逻辑学作为一门极其重要的应用科学,体育课作为促进小学生全面发展极其重要的一种教育手段,如何把两者更好的结合从而进一步提高体育教学效果,是值得每一个体育工作者思考的。文章旨从体育教学中的常见现象着手,对其加以逻辑学分析,以期让更多的体育工作者对逻辑学给以重视。
逻辑是人的一种抽象思维,是人通过概念、判断、推理、论证来理解和区分客观世界的思维过程;逻辑学是一门研究思维的形式结构及其规律的科学。逻辑学不仅仅是一门学习的科学,更应该是一门应用的科学。尽管体育教学过程中有许多逻辑学的相关事件,却被很多的体育教师有意无意地忽视了,教学不合逻辑却是会直接影响到教学效果的。作为体育教师,尤其是小学体育教师,在体育课堂这个相对更加复杂的教学环境中要更加善于用科学的视角和手段去分析和解决问题,结合小学生的生理和心理特点,从体育课堂着手,使自己的教学做到概念明确,判断正确,推理合乎逻辑,使体育教学更具科学性[1]。
1 关于小学体育课堂中概念的举例
概念是人们对事物本质的认识,是逻辑思维的最基本单元和形式。小学生的心智发育处在较低水平,所以对体育学习中的相关概念比较模糊,很难准确理解,所以明了易掌握的概念也是把他们领进体育的殿堂并让他们对体育产生一定的兴趣比较有效的手段。小学体育课中的相关技术概念应该做到尽可能的具体,即概念的内涵要尽可能的多而外延要尽可能的少,要明确概念的种概念和属概念。例如体育教师如果在教授篮球中的双手胸前传接球时介绍学习内容时说:今天我们来学篮球。或者说:今天我们来学传球。其结果会使得小学生上完课后仍然对所学内容云里雾里,不知所云。因为他们没有对所学内容形成一个具体的概念,无法真正去理解教师的教授内容。又或者在学习体育文化知识中,有些体育教师会认为对小学生无法谈概念,他们不明白,其实非也。作为体育教师,应该帮助学生找出种差,重点指出其内涵,来便于学生的理解。再者,体育教师在平时的言语中也要注意概念的逻辑性,以免对学生产生不良的影响。例如对集合概念的掌握,有些教师在情景教学中会脱口而出:这儿是一条湖泊。那儿有两棵树木。这不仅体现了教师能力的不足,也会在潜移默化中影响到学生的用语。
2 关于小学体育课堂中判断的举例
判断是人们对于客观对象是否具有某种属性的认识。在体育教学中主要体现在教师对学生的评价上。在评价体系上可以多选用一些相容选言判断,学生某一项达到一定要求就可以算其成功。例如:学生50米及格或者100米及格或者400及格均为体育成绩及格。这就在一定程度上增加了学生的选择性,也增加了评价体系的人性化,不至于过于挫伤学生对体育的热情。又或者,在教学过程中教师对学生的表现进行判断,经常会听到你必然篮球打不好。等真值模态判断,常用这些真值模态判断等于从能力取向对学生进行评价,尤其是对小学生来说,他也会在同时降低对自己的能力判断,会对学生产生一定的不良影响。
3 关于小学体育课堂中推理的`举例
推理是由一个或几个已知的判断(前提),推导出一个未知的结论的思维过程。在体育教学中会经常接触到,但是很多很常见的体育教学中的推理确实非常不符合逻辑的。例如我们经常听到体育教师这样评价一个班级:A班同学体育成绩都好。归其根源:A班有几个体育特长生。一个由特称判断推理出的全称判断,两个差等关系的判断却被教师这样误读了。又或者在对两个学生进行比较或者进行体育选材的时候经常会见到类比推理,即依据两个或两类对象一个一个的属性相同,并已知其中一个对象还有其他属性,推出另一个对象也具有该属性的结论。例如A同学和B同学,同样身材高、学习成绩优秀、A同学已在篮球上取得了一定的成绩,于是体育教师就同样断定:B同学一定可以在篮球上有所突破。当然,让B同学来尝试是可以的,但是作为两个活生生的人来说,切不可用此类类比推理,不仅不符合任何科学逻辑,也会在一定程度上降低体育教师的能力和威信。
4 小结
逻辑学作为思维的有效工具,对体育教学的作用是不可忽视的,作为体育教师,要不断充实自己,注重多学科知识,用逻辑学来武装自己,切实在体育课中体现,从而提高体育课的教学效果。
人工智能与现今逻辑学的发展-.〔摘要〕 本文认为,计算机科学和人工智能将是21世纪逻辑学发展的主要动力源泉,并且在很大程度上将决定21世纪逻辑学的面貌。至少在21世纪早期,逻辑学将重点关注下列论题:(1)如何在逻辑中处理常识推理的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的可错的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。 〔关键词〕 人工智能,常识推理,归纳逻辑,广义内涵逻辑,认知逻辑,自然语言逻辑 现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。当时的数学家们试图即从少数公理根据明确给出的演绎规则推导出其他的数学定理,从而把整个数学构造成为一个严格的演绎大厦,然后用某种程序和方法一劳永逸地证明数学体系的可靠性。为此需要发明和锻造严格、精确、适用的逻辑工具。这是现代逻辑诞生的主要动力。由此造成的后果就是20世纪逻辑研究的严重数学化,其表现在于:一是逻辑专注于在数学的形式化过程中提出的问题;二是逻辑采纳了数学的方法论,从事逻辑研究就意味着象数学那样用严格的形式证明去解决问题。由此发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。 本文所要探讨的问题是:21世纪逻辑发展的主要动力将来自何处?大致说来将如何发展?我个人的看法是:计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理(这一点在20世纪基本上已经做到了,如用计算机去进行高难度和高强度的数学证明,“深蓝”通过高速、大量的计算去与世界冠军下棋),而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素,例如选择性地搜集相关的经验证据,在不充分信息的基础上作出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,……由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。 实际上,在20世纪中后期,就已经开始了现代逻辑与人工智能(记为AI)之间的相互融合和渗透。例如,哲学逻辑所研究的许多课题在理论计算机和人工智能中具有重要的应用价值。AI从认知心理学、社会科学以及决策科学中获得了许多资源,但逻辑(包括哲学逻辑)在AI中发挥了特别突出的作用。某些原因促使哲学逻辑家去发展关于非数学推理 的理论;基于几乎同样的理由,AI研究者也在进行类似的探索,这两方面的研究正在相互接近、相互借鉴,甚至在逐渐融合在一起。例如,AI特别关心下述课题: ·效率和资源有限的推理; ·感知; ·做计划和计划再认; ·关于他人的知识和信念的推理; ·各认知主体之间相互的知识; ·自然语言理解; ·知识表示; ·常识的精确处理; ·对不确定性的处理,容错推理; ·关于时间和因果性的推理; ·解释或说明; ·对归纳概括以及概念的学习。[①] 21世纪的逻辑学也应该关注这些问题,并对之进行研究。为了做到这一点,逻辑学家们有必要熟悉AI的要求及其相关进展,使其研究成果在AI中具有可应用性。 我认为,至少是21世纪早期,逻辑学将会重点关注下述几个领域,并且有可能在这些领域出现具有重大意义的成果:(1)如何在逻辑中处理常识推理中的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。 1.常识推理中的某些弗协调、非单调和容错性因素 AI研究的一个目标就是用机器智能模拟人的智能,它选择各种能反映人的智能特征的问题进行实践,希望能做出各种具有智能特征的软件系统。AI研究基于计算途径,因此要建立具有可操作性的符号模型。一般而言,AI关于智能系统的符号模型可描述为:由一个知识载体(称为知识库KB)和一组加载在KB上的足以产生智能行为的过程(称为问题求解器PS)构成。经过20世纪70年代包括专家系统的发展,AI研究者逐步取得共识,认识到知识在智能系统中力量,即一般的智能系统事实上是一种基于知识的系统,而知识包括专门性知识和常识性知识,前者亦可看做是某一领域内专家的常识。于是,常识问题就成为AI研究的一个核心问题,它包括两个方面:常识表示和常识推理,即如何在人工智能中清晰地表示人类的常识,并运用这些常识去进行符合人类行为的推理。显然,如此建立的常识知识库可能包含矛盾,是不协调的,但这种矛盾或不协调应不至于影响到进行合理的推理行为;常识推理还是一种非单调推理,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论;常识推理也是一种可能出错的不精确的推理模式,是在容许有错误知识的情况下进行的推理,简称容错推理。而经典逻辑拒斥任何矛盾,容许从矛盾推出一切命题;并且它是单调的,即承认如下的推理模式:如果p?r,则pùq?r;或者说,任一理论的定理属于该理论之任一扩张的定理集。因此,在处理常识表示和常识推理时,经典逻辑应该受到限制和修正,并发展出某些非经典的逻辑,如次协调逻辑、非单调逻辑、容错推理等。有人指出,常识推理的逻辑是次协调逻辑和非单调逻辑的某种结合物,而后者又可看做是对容错推理的简单且基本的情形的一种形式化。[②] “次协调逻辑”(Paraconsistent Logic)是由普里斯特、达·科斯塔等人在对悖论的研究中发展出来的,其基本想法是:当在一个理论中发现难以克服的矛盾或悖论时,与其徒劳地想尽各种办法去排除 或防范它们,不如干脆让它们留在理论体系内,但把它们“圈禁”起来,不让它们任意扩散,以免使我们所创立或研究的理论成为“不足道”的。于是,在次协调逻辑中,能够容纳有意义、有价值的“真矛盾”,但这些矛盾并不能使系统推出一切,导致自毁。因此,这一新逻辑具有一种次于经典逻辑但又远远高于完全不协调系统的协调性。次协调逻辑家们认为,如果在一理论T中,一语句A及其否定?A都是定理,则T是不协调的;否则,称T是协调的。如果T所使用的逻辑含有从互相否定的两公式可推出一切公式的规则或推理,则不协调的T也是不足道的(trivial)。因此,通常以经典逻辑为基础的理论,如果它是不协调的,那它一定也是不足道的。这一现象表明,经典逻辑虽可用于研究协调的理论,但不适用于研究不协调但又足道的理论。达·科斯塔在20世纪60年代构造了一系列次协调逻辑系统Cn(1≤n≤w),以用作不协调而又足道的理论的逻辑工具。对次协调逻辑系统Cn的特征性描述包括下述命题:(i)矛盾律?(Aù?A)不普遍有效;(ii)从两个相互否定的公式A和?A推不出任意公式;即是说,矛盾不会在系统中任意扩散,矛盾不等于灾难。(iii)应当容纳与(i)和(ii)相容的大多数经典逻辑的推理模式和规则。这里,(i)和(ii)表明了对矛盾的一种相对宽容的态度,(iii)则表明次协调逻辑对于经典逻辑仍有一定的继承性。 在任一次协调逻辑系统Cn(1≤n≤w)中,下述经典逻辑的定理或推理模式都不成立: ?(Aù?A) Aù?A→B A→(?A→B) (AA)→B (AA)→?B A→A (?Aù(AúB))→B (A→B)→(?B→?A) 若以C0为经典逻辑,则系列C0, C1, C2,… Cn,… Cw使得对任正整数i有Ci弱于Ci-1,Cw是这系列中最弱的演算。已经为Cn设计出了合适的语义学,并已经证明Cn相对于此种语义是可靠的和完全的,并且次协调命题逻辑系统Cn还是可判定的。现在,已经有人把次协调逻辑扩展到模态逻辑、时态逻辑、道义逻辑、多值逻辑、集合论等领域的研究中,发展了这些领域内的次协调理论。显然,次协调逻辑将会得到更进一步的发展。[③] 非单调逻辑是关于非单调推理的逻辑,它的研究开始于20世纪80年代。1980年,D·麦克多莫特和J·多伊尔初步尝试着系统发展一种关于非单调推理的逻辑。他们在经典谓词演算中引入一个算子M,表示某种“一致性”断言,并将其看做是模态概念,通过一定程序把模态逻辑系统T、S4和S5翻译成非单调逻辑。B·摩尔的论文《非单调逻辑的语义思考》(1983)据认为在非单调逻辑方面作出了令人注目的贡献。他在“缺省推理”和“自动认知推理”之间做了区分,并把前者看作是在没有任何相反信息和缺少证据的条件下进行推理的过程,这种推理的特征是试探性的:根据新信息,它们很可能会被撤消。自动认知推理则不是这种类型,它是与人们自身的信念或知识相关的推理,可用它模拟一个理想的具有信念的有理性的代理人的推理。对于在计算机和人工智能中获得成功的应用而言,非单调逻辑尚需进一步发展。 2.归纳以及其他不确定性推理 人类智能的本质特征和最高表现是创造。在人类创造的过程中,具有必然性的演绎推理固然起重要作用,但更为重要的是具有某种不确定性的归纳、类比推理以及模糊推理等。因此,计算机要成功地模拟人的智能,真正体现出人的智能品质,就必须对各种具有不确定性的推理模式进行研究。 首先是对归纳推理和归纳逻辑的研究。这里所说的“归纳推理”是广义的,指一切扩展性推理,它们的结论所断定的超出了其前提所断定的范围,因而前提的真无法保证结论的真,整个推理因此缺乏必然性。具体说来,这种意义的“归纳”包括下述内容:简单枚举法;排除归纳法,指这样一些操作:预先通过观察或实验列出被研究现象的可能的原因,然后有选择地安排某些事例或实验,根据某些标准排除不相干假设,最后得到比较可靠的结论;统计概括:从关于有穷数目样本的构成的知识到关于未知总体分布构成的结论的推理;类比论证和假说演绎法,等等。尽管休谟提出着名的“归纳问题”,对归纳推理的合理性和归纳逻辑的可能性提出了深刻的质疑,但我认为,(1)归纳是在茫茫宇宙中生存的人类必须采取也只能采取的认知策略,对于人类来说具有实践的必然性。(2)人类有理由从经验的重复中建立某种确实性和规律性,其依据就是确信宇宙中存在某种类似于自然齐一律和客观因果律之类的东西。这一确信是合理的,而用纯逻辑的理由去怀疑一个关于世界的事实性断言则是不合理的,除非这个断言是逻辑矛盾。(3)人类有可能建立起局部合理的归纳逻辑和归纳方法论。并且,归纳逻辑的这种可能性正在计算机科学和人工智能的研究推动下慢慢地演变成现实。恩格斯早就指出,“社会一旦有技术上的需要,则这种需要比十所大学更能把科学推向前进。”[④] 有人通过指责现有的归纳逻辑不成熟,得出“归纳逻辑不可能”的结论,他们的推理本身与归纳推理一样,不具有演绎的必然性。(4)人类实践的成功在一定程度上证明了相应的经验知识的真理性,也就在一定程度上证明了归纳逻辑和归纳方法论的力量。毋庸否认,归纳逻辑目前还很不成熟。有的学者指出,为了在机器的智能模拟中克服对归纳模拟的困难而有所突破,应该将归纳逻辑等有关的基础理论研究与机器学习、不确定推理和神经网络学习模型与归纳学习中已有的成果结合起来。只有这样,才能在已有的归纳学习成果上,在机器归纳和机器发现上取得新的突破和进展。[⑤] 这是一个极有价值且极富挑战性的课题,无疑在21世纪将得到重视并取得进展。 再谈模糊逻辑。现实世界中充满了模糊现象,这些现象反映到人的思维中形成了模糊概念和模糊命题,如“矮个子”、“美人”、“甲地在乙地附近”、“他很年轻”等。研究模糊概念、模糊命题和模糊推理的逻辑理论叫做“模糊逻辑”。对它的研究始于20世纪20年代,其代表性人物是L·A·查德和P·N·马林诺斯。模糊逻辑为精确逻辑(二值逻辑)解决不了的问题提供了解决的可能,它目前在医疗诊断、故障检测、气象预报、自动控制以及人工智能研究中获得重要应用。显然,它在21世纪将继续得到更大的发展。 3.广义内涵逻辑 经典逻辑只是对命题联结词、个体词、谓词、量词和等词进行了研究,但在自然语言中,除了这些语言成分之外,显然还存在许多其他的语言成分,如各种各样的副词,包括模态词“必然”、“可能”和“不可能” 、时态词“过去”、“现在”和“未来”、道义词“应该”、“允许”、“禁止”等等,以及各种认知动词,如“思考”、“希望”、“相信”、“判断”、“猜测”、“考虑”、“怀疑”,这些认知动词在逻辑和哲学文献中被叫做“命题态度词”。对这些副词以及命题态度词的逻辑研究可以归类为“广义内涵逻辑”。 大多数副词以及几乎所有命题态度词都是内涵性的,造成内涵语境,后者与外延语境构成对照。外延语境又叫透明语境,是经典逻辑的组合性原则、等值置换规则、同一性替换规则在其中适用的语境;内涵语境又称晦暗语境,是上述规则在其中不适用的语境。相应于外延语境和内涵语境的区别,一切语言表达式(包括自然语言的名词、动词、形容词直至语句)都可以区分为外延性的和内涵性的,前者是提供外延语境的表达式,后者是提供内涵性语境的表达式。例如,杀死、见到、拥抱、吻、砍、踢、打、与…下棋等都是外延性表达式,而知道、相信、认识、必然、可能、允许、禁止、过去、现在、未来等都是内涵性表达式。 在内涵语境中会出现一些复杂的情况。首先,对于个体词项来说,关键性的东西是我们不仅必须考虑它们在现实世界中的外延,而且要考虑它们在其他可能世界中的外延。例如,由于“必然”是内涵性表达式,它提供内涵语境,因而下述推理是非有效的: 晨星必然是晨星, 晨星就是暮星, 所以,晨星必然是暮星。 这是因为:这个推理只考虑到“晨星”和“暮星”在现实世界中的外延,并没有考虑到它们在每一个可能世界中的外延,我们完全可以设想一个可能世界,在其中“晨星”的外延不同于“暮星”的外延。因此,我们就不能利用同一性替换规则,由该推理的前提得出它的结论:“晨星必然是暮星”。其次,在内涵语境中,语言表达式不再以通常是它们的外延的东西作为外延,而以通常是它们的内涵的东西作为外延。以“达尔文相信人是从猿猴进化而来的”这个语句为例。这里,达尔文所相信的是“人是从猿猴进化而来的”所表达的思想,而不是它所指称的真值,于是在这种情况下,“人是从猿猴进化而来的”所表达的思想(命题)就构成它的外延。再次,在内涵语境中,虽然适用于外延的函项性原则不再成立,但并不是非要抛弃不可,可以把它改述为新的形式:一复合表达式的外延是它出现于外延语境中的部分表达式的外延加上出现于内涵语境中的部分表达式的内涵的函项。这个新的组合性或函项性原则在内涵逻辑中成立。 一般而言,一个好的内涵逻辑至少应满足两个条件:(i)它必须能够处理外延逻辑所能处理的问题;(ii)它还必须能够处理外延逻辑所不能处理的难题。这就是说,它既不能与外延逻辑相矛盾,又要克服外延逻辑的局限。这样的内涵逻辑目前正在发展中,并且已有初步轮廓。从术语上说,内涵逻辑除需要真、假、语句真值的同一和不同、集合或类、谓词的同范围或不同范围等外延逻辑的术语之外,还需要同义、内涵的同一和差异、命题、属性或概念这样一些术语。广而言之,可以把内涵逻辑看作是关于象“必然”、“可能”、“知道”、“相信”,“允许”、“禁止”等提供内涵语境的语句算子的一般逻辑。在这种广义之下,模态逻辑、时态逻辑、道义逻辑、认知逻辑、问题逻辑等都是内涵逻辑。不过,还有一种狭义的内涵逻辑,它可以粗略定义一个内涵逻辑是一个形式语言,其中包括(1)谓词逻辑的算子、量词和变元,这里的谓词逻辑不必局限于一阶谓词逻辑,也可以是高阶谓词逻辑;(2)合式的λ—表达式,例如(λx)A,这里A是任一类型的表达式,x是任一类型的变元,(λx)A本身是一函项,它把变元x在其中取值的那种类型的对象映射到A所属的那种类型上;(3)其他需要的模态的或内涵的算子,例如�,ù、ú。而一个内涵逻辑的解释,则由下列要素组成:(1)一个可能世界的非空集W;(2)一个可能个体的非空集D;(3)一个赋值,它给系统内的表达式指派它们在每w∈W中的外延。对于任一的解释Q和任一的世界w∈W,判定内涵逻辑系统中的任一表达式X相对于解释Q在w∈W中的外延总是可能的。这样的内涵逻辑系统有丘奇的LSD系统,R·蒙塔古的IL系统,以及E·N·扎尔塔的FIL系统等。[⑥] 在各种内涵逻辑中,认识论逻辑(epistemic logic)具有重要意义。它有广义和狭义之分。广义的认识论逻辑研究与感知(perception)、知道、相信、断定、理解、怀疑、问题和回答等相关的逻辑问题,包括问题逻辑、知道逻辑、相信逻辑、断定逻辑等;狭义的认识论逻辑仅指知道和相信的逻辑,简称“认知逻辑”。冯·赖特在1951年提出了对“认知模态”的逻辑分析,这对建立认知逻辑具有极大的启发作用。J·麦金西首先给出了一个关于“知道”的模态逻辑。A·帕普于1957年建立了一个基于6条规则的相信逻辑系统。J·亨迪卡于60年代出版的《知识和信念》一书是认知逻辑史上的重要着作,其中提出了一些认知逻辑的系统,并为其建立了基于“模型集”的语义学,后者是可能世界语义学的先导之一。当今的认知逻辑纷繁复杂,既不成熟也面临许多难题。由于认知逻辑涉及认识论、心理学、语言学、计算机科学和人工智能等诸多领域,并且认知逻辑的应用技术,又称关于知识的推理技术,正在成为计算机科学和人工智能的重要分支之一,因此认知逻辑在20世纪中后期成为国际逻辑学界的一个热门研究方向。这一状况在21世纪将得到继续并进一步强化,在这方面有可能出现突破性的重要结果。 4.对自然语言的逻辑研究 对自然语言的逻辑研究有来自几个不同领域的推动力。首先是计算机和人工智能的研究,人机对话和通讯、计算机的自然语言理解、知识表示和知识推理等课题,都需要对自然语言进行精细的逻辑分析,并且这种分析不能仅停留在句法层面,而且要深入到语义层面。其次是哲学特别是语言哲学,在20世纪哲学家们对语言表达式的意义问题倾注了异乎寻常的精力,发展了各种各样的意义理论,如观念论、指称论、使用论、言语行为理论、真值条件论等等,以致有人说,关注意义成了20世纪哲学家的职业病。再次是语言学自身发展的需要,例如在研究自然语言的意义问题时,不能仅仅停留在脱离语境的抽象研究上面,而要结合使用语言的特定环境去研究,这导致了语义学、语用学、新修辞学等等发展。各个方面发展的成果可以总称为“自然语言逻辑”,它力图综合后期维特根斯坦提倡的使用论 ,J·L·奥斯汀、J·L·塞尔等人发展的言语行为理论,以及P·格赖斯所创立的会话含义学说等成果,透过自然语言的指谓性和交际性去研究自然语言中的推理。 自然语言具有表达和交际两种职能,其中交际职能是自然语言最重要的职能,是它的生命力之所在。而言语交际总是在一定的语言环境(简称语境)中进行的,语境有广义和狭义之分。狭义的语境仅指一个语词、一个句子出现的上下文。广义的语境除了上下文之外,还包括该语词或语句出现的整个社会历史条件,如该语词或语句出现的时间、地点、条件、讲话的人(作者)、听话的人(读者)以及交际双方所共同具有的背景知识,这里的背景知识包括交际双方共同的信念和心理习惯,以及共同的知识和假定等等。这些语境因素对于自然语言的表达式(语词、语句)的意义有着极其重要的影响,这具体表现在:(i)语境具有消除自然语言语词的多义性、歧义性和模糊性的能力,具有严格规定语言表达式意义的能力。(ii)自然语言的句子常常包含指示代词、人称代词、时间副词等,要弄清楚这些句子的意义和内容,就要弄清楚这句话是谁说的、对谁说的、什么时候说的、什么地点说的、针对什么说的,等等,这只有在一定的语境中才能进行。依赖语境的其他类型的语句还有:包含着象“有些”和“每一个”这类量化表达式的句子的意义取决于依语境而定的论域,包含着象“大的”、“冷的”这类形容词的句子的意义取决于依语境而定的相比较的对象类;模态语句和条件语句的意义取决于因语境而变化的语义决定因素,如此等等。(iii)语言表达式的意义在语境中会出现一些重要的变化,以至偏离它通常所具有的意义(抽象意义),而产生一种新的意义即语用涵义。有人认为,一个语言表达式在它的具体语境中的意义,才是它的完全的真正的意义,一旦脱离开语境,它就只具有抽象的意义。语言的抽象意义和它的具体意义的关系,正象解剖了的死人肢体与活人肢体的关系一样。逻辑应该去研究、理解、把握自然语言的具体意义,当然不是去研究某一个(或一组)特定的语句在某个特定语境中唯一无二的意义,而是专门研究确定自然语言具体意义的普遍原则。[⑦] 美国语言学家保罗·格赖斯把语言表达式在一定的交际语境中产生的一种不同于字面意义的特殊涵义,叫做“语用涵义”、“会话涵义”或“隐涵”(implicature),并于1975年提出了一组“交际合作原则”,包括一个总则和四组准则。总则的内容是:在你参与会话时,你要依据你所参与的谈话交流的公认目的或方向,使你的会话贡献符合这种需要。仿照康德把范畴区分为量、质、关系和方式四类,格赖斯提出了如下四组准则: (1)数量准则:在交际过程中给出的信息量要适中。 a.给出所要求的信息量; b.给出的信息量不要多于所要求的信息量。 (2)质量准则:力求讲真话。 a.不说你认为假的东西。 b.不说你缺少适当证据的东西。 (3)关联准则:说话要与已定的交际目的相关联。 (4)方式准则:说话要意思明确,表达清晰。 a.避免晦涩生僻的表达方式; b.避免有歧义的表达方式; c.说话要简洁; d.说话要有顺序性。[⑧] 后来对这些原则提出了不少修正和补充,例如有人还提出了交际过程中所要遵守的“礼貌原则”。只要把交际双方遵守交际合作原则之类的语用规则作为基本前提,这些原则就可以用来确定和把握自然语言的具体意义(语用涵义)。实际上,一个语句p的语用涵义,就是听话人在具体语境中根据语用规则由p得到的那个或那些语句。更具体地说,从说话人S说的话语p推出语用涵义q的一般过程是: (i)S说了p; (ii)没有理由认为S不遵守准则,或至少S会遵守总的合作原则; (iii)S说了p而又要遵守准则或总的合作原则,S必定想表达q; (iv)S必然知道,谈话双方都清楚:如果S是合作的,必须假设q; (v)S无法阻止听话人H考虑q; (vi)因此,S意图让H考虑q,并在说p时意味着q。 试举二例: (1)a站在熄火的汽车旁,b向a走来。a说:“我没有汽油了。”b说:“前面拐角处有一个修车铺。”这里a与b谈话的目的是:a想得到汽油。根据关系准则,b说这句话是与a想得到汽油相关的,由此可知:b说这句话时隐涵着:“前面的修车铺还在营业并且卖汽油。” (2)某教授写信推荐他的学生任某项哲学方面的工作,信中写到:“亲爱的先生:我的学生c的英语很好,并且准时上我的课。”根据量的准则,应该提供所需要的信息量;作为教授,他对自己的学生的情况显然十分熟悉,也可以提供所需要的信息量,但他有意违反量的准则,在信中只用一句话来介绍学生的情况,任用人一旦接到这封信,自然明白:教授认为c不宜从事这项哲学工作。 并且,语用涵义还具有如下5个特点:(i)可取消性:在给原话语附加上某些话语之后,它原有的语用涵义可被取消。在例(1)中,若b在说“前面拐角处有一个修车铺”之后又补上一句:“不过它这时已经关门了”,则原有的语用涵义“你可从那里得到汽油”就被取消了。(ii)不可分离性:如果某话语在特定的语境中产生了语用涵义,则无论采用什么样的同义结构,该含义始终存在,因为它所依附的是话语的内容,而不是话语的形式。(iii)可推导性,前面已说明这一点。(iv)非规约性:语用涵义不能单独从话语本身推出来,除要考虑交际合作原则之类的语用规则之外,也需要假定通常的逻辑推理规则,并需要把上文语句、交际双方所共有的背景知识作为附加前提考虑在内。(v)不确定性:同一句话语在不同的语境中可以产生不同的语用涵义。显然,确定某个话语的语用涵义是一个极其复杂的过程,需要综合和分析、归纳和演绎的统一应用,因此具有一定的或然性。研究如何迅速有效地把握自然语言表达式在具体语境中的语用涵义,这正是自然语言逻辑所要完成的任务之一,它将在21世纪取得进展。
论文所反映的事物和事理的整体及其各部分之间的联系方式,基本上表现为纵向逻辑联系和横向逻辑联系,而两者又总是交织在一起,它们表现在论文的逻辑结构上就是:纵式结构、横式结构、合式结构三种形式。
学位论文是为了申请到学位而公开发表的报告。一般有比较严格的字数和格式要求,内容也比较多,尤其是其中的观点、论据逻辑层次也比一般论文复杂。其复杂程度依照学士论文、硕士论文、博士论文等也更加复杂。这种论文需要导师审核,还需要专家答辩,非常重要。代表的是作者的学位水平和学术素养。只能是个人撰写,不能与他人合作,属于自己的专署文章。不过大多写明指导导师的姓名。学术论文是发表在杂志或学术会议上阐明自己学术观点的文章。首先根据会议或学术期刊的要求确定题目,然后提出论文的观点。然后对自己的观点进行论证。一般理工科论文需要进行实验并对实验数据进行总结、推导,建立必要的数学模型等等,把方法介绍清楚,并得出相应的结论。最后是对论文内容进行归纳、总结,得出和论文题目相符合的结论。一般经过会务组专家或期刊责任编辑审核后即可发表。代表的是作者的学术水平和研究深度。可以自己单独撰写,也可以与人合作联合发表。
“论文各部分之间逻辑关系如何?”该问题意在考察学生的设计思路和框架结构。
当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。
结构:论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。
论文题目:要求准确、简练、醒目、新颖。
目录:目录是论文中主要段落的简表。
内容提要:是文章主要内容的摘录,要求短、精、完整。
关键词定义:
关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。
议论文,又叫说理文,是一种剖析事理,论述事理,发表意见,提出主张的文体。那么网友们知道议论文逻辑性特点有哪些吗?感兴趣的网友们,下面一起来了解一下吧。
1、议论文的语言必须准确、鲜明、严密、有针对性。
2、段落与段落之间还要有非常清楚的逻辑关系,如:总分、对照、层进、并列等。
3、借助起过渡性作用的语句或关联词来突出这种关系。如:“有”、“还有”、“虽然"、"但是”、“固然”、“诚然”、“由此”是等。
以上就是对于议论文逻辑性特点有哪些的相关内容。
二难推理是假言选言推理的一种特殊形式。如果能在日常思维中熟练而灵活的加以运用,就会感受到逻辑智慧带给我们的极大便利,化解各种为难,在生命本能的基础上增添许多人生智慧,营造自己更高的人生境界;如在辩论中运用自如,可以使对方陷入左右为难,进退两难的境地,树立自己的观点、展示自己的理论,如期实现自己所图,在这里二难推理展示出了它不可抗拒的逻辑力量。 一 二难推理的形式及其特点 二难推理的的定义 有两个假言判断(包括充分条件假言判断和必要条件假言判断)和一个二支选言判断做前提构成的假言选言推理,由于这种推理的结论总是令人难以接受,或“左右为难”、或“进退两难”,因此也叫二难推理。 二难推理的形式:简单构成式,简单破坏式,复杂构成式,复杂破坏式。 1.简单构成式:如果P,则R;如果Q,则R;或P或Q;总之R。 符号化是:((P→R)∧(Q→R))∧(P∨Q)→R 特点: ⑴所取的两个充分条件假言判断具有不同的前件(相互矛盾),却有相同的后件; ⑵小前提是二支选言判断,有选择的肯定有矛盾关系的前件; ⑶结论是相同的后件。因此,不论肯定那个前提条件,都得到相同的后件,而这个结论是不愿接受的。 2.简单破坏式:如果P,则Q,如果P,则R;或非P,或非R;所以,总之非P 符号化是:((P→Q)∧(P→R))∧(>P∨>R)→>P 特点: ⑴假言前提有相同的前件和不同的后件; ⑵小前提是二支选言判断,有选择地否定具有反对关系的后件 ⑶结论否定相同的前件 3.复杂构成式:如果P,则R,如果Q,则S;或P,或Q,所以,或R或S。 符号化是:((P→R)∧(Q→S))∧(P∨Q)→(R∨S) 特点: ⑴二假言前提的前件不同,后件也不同; ⑵选言前提有选择地肯定假言前提的前件; ⑶结论必然有选择地肯定相应的后件。 4.复杂破坏式:如果P,那么R,如果Q,那么S;非R,或非S;所以非P或非Q。 符号化是:((P→R)∧(Q→S))∧(>R∨>S)→(>P∨>Q) 特点: ⑴假言前件后件都不同; ⑵选言前提有选择地否定假言前提的后件; ⑶结论必然有选择地否定相应的前件。 二 祥林嫂面临的“二难选择” 祥林嫂死了丈夫,按照婆家的境况和农村的惯例,她势必要被卖掉,换来一笔钱来给小叔子做聘礼。但“贞女不嫁二夫”,“一马不配二鞍”,否则就是“败坏风俗”,就是“谬种”。前者是封建宗法制度的族权在作祟,后者是封建宗法制度的夫权在作祟。 祥林嫂嫁与不嫁都“有罪”,她疑惑了,摆在他面前的是一个“二难选择”。 这个“二难选择”,作为前提的两个假言判断,其前件一是肯定性的,前件二是否定性的,他们之间是矛盾关系,其后件均为否定性的,他们之间可以视为并列关系,结论是个不相容选言判断。符合简单构成式,即为: 如果P,则R; 如果Q,则R; 或P或Q; 总之R。 按照这个模式稍加整理,可以吧以上有关内容写成下列形式: 如果同意再嫁(P),则违背了夫权(有罪R); 如果拒绝再嫁(Q),则违背了族权(有罪R); 祥林嫂或同意再嫁(或P),或不同意再嫁(或Q); 总之祥林嫂是有罪的(R)。 祥林嫂面临的这个“二难选择”,深刻的暴露了封建宗法制度本身的矛盾和荒谬。 或许,对封建社会的女子来说,夫权比族权更令人畏惧,因此,面对这个“二难选择”祥林嫂选择了拒绝再嫁(Q),所以她就“撞香案”了。但是她后来还是“服从”了。虽然这是族权的逼迫,虽然祥林嫂做过殊死的抵抗,虽然她很无可奈何,但是夫权仍然没有原谅她的“节失”,他后来的命运就是证明。祥林嫂的“节失”完全是族权造成的,而“节失”得后果却要祥林嫂来承担。这就又暴露出了封建宗法制度的不合理。
分能当饭吃么?自己写吧。别指望谁无偿帮你。
人工智能与现今逻辑学的发展-.〔摘要〕 本文认为,计算机科学和人工智能将是21世纪逻辑学发展的主要动力源泉,并且在很大程度上将决定21世纪逻辑学的面貌。至少在21世纪早期,逻辑学将重点关注下列论题:(1)如何在逻辑中处理常识推理的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的可错的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。 〔关键词〕 人工智能,常识推理,归纳逻辑,广义内涵逻辑,认知逻辑,自然语言逻辑 现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。当时的数学家们试图即从少数公理根据明确给出的演绎规则推导出其他的数学定理,从而把整个数学构造成为一个严格的演绎大厦,然后用某种程序和方法一劳永逸地证明数学体系的可靠性。为此需要发明和锻造严格、精确、适用的逻辑工具。这是现代逻辑诞生的主要动力。由此造成的后果就是20世纪逻辑研究的严重数学化,其表现在于:一是逻辑专注于在数学的形式化过程中提出的问题;二是逻辑采纳了数学的方法论,从事逻辑研究就意味着象数学那样用严格的形式证明去解决问题。由此发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。 本文所要探讨的问题是:21世纪逻辑发展的主要动力将来自何处?大致说来将如何发展?我个人的看法是:计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理(这一点在20世纪基本上已经做到了,如用计算机去进行高难度和高强度的数学证明,“深蓝”通过高速、大量的计算去与世界冠军下棋),而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素,例如选择性地搜集相关的经验证据,在不充分信息的基础上作出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,……由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。 实际上,在20世纪中后期,就已经开始了现代逻辑与人工智能(记为AI)之间的相互融合和渗透。例如,哲学逻辑所研究的许多课题在理论计算机和人工智能中具有重要的应用价值。AI从认知心理学、社会科学以及决策科学中获得了许多资源,但逻辑(包括哲学逻辑)在AI中发挥了特别突出的作用。某些原因促使哲学逻辑家去发展关于非数学推理 的理论;基于几乎同样的理由,AI研究者也在进行类似的探索,这两方面的研究正在相互接近、相互借鉴,甚至在逐渐融合在一起。例如,AI特别关心下述课题: ·效率和资源有限的推理; ·感知; ·做计划和计划再认; ·关于他人的知识和信念的推理; ·各认知主体之间相互的知识; ·自然语言理解; ·知识表示; ·常识的精确处理; ·对不确定性的处理,容错推理; ·关于时间和因果性的推理; ·解释或说明; ·对归纳概括以及概念的学习。[①] 21世纪的逻辑学也应该关注这些问题,并对之进行研究。为了做到这一点,逻辑学家们有必要熟悉AI的要求及其相关进展,使其研究成果在AI中具有可应用性。 我认为,至少是21世纪早期,逻辑学将会重点关注下述几个领域,并且有可能在这些领域出现具有重大意义的成果:(1)如何在逻辑中处理常识推理中的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。 1.常识推理中的某些弗协调、非单调和容错性因素 AI研究的一个目标就是用机器智能模拟人的智能,它选择各种能反映人的智能特征的问题进行实践,希望能做出各种具有智能特征的软件系统。AI研究基于计算途径,因此要建立具有可操作性的符号模型。一般而言,AI关于智能系统的符号模型可描述为:由一个知识载体(称为知识库KB)和一组加载在KB上的足以产生智能行为的过程(称为问题求解器PS)构成。经过20世纪70年代包括专家系统的发展,AI研究者逐步取得共识,认识到知识在智能系统中力量,即一般的智能系统事实上是一种基于知识的系统,而知识包括专门性知识和常识性知识,前者亦可看做是某一领域内专家的常识。于是,常识问题就成为AI研究的一个核心问题,它包括两个方面:常识表示和常识推理,即如何在人工智能中清晰地表示人类的常识,并运用这些常识去进行符合人类行为的推理。显然,如此建立的常识知识库可能包含矛盾,是不协调的,但这种矛盾或不协调应不至于影响到进行合理的推理行为;常识推理还是一种非单调推理,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论;常识推理也是一种可能出错的不精确的推理模式,是在容许有错误知识的情况下进行的推理,简称容错推理。而经典逻辑拒斥任何矛盾,容许从矛盾推出一切命题;并且它是单调的,即承认如下的推理模式:如果p?r,则pùq?r;或者说,任一理论的定理属于该理论之任一扩张的定理集。因此,在处理常识表示和常识推理时,经典逻辑应该受到限制和修正,并发展出某些非经典的逻辑,如次协调逻辑、非单调逻辑、容错推理等。有人指出,常识推理的逻辑是次协调逻辑和非单调逻辑的某种结合物,而后者又可看做是对容错推理的简单且基本的情形的一种形式化。[②] “次协调逻辑”(Paraconsistent Logic)是由普里斯特、达·科斯塔等人在对悖论的研究中发展出来的,其基本想法是:当在一个理论中发现难以克服的矛盾或悖论时,与其徒劳地想尽各种办法去排除 或防范它们,不如干脆让它们留在理论体系内,但把它们“圈禁”起来,不让它们任意扩散,以免使我们所创立或研究的理论成为“不足道”的。于是,在次协调逻辑中,能够容纳有意义、有价值的“真矛盾”,但这些矛盾并不能使系统推出一切,导致自毁。因此,这一新逻辑具有一种次于经典逻辑但又远远高于完全不协调系统的协调性。次协调逻辑家们认为,如果在一理论T中,一语句A及其否定?A都是定理,则T是不协调的;否则,称T是协调的。如果T所使用的逻辑含有从互相否定的两公式可推出一切公式的规则或推理,则不协调的T也是不足道的(trivial)。因此,通常以经典逻辑为基础的理论,如果它是不协调的,那它一定也是不足道的。这一现象表明,经典逻辑虽可用于研究协调的理论,但不适用于研究不协调但又足道的理论。达·科斯塔在20世纪60年代构造了一系列次协调逻辑系统Cn(1≤n≤w),以用作不协调而又足道的理论的逻辑工具。对次协调逻辑系统Cn的特征性描述包括下述命题:(i)矛盾律?(Aù?A)不普遍有效;(ii)从两个相互否定的公式A和?A推不出任意公式;即是说,矛盾不会在系统中任意扩散,矛盾不等于灾难。(iii)应当容纳与(i)和(ii)相容的大多数经典逻辑的推理模式和规则。这里,(i)和(ii)表明了对矛盾的一种相对宽容的态度,(iii)则表明次协调逻辑对于经典逻辑仍有一定的继承性。 在任一次协调逻辑系统Cn(1≤n≤w)中,下述经典逻辑的定理或推理模式都不成立: ?(Aù?A) Aù?A→B A→(?A→B) (AA)→B (AA)→?B A→A (?Aù(AúB))→B (A→B)→(?B→?A) 若以C0为经典逻辑,则系列C0, C1, C2,… Cn,… Cw使得对任正整数i有Ci弱于Ci-1,Cw是这系列中最弱的演算。已经为Cn设计出了合适的语义学,并已经证明Cn相对于此种语义是可靠的和完全的,并且次协调命题逻辑系统Cn还是可判定的。现在,已经有人把次协调逻辑扩展到模态逻辑、时态逻辑、道义逻辑、多值逻辑、集合论等领域的研究中,发展了这些领域内的次协调理论。显然,次协调逻辑将会得到更进一步的发展。[③] 非单调逻辑是关于非单调推理的逻辑,它的研究开始于20世纪80年代。1980年,D·麦克多莫特和J·多伊尔初步尝试着系统发展一种关于非单调推理的逻辑。他们在经典谓词演算中引入一个算子M,表示某种“一致性”断言,并将其看做是模态概念,通过一定程序把模态逻辑系统T、S4和S5翻译成非单调逻辑。B·摩尔的论文《非单调逻辑的语义思考》(1983)据认为在非单调逻辑方面作出了令人注目的贡献。他在“缺省推理”和“自动认知推理”之间做了区分,并把前者看作是在没有任何相反信息和缺少证据的条件下进行推理的过程,这种推理的特征是试探性的:根据新信息,它们很可能会被撤消。自动认知推理则不是这种类型,它是与人们自身的信念或知识相关的推理,可用它模拟一个理想的具有信念的有理性的代理人的推理。对于在计算机和人工智能中获得成功的应用而言,非单调逻辑尚需进一步发展。 2.归纳以及其他不确定性推理 人类智能的本质特征和最高表现是创造。在人类创造的过程中,具有必然性的演绎推理固然起重要作用,但更为重要的是具有某种不确定性的归纳、类比推理以及模糊推理等。因此,计算机要成功地模拟人的智能,真正体现出人的智能品质,就必须对各种具有不确定性的推理模式进行研究。 首先是对归纳推理和归纳逻辑的研究。这里所说的“归纳推理”是广义的,指一切扩展性推理,它们的结论所断定的超出了其前提所断定的范围,因而前提的真无法保证结论的真,整个推理因此缺乏必然性。具体说来,这种意义的“归纳”包括下述内容:简单枚举法;排除归纳法,指这样一些操作:预先通过观察或实验列出被研究现象的可能的原因,然后有选择地安排某些事例或实验,根据某些标准排除不相干假设,最后得到比较可靠的结论;统计概括:从关于有穷数目样本的构成的知识到关于未知总体分布构成的结论的推理;类比论证和假说演绎法,等等。尽管休谟提出着名的“归纳问题”,对归纳推理的合理性和归纳逻辑的可能性提出了深刻的质疑,但我认为,(1)归纳是在茫茫宇宙中生存的人类必须采取也只能采取的认知策略,对于人类来说具有实践的必然性。(2)人类有理由从经验的重复中建立某种确实性和规律性,其依据就是确信宇宙中存在某种类似于自然齐一律和客观因果律之类的东西。这一确信是合理的,而用纯逻辑的理由去怀疑一个关于世界的事实性断言则是不合理的,除非这个断言是逻辑矛盾。(3)人类有可能建立起局部合理的归纳逻辑和归纳方法论。并且,归纳逻辑的这种可能性正在计算机科学和人工智能的研究推动下慢慢地演变成现实。恩格斯早就指出,“社会一旦有技术上的需要,则这种需要比十所大学更能把科学推向前进。”[④] 有人通过指责现有的归纳逻辑不成熟,得出“归纳逻辑不可能”的结论,他们的推理本身与归纳推理一样,不具有演绎的必然性。(4)人类实践的成功在一定程度上证明了相应的经验知识的真理性,也就在一定程度上证明了归纳逻辑和归纳方法论的力量。毋庸否认,归纳逻辑目前还很不成熟。有的学者指出,为了在机器的智能模拟中克服对归纳模拟的困难而有所突破,应该将归纳逻辑等有关的基础理论研究与机器学习、不确定推理和神经网络学习模型与归纳学习中已有的成果结合起来。只有这样,才能在已有的归纳学习成果上,在机器归纳和机器发现上取得新的突破和进展。[⑤] 这是一个极有价值且极富挑战性的课题,无疑在21世纪将得到重视并取得进展。 再谈模糊逻辑。现实世界中充满了模糊现象,这些现象反映到人的思维中形成了模糊概念和模糊命题,如“矮个子”、“美人”、“甲地在乙地附近”、“他很年轻”等。研究模糊概念、模糊命题和模糊推理的逻辑理论叫做“模糊逻辑”。对它的研究始于20世纪20年代,其代表性人物是L·A·查德和P·N·马林诺斯。模糊逻辑为精确逻辑(二值逻辑)解决不了的问题提供了解决的可能,它目前在医疗诊断、故障检测、气象预报、自动控制以及人工智能研究中获得重要应用。显然,它在21世纪将继续得到更大的发展。 3.广义内涵逻辑 经典逻辑只是对命题联结词、个体词、谓词、量词和等词进行了研究,但在自然语言中,除了这些语言成分之外,显然还存在许多其他的语言成分,如各种各样的副词,包括模态词“必然”、“可能”和“不可能” 、时态词“过去”、“现在”和“未来”、道义词“应该”、“允许”、“禁止”等等,以及各种认知动词,如“思考”、“希望”、“相信”、“判断”、“猜测”、“考虑”、“怀疑”,这些认知动词在逻辑和哲学文献中被叫做“命题态度词”。对这些副词以及命题态度词的逻辑研究可以归类为“广义内涵逻辑”。 大多数副词以及几乎所有命题态度词都是内涵性的,造成内涵语境,后者与外延语境构成对照。外延语境又叫透明语境,是经典逻辑的组合性原则、等值置换规则、同一性替换规则在其中适用的语境;内涵语境又称晦暗语境,是上述规则在其中不适用的语境。相应于外延语境和内涵语境的区别,一切语言表达式(包括自然语言的名词、动词、形容词直至语句)都可以区分为外延性的和内涵性的,前者是提供外延语境的表达式,后者是提供内涵性语境的表达式。例如,杀死、见到、拥抱、吻、砍、踢、打、与…下棋等都是外延性表达式,而知道、相信、认识、必然、可能、允许、禁止、过去、现在、未来等都是内涵性表达式。 在内涵语境中会出现一些复杂的情况。首先,对于个体词项来说,关键性的东西是我们不仅必须考虑它们在现实世界中的外延,而且要考虑它们在其他可能世界中的外延。例如,由于“必然”是内涵性表达式,它提供内涵语境,因而下述推理是非有效的: 晨星必然是晨星, 晨星就是暮星, 所以,晨星必然是暮星。 这是因为:这个推理只考虑到“晨星”和“暮星”在现实世界中的外延,并没有考虑到它们在每一个可能世界中的外延,我们完全可以设想一个可能世界,在其中“晨星”的外延不同于“暮星”的外延。因此,我们就不能利用同一性替换规则,由该推理的前提得出它的结论:“晨星必然是暮星”。其次,在内涵语境中,语言表达式不再以通常是它们的外延的东西作为外延,而以通常是它们的内涵的东西作为外延。以“达尔文相信人是从猿猴进化而来的”这个语句为例。这里,达尔文所相信的是“人是从猿猴进化而来的”所表达的思想,而不是它所指称的真值,于是在这种情况下,“人是从猿猴进化而来的”所表达的思想(命题)就构成它的外延。再次,在内涵语境中,虽然适用于外延的函项性原则不再成立,但并不是非要抛弃不可,可以把它改述为新的形式:一复合表达式的外延是它出现于外延语境中的部分表达式的外延加上出现于内涵语境中的部分表达式的内涵的函项。这个新的组合性或函项性原则在内涵逻辑中成立。 一般而言,一个好的内涵逻辑至少应满足两个条件:(i)它必须能够处理外延逻辑所能处理的问题;(ii)它还必须能够处理外延逻辑所不能处理的难题。这就是说,它既不能与外延逻辑相矛盾,又要克服外延逻辑的局限。这样的内涵逻辑目前正在发展中,并且已有初步轮廓。从术语上说,内涵逻辑除需要真、假、语句真值的同一和不同、集合或类、谓词的同范围或不同范围等外延逻辑的术语之外,还需要同义、内涵的同一和差异、命题、属性或概念这样一些术语。广而言之,可以把内涵逻辑看作是关于象“必然”、“可能”、“知道”、“相信”,“允许”、“禁止”等提供内涵语境的语句算子的一般逻辑。在这种广义之下,模态逻辑、时态逻辑、道义逻辑、认知逻辑、问题逻辑等都是内涵逻辑。不过,还有一种狭义的内涵逻辑,它可以粗略定义一个内涵逻辑是一个形式语言,其中包括(1)谓词逻辑的算子、量词和变元,这里的谓词逻辑不必局限于一阶谓词逻辑,也可以是高阶谓词逻辑;(2)合式的λ—表达式,例如(λx)A,这里A是任一类型的表达式,x是任一类型的变元,(λx)A本身是一函项,它把变元x在其中取值的那种类型的对象映射到A所属的那种类型上;(3)其他需要的模态的或内涵的算子,例如�,ù、ú。而一个内涵逻辑的解释,则由下列要素组成:(1)一个可能世界的非空集W;(2)一个可能个体的非空集D;(3)一个赋值,它给系统内的表达式指派它们在每w∈W中的外延。对于任一的解释Q和任一的世界w∈W,判定内涵逻辑系统中的任一表达式X相对于解释Q在w∈W中的外延总是可能的。这样的内涵逻辑系统有丘奇的LSD系统,R·蒙塔古的IL系统,以及E·N·扎尔塔的FIL系统等。[⑥] 在各种内涵逻辑中,认识论逻辑(epistemic logic)具有重要意义。它有广义和狭义之分。广义的认识论逻辑研究与感知(perception)、知道、相信、断定、理解、怀疑、问题和回答等相关的逻辑问题,包括问题逻辑、知道逻辑、相信逻辑、断定逻辑等;狭义的认识论逻辑仅指知道和相信的逻辑,简称“认知逻辑”。冯·赖特在1951年提出了对“认知模态”的逻辑分析,这对建立认知逻辑具有极大的启发作用。J·麦金西首先给出了一个关于“知道”的模态逻辑。A·帕普于1957年建立了一个基于6条规则的相信逻辑系统。J·亨迪卡于60年代出版的《知识和信念》一书是认知逻辑史上的重要着作,其中提出了一些认知逻辑的系统,并为其建立了基于“模型集”的语义学,后者是可能世界语义学的先导之一。当今的认知逻辑纷繁复杂,既不成熟也面临许多难题。由于认知逻辑涉及认识论、心理学、语言学、计算机科学和人工智能等诸多领域,并且认知逻辑的应用技术,又称关于知识的推理技术,正在成为计算机科学和人工智能的重要分支之一,因此认知逻辑在20世纪中后期成为国际逻辑学界的一个热门研究方向。这一状况在21世纪将得到继续并进一步强化,在这方面有可能出现突破性的重要结果。 4.对自然语言的逻辑研究 对自然语言的逻辑研究有来自几个不同领域的推动力。首先是计算机和人工智能的研究,人机对话和通讯、计算机的自然语言理解、知识表示和知识推理等课题,都需要对自然语言进行精细的逻辑分析,并且这种分析不能仅停留在句法层面,而且要深入到语义层面。其次是哲学特别是语言哲学,在20世纪哲学家们对语言表达式的意义问题倾注了异乎寻常的精力,发展了各种各样的意义理论,如观念论、指称论、使用论、言语行为理论、真值条件论等等,以致有人说,关注意义成了20世纪哲学家的职业病。再次是语言学自身发展的需要,例如在研究自然语言的意义问题时,不能仅仅停留在脱离语境的抽象研究上面,而要结合使用语言的特定环境去研究,这导致了语义学、语用学、新修辞学等等发展。各个方面发展的成果可以总称为“自然语言逻辑”,它力图综合后期维特根斯坦提倡的使用论 ,J·L·奥斯汀、J·L·塞尔等人发展的言语行为理论,以及P·格赖斯所创立的会话含义学说等成果,透过自然语言的指谓性和交际性去研究自然语言中的推理。 自然语言具有表达和交际两种职能,其中交际职能是自然语言最重要的职能,是它的生命力之所在。而言语交际总是在一定的语言环境(简称语境)中进行的,语境有广义和狭义之分。狭义的语境仅指一个语词、一个句子出现的上下文。广义的语境除了上下文之外,还包括该语词或语句出现的整个社会历史条件,如该语词或语句出现的时间、地点、条件、讲话的人(作者)、听话的人(读者)以及交际双方所共同具有的背景知识,这里的背景知识包括交际双方共同的信念和心理习惯,以及共同的知识和假定等等。这些语境因素对于自然语言的表达式(语词、语句)的意义有着极其重要的影响,这具体表现在:(i)语境具有消除自然语言语词的多义性、歧义性和模糊性的能力,具有严格规定语言表达式意义的能力。(ii)自然语言的句子常常包含指示代词、人称代词、时间副词等,要弄清楚这些句子的意义和内容,就要弄清楚这句话是谁说的、对谁说的、什么时候说的、什么地点说的、针对什么说的,等等,这只有在一定的语境中才能进行。依赖语境的其他类型的语句还有:包含着象“有些”和“每一个”这类量化表达式的句子的意义取决于依语境而定的论域,包含着象“大的”、“冷的”这类形容词的句子的意义取决于依语境而定的相比较的对象类;模态语句和条件语句的意义取决于因语境而变化的语义决定因素,如此等等。(iii)语言表达式的意义在语境中会出现一些重要的变化,以至偏离它通常所具有的意义(抽象意义),而产生一种新的意义即语用涵义。有人认为,一个语言表达式在它的具体语境中的意义,才是它的完全的真正的意义,一旦脱离开语境,它就只具有抽象的意义。语言的抽象意义和它的具体意义的关系,正象解剖了的死人肢体与活人肢体的关系一样。逻辑应该去研究、理解、把握自然语言的具体意义,当然不是去研究某一个(或一组)特定的语句在某个特定语境中唯一无二的意义,而是专门研究确定自然语言具体意义的普遍原则。[⑦] 美国语言学家保罗·格赖斯把语言表达式在一定的交际语境中产生的一种不同于字面意义的特殊涵义,叫做“语用涵义”、“会话涵义”或“隐涵”(implicature),并于1975年提出了一组“交际合作原则”,包括一个总则和四组准则。总则的内容是:在你参与会话时,你要依据你所参与的谈话交流的公认目的或方向,使你的会话贡献符合这种需要。仿照康德把范畴区分为量、质、关系和方式四类,格赖斯提出了如下四组准则: (1)数量准则:在交际过程中给出的信息量要适中。 a.给出所要求的信息量; b.给出的信息量不要多于所要求的信息量。 (2)质量准则:力求讲真话。 a.不说你认为假的东西。 b.不说你缺少适当证据的东西。 (3)关联准则:说话要与已定的交际目的相关联。 (4)方式准则:说话要意思明确,表达清晰。 a.避免晦涩生僻的表达方式; b.避免有歧义的表达方式; c.说话要简洁; d.说话要有顺序性。[⑧] 后来对这些原则提出了不少修正和补充,例如有人还提出了交际过程中所要遵守的“礼貌原则”。只要把交际双方遵守交际合作原则之类的语用规则作为基本前提,这些原则就可以用来确定和把握自然语言的具体意义(语用涵义)。实际上,一个语句p的语用涵义,就是听话人在具体语境中根据语用规则由p得到的那个或那些语句。更具体地说,从说话人S说的话语p推出语用涵义q的一般过程是: (i)S说了p; (ii)没有理由认为S不遵守准则,或至少S会遵守总的合作原则; (iii)S说了p而又要遵守准则或总的合作原则,S必定想表达q; (iv)S必然知道,谈话双方都清楚:如果S是合作的,必须假设q; (v)S无法阻止听话人H考虑q; (vi)因此,S意图让H考虑q,并在说p时意味着q。 试举二例: (1)a站在熄火的汽车旁,b向a走来。a说:“我没有汽油了。”b说:“前面拐角处有一个修车铺。”这里a与b谈话的目的是:a想得到汽油。根据关系准则,b说这句话是与a想得到汽油相关的,由此可知:b说这句话时隐涵着:“前面的修车铺还在营业并且卖汽油。” (2)某教授写信推荐他的学生任某项哲学方面的工作,信中写到:“亲爱的先生:我的学生c的英语很好,并且准时上我的课。”根据量的准则,应该提供所需要的信息量;作为教授,他对自己的学生的情况显然十分熟悉,也可以提供所需要的信息量,但他有意违反量的准则,在信中只用一句话来介绍学生的情况,任用人一旦接到这封信,自然明白:教授认为c不宜从事这项哲学工作。 并且,语用涵义还具有如下5个特点:(i)可取消性:在给原话语附加上某些话语之后,它原有的语用涵义可被取消。在例(1)中,若b在说“前面拐角处有一个修车铺”之后又补上一句:“不过它这时已经关门了”,则原有的语用涵义“你可从那里得到汽油”就被取消了。(ii)不可分离性:如果某话语在特定的语境中产生了语用涵义,则无论采用什么样的同义结构,该含义始终存在,因为它所依附的是话语的内容,而不是话语的形式。(iii)可推导性,前面已说明这一点。(iv)非规约性:语用涵义不能单独从话语本身推出来,除要考虑交际合作原则之类的语用规则之外,也需要假定通常的逻辑推理规则,并需要把上文语句、交际双方所共有的背景知识作为附加前提考虑在内。(v)不确定性:同一句话语在不同的语境中可以产生不同的语用涵义。显然,确定某个话语的语用涵义是一个极其复杂的过程,需要综合和分析、归纳和演绎的统一应用,因此具有一定的或然性。研究如何迅速有效地把握自然语言表达式在具体语境中的语用涵义,这正是自然语言逻辑所要完成的任务之一,它将在21世纪取得进展。
市场经济体制的建立和改革的深入发展,使得新形势下的公共财政学科的研究对象在内容上被赋予了更广泛的内涵,这就要求在马克思主义的指导下,立足于本国具体实践,借鉴西方的数理统计和计量研究的方法,构建一套完整的、系统的学科体系。 一、我国财政学的发展史 1.财税思想的古代历史 2.我国建国以来财政学发展的历史沿革 二、新形势下我国财政学研究对象的变迁 三、公共财政学的理论体系内容 四、关于我国财政学研究方法的建议 1.以马克思主义哲学为总的指导思想 2.政治制度安排贯穿其中 3.运用数理统计和计量分析进行量化研究 4.理论研究要与实践相结合 5.与其他相关学科进行交叉研究 楼主大概可以按照这个思路写,希望我的回答对你有用,谢谢。
近年来财政收入虽然大幅增长,但由于中国转型期财政支付改革成本不断增加,支持经济发展的任务十分繁重,以及加强宏观调控的需要,因而伴随积极财政政策而来的公共风险也在加大,财政赤字和债务规模增长很快。 由此可见,积极财政政策已完成其历史使命,财政政策的调整、转型势在必行。 2、可行性 稳健财政政策的实施有它的可行性。表现在: (1)积极的财政政策实施带动了投资、信贷增长偏快,结构性的矛盾也越来越突出,由此引发的通货膨胀,势必影响到宏观经济的发展,如果继续实施这一政策,不仅不利于控制固定资产投资的过快增长,而且易于形成逆向调节;不仅不利于减缓通货膨胀的趋势,而且易于加剧投资与消费比例失调程度,加大经济健康运行的风险和阻力,对此,继续实施积极的财政政策已不合时宜,应当适时转向。 (2)从规避风险的迫切性看,也需要加快调整现行的财政政策。积极的财政政策实施,主要是通过政府大量发行国债进行基础建设投资而实现的,一方面使得经济的增长过份依赖于国债的发行,另一方面,也使得国债的规模越来越大,到目前为止,仅长期建设国债累计额就达到了9100亿元之巨,而且中央财政债务依存度偏高,经济中积累了大量的或有负债,增加了财政运行的压力。 (3)积极的财政政策实施,使得我国经济已基本上走出通货紧缩期,进入新一轮的上升期,经济自主增长的能力明显增强,社会上已有大量的资金在涌动,人们的投资意识在逐渐增强,足以缓和由于政府减少投资而带来的对经济的波动。 3、目标 财政政策作为政府宏观调控的一项重要手段,其目标的确定必须服务服从于国民经济宏观的总体要求。稳健的财政政策要服从服务于改革发展大局和中央宏观调控大局,宏观上既要防止通货膨胀苗头的继续扩大,又要防止通货紧缩趋势的重新出现;既要坚决控制投资需求膨胀,又要努力扩大消费需求;既要对投资过热的行业降温,又要着力支持经济社会发展中的薄弱环节。因此,稳健的财政政策必将有助于防止经济大起大落,控制通货膨胀.保持经济平稳增长。 4、主要内容 稳健财政政策的主要内容概括起来,就是四句话,十六个字:控制赤字、推进改革、调整结构、增收节支。 (1)控制赤字,就是适当减少中央财政赤字,但又不明显缩小,松紧适度,重在传递调控导向信号,既防止通货膨胀苗头的继续扩大,又防止通货紧缩趋势的重新出现,体现加强和改善宏观调控、巩固和发展宏观调控成果的要求。 (2)推进改革,就是转变主要依靠国债项目资金拉动经济增长的方式,按照既立足当前,又着眼长远的原则,在继续安排部分国债项目投资,整合预算内基本建设投资,保证一定中央财政投资规模的基础上,适当调减国债项目资金规模,腾出更多财力,用于支持体制改革和制度创新,为市场主体和经济发展创造一个良好、公平和相对宽松的财税环境,建立有利于经济自主增长和健康发展的长效机制,体现转变经济增长方式的要求。 (3))调整结构,就是在对总量不做大的调整和压缩的基础上,进一步按照科学发展观和公共财政的要求,调整财政支出结构和国债项目资金投向结构,区别对待、有保有压、有促有控,对与经济有关的、直接用于一般竞争性领域等的“越位”投入,要退出来、压下来;对属于公共财政范畴的,涉及到财政“缺位或不到位”的,如需要加强的农业、就业和社会保障、环境和筹”和调整经济结构的要求。 (4)增收节支,一方面,在总体不增税负或略减税负的基础上,通过严格依法征税,堵塞各种漏洞,把该收的收上来,确保财政收入稳定增长。应收尽收本身就是宏观调控。另一方面,严格按预算控制支出特别是控制一般性支出的增长,在切实提高财政资金的使用效益上花大力气,下大功夫,体现配合宏观调控和建立节约型社会的要求。 总之,根据我国国情和国内外经济形势的发展,从实际出发,中央确定了财政政策的取向,做出了实施稳健的财政政策以代替积极的财政政策,这是一种客观的、必然的、符合现实的科学选择。 三、展望 当前以及今后一段时期,是中国推动全面建设小康社会和构建和谐社会的重要阶段。“十一五”时期中国经济仍将处在高位运行态势。在这种情况下,不宜实施以扩张为主的积极财政政策。但经济结构性矛盾的解决,特别是加快农业、能源交通、教育科技、消费服务业、生态环境保护等领域的发展,还需要保持一定的财政政策力度,尤其是财政面临支持各项改革、支付改革成本的压力较大。因此,也不宜实施全面紧缩的财政政策。因而“十一五”时期特别是前期应继续实施稳健的财政政策。为了达到良好的效果,应用注意解决以下几个问题: 1、建立和完善农村社会保障制度、公共卫生体系、义务教育制度。 2、运用税收手段对企业科技创新、环保、循环经济等项目加大税收扶植力度;对资源浪费、环境污染、低层次重复建设等项目的企业进行重税。 3、放开针对限制民间资本进入的领域,积极鼓励民间资本进行高科技、环保、旅游等的投资。 4、及时推出物业税、加大地方政府的经济实用房的规模,切实控制房地产的投机,减轻居民的支出压力,稳定社会,提高其他领域的消费。 5、进一步推进农村税费改革和粮食流通体制改革,完善粮食直接补贴政策,稳定粮食最低收购政策、坚决控制农业生产资料价格的上涨,继续提高农民的收入水平。 6、转变城市居民就业观念、通过培训、发展第三产业、继续引导民资、吸引外资投资实业,努力降低失业人口率,创造和谐的社会生活环境。 参考文献 1、刘海涛,冯海燕.积极到稳健财政策的转型分析.中国林业企业,2005,72(5):37-39 2、金人庆.关于财政政策的几个问题.维普资讯http// ,2-12 3、苏明,陈少强.中国当前的财政政策及趋势.上海经济研究,2005,9:15-20 4、曹紫辉.当前我国财政政策的取向及实施的相应措施.集团经济研究,2005,177:98 5.陈爱东. 制度变迁中的我国财政政策效应分析及对稳健性财政政策的建议.重庆工商大学学报(社会科学版),2005,22(4):37-4
1997年下半年,始发于泰国的东南亚金融危机,给全球经济带来了巨大冲击,全球贸易和经济增长明显减慢,中国经济也受到了严重影响。在当时严峻而复杂的国内国际经济环境下,中国政府审时度势,果断地调整了宏观调控策略,实行了积极财政政策和稳健货币政策。一、对我国积极财政政策理念长期化的隐忧由于我国目前的市场态势,总体上已由“经济短缺”过渡到“经济过剩”,“经济过剩”有可能成为我国今后经济运行中的一种“常态”。对此问题的关注,实际上反映了大家对我国近几年大规模财政赤字及政府偿债能力的担忧。首先,“扩张性”财政政策(即积极的财政政策)的实施,从短期看,的确能促进经济的增长,这一点是没有任何疑义的。但是,不管哪个国家,“扩张性”财政政策的实施,最终都要受到国家财政能力的制约,没有足够的财力做后盾,长期的“扩张性”财政政策是难以支撑的。虽然从1999年我国的国债负担率和居民应债能力两个指标来看,我国的国债余额占GDP的比重为12.93%(国际公认的安全警戒线为60%左右),国债余额占居民储蓄余额的比重为17.60%(国际公认的警戒线为30%左右),说明我国国债的发行仍有较大的余地;但从国债偿还率指标来看,我国1999年国债还本付息额占当年财政收入的比重达16.8%(国际公认的安全警戒线为10%左右),已大大超过了国际公认的安全警戒线。再从债务依存度看,这一指标逐年增加,居高不下,全国债务依存度1999年达30.6%(国际公认的安全警戒线为20%左右),而中央债务依存度更是高达98%(国际公认的安全警戒线为30%左右),都远远地高于国际公认的控制标准。1998年以来,整个国家财政有1/4的支出、中央财政有1/2的支出依靠发行国债来维持,这充分显示出我国财政的脆弱性,必将对我国未来的财政安全构成巨大的潜在风险。尽管我国目前的国债负担率和居民应债能力两个指标距国际警戒线较远,但实际上我国的财政债务与成熟的市场经济国家的财政债务并没有现实可比性。因为西方的财政债务一般都等于公共部门债务,而我国的财政债务一般小于公共部门的债务。造成这种差别的原因,主要来自于以下三个项目:一是准国债项目;二是国有银行体系不良资产中的潜在损失;三是隐性养老金债务。显然,如果只单纯计算国家的财政债务,而不把以上三个项目考虑在内,就自然会低估政府债务规模;反之,如果把以上三个项目计算在内,则公共部门的债务规模就会大大增大。在我国,由于社会性质决定了政府财政是所有公共部门债务的实际最后承担者,所以,我国的公共部门的债务规模要远远高于财政债务规模。据有的学者估算,1999年我国公共部门的实际债务已超过当年GDP的50%,已接近甚至超过了国际公认的警戒线。其次,“扩张性”财政政策实施的结果,即加大财政赤字。财政赤字不仅仅是个经济问题,也是一个政治问题。从理论上讲,只要经济不断增长,人民生活水平不断提高,公众保持良好的信心,一定的财政赤字规模(由此导致的国债规模)就是可以承受的,也不会导致什么财政风险,即随着赤字与债务的继续增加,到未来的某一天,政府既无法用财政结余来弥补赤字,又不能通过借新债来换旧债和弥补赤字,且又得不到国际上的有力援助。那么,政府只有两个选择:一是多印发钞票;二是宣布废除旧的债务。前者意味着恶性通货膨胀,后者意味着国家信用的破产,这两者都意味着经济或政权的崩溃。本人认为,由于积极财政政策的实施,本来是在萧条时期应该暴露出来的问题,如经济结构问题,地区发展不平衡问题,收入差距问题,银行的不良资产问题等,在财政赤字对经济增长的刺激下,被暂时地掩盖起来,一旦财政赤字政策对经济增长的刺激作用减弱,这些问题就又会重新暴露出来,对经济增长形成障碍,应引起足够重视。再次,政府债务筹资,也需要支付成本。就政府债务而言,其成本就是债务利息。一般来讲,债务筹资成本是与政府的信誉成反比。但是,即使信誉再高的政府也不能做到一味地以低利率在国内外无限量地借款。在一般情况下,债台高筑的政府信誉级别与其债务规模成反方向变动,而政府的债务风险却又随债务规模的扩大、信誉级别的下降而增加,如俄罗斯财政与金融危机爆发的原因就在于此。最后,“扩张性”财政政策的实施,最终要靠政府机构来运作,并与行政行为结合在一起,这在执行过程中必然要带有浓重的行政色彩,容易导致计划经济体制的复归,弱化市场机制配置资源的基础作用和效率。由于我国目前的产权改革一直没有真正到位,没有建立起真正有效的法人财产主体,所以,在“扩张性”财政政策实施的过程中,投资决策失误、效率低、效益差的局面不可能得到根本性改变。加上缺乏有效的监督与约束机制,公共投资被贪污、被侵占、被挪用和大量流失现象也不可能得到根本性的扭转,这都必然会严重影响到财政支出的实际效果。目前,处于转型期的中国经济,总量矛盾与结构矛盾是相互交织、相伴而生的,采取简单的总量扩张政策是难以解决有效需求不足问题的。日本在上世纪80年代后期开始,采取扩张的财政政策和货币政策,但经济却始终启而不发,关键在于日本未能将结构调整政策有效地结合于总量扩张政策之中,未能形成新的经济增长点。因此,目前情况下,我们不能一味地依赖扩大财政赤字与大规模发行国债来刺激经济增长,财政支出的增加,必须建立在财政收入可靠增长的基础之上,同时注意解决如下几个方面的问题:第一,积极财政政策的完善应该从转变政府投资方式入手。积极财政政策的重点,应该从财政投资这种直接手段转向利用财政投融资、财政贴息等间接手段,使政府投资成为杠杆,有效地带动社会投资。具体包括:(1)改变财政投融资方式,逐步建立起适合中国国情的财政投融资制度,以便从制度上解决财政投资需求与投资供给之间的矛盾。(2)采取多种手段吸纳社会资金。运用财政贴息、财政参股、财政担保等手段吸纳社会资金,尤其是民营企业参与社会基础设施、高新技术产业和房地产开发等领域,从而产生“四两拨千斤”的功效。值得进一步指出的是,民间投资的增长对于经济发展具有重要作用。近几年来,在积极财政政策的带动下,全社会固定资产投资增幅较快,但如果民间投资增长缓慢,则会影响市场在资源配置中的基础性作用。因此,除了实施积极财政政策之外,还应全面落实引导扩大民间投资的政策,如落实准入政策、降低准入门槛,在税收上切实实行国民待遇,防止税负不公、双重征税等歧视性措施。要加强金融支持,拓宽中小企业的直接和间接融资渠道,加强法律保障和服务机构。第二,运用公共支出政策,刺激国内需求增长。根据我国目前实际情况,充分利用有利条件,适当多增加一些公共支出,主要用于基础设施建设、环境治理等投资风险小、既有经济效益又有社会效益的项目。这样做,不仅可以改善经济发展的环境条件,在一定程度上消除长期以来制约经济增长的不利因素,而且也有助于创造更多的就业机会,缓解就业压力,增加城乡居民消费。第三,调整收入分配关系,启动最终消费。在这方面,一是要从调整体制内人员的收入水平入手,以处于类似于我国发展阶段的国家其国内体制外的工资水平为参照系,结合我国社会保障制度货币化的政策,调整体制内人员的工资待遇。二是要通过改革,认真落实对企业和农民的减负政策,为提高职工和农民收入水平与购买力创造有利条件。三是要适当增加转移性支出的比重,加大国家财政对建立和完善社会保障制度的支持力度,对住房、医疗、教育和就业制度等需要财政支持的改革,要制定反周期的操作。要力求减轻居民支出中的改革费用负担,稳定居民的支出预期。第四,应充分注意政策的适时调整和渐进转换。主要是通过市场和消费替代、民间和企业投资替代、出口需求替代,为积极财政政策的逐步“淡出”和转型创造条件。与此同时,还应该加大财政政策引导结构调整的力度,增强经济发展后劲,形成一整套带动产业调整和不断升级的创新机制;建立规范化的政府间转移支付制度,提高中央财政的宏观调控能力,为促进区域经济的协调发展创造条件;优化税制结构,规范税费关系,使税制本身对经济景气产生有效的调节作用,同时,也增强政府的调控能力