首页 > 学术发表知识库 > 乙亚胺论文范文

乙亚胺论文范文

发布时间:

乙亚胺论文范文

1. 王江波,王毓美,贾敬芬*,海滨香豌豆胚性愈伤组织的诱导和体细胞胚发育,西北植物学报2. 徐子勤,贾敬芬,苜蓿红豆草属间体细胞杂种的分子生物学鉴定,生物工程学报3. 步怀宇,景建洲,郝建国,贾敬芬*,不同理化因子对农根农杆菌Ri质粒转化骆驼刺的影响。西北植物学报,4. 步怀宇,贾敬芬*,郝建国,骆驼刺高效离体植株再生体系的建立。西北大学学报5. 徐运远,牛炳韬,贾敬芬*,卫星搭载亚麻后代中PEG和NaCl抗性系的初步筛选。西北植物学报6. 徐运远,王鸣刚,贾敬芬*,红豆草耐盐愈伤组织的筛选及植株再生。西北植物学报7. 金红,贾敬芬*,郝建国,马洪军,发根农杆菌A4对荞麦的遗传转化。西北大学学报8. 罗建平,贾敬芬*,顾月华,刘兢,沙打旺胚性原生质体培养优化及高频再生植株,生物工程学报9. 赵宇玮,贾敬芬*,郝建国,小麦耐盐变异细胞系的二次离体筛选及植株再生。西北大学学报10. 李武兴,王鸣刚,贾敬芬*,苜蓿乙硫氨酸抗性变异系的筛选,兰州大学学报11. 罗建平,贾敬芬*,顾月华,豆科牧草沙打旺抗乙硫氨酸变异系筛选,作物学报12.贾敬芬,植物肿瘤与遗传转化。《植物》,2000,No113.范昌发,郭骁才,贾敬芬,牛天堂。植物细胞中淀粉代谢与离体形态发生途径决定的关系。华北农学报,14. 贾敬芬,郝建国,赵宇玮,小麦耐盐变异系的离体筛选和培育,周光召主编,西部大开发科技先行与可持续发展―中国科协2000年学术年会文集,中国科学技术出版社15. 贾敬芬,细胞融合与体细胞杂交。邹承鲁主编,《当代生物学》,2000年,中国致公出版社16. 贾敬芬,以现代生物技术拉动西部发展。科学新闻周刊,2000年第49期,中国科学院主管,全国发行17. 贾敬芬,郝建国,赵宇玮,小麦耐盐变异系筛选。西北大学学报18. 陈刚、贾敬芬*、金红、郝建国,草木樨状黄芪高频离体再生体系的建立。西北植物学报19. 王毓美,李武兴,贾敬芬*:几丁质酶基因转化亚麻、红豆草,骆驼刺的同工酶研究。西北植物学报20. Xu Yun-Yuan, Jia Jing-Fen*, Selection and characterization of Cultured alfalfa Calluses Resistant to Ethionine. Acta Phytophy-siologica Sinica, 200121. 步怀宇,景建洲,贾敬芬*,发根农杆菌对骆驼刺的转化及转化组织的形态发生。实验生物学报22. 徐子勤,贾敬芬,红豆草与苜蓿原生质体融合过程中小泡的形成。应用与环境生物学报23. 范昌发,贾敬芬等,中国茴香属的比较研究及分类处理意见。植物研究24.侯岁稳,贾敬芬*,除虫菊良种快速繁殖中几个关键因素的研究。兰州大学学报25. Wang Yu Mei, Wang Jiangbo, Lu Da, Jia JingFen*, Regeneration of Plants from Callus tissues of hairy roots, induced by Agrobacterium rhizogenes on Alhagi pseudalhagi. Cell Research26. 金红,贾敬芬*,郝建国,荞麦高频离体再生及发根农杆菌转化体系的建立,西北植物学报。27. 贾敬芬,陈刚,郝建国,葱属植物离体培养和遗传操作,农业生物技术通报,2002,10(2):103-10728. 范昌发,贾敬芬*,2002,高梁胞质雌性不育系及保持系的PCR条件优化,西北大学学报,2002,29.Hong Jin, Jing Fen Jia*, Jian-guo Hao, 2002, A high efficient plant regeneration in vitro in Buckwheat. Plant, Cell, Tiss, org, Culture.69:293-295. (SCI)30.王江波,贾敬芬*,发根农杆菌转化海边香豌豆及转化体的体细胞胚胎发生。应用与环境生物学报,2002,8(2):190-19431.贾敬芬,郝建国,赵宇玮,离体筛选的小麦耐盐系后代的分析鉴定:全国植物细胞工程与转基因植物学术会论文2002,5月,厦门32. Hong Jin, Jing-Fen Jia*, Jian-Guo Hao, Protoplasts from Agrobacterium rhezogenes-transformed cell line of Medicago sativa L.regeneratedto hairy roots. In Vitro Plant.Develop.,2003,39:208-211(SCI)33.侯穗稳,贾敬芬,一种简易的植物原生质体记数方法,植物生理学通讯,2002,38(1):57-5834.范昌发,孙春昀,贾敬芬,2002,细胞质雄性不育高粱叶绿体ndhD基因的序列变异,遗传学报,29(10):907-91435.刘永军,贾敬芬*等,固定化多菌种及其产酸研究。食品科学,2002,23(12):42-4536.李晶,贾敬芬*,郝建国,骆驼蓬的组织培养及植株再生,西北植物学报, 2003,23(3):428-432。37.陈刚,贾敬芬*,郝建国,草木犀状黄芪抗甲硫氨酸变异系的筛选及鉴定,实验生物学报,2003,36(2):118-11238.陈刚,贾敬芬*,郝建国,沙葱离体培养再生可育植株,植物研究,2003,23(1):51-5439.李晶,贾敬芬*,郝建国,半日花组织培养及植株再生,实验生物学报,2003,36(4):296-30040.刘永军,晏培松,贾敬芬,组织芯片研究CD44s 和CD44V6在乳腺癌组织中的表达,肿瘤防治杂志,2003,10(7):677-67941.刘永军,贾敬芬,用组织芯片研究nm23RNA 和P16在肺癌中的表达意义。中国癌症杂志,2003,3:42.刘永军,晏培松,贾敬芬, nm23RNA,CD445 和CD44V6在胃腺癌组织中的表达及其意义。西安交通大学学报(医学版),2002,23(6):561-56643.贾敬芬,郝建国,赵宇玮,小麦耐盐变异系的离体筛选及盐土田间试验。[植物细胞工程与分子育种技术研究],2003,53-58页,中国农业科学技术出版社,北京。44.周延清,贾敬芬*,影响决明 无菌苗子叶原生质体分离和培养因素的研究。广西植物,2003,23(4)45.刘永军,贾敬芬*等,草木樨状黄芪变异系中甲硫氨酸代谢相关CDNA的分子克隆及其在大肠杆菌中的表达。西北植物学报,2003,24(1):1-546.张改娜,贾敬芬*,郝建国,三种发根农杆菌A4转化系毛根的细胞学观察及同工酶分析。西北植物学报,2003,23(9):1533-153846.郝建国,贾敬芬*,小麦叶基切段愈伤组织的诱导和植株再生。西北大学学报,2003,33(4):489-492。47. 贾敬芬,郝建国,王鸣刚,赵宇玮等,小麦耐盐变异系的离体筛选及盐土田间试验。《植物细胞工程与分子育种技术研究》,2003,中国农业科学技术出版社,北京,2003,53-58。48.周延清,贾敬芬*等,怀地黄ISSR扩增条件优化的研究,西北植物学报,2004。49.Yongjun Liu,Peisong Yan, Jingfen Jia*,Expression and significance of nm23mRNA,CD445 and CD44V6 in human gastric adenocarcinoma.U.S.Chinese J.of lymphology and oncology, 2003,50..金红,贾敬芬**,郝建国,草木樨状黄芪甲硫氨酸抗性系的原生质体培养及植株再生。生物工程学报,2004,20(2):221-22651.金红,贾敬芬*,郝建国,,沙打旺与苜蓿原生质体融合再生属间体细胞杂种。实验生物学报,2004,37(3):167-17552.刘永军 贾敬芬,低分子量聚乙亚胺介导的基因转染系统及动物皮肤组织基因转染试验。实验生物学报,2004,37(2):91-9553.周延清 贾敬芬*大豆遗传转化研究进展。武汉植物学研究,2004,22(2):163-17054.郝建国 贾敬芬*。用基因枪介导法将水稻几丁质酶基因导入小麦的研究。应用与环境生物学报。2004,10(4):421-42455.周延清 贾敬芬*利用RAPD和ISSR分子标记分析地黄种质遗传多样性。遗传,2004,2656.侯岁稳 贾敬芬,Plant regeneration from protoplasts isolated from embryogenic calli of the forage legume Astragalus melilotoides Pall。Plant Cell Rep. 2004。 ( SCI)57.侯岁稳 贾敬芬, High frequency plant regeneration from Astragalus melilotoides hypocotyls and stem explants via somatic embryogenesis and organogenesis。Plant Cell,Tissue and Organ Culture. ( SCI)58.唐永红,贾敬芬,陈刚,烟草K346品种叶数,株高变异株的RAPD分析.,农业生物技术学报。2004,735-73659.刘永军 贾敬芬*。草木樨状黄芪变异系中甲硫氨酸代谢相关CDNA的分子克隆及其在大肠杆菌中的表达。西北植物学报,2004,24(1):1-560.张改娜.贾敬芬*,盐胁迫下植物基因表达与基因工程研究进展。武汉植物学研究。2005,23(2):186-19561.何涛,张改娜,王学仁,贾敬芬*,几种高山植物叶绿体淀粉粒的变化特征。武汉植物学研究。2005。23(6):545-54862.唐永红,贾敬芬,陈刚,烤烟叶数株高突变株的生长特性及DNA初步鉴定。中国烟草学报,2005,11(2):28-3463.侯岁稳 贾敬芬,In vitro regeneration of Perilla frutescens from hypocotyls and cotyledon explants, Biologia Plantarum。2005 (SCI)64. 贾敬芬 赵宇玮 郝建国 步怀宇,The utilization of in vitro selection technique for enhancing salinity tolerance in wheat.。Abst.3rd Internl.Conf.on Plant &Environ. Pollution. 2005, Lucknow,India. Pp3465.周延清,贾敬芬*。用ISSR标记技术分析山药品种遗传多样性。实验生物学报,2005,3(4):324-33066.何涛,贾敬芬*。不同海拔火绒草光合特性的研究。云南植物研究2005,27(6):639-64367.韩晓玲 ,贾敬芬,生物有机无机复混肥对番茄产量品质及土壤的影响。土壤肥料,2005,3:51-5367.郝瑞文,景建洲,李振勇,贾敬芬*。霸王基因组RAPD优化条件的建立.中国沙漠,2006,26(2):286-29068. 刘永军, 景建洲 ,贾敬芬*,李振勇,郝建国,陈刚.用mRNA差异显示技术分离盐胁迫下小麦耐盐相关cDNA.西北大学学报,2006,36(1):89-9269. 张改娜,王瑛蕐,王学仁,何涛,郝建国,贾敬芬*。鹰嘴紫云英甲硫氨酸抗性系原生质体培养及植株再生.分子细胞生物学报,2006,3970. .韩晓玲,步怀宇,郝建国,赵宇玮,贾敬芬*。农杆菌转化的小冠花发状根的诱导及其植株再生. 生物工程学报,2006,22(1)71. 陈刚, 赵宇玮,贾敬芬*,王瑛蕐,郝建国,Physiological and Biochemical Characteristics and Molecular-Biological Identification of a Gigantic Tabacco Mutant. J.Plant Physiol Mol Biol. 2006,3272. 韩晓玲,秋小冬,王冰雪,杜永军,贾敬芬*。叶下珠茎节组织培养与快速繁殖. 植物生理学通讯,2006,42(4):67973. 韩晓玲,王冰雪,林雪,贾敬芬*。小冠花高效体细胞胚胎发生与植株再生的研究. 西北大学学报,2006,36(3):420-42374.王英娟,李多伟,索志荣,贾敬芬.RP-HPLC法测定烟草愈伤组织中茄尼醇的含量.药物分析杂志,2006,26(8):1091-109375. 王英娟,步怀宇,李多伟,贾敬芬*。烟草毛状根诱导及其茄尼醇含量初探.植物学通报,2006,23(4):334-34076. 林雪,贾敬芬,黄琳娟,王仲孚. RP-HPLC用于芦荟多糖的单糖组成研究,食品科学,2006,27(4):192-19577..韩晓玲,王玉蕐,李红民,贾敬芬*.菊苣高效不定芽直接发生及植株再生.核农学报,2006,678.刘青芳,步怀宇,赵宇玮,贾敬芬*,紫花苜蓿离体器官发生及再生植株。西北大学学报(自然科学版),2006,4(3):1-679? .李红民,郝瑞文,郝建国,贾敬芬.肿瘤血管生成抑制因子Arresten基因克隆及其对烟草的转化.西北农林科技大学学报.2007,35(4):84-9080.赵宇玮,步怀宇,贾敬芬*,郝建国等2008小麦耐水分胁迫突变体生理及RAPD特性分析。华北农学报,2007,22(2)81.张改娜,贾敬芬*,植物体细胞杂交及其杂种鉴定方法研究进展。西北植物学报,2007,27(1)82.何涛,贾敬芬*,青藏高原高山植物的形态和解剖构及其对环境的适应性研究进展。生态学报,2007,27(6)83.王英娟, 贾敬芬*裂叶荆芥的组织培养和快速繁殖。植物生理学通讯,2007,43(2):33285. 王英娟, 贾敬芬*.2008, RP-HPLC法测定不同芦荟中褪黑激素含量.食品科学, 2008(4)86.王英娟,李多伟,贾敬芬.野生烟草中茄尼醇的微量提取工艺优化. 西北大学学报(自然科学版), 2008,38(2):258-26187.G.N. ZHANG1,2, (张改娜) J.F. JIA1*, J.G. HAO1, X.R. WANG1 and T. HE1, Plant regeneration from mesophyll protoplasts of Agrobacterium rhizogenes-Transformed Astragalus melilotoides.Biologia Plantarum.2008,52(2)(SCI)88.何涛,贾敬芬*.基于SSH技术的青稞低温诱导CDNA文库的构建。分子细胞生物学报2008,第6期89.赵宇玮,步怀宇,贾敬芬*,郝建国等,AtNHX1基因对草木樨状黄芪的转化和耐盐性表达研究* 分子细胞生物学报,2008,第3期90..赵宇玮,步怀宇,贾敬芬*,郝建国等,青稞HvBADH1基因的克隆及其转化烟草的初步研究,作物学报,2008,34(7):1153-115991.张改娜,贾敬芬*.草木樨状黄芪和木本霸王的科间体细胞杂交。植物学报,2009,44(4):442-45092.Yi-ping Chen, Jing-fen Jia, Xiao-ling Han. Weak microwave can alleviate water deficit induced by osmotic stress in wheat seedlings.Planta,2009,(SCI).93.何涛,贾敬芬.Breaking dormancy in seeds of Anisodus fanguticus:an endangered medicinal herb of high altitude in the Qinghai-Tibet Plateau.Seed Science and Technology.2009,(SCI)94.何涛,贾敬芬*。青稞hblt14.2基因的克隆及功能分析。作物学报,2009,3595.张改娜,贾敬芬*。骆驼刺发根农杆菌转化系的原生质体的培养和植株再生。植物生理学通讯,2009,45(4):367-37196.王英娟1,贾敬芬1**,步怀宇1,赵宇玮1,许耀2,Carl Hirschie Johnson2,Jan Kolá?3 褪黑素合成酶基因转化烟草及转化植株抗氧化系统变化,生物工程学报,2009,25(7):1014-102197.王玉华,韩晓玲,郝建国,贾敬芬。根癌农杆菌介导转褪黑素基因草莓的获得。核农学报,2009,98.赵宇玮,王英娟,步怀宇,郝建国,贾敬芬* AtNHX1基因对菊苣的转化和耐盐性研究,草业学报,2009,18(3):103-10999.张改娜,贾敬芬*,豌豆清蛋白1(PA1)基因的克隆及对苜蓿的转化。草业学报,2009,18(3):117-125100.王瑛华,陈刚,贾敬芬*,郝建国。霸王的原生质体培养及植株再生研究。草业学报,2009,18(3):110-116101.张改娜,贾敬芬。草木樨状黄芪A4转化系原生质体培养研究。河南农业科学,2009,8:46-50102.王英娟,步怀宇,贾敬芬。,毛脉蓼的离体培养。植物生理学通讯,2009,45(8):805-806103.郝建国,贾敬芬*。沙葱叶基愈伤组织原生质体再生体系的建立。基因组学与应用生物学。2009,28(5):998-1001104.王玉华,郝建国,贾敬芬*。‘早红’草莓高效遗传转化受体系统的建立。基因组学与应用生物学。2009,28(5):990-997

亚硝基二乙胺论文范文

能用的,现在很多日常生活用品都含有N-亚硝基二乙胺化合物,因此没必要排斥,这些产品都是经过检测把关,才投放市场,很是安全的哦

食品中存在的致癌物有4大类: N-亚硝基化合物、多环芳烃化合物、杂环胺、霉菌毒素等... 黄酮类化合物体外抑制n-亚硝基二乙胺生成的.. 致癌性的硝酸盐、亚硝酸盐

亚硝基化合物致癌作用的因素有 原题 : [外科学]影响N - 亚硝基化合物致癌作用的因素有 A.化合物的种类与结构 B.食物的加工与烹调方法 C.化合物的

聚酰亚胺薄膜期刊

多层薄膜材料已成为新材料领域中的一支新军。所谓多层薄膜材料,就是在一层厚度只有纳米级的材料上,再铺上一层或多层性质不同的其他薄层材料,最后形成多层固态涂层。由于各层材料的电、磁及化学性质各不相同,多层薄膜材料会拥有一些奇异的特性。目前,这种制造工艺简单的新型材料正受到各国关注,已从实验室研究进入商业化阶段,可以广泛应用于防腐涂层、燃料电池及生物医学移植等领域。新出版的《科学新闻》报道说,从事多层薄膜材料研究达10年之久的麻省理工学院鲁伯诺称,多层薄膜材料的研究开发已经到了开始收获的阶段。该材料的处理工艺简单,应用前景十分广泛。1991年,法国斯特拉斯堡路易斯?博斯卡大学的Decher首先提出由带正电的聚合物和带负电的聚合物组成2层薄膜材料的设想,由于静电的作用,在一层材料上添加另外一层材料非常容易。此后,多层薄膜材料的研究工作进展很快。通常,研究人员将带负电的天然衬材如玻璃片等,浸入含有大分子量的带正电物质的溶液中,然后冲洗、干燥,再采用含有带负电物质的溶液,不断重复上述过程,每一次产生的薄膜材料厚度仅有几纳米或更薄。由于多层薄膜材料的制造可采用重复性工艺,人们可利用机器人来完成,因此这种自动化工艺很容易实现商业化。目前,研究人员已经或即将开发的多层薄膜材料主要有以下几种:1制造具有珍珠母强度的材料。俄克拉何马州立大学化学家柯多夫,正在仿制一种具有珍珠母强度的材料。他首先在玻璃片上铺上一层带负电的粘土材料,然后再铺上一层带正电的聚合物薄膜,新产生的双层薄膜的强度可以与珍珠母相媲美。目前,柯多夫已建立了Strala材料公司,并打算将这种材料商业化,用来制造防弹衣、航空电子设备及人造骨。2新型防腐蚀材料。佛罗里达州立大学的施利诺夫,正在利用2种聚合电解质(PDDA和PSS)制造防腐蚀涂层。他希望这种涂层可用于保护水管以及其他接触水的金属。此外,他正在开发另外一种薄膜,可望用于制药和化学工业中的分子筛选。施利诺夫还将对有相同化学结构、但互为镜像的两种药物分子进行分离。在今年6月出版的《美国化学学会期刊》上,他宣布已经研制成一种薄膜,它可让一些分子以比其镜像分子更快的速度扩散。他建立并自任总裁的NanoStrata公司所开发的“机器人多层薄膜施加系统”已销往世界各地。3可使燃料电池在高温条件下工作的多层薄膜材料。宾夕法尼亚州立大学的马鲁克认为,多层薄膜材料的特性使其能够在诸如发光二极管、太阳能电池以及传感器等高技术产品中发挥重要作用。目前,马鲁克正计划制造用于燃料电池上的超薄传导离子的多层薄膜,这种材料可在高温条件下工作,而燃料电池在低温条件下工作需要昂贵的铂催化剂。新薄膜由大约10层带正电的锆铝和带负电的钙钛矿石薄膜组成。他希望这种新的薄膜可以帮助燃料电池制造厂采用成本低廉的催化剂。马鲁克还在探索由多薄层钙钛矿石形成的铁电体材料。较厚的铁电体目前用于传感器和调速控制器中,但研究人员希望降低这种材料的厚度,以减少器件的体积,并改进其性能。美国哈拉奥维大学也在采用多层纳米半导体颗粒结构,研制光电转换效率更高的新型太阳能电池。

薄膜制备方法为:聚酰胺酸溶液流延成膜、拉伸后,高温酰亚胺化。薄膜呈黄色透明,相对密度1.39~1.45,有突出的耐高温、耐辐射、耐化学腐蚀和电绝缘性能,可在250~280℃空气中长期使用。玻璃化温度分别为280℃(Upilex R)、385℃(Kapton)和500℃以上(Upilex S)。20℃时拉伸强度为200MPa,200℃时大于100MPa。特别适宜用作柔性印制电路板基材和各种耐高温电机电器绝缘材料。 光刻胶:某些聚酰亚胺还可以用作光刻胶。有负性胶和正性胶,分辨率可达亚微米级。与颜料或染料配合可用于彩色滤光膜,可大大简化加工工序。 在微电子器件中的应用:用作介电层进行层间绝缘,作为缓冲层可以减少应力、提高成品率。作为保护层可以减少环境对器件的影响,还可以对a-粒子起屏蔽作用,减少或消除器件的软误差(soft error)。半导体工业使用聚酰亚胺作高温黏合剂,在生产数字化半导体材料和MEMS系统的芯片时,由于聚酰亚胺层具有良好的机械延展性和拉伸强度,有助于提高聚酰亚胺层以及聚酰亚胺层与上面沉积的金属层之间的粘合。 聚酰亚胺的高温和化学稳定性则起到了将金属层和各种外界环境隔离的作用。 液晶显示用的取向排列剂:聚酰亚胺在TN-LCD、SHN-LCD、TFT-CD及未来的铁电液晶显示器的取向剂材料方面都占有十分重要的地位。 电-光材料:用作无源或有源波导材料光学开关材料等,含氟的聚酰亚胺在通讯波长范围内为透明,以聚酰亚胺作为发色团的基体可提高材料的稳定性。 湿敏材料:利用其吸湿线性膨胀的原理可以用来制作湿度传感器。

聚酰亚胺基碳纤维的制备及前驱体结构对其碳化性能的影响张梦颖,牛鸿庆,韩恩林,武德珍北京化工大学材料科学与工程学院,北京 100029聚酰亚胺(PI)薄膜经高温碳化后可获得高石墨化度、良好电导性的碳膜,且PI 薄膜取向度越高,所得碳膜石墨化度越高。相对PI 薄膜,PI 纤维具有高取向结构优势,因此本文以PI 纤维为前驱体制备了碳纤维。首先采用湿法纺丝技术,分别制备了以均苯四甲酸二酐(PMDA)和4,4’–二氨基二苯醚(4,4’–ODA)为单体的PMDA/ODA–PI 纤维,和以3,3',4,4'–联苯四甲酸酐(BPDA)、对苯二胺(p-PDA)、2–(4–氨基苯基) –5–氨基苯并咪唑(BIA)为单体的BPDA/p-PDA/BIA–PI 纤维,两种PI 纤维再经600-1600 °C 高温碳化后得到PI 基碳纤维。SEM 结果显示所制备的PI 基碳纤维表面光滑,无孔洞结构;XRD 和Raman 结果显示:碳化过程中,PI 纤维发生分子链的断裂与重组,随碳化温度升高,无定型碳结构向有序石墨结构转变,且石墨化程度升高。对比两种碳纤维,BPDA/p-PDA/BIA–PI 基碳纤维较PMDA/ODA–PI 基碳纤维具有更完善的碳结构和更高的石墨化程度, 这是因为BPDA/p-PDA/BIA–PI 纤维中非碳元素含量低,碳化过程中结构被破坏程度低,更易形成芳香石墨结构。关键词:聚酰亚胺,纤维,碳化,结构POSS 交联型含苯并咪唑基磺化聚酰亚胺质子交换膜的研究潘海燕,张媛媛同济大学材料科学与工程学院,上海 201804作为质子交换膜燃料电池的核心部件,质子交换膜起到传导质子、阻隔燃料和氧化剂的双重作用,它的性能决定了整个电池的性能和寿命,因此针对目前具有产业化规模的Nafion.膜的价格昂贵、机械性能差和甲醇渗透率高等缺点,开发能够替代的高性能质子交换膜备受关注。磺化聚酰亚胺因具有优异的耐热性和突出的阻醇性,成为最具前景的新型质子交换膜材料之一。但磺化聚酰亚胺膜的水解稳定性和抗自由基氧化性能有待进一步提高。本文提出结合聚苯并咪唑和聚酰亚胺的优点,在磺化聚酰亚胺主链中引入苯并咪唑基,并在成膜过程中利用咪唑基上的活泼N-H 结构,加入含POSS 结构的交联剂使其形成交联型的质子交换膜材料,合成制备了一系列POSS 交联型的含苯并咪唑基磺化聚酰亚胺质子交换膜,并详细研究了膜的性能。结果表明,与纯膜和不含苯并咪唑基的磺化聚酰亚胺膜相比,POSS 交联型的有机-无机杂化磺化聚酰亚胺质子交换膜的抗自由基氧化性能和抗水解稳定性能得到了大幅度的提高。关键词:质子交换膜,磺化聚酰亚胺,苯并咪唑,POSS,交联希望对你有所帮助。

聚酰亚胺类及塑料毕业论文

聚酰亚胺 一、 概述 聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。近来,各国都在将聚酰亚胺的研究、开发及利用列入 21世纪最有希望的工程塑料之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。 二、 聚酰亚胺的性能 1、 全芳香聚酰亚胺按热重分析,其开始分解温度一般都在500℃左右。由联苯四甲酸二酐和对苯二胺合成的聚酰亚胺,热分解温度达到600℃,是迄今聚合物中热稳定性最高的品种之一。 2、 聚酰亚胺可耐极低温,如在-269℃的液态氦中不会脆裂。 3、聚酰亚胺具有优良的机械性能,未填充的塑料的抗张强度都在100Mpa以上,均苯型聚酰亚胺的薄膜(Kapton)为170Mpa以上,而联苯型聚酰亚胺(Upilex S)达到400Mpa。作为工程塑料,弹性膜量通常为3-4Gpa,纤维可达到200Gpa,据理论计算,均苯四甲酸二酐和对苯二胺合成的纤维可达 500Gpa,仅次于碳纤维。 4、一些聚酰亚胺品种不溶于有机溶剂,对稀酸稳定,一般的品种不大耐水解,这个看似缺点的性能却使聚酰亚胺有别于其他高性能聚合物的一个很大的特点,即可以利用碱性水解回收原料二酐和二胺,例如对于Kapton薄膜,其回收率可达80%-90%。改变结构也可以得到相当耐水解的品种,如经得起120℃,500 小时水煮。 5、 聚酰亚胺的热膨胀系数在2×10-5-3×10-5℃,广成热塑性聚酰亚胺3×10-5℃,联苯型可达10-6℃,个别品种可达10-7℃。 6、 聚酰亚胺具有很高的耐辐照性能,其薄膜在5×109rad快电子辐照后强度保持率为90%。 7、 聚酰亚胺具有良好的介电性能,介电常数为3.4左右,引入氟,或将空气纳米尺寸分散在聚酰亚胺中,介电常数可以降到2.5左右。介电损耗为10-3,介电强度为100-300KV/mm,广成热塑性聚酰亚胺为300KV/mm,体积电阻为1017Ω/cm。这些性能在宽广的温度范围和频率范围内仍能保持在较高的水平。 8、 聚酰亚胺是自熄性聚合物,发烟率低。 9、 聚酰亚胺在极高的真空下放气量很少。 10、 聚酰亚胺无毒,可用来制造餐具和医用器具,并经得起数千次消毒。有一些聚酰亚胺还具有很好的生物相容性,例如,在血液相容性实验为非溶血性,体外细胞毒性实验为无毒。 三、 合成上的多种途径: 聚酰亚胺品种繁多、形式多样,在合成上具有多种途径,因此可以根据各种应用目的进行选择,这种合成上的易变通性也是其他高分子所难以具备的。 1、聚酰亚胺主要由二元酐和二元胺合成,这两种单体与众多其他杂环聚合物,如聚苯并咪唑、聚苯并哑唑、聚苯并噻唑、聚喹哑啉和聚喹啉等单体比较,原料来源广,合成也较容易。二酐、二胺品种繁多,不同的组合就可以获得不同性能的聚酰亚胺。 2、聚酰亚胺可以由二酐和二胺在极性溶剂,如DMF,DMAC,NMP或THE/甲醇混合溶剂中先进行低温缩聚,获得可溶的聚酰胺酸,成膜或纺丝后加热至 300℃左右脱水成环转变为聚酰亚胺;也可以向聚酰胺酸中加入乙酐和叔胺类催化剂,进行化学脱水环化,得到聚酰亚胺溶液和粉末。二胺和二酐还可以在高沸点溶剂,如酚类溶剂中加热缩聚,一步获得聚酰亚胺。此外,还可以由四元酸的二元酯和二元胺反应获得聚酰亚胺;也可以由聚酰胺酸先转变为聚异酰亚胺,然后再转化为聚酰亚胺。这些方法都为加工带来方便,前者称为PMR法,可以获得低粘度、高固量溶液,在加工时有一个具有低熔体粘度的窗口,特别适用于复合材料的制造;后者则增加了溶解性,在转化的过程中不放出低分子化合物。 3、 只要二酐(或四酸)和二胺的纯度合格,不论采用何种缩聚方法,都很容易获得足够高的分子量,加入单元酐或单元胺还可以很容易的对分子量进行调控。 4、 以二酐(或四酸)和二胺缩聚,只要达到一等摩尔比,在真空中热处理,可以将固态的低分子量预聚物的分子量大幅度的提高,从而给加工和成粉带来方便。 5、 很容易在链端或链上引入反应基团形成活性低聚物,从而得到热固性聚酰亚胺。 6、 利用聚酰亚胺中的羧基,进行酯化或成盐,引入光敏基团或长链烷基得到双亲聚合物,可以得到光刻胶或用于LB膜的制备。 7、 一般的合成聚酰亚胺的过程不产生无机盐,对于绝缘材料的制备特别有利。 8、 作为单体的二酐和二胺在高真空下容易升华,因此容易利用气相沉积法在工件,特别是表面凹凸不平的器件上形成聚酰亚胺薄膜。 四、 聚酰亚胺的应用: 由于上述聚酰亚胺在性能和合成化学上的特点,在众多的聚合物中,很难找到如聚酰亚胺这样具有如此广泛的应用方面,而且在每一个方面都显示了极为突出的性能。 1、薄膜:是聚酰亚胺最早的商品之一,用于电机的槽绝缘及电缆绕包材料。主要产品有杜邦Kapton,宇部兴产的Upilex系列和钟渊Apical。透明的聚酰亚胺薄膜可作为柔软的太阳能电池底版。 2. 涂料:作为绝缘漆用于电磁线,或作为耐高温涂料使用。 3. 先进复合材料:用于航天、航空器及火箭部件。是最耐高温的结构材料之一。例如美国的超音速客机计划所设计的速度为2.4M,飞行时表面温度为177℃,要求使用寿命为60000h,据报道已确定50%的结构材料为以热塑型聚酰亚胺为基体树脂的碳纤维增强复合材料,每架飞机的用量约为30t。 4. 纤维:弹性模量仅次于碳纤维,作为高温介质及放射性物质的过滤材料和防弹、防火织物。 5. 泡沫塑料:用作耐高温隔热材料。 6. 工程塑料:有热固性也有热塑型,热塑型可以模压成型也可以用注射成型或传递模塑。主要用于自润滑、密封、绝缘及结构材料。广成聚酰亚胺材料已开始应用在压缩机旋片、活塞环及特种泵密封等机械部件上。 7. 胶粘剂:用作高温结构胶。广成聚酰亚胺胶粘剂作为电子元件高绝缘灌封料已生产。 8. 分离膜:用于各种气体对,如氢/氮、氮/氧、二氧化碳/氮或甲烷等的分离,从空气烃类原料气及醇类中脱除水分。也可作为渗透蒸发膜及超滤膜。由于聚酰亚胺耐热和耐有机溶剂性能,在对有机气体和液体的分离上具有特别重要的意义。 9. 光刻胶:有负性胶和正性胶,分辨率可达亚微米级。与颜料或染料配合可用于彩色滤光膜,可大大简化加工工序。 10. 在微电子器件中的应用:用作介电层进行层间绝缘,作为缓冲层可以减少应力、提高成品率。作为保护层可以减少环境对器件的影响,还可以对a-粒子起屏蔽作用,减少或消除器件的软误差(soft error)。 11. 液晶显示用的取向排列剂:聚酰亚胺在TN-LCD、SHN-LCD、TFT-CD及未来的铁电液晶显示器的取向剂材料方面都占有十分重要的地位。 12. 电-光材料:用作无源或有源波导材料光学开关材料等,含氟的聚酰亚胺在通讯波长范围内为透明,以聚酰亚胺作为发色团的基体可提高材料的稳定性。 综上所述,不难看出聚酰亚胺之所以可以从60年代、70年代出现的众多的芳杂环聚合物脱颖而出,最终成为一类重要的高分子材料的原因。 聚酰亚胺是分子结构含有酰亚胺基链节的芳杂环高分子化合物,英文名Polyimide(简称PI),可分为均苯型PI,可溶性PI,聚酰胺-酰亚胺(PAI)和聚醚亚胺(PEI)四类。 PI是目前工程塑料中耐热性最好的品种之一,有的品种可长期承受290℃高温短时间承受490℃的高温,另外力学性能、耐疲劳性能、难燃性、尺寸稳定性、电性能都好,成型收缩率小,耐油、一般酸和有机溶剂,不耐碱,有优良的耐摩擦,磨耗性能 Pi 电子电器方面均有应用, 电子工业上做印刷线路板、绝缘材料、耐热性电缆、接线柱、插座等领域。 常州市永邦塑业有限公司专注于peek,聚酰亚胺板,聚酰亚胺棒,聚酰亚胺管的生产及加工。

将二胺单体6FHP、二酐单体6FDA和双酚A二酐缩聚合成新型三单体共聚型含氟聚酰亚胺FA- PI。用红外光谱、凝胶色谱、差热热重仪、棱镜耦合仪、万能力学机等对FAPI的光学和力学等性能进行了表征。结果表明,三单体缩聚后得到的FAPI重均分子量M_w高达19743.2,分散度最低达到1.2735;共聚物具有高热稳定性,玻璃化转变温度高达234℃;在光通讯波段1550nm处的传输损耗最低达到0.316dB/cm;柔韧性好,断裂伸长率高达152.5%,机械强度高达127.980MPa。与二单体含氟聚酰亚胺FPI相比,FA- PI的热稳定性更高、力学性能显著提高,而传输损耗仍较低,综合性能优异。通过两步法实现了1,4-双(1,4-二氨基)苯氧基苯(TPEQ), 4,4-二氨基二苯醚(ODA)和4,4′-六氟亚异丙基-邻苯二甲酸酐(6FDA)的三元共聚,所得共聚物(PAA)经高温法或化学法脱水环化得对应的可溶性含氟聚酰亚胺(PI).通过粘度, DSC, TG和1H NMR等分析数据比较了其综合性能.对PI的研究结果表明,化学法的粘度一般高于高温法,所有的PI均具有良好的溶解性和耐热性;不仅溶于DMF,还能很好的溶于CHCl3和THF,有效地改善了其加工性能;Tg>227 ℃,热损失5%的温度多在488 ℃以上,m.p.>550 ℃.其中PI3具有最好的综合性能,粘度1.065 dL·g-1, Tg 241.7 ℃,热损失5%的温度488 ℃, m.p.557.9 ℃,拉伸强度108.81 MPa. 以己二胺(HDA)、间苯二胺(MPD)、 4,4�-二氨基二苯醚、 4,4�-二氨基二苯甲烷、 4,4�-二氨基二苯砜及2,4-甲苯二异氰酸酯为原料, 合成了一系列三元共聚脲, 以三元共聚序列结构分析的理论为基础, 建立了一套普适性较强的利用核磁氢谱分析和计算机分峰处理, 研究三元共聚脲在不同反应条件下的序列结构方法, 计算了无规度B值和链段序列长度Lna与Lnb. 定量关联了不同反应条件下二胺单体间的反应活性比. 结果表明, 二胺单体间的反应活性比随反应条件的变化而变化.

聚酰亚胺薄膜是一种高绝缘、高强度的绝缘薄膜,博鼎绝缘材料一面高亮,一面高雾。

它在回从低至-269℃(-452℉)到高至400℃(752℉)的温度条件下都能保持优良的特性。

广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光、电子、机车、汽车、精密机械和自动办公机械等领域。

常见膜厚有 12.5、25、50µm

1、聚酰亚胺(Polyimide,有时简写为PI),是综合性能最佳的有机高分子材料之一。其耐高温达400°C以上 ,长期使用温度范围-200~300°C,部分无明显熔点,高绝缘性能,103 赫兹下介电常数4.0,介电损耗仅0.004~0.007,属F至H级绝缘。 2、聚酰亚胺是指主链上含有酰亚胺环(-CO-N-CO-)的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。上世纪60年代,各国都在将聚酰亚胺的研究、开发及利用列入 21世纪最有希望的工程塑料之一。 3、用途: (1)薄膜:是聚酰亚胺最早的商品之一,用于电机的槽绝缘及电缆绕包材料。主要产品有杜邦Kapton,宇部兴产的Upilex系列和钟渊Apical。透明的聚酰亚胺薄膜可作为柔软的太阳能电池底板。 (2)涂料:作为绝缘漆用于电磁线,或作为耐高温涂料使用。 (3)先进复合材料:用于航天、航空器及火箭部件。是最耐高温的结构材料之一。例如美国的超音速客机计划所设计的速度为2、4M,飞行时表面温度为177℃,要求使用寿命为60000h,据报道已确定50%的结构材料为以热塑型聚酰亚胺为基体树脂的碳纤维增强复合材料,每架飞机的用量约为30t。 (4)纤维:弹性模量仅次于碳纤维,作为高温介质及放射性物质的过滤材料和防弹、防火织物。 (5)泡沫塑料:用作耐高温隔热材料。 (6)工程塑料:有热固性也有热塑型,热塑型可以模压成型也可以用注射成型或传递模塑。主要用于自润滑、密封、绝缘及结构材料。广成聚酰亚胺材料已开始应用在压缩机旋片、活塞环及特种泵密封等机械部件上。 (7)胶粘剂:用作高温结构胶。广成聚酰亚胺胶粘剂作为电子元件高绝缘灌封料已生产。 (8)分离膜:用于各种气体对,如氢/氮、氮/氧、二氧化碳/氮或甲烷等的分离,从空气烃类原料气及醇类中脱除水分。也可作为渗透蒸发膜及超滤膜。由于聚酰亚胺耐热和耐有机溶剂性能,在对有机气体和液体的分离上具有特别重要的意义。 (9)光刻胶:有负性胶和正性胶,分辨率可达亚微米级。与颜料或染料配合可用于彩色滤光膜,可大大简化加工工序。 (10)在微电子器件中的应用:用作介电层进行层间绝缘,作为缓冲层可以减少应力、提高成品率。作为保护层可以减少环境对器件的影响,还可以对a—粒子起屏蔽作用,减少或消除器件的软误差(softerror)。 (11)液晶显示用的取向排列剂:聚酰亚胺在TN—LCD、STN—LCD、TFT—LCD及未来的铁电液晶显示器的取向剂材料方面都占有十分重要的地位。 (12)电—光材料:用作无源或有源波导材料光学开关材料等,含氟的聚酰亚胺在通讯波长范围内为透明,以聚酰亚胺作为发色团的基体可提高材料的稳定性。 (13)湿敏材料:利用其吸湿线性膨胀的原理可以用来制作湿度传感器。

异丙胺化工论文范文

异丙胺是一种重要的精细化工中间体,属于低碳脂肪胺(C2~C8)类产品。它是具有特殊氨味的清亮液体,呈碱性,可以生产农药(如除草剂莠去津、扑草净、草甘磷异丙胺盐、苯达松)、医药(如肝乐、心得安、吲哚心安、氯喘等)、染料中间体,在橡胶行业用作橡胶促进剂,在水处理行业用作硬水处理剂和去垢剂,此外在轻工、纺织、日化、制革等行业中还用于制造表面活性剂、纺织助剂、增溶剂、洗涤剂、脱毛剂等,其中以农药的用量最大。近两年来,随着杀虫剂甲基异柳磷产量的增大和新杀虫剂噻嗪酮的投产,以及新杀菌剂异菌脲和新除草剂甲基胺草磷、特草津等的开发,国内异丙胺的市场仍在不断增长,加之其它方面如医药方面异丙胺可用于生产心得安、吲哚心安、氯喘等,对异丙胺亦有较大需要,因此,异丙胺具有较好的市场前景。

二元化学武器的生产就没有那么多的麻烦,例如,沙林的二元炮弹内装填的二氟甲膦酰和异丙醇两种组分。生产二氟甲膦酰可与生产农业用的含磷杀虫剂从伏那伏斯的中间体——硫代二氯乙膦酰相结合,生产工艺比较简单。 异丙醇 重要的化工产品和原料。主要用于制药、化妆品、塑料、香料、涂料及电子工业上用作脱水剂及清洗剂。测定钡、钙、镁、镍、钾、钠和锶等的试剂。色谱分析参比物质。电子工业用。在许多工业和消费产品中,异丙醇用作低成本溶剂,也用作萃取剂。欧洲溶剂工业集团(ESIG)称,2001年欧洲中间体需求占到异丙醇消费量的32%,有14%的异丙醇用作防冰剂,13%用于油漆和树脂,9%用于药物,4%用于食品和3%用于油墨和粘合剂。异丙醇还用作油品和胶体的溶剂,以及用于鱼粉饲料浓缩物的制造中。低品质的异丙醇用在汽车燃料中。 异丙醇作为丙酮生产原料的用量在下降。有几种化合物是用异丙醇合成的,如甲基异丁基酮和许多酯。可根据最终用途供应不同品质的异丙醇。无水异丙醇的常规质量为99%以上,而专用级异丙醇含量在99.8%以上(用于香精和药物)。用于制取丙酮、二异丙醚、乙酸异丙酯和麝香草酚等。在许多情况下可代替乙醇使用。甲基亚膦酸乙酯 甲基亚膦酸乙基-2- 二异丙氨基乙酯 (57856-11-8) (11) 氯沙林...含有一个磷原子并有一个甲基、乙基或( 正或异) 丙基原子团与该膦原子结合的化学品,不包括含更多碳原子的情形,斜方晶硫黄 QL(O-乙基-2-(二异丙胺基)—甲基亚膦酸乙酯)和斜方晶硫黄能产生VX毒气。

丙烯与HBr或者HCl加成;再与氨气反应。

丙烯与水加成生成丙醇:CH2=CH-CH3+H2O=CH3CH2CH2OH

丙烯要生成正丙醇得进行反马氏的加成水合,所以要使用硼氢化反应。反应条件是第一步与B2H6在醚(乙醚或四氢呋喃)中反应,第二步在碱性条件下(OH-)用过氧化氢氧化。

扩展资料:

精制方法:异丙胺是用溴代异丙烷与氨的醇溶液反应,或丙酮与氨和氢在镍-铜-白土的催化下反应制得的。因此可能含有丙酮、溴代异丙烷、异丙醇和其他各种丙基胺类等杂质。可用精馏法进行精制。要得到高纯度的异丙胺,可加入无水氧化钡放置数日,然后在钠存在下进行蒸馏,收集131.961Pa下31.4℃的馏分,进行再蒸馏。

参考资料来源:百度百科-异丙胺

这个加热分解就可以。

  • 索引序列
  • 乙亚胺论文范文
  • 亚硝基二乙胺论文范文
  • 聚酰亚胺薄膜期刊
  • 聚酰亚胺类及塑料毕业论文
  • 异丙胺化工论文范文
  • 返回顶部