字与符号的绝对值相等,不同的标志是等于绝对的两个数的减法值相加零减正面负面,正零负担数。两个数字相加的符号相反,与两个数相加的数量,等于零的正数等于到正零和负号的数目等于负的绝对值的总和的绝对值相减,等于。 “这个数目的正面和负面的算法描述是完全正确的,完全符合法律规定!负数的引入是一个数学家的杰出贡献。 BR />表示数量的正面和负面的习惯,一直被保留到现在的一些不同颜色。现在一般用红色表示负,报纸上发表一个国家的经济赤字,显示的支出超过收入,财务丢失的钱。 负相反的正数,在现实生活中,我们经常使用的正数和负数表示相反的意思,两个量,夏季武汉温度高达42°C,你会想到武汉的确像一个火炉,哈尔滨温度-32°C在冬季负号让你感到寒冷的北方的冬天。在今天的中小学教科书,介绍引进负数算术方法:只需一个较小的数字减去一个较大的数字,你可以得到一个负数。这种方法引入一个特定的问题情景的负面举一个直观的了解。古代数学在解决的过程中,往往产生负数代数方程组。古巴比伦的代数研究发现,巴比伦人没有提出解决方案不具备的方程的负根的概念或未能找到负根的概念。希腊学者丢番图3世纪的著作,方程的正根,然而,在已经形成了中国传统数学的早期负及相关算法。除了“九章算术”的定义正面和负面的算法有关,东汉时期(公元206年),刘洪宋杨晖(1261)还讨论了正负数加减规则九章算术完全相同说,这是特别值得一提的是,元代朱世杰除了明确规定不同的标志的数量,正数和负数的加法和减法,但也给了正数和负数的乘法和除法的规律。他的算法启蒙负面的认识,并予以确认在国外,比中国晚得多,印度数学家婆罗摩笈多唯一已知的负628可以是一元二次方程的根。为负数在欧洲Qiukai的14世纪法国最有成就的数学家是荒谬的。直到17世纪,荷兰人日拉尔(1629)是最早承认并使用负数解决几何问题。中国古代数学家,西方的数学家是研究负的存在是合理的。欧洲在16世纪和17世纪的数学家不承认负数。帕斯卡尔从0到零下4纯粹是无稽之谈。帕斯卡的朋友阿伦对负德提出了一个有趣的论点,他说:(-1):1 = 1:(-1) ,数量较少数量较多大于等于一个较小的数字比它更大数量的是如何呢?直到1712年,莱布尼茨也承认,这种说法是合理的,英国数学家瓦里承认负数,而负数则小于零和大于无穷远(1655),他的解释是:a> 0时,英国著名的代数学家摩根在1831年仍然是负是虚构的,他用下面的例子来说明这一点:“今年56岁的父亲,他的29岁的儿子问父亲年龄是儿子的两倍时?“列方程56 + X = 2×(29 + X),并提取= -2。他说,这种解决方案是荒谬的。当然,负面的排除18世纪的欧洲已经不多了。随着19世纪整数理论基础,否定逻辑的合理性,真正创建成立。

楼层,温度计

二次函数在生活中的实践研究论文

在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。一、进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射�0�6:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为�0�6(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知�0�6(x)= 2x2+x+2,求�0�6(x+1)这里不能把�0�6(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。类型Ⅱ:设�0�6(x+1)=x2-4x+1,求�0�6(x)这个问题理解为,已知对应法则�0�6下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。一般有两种方法:(1)把所给表达式表示成x+1的多项式。�0�6(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得�0�6(x)=x2-6x+6(2) 变量代换:它的适应性强,对一般函数都可适用。 令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而�0�6(x)= x2-6x+6二、二次函数的单调性,最值与图象。在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-]及[-,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。(1)y=x2+2|x-1|-1 (2)y=|x2-1| (3)= x2+2|x|-1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型Ⅳ设�0�6(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。求:g(t)并画出 y=g(t)的图象解:�0�6(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2当1∈[t,t+1]即0≤t≤1,g(t)=-2当t>1时,g(t)=�0�6(t)=t2-2t-1当t<0时,g(t)=�0�6(t+1)=t2-2 t2-2, (t<0) g(t)= -2,(0≤t≤1) t2-2t-1, (t>1)首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。三、二次函数的知识,可以准确反映学生的数学思维:类型Ⅴ:设二次函数�0�6(x)=ax2+bx+c(a>0)方程�0�6(x)-x=0的两个根x1,x2满足00,又a>0,因此�0�6(x) >0,即�0�6(x)-x>0.至此,证得x<�0�6(x)根据韦达定理,有 x1x2= ∵ 0<x1<x2<,c=ax1x2�0�6(0),所以当x∈(0,x1)时�0�6(x)<�0�6(x1)=x1,即x<�0�6(x)0)函数�0�6(x)的图象的对称轴为直线x=- ,且是唯一的一条对称轴,因此,依题意,得x0=-,因为x1,x2是二次方程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-,∵x2-<0,∴x0=-=(x1+x2-)<,即x0=。二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入。

给你点资料吧,呵呵。二次函数的实际应用——二次函数与物理的关系 二次函数是数学中很重要的一部分,想必与物理有相当密切的关系,毕竟数学和物理都属理科。物理学的各种计算都要用数学知识,二次函数当然也要用。 一 直线等加速运动 我们知道,在匀速直线运动中,物体运动的距离等于速度与时间的乘积,用字母表示为S=vt,而在直线等加速运动(即通常所说的加速度)中,速度的数值是时刻在改变的,我们仍用S表示距离(米),用v0表示初始速度(米/秒),用t表示时间(秒),用a表示每秒增加的速度(米/秒)。那么直线等加速运动位移的公式是: S=v0t+ at2 就是说,再出是速度和每秒增加的速度一定时,距离是时间的函数,但不再是正比例函数,而是二次函数。 我们来看一个例子:v0=1米/秒,a=1米/秒,下面我们列表看一下S和t的关系。 注意,这里的时间必须从开始等加速时开始计时,停止等加速时停止计时。t的取值范围,很明显是t≥0,而S的取值范围,同样是S≥0。下面我们来看看它的图象: 下面我们再来看一个特殊情况。 二 自由落体位移 我们知道,自由落体位移是直线等加速运动的特殊情况,它的初始速度为0,而每秒增加的速度为9.8米/秒,我们用g表示,但这个g不是9.8牛顿/千克。 自由落体位移的公式为: S= gt2 我们再来看看这个函数的表格: 图象我们就不画了,它只是直线等加速运动的特殊情况,图象大同小异。 三 动能 现在我们来看另一方面的问题。我们知道,物体在运动中具有的能量叫做动能,动能与物体的质量和速度有关。比如说,以个人走过来不小心撞上你,或许没什么,但如果他是跑步时撞上你,说不定会倒退几步,而假如你站在百米终点线上,想不被撞倒都不容易。这是因为对方具有的动能随速度的增大而增大。 我们用E表示物体具有的动能(焦耳),m表示物体的质量(千克),用v表示物体的速度(米/秒),那么计算物体动能的公式就是: E= mv2 来看一个表格(m=1千克): v的取值范围显然是v≥0,E的取值范围也是E≥0,所以它的图象和前两个没什么区别。 总结 通过上面几个问题的研究,我们认为二次函数在物理方面的实际应用中的特点,在于物理学上对取值范围的要求大部分都是要求该数值大于等于0,所以图象大部分是二次函数图象的一半,除原点外,图象都在第一象限。还有,物理学上用到的公式,一般很少有常数项。 关于二次函数与物理的关系,我们就研究至此。

函数与方程是初中数学中两个最基本的概念,它们的形式虽然不同,但本质上是相互连接的,有密切关系。如:一元二次方程与二次函数。我们知道形如ax2+bx+c=0的方程是一元二次方程,而形式为y= ax2+bx+c(a、b、c为常数,a≠0)是二次函数。它们在形式上几乎相同,差别只是一元二次方程的表达式等于0,而二次函数的表达式等于y。这种形式上的类似使得它们之间的关系格外密切,很多题型都是以此来命题。为什么会这样?主要是因为当二次函数中的变量y取0时,二次函数就变成一元二次方程。由此可见,方程中的很多知识点可以运用在函数中。下面,我们就它们间的具体运用详细的了解一下。一、 配方法解方程与二次函数的应用关系在解方程的四种方法就有一种用配方法来解方程的。而在二次函数中,我们经常要将一般形式 转化成 的样式,这个转化过程实际上就是对其进行配方,与方程配方相同。例1:用配方法解方程解:(1)(2)(3)(4)……例2:指出函数 的顶点坐标。解:(5)(6)(7)(8)∴顶点为(-2,-17)方程中的(1)、(2)、(3)、(4)四个步骤与函数中的(5)、(6)、(7)、(8)四个步骤的方法是完全一样的。可见,方程与函数密切相关。我们通过课本的学习可知;二次函数y= ax2+bx+c(a≠0)的图象与x轴有交点时,交点横坐标的值就是方程ax2+bx+c=0(a≠0)的根。二、 一元二次方程根的判别式与二次函数的结合应用在二次函数中,当函数与x轴分别有两个交点、一个交点和无交点时,该函数所对应的一元二次方程根的判别式分别是:△>0、△=0和△<0。而在一元二次方程中有以下结论:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根。例3:判断二次函数y= x2-4x+3与x轴的交点个数分析:因为二次函数与x轴的交点个数可由对应方程根的判别式△来确定。若△>0,则有两个交点;若△=0,则有一个交点;若△<0,则无交点。该题中△=4>0,所以有两个交点。例4:试说明函数y= x2-4x+5,无论x取何值,y>0。分析:第一种方法:用配方法将其化成y= (x-2)2 +1的形式来说明。(但如果系数取值不好,该方法就比较麻烦)第二种方法:用△来说明,因为△=-4<0,所以函数与x轴无交点,又因为该函数的二次项系数a=1>0,所以图象开口向上。于是,图象在x轴上方,因此无论x取何值,y>0。例5:求证:不论m取什么实数,方程x2-(m2+m)x+m-2=0必有两个不相等的实数根。分析:这道题如果用常规做法,就是证明一元二次方程的△>0的问题。然而本题的判别式△是一个关于m的一元四次多项式,符号不易判断,这就给证明带来了麻烦,若用函数思想分析题意,设f(x)=x2-(m2+m)x+m-2,由于它的开口向上,所以只要找到一个实数x0,使得f(x0)<0,就说明这个二次函数的图象与x轴有两个交点,问题就得到了解决。注意观察,容易发现当x=1时,f(1)=1-(m2+m)+m-2=-m2-1<0,故这个图象必与x轴有两个交点。这就说明要证明的结论是成立的。证明 略。三、 一元二次方程中根与系数的关系在函数中的应用例6:二次函数图象过点(-1,0)、(3,0),且与y轴交于(0,3),求函数解析式。分析:此类题型的常规解法是待定系数法。然而在这里可以用根与系数的关系来解,因为(-1,0)、(3,0)实际在x轴上,所以-1和3是函数所对应方程的两个根。解:设函数形式为∵函数过点(0,3)∴ c=3∴又∵函数过点(-1,0)、(3,0)即函数与x轴交点的横坐标是-1和3∴解得 a=-1,b=2∴函数形式为y= -x2+29x+3很明显,此方法要比待定系数法简单。一元二次方程与二次函数之间的密切关系还有很多巧妙的用处。在这里,我们只探讨这么多,更多的地方需要在实践中去慢慢体会。论文格式:1、论文格式的论文题目:(下附署名)要求准确、简练、醒目、新颖。2、论文格式的目录目录是论文中主要段落的简表。(短篇论文不必列目录)3、论文格式的内容提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、论文格式的关键词或主题词关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。5、论文格式的论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。 资料来源:

数学在生活中的应用 数学是一门很有用的学科。早在远古时代,就有原始人“涉猎计数”与“结绳记事” 如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们 购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便 利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门” ;运动场跑 道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定; 折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解 Rt 三角形有关知识的应 用。 因此我们的研究性课题是数学在生活中的运用,希望通过这次小研究,提高我们的数 学能力,能够在生活中自觉地运用数学知识。 结合高中知识:函数、不等式、数列等方面,我们上网查了资料相关资料,并结合自身生活 实际思考,整理归纳如下。 第一部分 函数的应用 我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、 对数函数及分段函数等八种。这些函数从不同角度反映了自然界中变量与变量间的依存关 系,因此代数中的函数知识是与生产实践及生活实际密切相关的。 一、一元一次函数的应用 一元一次函数在我们的日常生活中应用十分广泛。 当人们在社会生活中从事买卖特别是 消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。 例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往 往会为我们提供两种或多种付款方案或优惠办法。 这时我们应三思而后行, 深入发掘自己头 脑中的数学知识,做出明智的选择。俗话说: “从南京到北京,买的没有卖的精。 ”我们切不 可盲从,以免上了商家设下的小圈套,吃了眼前亏。 过年这几天和家人上街购物, 商家纷纷采取各种优惠措施, 我就运用自己的数学函数知 识精打细算了一次。 我去“好日子”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠, 这似乎很少见。更奇怪的是,居然有两种优惠方法: (1)卖一送一(即买一只茶壶送一只茶 杯)(2)打九折(即按购买总价的 90% 付款) ; 。其下还有前提条件是:购买茶壶 3 只以上 (茶壶 20 元/个,茶杯 5 元/个) 。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种 更便宜呢?我便很自然的联想到了函数关系式, 决心应用所学的函数知识, 运用解析法将此 问题解决。 我在纸上写道: 设某顾客买茶杯 x 只,付款 y 元,(x>3 且 x∈N),则 用第一种方法付款 y1=4×20+(x-4)×5=5x+60; 用第二种方法付款 y2=(20×4+5x)×90%=4.5x+72. 接着比较 y1y2 的相对大小. 设 d=y1-y2=5x+60-(4.5x+72)=0.5x-12. 然后便要进行讨论: 当 d>0 时,0.5x-12>0,即 x>24; 当 d=0 时,x=24; 当 d<0 时,x<24. 综上所述,当所购茶杯多于 24 只时,法(2)省钱;恰好购买 24 只时,两种方法价格相等; 购买只数在 4—23 之间时,法(1)便宜. 可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜 绝了浪费,真是一举两得啊! 二、一元二次函数的应用 在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时, 其利润随投资的变化关系一般可用二次函数表示。 企业经营者经常依据这方面的知识预计企 业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益, 从而判断企业经济效益是否得到提高、 企业是否有被兼并的危险、 项目有无开发前景等问题。 常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。 三、三角函数的应用 三角函数的应用极其广泛,最简的也是最常见的一类——锐角三角函数的应用: “山林 绿化”问题。 在山林绿化中, 须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地 树木间距保持一致。 (如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。 这便要用到锐角三角函数的知识。 第二部分 不等式的应用 日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前两 类不等式的应用与其对应函数及方程的应用如出一辙, 而平均值不等式在生产生活中起到了 不容忽视的作用。下面,我们主要谈一下均值不等式和均值定理的应用。 在生产和建设中, 许多与最优化设计相关的实际问题通常可应用平均值不等式来解决。 平均 值不等式知识在日常生活中的应用, 均值不等式和极值定理通常可有如下几方面的极其重要 的应用: (表后重点分析“包装罐设计”问题) 实践活动 已知条件 最优方案 解决办法 设计花坛绿地 周长或斜边 面积最大 极值定理一 经营成本 各项费用单价及销售量 成本最低 函数、极值定理二 车船票价设计 航行里程、限载人数、 票价最低 用极值定理二求出 速度、各项费用及相应 最低成本,再由此 比例关系 计算出最低票价 (票价=最低票价+ +平均利润) 包装罐设计 (见表后) (见表后) (见表后) 包装罐设计问题 1、 “白猫”洗衣粉桶 “白猫”洗衣粉桶的形状是等边圆柱(如右图所示) , 若容积一定且底面与侧面厚度一样,问高与底面半径是 什么关系时用料最省(即表面积最小)? 分析:容积一定=>лr h=V(定值) =>S=2лr +2лrh=2л(r +rh)= 2л(r +rh/2+rh/2) ≥2л3 (r h) /4 =3 2лV (当且仅当 r =rh/2=>h=2r 时取等号), ∴应设计为 h=d 的等边圆柱体. 2、 “易拉罐”问题 圆柱体上下第半径为 R,高为 h,若体积为定值 V,且上下底 厚度为侧面厚度的二倍,问高与底面半径是什么关系时用料最 省(即表面积最小)? 分析:应用均值定理,同理可得 h=2d∴应设计为 h=2d 的圆柱体. 事实上, 不等式特别是均值不等式在生产实践中的应用远不止这些, 在这里就不一一列 举了。 第二部分 第二部分 数列的应用 在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人 口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。 重点分析等差数列、等比数列在实际生活和经济活动中的应用。 (一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大 地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知, 按揭货款 (公积金贷款) 中都实行按月等额还本付息。 这个等额数是如何得来的, 此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这 一问题的解决办法。 若贷款数额 a0 元,贷款月利率为 p,还款方式每月等额还本付息 a 元.设第 n 月还款后的本 金为 an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, ...... an+1=an(1+p)-a,.........................(*) 将(*)变形,得 (an+1-a/p)/(an-a/p)=1+p. 由此可见,{an-a/p}是一个以 a1-a/p 为首项,1+p 为公比的等比数列。日常生活中一切有关 按揭货款的问题,均可根据此式计算。 研究总结 第三部分 研究总结这次研究运用数学知识解决实际问题给我们带来了许多发现和思考的愉快,这也正验证 了苏霍姆林斯基所说的: “在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是 一个发现者 、研究者、探索者。 ”这也正是研究性学习的意义所在。作为中学生,我们不仅 要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题.这样才能更好地 适应社会的发展和需要。 但这次研究性学习也有不足之处, 首先寒假大家联系不便, 也较难取得辅导老师的帮助, 我们想,毕竟高中所学数学知识有限,如果能在数学老师指导下,学习一些大学深入研究的 数学应用知识,可以更好的拓宽知识面,加深理解。其次,我们的生活和经济理财打交道较 少, 如果能结合学校的饭卡使用过程中的经济问题问题结合统计学知识, 调查出同学们的消 费水平,一些节俭消费的措施和手段,那数学知识就真的帮上大忙了。最后,希望学校能将 其他同学较为优秀的研究性学习成果进行展示,为我们提供借鉴。 高二(22)班 刘丽华 张晶晶 洪泓 曹静 沈彤 夏叶宁 潘玥

经济数学在现实生活中的应用论文

可参考:1 模糊数学在经济效益综合评价中的应用——兼论综合评价经济效益的数学模型 许兆铭 ; 陈家强 财经研究 1985-05-01 期刊 0 8 2 浅谈数学在经济领域中的应用——并议财经类院校的数学课程设置 钱阿丹 呼伦贝尔学院学报 2003-08-30 期刊 0 33 3 经济数学在经济管理中的应用 刘玉红 山西统计 2002-05-26 期刊 1 114 4 大学数学在经济活动中的应用案例浅析 盛晓玲 科技信息(科学教研) 2007-09-20 期刊 1 23 5 高等数学在经济分析中的运用 褚衍彪 枣庄学院学报 2007-10-01 期刊 0 97 6 模糊数学在经济开发区概念性规划评审中的应用 夏朝阳; 曾真 中国集体经济(下半月) 2007-10-15 期刊 0 35 7 浅议数学在经济中的应用 黄智斌 职业时空 2007-12-20 期刊 0 75 8 数学在经济管理中的应用 王建蓉 青海师专学报 2002-09-25 期刊 2 273 9 数学在经济生活中的应用 王宇超 宿州师专学报 2002-02-15 期刊 1 102 10 未确知数学在经济管理中的应用 李琪 陕西经贸学院学报 2000-10-18 期刊 2 40 11 从社会科学的定量研究谈数学在经济管理中的应用 王秀兰 经济经纬 1994-03-20 期刊 0 37 12 模糊数学在经济预警系统中的应用 孙一啸 预测 1994-05-27 期刊 9 78 13 浅淡数学在经济管理中的应用 程灵芝 河南电大 1997-09-25 期刊 0 56 14 模糊数学在经济效益综合评价中的应用 何中书 华东经济管理 1990-08-29 期刊 0 5 文献检索是一门很有用的学科,指依据一定的方法,从已经组织好的大量有关文献集合中查找并获取特定的相关文献的过程。。一般的论文资料检索集合包括了期刊,书籍,会议,报纸,硕博论文等等。 另外一些做广告的你不要相信,都是钱的或者百度随便搞一些给你!!!我可以帮助你查找资料,但论文还得靠你自己来写的。

论文参考:对经济研究中数学方法运用的思辨如何认识经济研究中数学方法的运用在学术界历来争议很大。自从1969年首届诺贝尔经济学奖授予将数学和统计方法应用于经济分析的荷兰经济学家丁伯根以后,在世界范围内出现了一股经济研究数学化的热潮。经济研究中这种倾向性的风气,对我国经济理论界产生了很大影响,一些经济理论文章出现了大段大段数学公式的推导,个别学术性经济类杂志(并非是计量经济学或统计学杂志)此类文章甚至占了1/2到2/3,对此不少经济学家产生了疑惑:难道这就是经济理论研究的方向,这类研究可以解决或阐明我国经济体制改革中的一些现实问题吗?一、经济研究离不开数学一部科学史揭示了这样一个事实:凡属“科学”范畴的各个学科,都是在人类社会活动实践的基础上产生的。学科的划分和不同学科各自特征的归纳都是“人为”因素作用的结果,就内在本质而言,各学科之间相互作用、相互影响、相互渗透的关联性极为明显,不惟自然科学与社会科学各自内部的学科,就是两类学科之间也是如此。经济学是研究社会资源配置及社会经济关系的一门科学。基于资源存量与流量的可度量性,为了使资源配置更加公平、效率更高,经济学有必要借助于数学这一严密、精确、实用的思维工具。基于在资源配置过程中所形成的经济关系涉及到经济制度、社会心理、价值观念等难以量化的因素,经济学作为一种以思辨定性分析为主的实证性科学,不可能以数学作为经济研究中基本的或者说万能的工具。关于数学方法在经济学中的作用问题,在理论界历来争议就很大,这种论争至少已有100年之久。从“反对数学的蒙昧主义”,到断言没有数学就没有任何科学,见仁见智,意见可谓大相径庭。作为实际经济活动的理论概括和抽象的经济学,从其萌发到形成始终没有离开过数学。一方面,数的概念是在漫长的生产活动过程中产生的,另一方面生产活动也总是需要经济类的不同学科,诸如人口学、市场学、劳动工资学、价格学、财政学、金融学、会计学等等无一不与计数、计量、计算有关。离开数的概念,离开算的方法,可以说就不会有这些学科。经济活动的实践决定了经济理论的研究也离不开数量,并且在经济学中运用数学的程度与数学本身的发展密切相关。纵观数学的历史,其可分为有质的区别的四个基本阶段。第一阶段,计数、算术时期(终止于纪元前5世纪);第二阶段,初等数学即常量数学时期(终止于17世纪);第三阶段,变量数学时期(终止于19世纪);第四阶段,现代数学时期。现代数学时期突出的特点是,多种多样的数学分支不断成长,数学的对象和应用范围大大扩展,并且以更高的理论抽象和概括揭示出了数学中最一般的统一的概念。尽管数学的概念和结论极为抽象,但是它们都是从现实中来的,并且能在其他学科中、在社会生活实践中得以广泛应用,这也许是数学不仅具有无限的生命力且对于各个学科都有巨大影响和吸引力的根由所在。正如恩格斯在《反杜林论》中所说,应用数学来研究现实世界的这种可能性的根源在于:数学从这个世界本身提取出来,并且仅仅表现这个世界所固有的关系的形成部分,因此才能够一般地加以应用。经济学对数学的应用范围伴随着数学的发展在不断扩大。在19世纪之前,经济学主要运用的是初等数学。从威廉·配第的《赋税论》(1662)、《政治算术》(1676),到魁奈的《经济表》(1758),都是利用数字、图表和简单的计算去描述分析国民财富的状况和变化。从19世纪起,经济学的研究引入了变量和函数的概念,数学方法的运用更为普遍。其中,考纳德的《财富理论的数学原理研究》(1838)是一本有意识地运用数学公式来说明经济问题的著作。此后,屠能的以实际数量为根据的经验公式(1850)、瓦尔拉的均衡交易理论(1874)、哈罗德的经济增长模型(1948)、丁伯根的包括48个方程式的大型经济增长模型(1939)、刘易斯的“二元经济”模型(1954)、托宾的中值—变量模型(1958)以及20世纪70年代至90年代索洛和罗曼的经济增长模型等等,一大批运用数学方法研究经济问题的论著纷纷问世。这些著作的共同特点是既使用了一般经济概念和传统经济方法,同时又使用了从最简单的数学符号到最新的数学方法。从经济学与数学形影相随的发展历程可以获知,数学能为经济学提供特有的、严密的分析方法,它同定性分析中常用的逻辑学一样,是一种认识世界的工具。但是数学的应用只有与具体现象的深刻理论和严格的“质”的规定性相结合才有意义,否则经济研究会陷入毫无实在内容的公式与数学的游戏之中。二、经济研究中运用数学方法出现的偏差现在关于数学在经济研究中运用问题的争论焦点,不是经济学要不要运用数学方法,而是如何运用数学方法问题。对于前者,经济活动中对数学广泛应用的实践和经济理论运用数学方法研究成果的不断推出已经作出了肯定回答,而对于后者却众说纷纭,莫衷一是。由此使得经济学在运用数学方法时出现了严重偏差,影响了研究效果,发展下去有可能使我国经济研究步入歧途。经济研究中应用数学方法存在的主要问题有:1.运用范围过泛过滥。数学运用的界域是可以量化的事物,经济研究的视野是人类一切经济活动和社会关系。并非所有的经济活动和经济关系都是可以量化的,尤其是社会经济关系,它受到制度的、道德的、文化的、历史的诸多社会因素的影响,这些因素几乎大部分是无法量化的。如若硬是将不可量化的因素用数学公式将它们的关系表达出来,似乎怎么说都有道理,因为它们根本不存在运算关系,也无法运用数量的计算去考证对错。尽管数学也是反映人的思维的一种语言,但并非所有的科学都能转化为数学的语言。像物理学、化学、生物学这些与数学紧密关联的学科也是如此,有些问题即使将其转化为数学关系式,也不一定具有可解性。而以人类社会活动为研究对象的社会科学对数学的运用所受的限制就更多了,试图将经济学非人性化,以至将经济活动中的人“机械化”,将人的活动程序化、公式化,这无疑是经济研究的一种自我毁灭。不看对象、不问条件、一门心思运用数学方法去求解经济问题,很容易使经济学沉湎于方法论的探寻,拘泥于微观经济体的研究,而对于涉及宏观经济体制变革、机制设计以及社会关系调整等全局性的问题有所轻视和忽略。正如理查德·布隆克所说,现代经济学越来越热衷于复杂的数学计算,沾沾自喜于美妙的数学模型,玩弄神秘。其结果是导致经济学逐步地与每日生活的丰富性、复杂性和非理性相脱离。近几年的经济研究动态已显露出这方面的一些令人忧虑的迹象。2.对数学模型约束条件的取舍过于随意。几乎所有的理论都是在设定若干前提和假设条件的基础上确立的。如会计学中会计主体、持续经营、会计期间和货币计量等四个会计假定,西方经济学中“经济人”及“完全市场化”的假定等。数学方法逻辑严密性和计算准确性的性质决定了任何一个数学模型都要受到若干条件的约束,只有假定这些条件满足,该数学模型才能成立。方程越复杂所受的约束条件越多。现在一些经济学家建立数学模型对于约束条件,一是根本不去考虑,二是过于简化,三是约束条件的确定十分随意,仅从模型本身的需要出发而不考虑是否符合客观实际要求。如此建立起来的数学模型起不到对经济现象量化模拟和对经济理论抽象概括的作用,相反,容易引起理论的混乱和实际操作的重大失误。3.数学方法应用的目的不很明确。数学也是一种语言,对某些现象之所以要用数学而不用其他形式的语言(如文字、图画、音乐、形体等)去描述,就是因为它能够比其他形式的语言更简练、更准确地将该现象表示出来。如果达不到简练准确的效果,就应该采用其他的语言形式。有些经济学家对这一点不大明白,将本来可以用浅显易懂的语言说明的问题,故意用多数人看不懂的数学公式表达出来,而得出的结论却是人人通晓的一般经济学常识。这样做的目的似乎只能解释为:可以掩饰经济理论贫乏之尴尬,可以省却向客观实际调查之劳苦,可以以渊博的数学知识作为傲视经济界同仁之资本,可以实践“所谓理论就是将简明通浅的事理以晦涩诘屈的语言描述出来”的治学之道。这方面西方经济学界也有许多深刻的教训。例如20世纪90年代,一些经济学家试图用随机微分和非参数统计方法研究金融问题,但至今成效甚微,甚至于应用方面出现了致命的偏差。4.为刻意建立模型,对来自实际的数据采取唯我所取的实用主义态度。本来构建数学模型要对所研究的现象进行细微周密的调查,尽可能获取详尽的数字资料,并应做一番去粗取精、去伪存真、由此及彼、由表及里的深入分析,以期找出主要因素及各因素的数量关系,从而建立起数学表达式。可现在一些经济学家却反其道而行之,将构建数学模型的顺序颠倒了过来。采取先确定数学表达式,然后再找能够支持数学关系式成立的数据,从而验证自己所做出的理论概括的正确性。这种以主观意识为导向的研究方法是不可取的,说严重一点,它带有较强的唯心主义色彩,其实它与电脑算命有异曲同工之妙,尽管它披上了数学这层“科学”的外衣。经济学本来应是一门从实践到理论再到实践的不断用实践验证和充实的实证性科学,若反其道而行之,难免会使经济研究步入不问民众疾苦,远离社会经济生活实际的歧途。5.用数学模型对经济进行预测分析的效果不尽如人意。仅以对股票价格预测为例就足以说明这一点。股市可以说是信息资料最为充分、最为准确,也最有条件根据各种相关资料来拟合数学模型的实验场。人们总是千方百计试图建立各种数学模型去预测股价走势。现在市场上有钱龙、胜龙、胜者之星、指南针等十几种股票行情分析软件,但是无论用哪一种软件去预测分析股票走势,似乎胜算的几率也只能维持在50%左右。无法准确预测未来走势也正是股市具有吸引投资和投机的魅力所在。近来一些从事理论物理研究的人认为股票价格也适用于量子物理中的“海森堡测不准原理”。整个宏观经济的运行以及诸如物价、失业、经济增长等经济问题要比股市复杂得多,力图用一两个数学模型去准确分析预测其动态变化是不现实的,否则会使经济学陷入尴尬的“混沌”境界。最著名的“蝴蝶效应”的实例就说明了数学模型于实际应用的局限性。麻省理工学院气象学家洛仑茨曾用计算机求解模拟地球大气的13个方程式,以预报天气。为了提高预报的精度,他把一个小小的中间变量取出。然而,在他喝完一杯咖啡回来后,却惊奇地发现:这一小小的变动已使得结果相差十万八千里!计算机没有毛病,他的改变也有道理,结果何以天上人间?洛仑茨冥思苦想,最后认定自己陷入了“混沌”现象:初始值的极端不稳定性,导致最终结果的巨大差异。好比说,加勒比海一只微不足道的蝴蝶哪一天也许只是想调调情而振动了一下它那美丽的翅膀,结果几个月后地球上竟出现一场威力无比、铺天盖地的龙卷风!混沌无所不在。宇宙是这样,地球是这样,经济现象也是这样。人们所建立的数学模型只能展示某种现象总体的、大致的、趋向性的走势。就连人的身高与体重这种高度相关的自然现象,世界各国的统计学家、生物学家所拟合的回归方程也各不相同,何况对于以人的思维和人的行为为主要导向的社会经济现象呢?近200年来,经济学史上能够经得起实践检查、为人们普遍采用的数学模型多是那些较为简便,易于应用,且能描述事物总体趋势的数学公式。如恩格尔系数、基尼系数、拉斯贝尔指数、派许指数、哈罗德-多马经济增长模型、科布-道格拉斯生产函数、凯恩斯的消费函数、希克斯的IS-LM模型等。这类数学模型的数量与汗牛充栋的经济学论著相较实在少得可怜,难免使人不对经济研究中的应用数学方法的成果感到失望。正如刘易斯在《经济增长理论》一书中所说,“大多数预测在方法上是不可行”的,“为了能预言将要发生的事,我们不能不了解所有的变量将怎样变动,单凭个人的头脑不可能建立可以预测未来的成万个变量的方程体系。”详细见:

论数学建模在经济学中的应用【摘 要】当代西方经济认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论进行决策和预测。【关键词】经济学 数学模型 应用在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统(根据厂家各种资源、产品工艺流程、生产成本及客户需求等数据进行数学经济建模)与客户进行商业谈判。一、数学经济模型及其重要性数学经济模型可以按变量的性质分成两类,即概率型和确定型。概率型的模型处理具有随机性情况的模型,确定型的模型则能基于一定的假设和法则,精确地对一种特定情况的结果做出判断。由于数学分支很多,加之相互交叉渗透,又派生出许多分支,所以一个给定的经济问题有时能用一种以上的数学方法去对它进行描述和解释。具体建立什么类型的模型,既要视问题而定,又要因人而异。要看自己比较熟悉精通哪门学科,充分发挥自己的特长。数学并不能直接处理经济领域的客观情况。为了能用数学解决经济领域中的问题,就必须建立数学模型。数学建模是为了解决经济领域中的问题而作的一个抽象的、简化的结构的数学刻划。或者说,数学经济建模就是为了经济目的,用字母、数字及其他数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构的刻划。而现代世界发展史证实其经济发展速度与数学经济建模的密切关系。数学经济建模促进经济学的发展;带来了现实的生产效率。在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统与客户进行商业谈判。二、构建经济数学模型的一般步骤1.了解熟悉实际问题,以及与问题有关的背景知识。2.通过假设把所要研究的实际问题简化、抽象,明确模型中诸多的影响因素,用数量和参数来表示这些因素。运用数学知识和技巧来描述问题中变量参数之问的关系。一般情况下用数学表达式来表示,构架出一个初步的数学模型。然后,再通过不断地调整假设使建立的模型尽可能地接近实际,从而得到比较满意的结论。3.使用已知数据,观测数据或者实际问题的有关背景知识对所建模型中的参数给出估计值。4.运行所得到的模型。把模型的结果与实际观测进行分析比较。如果模型结果与实际情况基本一致,表明模型是符合实际问题的。我们可以将它用于对实际问题进一步的分析或者预测;如果模型的结果与实际观测不一致,不能将所得的模型应用于所研究的实际问题。此时需要回头检查模型的组建是否有问题。问题的假使是否恰当,是否忽略了不应该忽略的因素或者还保留着不应该保留的因素。并对模型进行必要的调整修正。重复前面的建模过程,直到建立出一个经检验符合实际问题的模型为止。一个较好的数学模型是从实际中得来,又能够应用到实际问题中去的。三、应用实例商品提价问题的数学模型:1.问题商场经营者即要考虑商品的销售额、销售量。同时也要考虑如何在短期内获得最大利润。这个问题与商场经营的商品的定价有直接关系。定价低、销售量大、但利润小;定价高、利润大但销售量减少。下面研究在销售总收入有限制的情况下.商品的最高定价问题。2.实例分析某商场销售某种商品单价25元。每年可销售3万件。设该商品每件提价1元。销售量减少0.1万件。要使总销售收入不少于75万元。求该商品的最高提价。解:设最高提价为X元。提价后的商品单价为(25+x)元提价后的销售量为(30000-1000X/1)件则(25+x)(30000-1000X/1)≥750000(25+x)(30-x)≥750[摘要]本文从数学与经济学的关系出发,介绍了数学经济模型及其重要性,讨论了经济数学模型建立的一般步骤,分析了数学在经济学中应用的局限性,这对在研充经济学时有很好的借鉴作用。即提价最高不能超过5元。四、数学在经济学中应用的局限性经济学不是数学,重要的是经济思想。数学只是一种分析工具数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用,而不能将之替代经济学,在经济思想和理论的研究过程中,如果本末倒置,过度地依靠数学,不加限制地“数学化很可能阉割经济学的本质,以至损害经济思想,甚至会导致我们走入幻想,误入歧途。因为:1.经济学不是数学概念和模型的简单汇集。不是去开拓数学前沿而是借助它来分析、解析经济现象,数学只是一种应用工具。经济学作为社会科学的分支学科,它是人类活动中有关经济现象和经济行为的理论。而人类活动受道德的、历史的、社会的、文化的、制度诸因素的影响,不可能像自然界一样是完全可以通过数学公式推导出来。把经济学变为系列抽象假定、复杂公式的科学。实际上忽视了经济学作为一门社会科学的特性,失去经济学作为社会科学的人文性和真正的科学性。2.经济理论的发展要从自身独有的研究视角出发,去研究、分析现实经济活动内在的本质和规律。经济学中运用的任何数学方法,离不开一定的假设条件,它不是无条件地适用于任何场所,而是有条件适用于特定的领域在实际生活中社会的历史的心理的等非制度因素很可能被忽视而漏掉。这将会导致理论指导现实的失败。3.数学计量分析方法只是执行经济理论方法的工具之一,而不是惟一的工具。经济学过分对数学的依赖会导致经济研究的资源误置和经济研究向度的单一化,从而不利于经济学的发展。4.数学经济建模应用非常广泛,为决策者提供参考依据并对许多部门的具体工作进行指导,如节省开支,降低成本,提高利润等。尤其是对未来可以预测和估计,对促进科学技术和经济的蓬勃发展起了很大的推动作用。但目前尚没有一个具有普遍意义的建模方法和技巧。这既是我们今后应该努力发展的方向,又是我们不可推卸的责任。因此,我们要以自己的辛勤劳动,多实践、多体会,使数学经济建模为我国经济腾飞作出应有的贡献。参考文献:[1]孙红伟.商场经营管理中的几个数学模型分析[J].商场现代化,2006,(8).

数学在生活中的应用论文

你觉得这现实么

生活中的数学

学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。

我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。

从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。

我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。

数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处

在日常生活中,做每件事情都离不开数学,可见数学与我们的关系是多么的密切呀。

比如,妈妈上街买水果,买蔬菜,还有去文印社复稿件……等等,都要用到数学。生活中还有很多很多有趣的数学,等我们去发现,去探索。

暑假里我跟爸妈到表姐家玩,路上口渴了,爸爸只好到附近杂货店买矿泉水喝。杂货店有个规定:买3瓶矿泉水可以换一瓶矿泉水,一瓶矿泉水卖价1元钱,爸爸见了掏出10元钱给杂货店老板,说:“老板买10瓶水”,水拿到了,我如饥似渴的喝了起来,一会儿就喝掉了二瓶。还没等我回过神,已经有好几个空瓶了。爸爸问我:“灵灵,我们用10元钱能换多少瓶矿泉水?”我想:10瓶水喝完,拿9个空瓶子换了3瓶矿泉水,3个空瓶又换了1瓶矿泉水……还剩下两个空瓶子。我高兴地对爸爸说:“爸爸,我算出来了,是14瓶矿泉水,还余下2个空瓶子。”爸爸笑了,说:“你再想一想!”我若有所思:“我们可以再向杂货店老板借一个空瓶子,喝完后再把空瓶还给老板,噢!我们可以喝15瓶矿泉水。”爸爸点头称赞。

数学就是要灵活运用,理论联系实际,只有掌握了数学知识,才能更好的让数学服务于我们。所以我们要学好数学,让数学成为我们学习生活中的好帮手

生活中的数学

今天我在电视上看见有好多人捐钱给那些没有学上的人,就想起:我的国家大约有13亿的人民,如果每个人每天节省1角钱,这样的话,我国全国节约了1300万元了,每个人从小学上到大学要用1万多元,照这样计算可以让1085为没有上学的小朋友,把这些钱给那些小朋友多么好啊!如果我有这么多钱一定平均分给小朋友们!

我突然想起来了人多力量大也有坏处啊,恩不好不好!因为如果每个人每天多要浪费13亿水了,多不话来啊!

我做了一个小小的小实验:在水龙头下面滴了1000滴水重200克,我又动笔算了一下子:1300000000除以1000乘200等于260000000克再用260000000等于260吨水就是足足可以用上个2,3年了呀!我去问爸爸妈妈:“1吨水可以发电100度电?”我有想了想,算了算想出来了,哪就是说260吨水就可以发26000度电了。

哇哇!我一下子惊呆了五分钟,260吨水竟然可以发会这么多的作用啊!所以我们大家从现在开始起要节约水利用水,不要浪费一滴水了,要养成节约这个好习惯不能浪费了!

我相信生活中处处有数学,处处用数学,只要做数学学习的有心人,即使在游戏中也能体会到数学思维的快乐!!!

美丽的数学

今天中午,为了能把筷子体积测得更准确,我叫爸爸从化学室拿了一个细长的量筒,刻度单位更小,每个单位只有1立方厘米。此时,我似乎感觉到了胜利在向我招手,真可谓万事具备,只差动手实验了。

首先,我用铅笔在一次性筷子上划了一道分界线,将筷子平均分成两段,并用水浸泡,以免筷子在测定过程中洗水。随后,将筷子插入量筒中,并用滴管将水滴入量筒中,让量筒内的水涨到筷子的分界线上,记下量筒内的水位刻度(38毫升)后,将筷子从量筒内取出,再记下量筒内的水位刻度(34.5毫升),前后两次水位刻度之差就是这一部分筷子的体积,即3.5立方厘米。用同样的方法,我又测量了筷子另一部分的体积是5立方厘米,两次测定结果相加得到这双筷子的体积为8.5立方厘米。当我得到这个结果时,我兴奋地叫了,此时的我是多么自豪、多么骄傲啊!

接着,我又按每人一天使用3双计算出了我们学校(1500人)及全国(12亿)一年消耗的一次性筷子量,分别是13.96立方米和11169000立方米。结果使我大吃一惊,每年竟有这么多的木料做成一次性筷子被浪费了,真是太可惜!在此,我呼吁在校的同学,不!是全国人民,也不!应该是全世界的每个人都不要再使用一次性筷子了,只有这样,才能保护好我们的森林资源,使我们共有的地球环境更加美好,让地球上的每一个人呼吸到干净、清新的空气。

自己改动一下吧

数学在我们的生活中可以说是无处不在,到超市买东西付钱时,测量某东西的面积时,制作平行四边形、直角形、三角形等各种形状的物品时……都是数学知识在生活中的直接运用。前几天我们家就发生了一件运用数学知识解决生活问题的事情。

那天放学回家,我往小椅子上一坐,只听“嘎吱”一声,吓得我赶忙跳了起来。哈,原来是椅子的一条腿松了。“我们来修椅子怎么样”,我一时心血来潮地对爸爸妈妈说。爸爸妈妈挺支持地说“行啊”。于是全家人便开始忙碌起来,找工具的找工具,扶椅子的扶椅子,钉钉子的钉钉子。一阵“噼噼啪啪”声后,几根大钉子钉进了那条松了的椅子腿上,“嘿,总算钉好了”,我拍拍手,满意地可往上一坐。“嘎吱,嘎吱”,咦,怎么还是不对劲啊,怎么办呢?突然,我想起数学老师讲过的一句话:三角形能对物体起到稳定作用。对啊,我刚才怎么没想到呢?我马上找来了一块小木头,并根据小椅子的四条腿与椅面形成的角度,将其切削成了4块同样大小的三角形小木头,后把三角形木头分别补在椅腿与椅面的空档处,用钉子钉紧。你别说,这一下椅子坐上去可是稳稳当当的了。

嘿,数字可真奇妙。看来以后我一定要更加努力地学好数学,并将数学运用到生活的一点一滴当中,去分析、解决生活中遇到的实际问题,更好地适应社会的发展和需要。让生活变得更加有意义。

游戏中的数学

一天,熙熙姐姐交给我们一个游戏:两人轮流从1—10按顺序报数,每次只能报1、2或3个数,谁先报到10,谁就赢了。

大家都想将对方“打倒”,但是,怎样才能让自己百分之百的胜利呢?这个问题总在我的脑海中回荡,使我疑惑不解。

回到家,我在小篮子里挑了十个石子,准备新手操作一下。我把爸爸叫来,让爸爸和我一起做这个游戏。我找来一支笔和一本本子,将我做的每一步记录下来。规则是这样的:我和爸爸轮流拿石子,最多拿3个,最少拿1个,谁拿到最后一个,谁就赢了。

第一场我失败了。原来,爸爸先拿,爸爸让我在最短的时间内输的“很惨”;第二场我先拿,我居然赢了……

我将记录反复看了几遍,终于发现,我用最大的和最小的数相加:即1+3=4,又用了石子总数除以最大数与最小数的和,也就是10÷4=2…2,如果有余数,就我先拿,余数是几就那几个石子,如果没有余数,让对方先拿。现在余数是2,就拿2个石子,剩下的每次拿的石子和对方拿的和是除数3,我就可以必胜了。

为了保证答案的准确性,我又拿了28个石子和爸爸重新玩,有了上面的规律,我果然战无不胜!!!

原来,生活中数学无处不在,它们正等着你去发现呢!

生活中我们都离不开数学,比如买菜的几斤几两、日历上的几年几月几日,还有一些数学的等式都与数学有关。今天,我要向大家介绍几题数学题吧!

早上起床,当我们睁开朦朦胧胧的双眼,第一眼就向闹钟看去,闹钟上的数字,就是生活中的数学。因为我们一天的时间是时针转24圈、分针转1440圈、秒针转86400圈得来的。那24*30=一个月,一个月*12=一年,这就是时间的数学。

平时,我们都要去的菜市场里也离不开数学。星期天,妈妈带我去买菜,在一个卖白菜的摊子前,妈妈和卖白菜的人讨价还价起来,最后,以一斤八角钱的价格买三斤,送一斤的口头协议买了三斤大白菜。妈妈问我:“我这样买菜,每斤便宜了多少钱?”我想了想,对妈妈说:“便宜两角。”若得卖菜阿姨直夸我。回到家里,妈妈问我:“你是怎么算的?”我笑了笑说:“我先算3斤大白菜*0。8元=2元4角,再算买3斤送1斤=4斤,然后再算2元4角÷4斤=6角,那8角-6角不就等于2角了吗!”这就是生活中的单价*数量=总价。

我平时都要跟着妈妈乘公共汽车去新华书店,公交车一分钟行驶一千米,大约二十分钟就到了。妈妈问我:“我们家离新华书店距离大约有多少千米呀?”我一边用手指比划着一边对妈妈说:“大约二十千米。”这就是生活中的速度*时间=路程。

“勤动脑+勤动手=成功”这是我通过实际生活所悟出的道理,也是我一般的解题顺序。我总要先读懂题目,掌握其中的关系,列出算式,一步步地解答。有时,还要通过画图的方式,来理解题目。

其实,生活中还有许多奇妙的数学,在等着我们去寻找、去发现。

生活在幸福中 我生活在一个幸福的家庭,我有让我感到幸福的父母。

勤劳的爸爸妈妈用智慧的双手构建着我们这个幸福的家。他们勤奋地工作着,他们如愿以偿,家庭虽然不算富裕,但一家人每天快乐的工作、快乐地学习。

小时候,我不止一次的问过大人:什么叫幸福?他们有的说是有钱,有的说是有权,而爸妈说幸福就是一家人在一起快乐地生活。 我想,我一定是幸福的。

每天放学回到温馨的家,一股饭菜的浓香味扑鼻而来。有时作业写到一半,就能听到妈妈喊“开饭”的声音,这时候我是那么的快乐。

妈妈的烹饪水平可是一流,同学朋友每回在品尝妈妈的手艺时,都说我“真幸福”,那时,我自豪极了。饭桌上,我大口大口地吃着香甜可口的饭菜,一个劲地夸赞妈妈的手艺,妈妈总是欣慰地笑着。

我想,她一定是幸福的。 我很憎恨恶劣的天气,不仅因为它给人们生活带来了很多不便和灾害,更因为天气恶劣时爸爸的工作是那么艰辛。

那个天寒地冻的深夜,我被开门声惊醒,“今天我们家用上了电”,爸爸正兴奋地向妈妈讲述他们为最后一户通电的情况。听着他们轻轻的交谈声,我一咕噜爬出温暖的被窝,扑到我几天几夜都未曾见过的爸爸的怀里。

爸爸宽实的臂弯环绕着妈妈和我,舒展的笑容里,洋溢着战胜冰灾的欣喜和自豪。我想,他一定是幸福的。

有时,一家人在谈天,我最爱听他们小时候的故事。每次看到他们为儿时的丑事而脸红时,我都不禁捧腹大笑,后果是被罚去清理大笑时喷出的“东东”。

有时,我跟他们谈我的奇思妙想,有历史的、有地理的、有生物的……我发表出一个“妙论”时,爸爸毫不留情地泼我冷水,说“不现实”,而我却从不肯服输,连说“凡事都有可能”,引来一阵阵爸爸并无恶意的笑声……此时的我,也是幸福的。 一家人在一起难免会发生磕磕碰碰,但过后总是幸福快乐的。

一个孩子生活在恐惧中,他学会的是忧虑;一个孩子生活在讽刺中,他学会的是自卑;一个孩子生活在鼓励中,他学会的是自信;我生活在幸福中,我想,我学会的将是用心真诚地对待万事万物。 生活在诚信之中在斑斓的社会中,童年早已离我而去,早已找不到一点童年时代的影子,这没什么值得感伤,因为我已步入了另一个世界。

这其中有一件是令我难忘,因为它教会了我“诚信”二字。 我离开了童年,也离开了生活了十年的平房,买了一套楼房开起了超市,生意虽不算好,可总算过得去。

刚搬到这的时候,正是雪花纷飞的冬天,而附近的一家麻将馆,却是夜夜灯火通明。那的老板经常光顾,后来要了我家的电话号码,说他们忙时就送货。

有一天晚上,已是晚上八点多了,电话突然响了,打电话的正是那位老板,要了一点货,让妈妈送过去,此时外面正下着大雪,超市早就关门了,但妈妈还是答应送去。 简单的收拾一下,妈妈就拿着货出门了,留我一人在家。

除了我的台灯发出的那昏暗的灯光外,黑漆漆一片。那一刻,感到时间过得很慢。

几分钟后,妈妈回来了,她满脸通红,像极了圣诞老人。不过妈妈并没有脱掉外衣,而是从口袋中拿出了一盒烟,从货架上换了一个,我还没来得及问。

她又出去了,我走到窗边,看着外面雪花纷飞,想想都让我打寒颤 妈妈终于回来了,似乎比上一次用的时间还多。妈妈回来之后,我立刻问她:“妈,你刚刚干嘛去了?”妈妈回答说:“有人换一下烟。”

但我见妈妈仍然没有休息的意思,就问她:“你还要去啊?”妈妈没有回答我,我又问了一遍,妈妈才回答:“他们还需要零钱,我得送去。”我说:“这不是在折腾人嘛,不送不就行了吗!”妈妈说:“那哪能行?再说我们已经答应他们了。

怎么能食言?况且人家还等着呢!这是诚信问题!”说完妈妈就走了。 时间一分一秒过去了,妈妈终于回来了,我见她一句话都没说,默默地坐在床上…… “诚实是力量的一种象征,它显示着一个人的高度自重和内心的安全感与尊严感。”

生活在岁月中 岁月是一首变幻的歌,岁月是一本沧桑的书,岁月是一条曲折的河,岁月是一段坎坷的路。 岁月匆匆,燕子去了,又再来的时候;杨柳枯了,又在开的时候。

而岁月却逃去如飞,我们拥有的时间只是流星划过暗淡长空的短暂光芒。面对它,我却茫茫然,我生活在岁月之中,却丝毫没有对它产生半点怜惜。

岁月多变,从奴隶到民主,从野性到文明,从争战到安定,从落后到先进,这一切的变化都浸泡在岁月中,历史向我们昭示着岁月,我生活在岁月中,为变幻的奇迹而惊叹。 岁月苍苍,多么长久的时间在它看来也只是流星一瞬,古代的劳动人民为我们留下了沧桑而辉煌的成就,化作一行字,铭刻在岁月的脚步下。

我生活在岁月之中,岁月重现了历史。 岁月恍惚,回望我走过的路,扑朔迷离,远处的则如同海市蜃楼,这也许是我的犹豫,这也许是我的抉择。

我生活在岁月之中,岁月如麻,而我坚守我自己。 岁月最易让人迷失,如一片森林,茂盛却迷离,似一片沙漠,平坦却茫茫。

坚定自己,明确自己,信赖自己,以明确人生航向,化一条船,与风浪搏斗,不示弱,向目标远航。生活在岁月中的又何止是我一人呢? 云儿轻轻散去,风儿渐渐停息,岁月在留下些鱼尾纹。

原发布者:中国学术期刊网

生活中的数学论文:生活中的数学学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋须要画图纸,分苹果、烙饼子,类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。我们要到生活中学数学,在生活中用数学,数学与生活密不可分。新课程《标准》提倡人人学有价值的数学,事实上是与学生的现实生活和以往的知识体验有密切关系的数学;是学生用来解决生活中一些实际问题的数学,也就是生活中数学。如何做到人人学有价值的数学,也就是学习生活中的数学,我谈谈我的一点体会。一、从学生自己熟悉的生活背景中发现数学,掌握数学和运用数学如在教学整百整千数加法时。我课前把学生最熟悉的“中百仓储”购物的情景录下来播放:,当学生看到这一情景时,个个都兴奋不已,因为“中百仓储”是大家再熟悉不过的购物场所,学生感到特别亲切。接着又把学生引入到中百仓储的家电区,观察这些家电的价格,让学生自由提出用加法计算的数学问题。学生非常投入,发言踊跃极了。二、让学生在操作中学习有价值的数学由于小学生的生活经验和事物相互联系的知识比较缺乏。让学生在操作中亲身经历和感受生活中的数学,在他们的心中烙下了深刻的印象,也学得深,记得牢。如在教学“粉刷围墙中的问题”时,我带领学生亲自动手测量围墙的长和高,在测量中,不仅巩固了有关

生活的问题

五年级三班 郇庆新

一天,我正在看一本有关数学题的书。

突然,一个问题难住了我,问题是这样的:楼下有三个开关,楼上有一盏灯,但在三个开关中只有一个是可以开楼上的灯的,而你只有一次上楼的机会,且每次只能开一个开关,你怎样才能知道是哪个开关控制着楼上的灯?问题那就难在只有一次上楼的机会,按普通解题思维,开一个,上楼看亮不亮,下楼,还剩两个开关,选哪个呢?按奥数的方法又该怎么办呢?

思前想后,没有任何方法。被打败了。看看书后的答案,啊哦!这样啊!太简单了!解法就是这样:先将第一个开关开一分钟,关后开另一个开关,上楼查看,如果亮,毫无疑问,第二个开关。不亮就摸摸灯是否热,因为第一个开关如果连接着灯,开一分钟必然热,热,第一个开关。不热,排除了第一第二个,就是第三个!数学题迎刃而解了!这道题告诉了我,数学题,不仅是靠定律去解,生活其实是最好的帮手!

我也写这个,觉得还行,复制过来给你看看,希望对你有用

有呀,汉斯的应用数学进展这本刊上的文献就是呀,你有时间可以去看看呐

高等数学在我们生活中的具体应用论文

从小学、初中、高中到大学乃至工作,大家都尝试过写论文吧,论文是探讨问题进行学术研究的一种手段。你写论文时总是无从下笔?以下是我收集整理的高等数学在我们生活中的具体应用论文,希望对大家有所帮助。

摘要:

进入21世纪,随着经济的不断发展,社会竞争越来越大,对于人才的要求也越来越高。在这种情况下,高等数学的重要作用就凸显了出来,高等数学能够培养人们的思维能力,培养人们发现问题、解决问题的思维方式。高等数学在我们生活中的应用越来越广泛,并且渗透到了各行各业中,许多问题的解决都离不开数学模型的构建。针对高等数学的特点,分析其在我们生活中的具体应用。

关键词 :

高等数学;经济社会;应用;

引言:

数学既是一门理论学科,又是一门应用广泛的工具性学科,在理学、工学、管理学、经济学等各个领域都发挥着重要的作用,如何将抽象的数学理论应用到具体的经济科学实践中去,作为学管理学、经济学的我们更应该对数学有更深的认识。

一、高等数学在学术中的应用

高等数学在众多的学科中扮演着重要的角色,在物理学科中,高等数学与其关系极为紧密,高等数学中最为重要的一部分便是微积分,众所周知,微积分是其创始人,著名的物理学家、数学家牛顿先生在解决经典力学问题的过程中所创立的,力学作为物理学中重要的知识,几乎贯穿于整个物理知识体系中,而微积分就是解决物理知识的关键工具,构建了地球和天体主要运动现象的完整力学体系。

在生物学中,高等数学同样扮演着重要的角色,19世纪时,就有生物学家试图通过数学方法来研究生命现象。而在上世纪20年代中期,就有生物学家利用高等数学的一些知识来解决著名的地中海鳖鱼问题,经历了几十年的发展,生物数学已经成为了生物学中重要的部分,无论是心脏的跳动还是血液的循环、脉搏的周期,都可以用高等数学的知识通过方程组的形式进行表示,并且通过求解的方法来掌握一定的规律,描述生物界的一些现象。

二、高等数学在经济社会的应用

随着社会经济的不断进步以及高等数学的不断发展,数学的手段越来越多样化,经济问题也越来越多样化,利用数学问题对经济环节进行定量分析是十分重要的,最简单的例子就是我们平时生活中的存取款问题以及利率问题。高等数学在经济生活中的应用不止如此,除此之外,高等数学还可以为经营者提供科学合理的数据,以高等数学作为工具来得到最佳的决策。在经济学当中,许多的量如边际成本、边际收益、边际利润都需要用导数来进行计算。而通过这些量可以计算企业生产过程中的一些数据,来对企业的正常运转进行调控,从而达到最优的生产效果。每个经营者都希望用最少的钱创造更多的`价值,在实际经营过程中,难免会出现资金的浪费,利用高等数学知识,能够使资金得到最合理的应用,使成本降低,创造更加大的利润,这种问题,其实就是高等数学中最大值最小值的问题,将其转化为数学模型,能够更好地配置相关资源,合理安排生产,实现最大利润。

三、高等数学在军事中的应用

纵观两次世界大战,无论哪一次都少不了高等数学的身影。射击火力表一直都是数学家需要计算的重要任务。除此之外,各种新型武器装备的研发以及投产,都离不开高等数学的研究。不仅仅是空气动力学、流体动力学还是弹道学,等等,其中都包含着高等数学的知识,这充分说明了高等数学的重要地位。除此之外,高等数学还在原子弹、声呐等新型装备的研发过程中扮演着重要的角色,可能直接影响战争的格局和走向。未来,随着科学技术的不断发展,军事技术也一定会作用于各种新的高科技,而一切高科技领域都少不了高等数学的"加持"。

四、高等数学中概率和数理统计的应用

高等数学中涵盖的知识点较多,概率作为其中的一个知识点,在多种领域尤其是自然科学方面以及社会科学方面的应用十分广泛,而且,还与我们的日常生活息息相关。举例子来说,几年前,我国全面开放了二孩政策,在这项政策开放的背后,是相关专家针对我国人口发展的问题,根据众多的资料数据进行统计分析,判断后做出的决定。近几年,随着我国科学技术的不断进步,以高等数学为核心的生活方式迅速地辐射到了人们日常生活中的各个领域,从移动支付以及购物到智能机器人的应用,办公的自动化,这些都需要我们具有高等数学知识以及素养。

五、高等数学在学生思维构建方面的应用

高等数学通过建立模型,能够有效地培养学生的综合素质,开拓学生的思维。在教学过程中,教师通过给学生树立建模的思想,使学生能够得到全面的发展,能够最大程度地提高学生的学习热情。高等数学可以通过构建数学模型,以此来对现实中的一些事物进行有规律的描述。而高等数学进行数学模型的构建需要人类的思维活动,也就是说,高等数学能够提高学生对于数学理论以及思维方法应用的意识,使学生培养数学思维,利用数学知识解决生活实际问题。

六、结语

当代大学生学习数学的重要性显而易见,我们要想在21世纪的社会有一个立足之地就需要全面地发展自己,而我们学习的高等数学又是其中的重中之重。我们要认清当今社会的人才培养目标,深入地学习高等数学,为中国的经济建设献出自己的力量,为早日实现中华民族的伟大复兴而奋斗。

参考文献

[1]苏丽论高等数学在经济分析中的应用[J].信息记录材料,2016,(06)

[2]卢明宇浅析微积分在金融领域的作用[J].经贸实践,2017,(05)

[3]马源谈谈数学学习在经济金融学中的作用[J].经贸实践,2017,(15)

拓展:

专业论文格式模板

一、毕业论文(设计)资料按以下顺序排列:

(一)封面。包括论文题目、指导教师、学生姓名、学号、院(系)、专业、毕业时间等内容。论文封面由学校统一印制。

(二)中、外文摘要(包括关键词)。外文论文(设计)的中文摘要放在英文摘要后面编排。

(三)正文。

(四)注释。

(五)附录。

(六)参考文献。

(七)致谢。

二、毕业论文的打印与装订

除要检验学生书写规范的专业外,毕业论文(设计)须用计算机打印,一律采用A4纸。

(一)页面设置

毕业论文(设计)要求纵向打印,页边距的要求为:

上(T):2.5cm

下(B):2.5cm

左(L):2cm

右(R):2cm

装订线(T):0.5cm

装订线位置(T):左

其余采取系统默认设置。

(二)排式与用字

文字图形一律从左至右横写横排。

文字一律通栏编辑。

论文采用宋体,字迹清楚整齐,除特殊需要,一般不使用繁体字。

(三)段落设置

采用多倍行距,行距设置值为1.25。

其余采取系统默认设置。

(四)页眉、页脚设置

论文题目(不包括副题目)居中,采用五号宋体字。

页脚需设置页码,页码采用五号黑体字,加粗,居中放置,格式如:1,2,3……页。

三、毕业论文(设计)撰写的内容与要求

(一)封面

1、封面。

纸质封面由学校统一印制。不编排页码。

2、封一(中文摘要)

中文摘要:“中文摘要”四字在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。中文摘要一般不超过250—300字。

关键词:接中文摘要打印,“关键词”三字空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。关键词一般在3—8个之间。

3、封二(外文摘要)

外文摘要:“外文摘要”英文单词在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。外文摘要一般不超过250个实词。

关键词:接外文摘要打印,“关键词”英文单词空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。外文关键词应与中文关键词相对应。

(二)正文

正文一般使用小四号宋体字,重点文句加粗。

1、标题层次。

毕业论文的全部标题层次应整齐清晰,相同的层次应采用统一的表示体例,正文中各级标题下的内容应同各自的标题对应,不应有与标题无关的内容。

各层标题均单独占行。第一级标题居中放置;第二、三、四等级标题序数顶格放置,后空一格接标题内容,末尾不加标点。

标题序数采用1.、2.……1.1、1.2……1.1.1、1.1.2……1.1.1.1……的层次。正文中对总项包括的分项采用一、二、……(一)、(二)……1、2……(1)、(2)……①②……的层次,括号后不再加其他标点。

2、量和单位。各种计量单位一律采用国家标准GB3100—GB3102-93。非物理量的单位可用汉字与符号构成组合形式的单位。

3、标点符号。标点符号应按照国家新闻出版署公布的“标点符号使用方法”的统一规定正确使用,忌误用和含糊混乱。

4、外文字母。外文字母采用我国规定和国际通用的有关标准写法。要分清正斜体、大小写和上下脚码。

5、名词、名称。科学技术名词术语采用全国自然科学技术名词审定委员会公布的规范词或国家标准、部标准中规定的名称,尚未统一规定或叫法有争议的名称术语,可采用惯用的名称。

6、数字。文中的数字,除部分结构层次序数和词、词组、惯用语、缩略语、具有修辞色彩语句中作为词素的数字必须使用汉字外,应当使用阿拉伯数码,同一文中,数字表示方法应前后一致。

7、公式。公式一般居中放置;有编号的公式顶格放置,编号需加圆括号标在公式右边,公式与编号之间不加虚线。

公式下有说明时,应在顶格处标明“注: ”。

较长公式的转行应在加、减、乘、除等符号处。

8、表格和插图。

(1)表格。每个表格应有自己的表序和表题。表内内容应对齐,表内数字、文字连续重复时不可使用“同上”等字样或符号代替。表内有整段文字时,起行处空一格,回行顶格,最后不用标点符号。

(2)插图。每幅图应有自己的图序和图题。一般要求采用计算机制图。

文中图表需在表的上方、图的下方排印表号、表名、表注或图号、图名、图注。

(三)注释

注释采用页末注(将注文放在加注页的页脚)或篇末注(将全部注文集中在文章末尾),不可行中加注。注释编号选用带圈阿拉伯数字,注文使用小五号宋体字。

以下为引用各类文献注释格式:

专著:注释编号.作者.专著.书名[m].出版社,出版年.起止页码

期刊:注释编号.作者.期刊.题名[J].刊名,出版年(卷、期):起止页码

论文集:注释编号.作者.论文名称:论文集名[C].出版地:出版社,出版年度.起止页码

学位论文:注释编号.作者.题名[D].保存地点:保存单位,写作年度.

专利文献:注释编号.专利所有者.题名[P].专利国别:专利号,出版日期

光盘:注释编号.责任者.电子文献题名[电子文献及载体类型标识],出版年(光盘序号)

互联网:注释编号.责任者.文献题名.电子文献网址.访问时间(年-月-日)

文献作者3名以内的全部列出;3名以上则列出前3名,后加“等”(英文加“etc"”)

(四)附录

“附录”两字在第一行居中位置,使用小二号黑体字,加粗。

附录项目名称使用四号黑体字,加粗,居左顶格放置。另起一行空两格,使用小四号宋体字标注附录序号和题名,编排样式可参照正文。

(五)参考文献

参考文献一律放在文后,其书写格式应根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:M专著,C论文集,N报纸文章,J期刊文章,D学位论文,R研究报告,S标准,P专利;对于专著、论文集中的析出文献采用单字母“A”标识,其他未说明的文献类型,采用单字母“Z”标识。

“参考文献”四字居中放置,使用小二号黑体字,加粗。

内容使用小四号宋体字,居左,空两格放置。具体结构格式与标注方法同注释中交代引文出处的注文格式。

研究三角函数在生活中的应用论文

一元一次函数的应用 一元一次函数在我们的日常生活中应用十分广泛。当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。 例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。俗话说:“从南京到北京,买的没有卖的精。”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。 一元二次函数的应用 在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时, 其利润随投资的变化关系一般可用二次函数表示。企业经营者经常依据这方面的知识预计企业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益,从而判断企业经济效益是否得到提高、企业是否有被兼并的危险、项目有无开发前景等问题。常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。 三角函数的应用 三角函数的应用极其广泛,这里仅讲最简的也是最常见的一类——锐角三角函数的应用:“山林绿化”问题。

有呀,汉斯的应用数学进展这本刊上的文献就是呀,你有时间可以去看看呐

测量山高测量树高,确定航海行程问题,确定光照及房屋建造合理性调整电网,比如两个电网并接的时候用于山的坡度 TAN 平面所走的距离 比上 上升的高度 ,同理还可以测量楼的高啊 塔的高测量树高,确定航海行程问题,确定光照及房屋建造合理性 ______________________________________________________________________________名称定义 研究平面三角形和球面三角形边角关系的数学学科。三角学是以研究三角形的边和角的关系为基础,应用于测量为目的,同时也研究三角函数的性质及其应用的一门学科。[编辑本段]三角学的起源 三角学起源于古希腊。为了预报天体运行路线、计算日历、航海等需要,古希腊人已研究球面三角形的边角关系,掌握了球面三角形两边之和大于第三边,球面三角形内角之和大于两个直角,等边对等角等定理。印度人和阿拉伯人对三角学也有研究和推进,但主要是应用在天文学方面。15、16世纪三角学的研究转入平面三角,以达到测量上应用的目的。16世纪法国数学家韦达系统地研究了平面三角。他出版了应用于三角形的数学定律的书。此后,平面三角从天文学中分离出来,成了一个独立的分支。平面三角学的内容主要有三角函数、解三角形和三角方程。 三角测量在中国也很早出现,公元前一百多年的《周髀算经》就有较详细的说明,例如它的首章记录“周公曰,大哉言数,请问用矩之道。商高曰,平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远。”(商高说的矩就是今天工人用的两边互相垂直的曲尺,商高说的大意是将曲尺置于不同的位置可以测目标物的高度、深度与广度)1世纪时的《九章算术》中有专门研究测量问题的篇章.[编辑本段]三角学的历史 早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、阿拉伯数学中都有三角学的内容,可大都是天文观测的副产品.例如,古希腊门纳劳斯(Menelaus of Alexandria,公元100年左右)著《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理;50年后,另一个古希腊学者托勒密(Ptolemy)著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多(ryabhata I)也表述出古代印度的三角学思想;其后的瓦拉哈米希拉(Varahamihira,约505~587年)最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些阿拉伯学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁(Nasir ed-Din al Tusi,1201~1274年)的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(J Regiomontanus,1436~1476年)。 �雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》。这是欧洲第一部独立于天文学的三角学著作。全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉。雷格蒙塔努斯还较早地制成了一些三角函数表。 �雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其著作手稿在学者中广为传阅,并最终出版,对 16 世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响. �三角学一词的英文是trigonometry,来自拉丁文tuigonometuia.最先使用该词的是文艺复兴时期的德国数学家皮蒂斯楚斯(B.Pitiscus,1561~1613年),他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形(tuiangulum)和测量(metuicus)两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的. �16世纪三角函数表的制作首推奥地利数学家雷蒂库斯(G.J.Rhetucu s,1514~1574年)。他1536年毕业于滕贝格大学,留校讲授算术和几何。1539 年赴波兰跟随著名天文学家哥白尼学习天文学,1542年受聘为莱比锡大学数学教授.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表。 17世纪初对数发明后大大简化了三角函数的计算,制作三角函数表已不再是很难的事,人们的注意力转向了三角学的理论研究.不过三角函数表的应用却一直占据重要地位,在科学研究与生产生活中发挥着不可替代的作用. �三角公式是三角形的边与角、边与边或角与角之间的关系式.三角函数的定义已体现了一定的关系,一些简单的关系式在古希腊人以及后来的阿拉伯人中已有研究. �文艺复兴后期,法国数学家韦达(F Vieta)成为三角公式的集大成者.他的《应用于三角形的数学定律》(1579年)是较早系统论述平面和球面三角学的专著之一.其中第一部分列出6种三角函数表,有些以分和度为间隔。给出精确到5位和10位小数的三角函数值,还附有与三角值有关的乘法表、商表等。第二部分给出造表的方法,解释了三角形中诸三角线量值关系的运算公式.除汇总前人的成果外,还补充了自己发现的新公式.如正切定律、和差化积公式等等.他将这些公式列在一个总表中,使得任意给出某些已知量后,可以从表中得出未知量的值.该书以直角三角形为基础。对斜三角形,韦达仿效古人的方法化为直角三角形来解决.对球面直角三角形,给出计算的完整公式及其记忆法则,如余弦定理,1591年韦达又得到多倍角关系式,1593 年又用三角方法推导出余弦定理。 1722年英国数学家棣莫弗(A De Meiver)得到以他的名字命名的三角学定理 �(cosθ±isinθ)n=cosnθ+isinnθ, �并证明了n是正有理数时公式成立;1748年欧拉(L Euler)证明了n是任意实数时公式也成立,他还给出另一个著名公式 �eiθ=cosθ+isinθ, �对三角学的发展起到了重要的推动作用. 近代三角学是从欧拉的《无穷分析引论》开始的.他定义了单位圆,并以函数线与半径的比值定义三角函数,他还创用小写拉丁字母a、b、c表示三角形三条边,大写拉丁字母A、B、C表示三角形三个角,从而简化了三角公式.使三角学从研究三角形 解法进一步转化为研究三角函数及其应用,成为一个比较完整的数学分支学科.而由于上述诸人及 19 世纪许多数学家的努力,形成了现代的三角函数符号和三角学的完整的理论.[编辑本段]三角学的特点与运用 早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、阿拉伯数学中都有三角学的内容,可大都是天文观测的副产品.直到13世纪中亚数学家纳速拉丁在总结前人成就的基础上,著成《完全四边形》一书,才把三角学从天文学中分离出来.15世纪,德国的雷格蒙塔努斯(J·Regiomontanus,1436—1476)的《论三角》一书的出版,才标志古代三角学正式成为独立的学科.这本书中不仅有很精密的正弦表、余弦表等,而且给出了现代三角学的雏形. 16世纪法国数学家韦达(F·Viete,1540—1603)则更进一步将三角学系统化,在他对三角研究的第一本著作《应用于三角形的数学法则》中,就有解直角三角形、斜三角形等的详述.18世纪瑞士数学家欧拉(L·Euler,1707—1783),他首先研究了三角函数.这使三角学从原先静态研究三角形的解法中解脱出来,成为反映现实世界中某些运动和变化的一门具有现代数学特征的学科.欧拉不仅用直角坐标来定义三角函数,彻底解决了三角函数在四个象限中的符号问题,同时引进直角坐标系,在代数与几何之间架起了一座桥梁,通过数形结合,为数学的学习与研究提供了重要的思想方法.著名的欧拉公式,把原来人们认为互不相关的三角函数和指数函数联系起来了,为三角学增添了新的活力. 因此三角学是源于测量实践,其后经过了漫长时间的孕育,众多中外数学家的不断努力,才逐渐丰富,演变发展成为现在的三角学。[编辑本段]三角函数的计算方法 三角学中的三角函数有6个,是用几何方法定义的。在直角坐标系中,设以射线Ox为始边,OP为终边的角为θ,P点的坐标为(x,y),|OP|=r,这时6个比由θ的大小确定,都是θ的函数,称它们为角θ的三角函数,分别记作并分别称为角θ的正弦、余弦、正切、余切、正割、余割。 同角三角函数间有3组运算关系,即 三角函数都是周期函数,以2π为周期。 三角函数的基本恒等式有和角公式: sin(!+@)=sin!cos@+cos!sin@ cos(!+@)=cos!cos@-sin!sin@ 由这两个公式可以导出差角公式、倍角公式、半角公式、和差化积与积化和差等公式。 解三角形是已知三角形的某些元素(边和角)时求其余未知元素。设三角形的三个角为A,B,C,它们所对的边分别为a,b,c,则有 正弦定理:a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,是此三角形外接圆的半径的两倍) 余弦定理:a2=b2+c2-2bccosA这两个定理是解三角形的主要依据。 三角方程一般指含有某些三角函数的方程,并且三角函数的自变量中含有未知数。由于每个三角函数都是周期函数,所以任何一个三角方程只要有解,就有无穷多个解。 三角测量 三角测量是指在导航,测量及土木工程中精确测量距离和角度的技术,主要用于为船只或飞机定位。它的原理是:如果已知三角形的一边及两角,则其余的两边一角可用平面三角学的方法计算出来。在西方,古希腊著名的数学家毕达哥拉斯首次证明了有关直角三角形的“毕达哥拉斯定理”,即中国的“勾股定理”,对几何学研究及其应用做出了巨大贡献.

这个还可以吧、再举个例题如图7,已知某小区的两幢10层住宅楼间的距离为AC=30m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α.(1)用含α的式子表示h(不必指出α的取值范围);(2)当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光?21.(1)过点E作EF⊥AB于F,由题意,四边形ACEF为矩形………………………………………1分∴EF=AC=30,AF=CE=h,∠BEF=α,∴BF=3×10-h=30-h………………………………………2分又在Rt△BEF中,tan∠BEF=BFEF,………………………………………3分∴tanα=,即30-h=30tanα.∴h=30-30tanα………………………………………4分(2)当α=30°时,h=30-30tan30°=30-30×≈12.7,………………………………………5分∵12.7÷3≈4.2,∴B点的影子落在乙楼的第五层………………………………………6分当B点的影子落在C处时,甲楼的影子刚好不影响乙楼采光.此时,由AB=AC=30,知△ABC是等腰直角三角形,∴∠ACB=45°,7分∴45-30/15=1(小时).故经过1小时后,甲楼的影子刚好不影响乙楼采光………………………………………8分

  • 索引序列
  • 负数在生活中的应用实践研究论文
  • 二次函数在生活中的实践研究论文
  • 经济数学在现实生活中的应用论文
  • 数学在生活中的应用论文
  • 研究三角函数在生活中的应用论文
  • 返回顶部