是非常好的,复合材料气瓶相比金属内胆复合材料气瓶具有明显的优势(如质量轻、耐腐蚀、抗疲劳、成本低、生产工艺简单等)。并且,从安全性的角度分析,全复合材料气瓶在受到外力或高速冲击时,即使发生失效爆炸也不会产生危险性较大的碎片,从而使事故造成的人员和财产损失减到最低。希望能帮到你。
碳化硅颗粒增强铝基复合材料的研究现状及发展趋势摘要:综述了铝基复合材料的发展历史及国内外研究现状,重点阐述了碳化硅颗粒增强铝基复合材料制备工艺的发展现状。同时说明了碳化硅颗粒增强铝基复合材料研究中仍存在的问题,在此基础上展望了该复合材料的发展前景。关键词:SiCp /Al 复合材料; 制备方法中图分类号:TB333 文献标识码:A 文章编号:1001-3814(2011)12-0092-05Research Status and Development Trend of SiCP/Al CompositeZHENG Xijun, MI Guofa(College of Material Science and Engineer, Henan Polytechnic University, Jiaozuo 454000, China)Abstract:The development history, domestic and foreign research present situation of SiCP /Al composite wasintroduced, the research progress of preparation process for SiCP /Al composite were elaborated, the research on SiCP /Alcomposite was analyzed and the development prospect of the composite was put forward.Key words:SiCp /Al composite; preparation methods收稿日期:2010-11-20作者简介:郑喜军(1982- ),男,河南西平人,硕士研究生,研究方向为材料加工工程;电话:;E-mail:《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术应用进行了广泛的关注和研究,从材料的制备工艺、组织结构、力学行为及断裂韧性等方面做了许多基础性的工作, 取得了显著的成绩。在美国和日本等国,该类材料的制备工艺和性能研究已日趋成熟,在电子、军事领域开始得到实际应用。SiC 来源于工业磨料,可成百吨的生产,价格便宜,SiC 颗粒强化铝基复合材料被美国视为有突破性进展的材料, 其性能可与钛合金媲美,而价格还不到钛合金的1/10。碳化硅颗粒增强铝基复合材料是最近20 年来在世界范围内发展最快、应用前景最广的一类不连续增强金属基复合材料,被认为是一种理想的轻质结构材料,尤其在机动车辆发动机活塞、缸头(缸盖)、缸体等关键产品和航空工业中具有广阔的应用前景[5-7]。在1986 年,美国DuralAluminumComposites 公司发明了碳化硅颗粒增强铝硅合金的新技术, 实现了铸造铝基复合材料的大规模生产, 以铸锭的形式供给多家铸造厂制造各种零件[8-9]。美国Duralcan 公司在加拿大己建成年产11340 t 的SiC/Al 复合材料型材、棒材、铸锭以及复合材料零件的专业工厂。目前,Duralcan 公司生产的20%SiCp /A356Al 复合材料的屈服强度比基体铝合金提高75%、弹性模量提高30%、热膨胀系数减小29%、耐磨性提高3~4倍。美国DWA 公司生产的碳化硅增强复合材料随碳化硅含量的增加,只有伸长率下降的,其他性能都得到了很大提高。到目前为止,SiCp/Al 复合材料被成功用于航空航天、电子工业、先进武器系统、光学精密仪器、汽车工业和体育用品等领域,并取得巨大经济效益。表1 列举了一些SiCp/Al 复合材料的力学性能。目前国内从事研制与开发碳化硅颗粒增强铝复合材料工作的科研院所与高校主要有北京航空材料研究院、上海交通大学、哈尔滨工业大学、西北工业大学、国防科技大学等。哈尔滨工业大学研制的SiCw/Al 用于某卫星天线丝杆,北京航空材料研究院研制的SiCp/Al 用于某卫星遥感器定标装置[10-11]。国内到目前为止还没有出现高质量高性能的碳化硅颗粒增强铝基复合材料, 虽然部分性能已达到国外产品的指标, 但在产品的尺寸精度上还存在不小的差距,另外制造成本太高,离工业化生产还有一段距离要走。2 铝基复合材料的性能特征(1)高比强度、比模量由于在金属基体中加入了适量的高强度、高模量、低密度的增强物,明显提高了复合材料的比强度和比模量, 特别是高性能连续纤维,如硼纤维、碳(石墨)纤维、碳化硅纤维等增强物,他们具有很高的强度和模量[1]。(2)良好的高温性能,使用温度范围大增强纤维、晶须、颗粒主要是无机物,在高温下具有很好的高温强度和模量, 因此金属基复合材料比基体金属有更高的高温性能。特别是连续纤维增强金属基基复合材料,其高温性能可保持到接近金属熔点,并比金属基体的高温性能高许多。(3)良好的导热、导电性能金属基复合材料中金属基体占有很高的体积百分数, 一般在60%以上,因此仍保持金属的良好的导热、导电性能。(4)良好的耐磨性金属基复合材料,特别是陶瓷纤维、晶须、颗粒增强金属基复合材料具有很好的耐磨性。这是由于在基体中加入了大量细小的陶瓷颗粒增强物,陶瓷颗粒硬度高、耐磨、化学性能稳定,用它们来增强金属不仅提高了材料的强度和刚度,也提高了复合材料的硬度和耐磨性。(5)热膨胀系数小,尺寸稳定性好金属基复合材料中所用的增强相碳纤维、碳化硅纤维、晶须、颗粒、硼纤维等均具有很小的热膨胀系数,特别是超高模量的石墨纤维具有负热膨胀系数, 加入相当含量的此类增强物可降低材料膨胀系数, 从而得到热膨胀系数小于基体金属、尺寸稳定性好的金属基复合材料。(6)良好的抗疲劳性和断裂韧性影响金属基复合材料抗疲劳性和断裂韧性的因素主要有增强物与复合体系制备工艺增强体含量(vol,%)拉伸强度/MPa弹性模量/GPa伸长率(%)SiCP /2009Al 粉末冶金20 572 109 5.3SiCP/2124Al 粉末冶金20 552 103 7.0SiCP/6061Al 粉末冶金20 496 103 5.5SiCP/7090Al 粉末冶金20 724 103 2.5SiCP/6061Al 粉末冶金40 441 125 0.7SiCP/7091Al 粉末冶金15 689 97 5.0SiCP/A356Al 搅拌铸造20 350 98 0.5SiCP/A359Al 无压浸渗30 382 125 0.4表1 碳化硅颗粒增强铝基复合材料的力学性能[1]Tab.1 Mechanical properties of aluminum matrixcomposite reinforced by SiC particle93Hot Working Technology 2011, Vol.40, No.12材料热处理技术Material & Heat Treatment 2011 年6 月金属基体的界面结合状态、金属基体与增强物本身的特性以及增强物在基体中的分布等。特别是界面结合强度适中,可以有效传递载荷,又能阻止裂纹扩展,从而提高材料的断裂韧性。(7)不吸潮、不老化、气密性好与聚合物相比,金属性质稳定、组织致密,不存在老化、分解、吸潮等问题,也不会发生性能的自然退化,在空间使用不会分解出低分子物质而污染仪器和环境,有明显的优势。(8)较好的二次加工性能可利用传统的热挤压、锻压等加工工艺及设备实现金属基复合材料的二次加工。由于铝基复合材料不但具有金属的塑性和韧性,而且还具有高比强度、比模量、对疲劳和蠕变的抗力大、耐热性好等优异的综合性能。尤其在最近20 年以来, 铝基复合材料获得了惊人的发展速度,表2 列举了一些铝基复合材料的力学性能。3 主要应用领域3.1 在航空航天及军事领域的应用美国ACMC 公司和亚利桑那大学光学研究中心合作,研制成超轻量化空间望远镜和反射镜,该望远镜的主镜直径为0.3m,仅重4.54kg。ACMC 公司用粉末冶金法制造的碳化硅颗粒增强铝基复合材料还用于激光反射镜、卫星太阳反射镜、空间遥感器中扫描用高速摆镜等;美国用高体积分数的SiCp/Al代替铍材,用于惯性环形激光陀螺仪制导系统、三叉戟导弹的惯性导向球及管型测量单元的检查口盖,成本比铍材降低2/3;20 世纪80 年代美国洛克希德.马丁公司将DWA 公司生产的25%SiCp /6061Al 用作飞机上承载电子设备的支架,其比刚度比7075 铝合金约高65%;美国将SiCp/6092Al 用于F-16 战斗机的腹鳍, 代替原有的2214 铝合金蒙皮, 刚度提高50%,寿命从几百小时提高到8000 小时左右,寿命提高17 倍,可大幅度降低检修次数,提高飞机的机动性,还可用于F-16 的导弹发射轨道;英国航天金属及复合材料公司(AMC)采用高能球磨粉末冶金法研制出高刚度﹑ 耐疲劳的SiCp/2009Al, 成功用于Eurocopter 公司生产的N4 及EC-120 新型直升机[12];采用无压浸渗法制备的高体积分数SiCp/Al 作为印刷电路板芯板用于F-22“猛禽”战斗机的遥控自动驾驶仪、发电元件、飞行员头部上方显示器、电子计数测量阵列等关键电子系统上, 以代替包铜的钼及包铜的锻钢,可使质量减轻70%,同时降低了电子模板的工作温度;SiCp/Al 印刷电路板芯板已用于地轨道全球移动卫星通信系统; 作为电子封装材料,还可用于火星“探路者”和“卡西尼”土星探测器等航天器上。美国采用高体积分数SiCp /Al 代替Cu-W 封装合金作为电源模块散热器,已用于EV1 型电动轿车和S10 轻型卡车上;美国将氧化反应浸渗法制备的SiC-Al2O3/Al 作为附加装甲,用于“沙漠风暴”地面进攻的装甲车;美国GardenGrove 光学器材公司用SiCp/Al 制备Leopardl 坦克火控系统瞄准镜。3.2 在汽车工业中的应用由山东大学与曲阜金皇活塞有限公司联合研制的SiCp /Al 活塞已用于摩托车及小型汽车发动机;自20 世纪90 年代以来, 福特和丰田汽车公司开始采用Alcan 公司的20%SiC/Al-Si 来制作刹车盘;美国Lanxide 公司生产的SiCp/Al 汽车刹车片于1996年投入批量生产[13];德国已将该材料制作的刹车盘成功应用于时速为160km/h 的高速列车上。整体采用锻造的SiCp/Al 活塞已成功用于法拉利生产的一级方程式赛车。3.3 在运动器械上的应用BP 公司研制的20%SiCp/2124Al 自行车框架已在Raleigh 赛车上使用;SiCp /Al 复合材料可应用于自行车链轮、高尔夫球头和网球拍等高级体育用品;在医疗上用于假体的制造。4 制备及成型方法一般来说, 根据铝基体状态的不同,SiCp/Al 的制备方法大致可分为固态法和液态法两类。目前主要有粉末冶金法、喷射沉积法、搅拌铸造法和挤压铸造法。4.1 粉末冶金法粉末冶金法又称固态金属扩散法,该方法由于克增强相/ 基体增强相含量拉伸强度/MPa弹性模量/GPa伸长率(%)SiC/Al-4Cu 15 476 92 2.3SiCp /ZL101 20 375 101 1.64SiCp /ZL101A 20 330 100 0.5SiCp /6061 25 517 114 4.5SiCp /2124 25 565 114 5.6Al2O3 /Al-1.5Mg 20 226 95 5.9Cf /Al 26 387 112 -表2 金属基复合材料的力学性能[1]Tab.2 Mechanical properties of metal matrix composite[1]94《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术服了碳化硅颗粒与铝合金熔液润湿困难的缺点,因而是最先得到发展并用于SiCp/Al 的制备方法之一。具体制备SiCp/Al 的粉末冶金工艺路线有多种,目前最为流行和典型的工艺流程为:碳化硅粉末与铝合金粉末混合一冷模压(或冷等静压)一真空除气一热压烧结(或热等静压)一热机械加工(热挤、轧、锻)。粉末冶金法的优点在于碳化硅粉末和铝合金粉末可以按任何比例混合,而且配比控制准确、方便。粉末冶金法工艺成熟,成型温度较低,基本上不存在界面反应、质量稳定,增强体体积分数可较高,可选用细小增强体颗粒。缺点是设备成本高,颗粒不容易均匀混合,容易出现较多孔隙,要进行二次加工,以提高机械性能,但往往在后续处理过程中不易消除;所制零件的结构、形状和尺寸都受到一定的限制,粉末冶金技术工艺程序复杂,烧结须在在密封、真空或保护气氛下进行, 制备周期长, 降低成本的可能性小,因此制约了粉末冶金法的大规模应用。4.2 喷射沉积法喷射沉积法是1969 年由Swansea 大学Singer教授首先提出[14],并由Ospray 金属有限公司发展成工业生产规模的制造技术。该方法的基本原理是:对铝合金基体进行雾化的同时,加入SiC 增强体颗粒,使二者共同沉积在水冷衬板上, 凝固得到铝基复合材料。该工艺的优点是增强体与基体熔液接触时间短,二者反应易于控制;对界面的润湿性要求不高,可消除颗粒偏析等不良组织, 组织具有快速凝固特征;工艺流程短、工序简单、效率高,有利于实现工业化生产。缺点是设备昂贵,所制备的材料由于孔隙率高而质量差必须进行二次加工, 一般仅能制成铸锭或平板; 大量增强颗粒在喷射过程中未能与雾化的合金液滴复合, 造成原材料损失大, 工艺控制较复杂,增强体颗粒利用率低、沉积速度较慢、成本较高。4.3 搅拌铸造法搅拌铸造法的基本原理[15-17]:依靠强烈搅拌在合金液中形成涡漩的负压抽吸作用, 将增强体颗粒吸入基体合金液体中。具体工艺路线:将颗粒增强体加入到基体金属熔液中, 通过一定方式的搅拌与一定的搅拌速度使增强体颗粒均匀地分散在金属熔体中,以达到相互混合均匀与浸润的目的,复合成颗粒增强金属基复合材料熔体。然后可浇铸成锭坯、铸件等使用。该方法的优点是:工艺简单、设备投资少、生产效率高、制造成本低、可规模化生产。缺点是:加入的增强体颗粒粒度不能太小, 否则与基体金属液的浸润性差, 不易进入金属液或在金属液中容易团聚和聚集;普遍存在界面反应,强烈的搅拌容易造成金属液氧化,大量吸气及夹杂物混入,颗粒加入量也受到一定限制,只能制成铸锭,需要二次加工。4.4 挤压铸造法挤压铸造法是首先把SiC 颗粒用适当的粘结剂粘结,制成预制块放入浇注模型中,预热到一定的温度,然后浇入基体金属液,立即加压,使熔融的金属熔液浸渗到预制块中,最后去压、冷却凝固形成SiCp/Al。该方法的优点是:设备较简单且投资少,工艺简单且稳定性较好,生产周期短,易于工业化生产,能实现近无余量成型,增强体体积分数较高,基本无界面反应。缺点是容易出现气体或夹杂物,缺陷比较多,需增强颗粒需预先制成预成型体, 预成型体对产品质量影响大,模具造价高,而且复杂零件的生产比较困难。5 SiCp /Al 复合材料发展的建议与对策SiCp /Al 复合材料作为一种新的结构材料有着广阔的发展前景, 但要实现产业化还需做大量的研究工作。除了要对SiCp/Al 复合材料的制备工艺、界面结合状态、增强机制等方面的内容做进一步研究,其相关领域的研究及发展也应给予重视。5.1 现有制备工艺进一步完善和新工艺的开发现有工艺制备方法虽然已经成功制造了复合材料,但很难用于工业化生产且尚处于实验室研究阶段[18]。SiC 颗粒存在于铝液中,使金属液粘度提高,流动性降低,铸造时充填性变差,当颗粒含量增加至20%或在较低温度(<730℃)时,流动性急剧降低以致于无法正常浇注。另外,SiC颗粒具有较大的表面积, 表面能较大,易吸附气体并带入金属液中,而金属液粘度大也易卷入气体并难以排出,产生气孔缺陷。因此,对现有工艺的进一步完善和新工艺的开发成为下一步研究工作的主要任务。5.2 后续加工工艺的研究金属基复合材料的切削加工、焊接、热处理等后续加工工艺的研究较少,成为限制其应用的瓶颈。高强度、高硬度增强体的加入使金属基复合材料成为难加工材料[18-19],而由于增强体与基体合金的热膨胀系数差异大引起位错密度的提高, 也使金属基复合95Hot Working Technology 2011, Vol.40, No.12材料热处理技术Material & Heat Treatment 2011 年6 月材料的时效行为与基体合金有所不同[20]。另外,增强体影响焊接熔池的粘度和流动性, 并与基体金属发生化学反应限制了焊接速度, 给金属基复合材料的焊接造成了极大困难。因此, 解决可焊性差的问题也成为进一步研究的主要方向。5.4 环境性能方面的改善金属基复合材料的环境性能方面的研究, 即如何解决金属基复合材料与环境的适应性, 实现其废料的再生循环利用也引起了一些学者的重视, 这个问题关系到有效利用资源,实现社会可持续发展,因此, 关于环境性能方面的研究将是该领域今后研究的热点。由于铝基复合材料是由两种或两种以上组织结构、物理及化学性质不同的物质结合在一起形成一类新的多相材料, 其回收再利用的技术难度要比传统的单一材料大得多。随着铝基复合材料的批量应用,必然面临废料回收的问题,通过对复合材料的回收再利用, 不但可减少废料对环境的污染还可减低铝基复合材料的制备成本、降低价格,增加与其他材料的竞争力,有利于促进自身的发展。文献[21]配制了混合盐溶剂, 采用熔融盐法成功地分离出颗粒增强铝基复合材料中的增强材料,研究结果表明,利用该技术处理颗粒增强铝基复合材料, 其回收利用率可达85%。6 结语与铝合金基体相比, 铝基复合材料具有更高的使用温度、模量和强度,热稳定性增加及更好的耐磨损性能,它的应用将越来越广泛。然而,在目前的研究中仍然存在许多疑问和有待解决的问题, 例如怎样去克服铝基复合材料突出的界面问题, 并且力求研究结果有助于改善生产应用问题; 在制备过程前后, 怎样通过热处理手段来改善成品的各方面性能;如何利用由于热失配造成的内、外应力使材料服役于各种环境。此外,原位反应中仍不免其他副反应夹杂物存在, 同时对增强体的体积分数也难以精确控制,这些都是亟待研究解决的问题。参考文献:[1] 于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006.241.[2] 吴人洁.复合材料[M].天津:天津大学出版社,2000.[3] 沃丁柱.复合材料大全[M].北京:化学工业出版社,2000.[4] 毛天祥.复合材料的现状与发展[M].合肥:中国科学技术大学出版社,2000.[5] 赫尔(Hull, D).复合材料导论[M].北京:中国建设工业出版社,1989.[6] 尹洪峰,任耘,罗发.复合材料及其应用[M].陕西:陕西科学技术出版社,2003.[7] 汤佩钊.复合材料及其应用技术[M].重庆:重庆大学出版社,1998.[8] 张守魁,王丹虹.搅拌铸造制备颗粒增强复合材料[J].兵器材料科学与工程,1997,20(6):35-391.[9] 韩桂泉,胡喜兰,李京伟.无压浸渗制备结构/ 功能一体化铝基复合材料的性能及应用[J].航空制造技术,2006(01):95.[10] 李昊,桂满昌,周彼德.搅拌铸造金属基复合材料的热力学和动力学机制[J].中国空间科学技术,1997,2(1):9-161.[11] 桂满昌,吴洁君,王殿斌,等.铸造ZL101A/SiCp复合材料的研究[J].铸造,2001,50(6):332-3361.[12] 任德亮,丁占来,齐海波,等.SiCp /Al 复合材料显微结构与性能的研究[J].航空制造技术,1999,(5):53-551.[13] Clyne T W,Withers P J.An Introduction to Metal MatrixComposites [M].London:Cambridge University Press,1993.[14] Lee Konbae.Interfacial reaction in SiCp /Al composite fabricatedby pressureless infiltration [J].Scripta. Materialia,1997,36(8):847.[15] 张淑英, 张二林. 喷射共沉积金属基复合材料的发展现状[J].宇航材料工艺,1996,(4):4-5.[16] Clegg A J.Cast metal matrix and composites [J].TheFoundryman,1991,8:312-3191.[17] Mortensen A, Jim I.Solidification processing of metal matrixcomposites [J].Inter. Mater. Rews.,1992,37(3):101-128.[18] Lloyd D J.Particle reinforced aluminium and magnesiummatrix composites [J].Inter. Mater. Rews,1994,39(1):218-231.[19] Quigleg O, Monagham M, O'Reilly P.Factors effecting themachinability of Al/SiC metal matrix composite [J].J. Mater.Process.Tech.,1994,43:21-23.[20] Looney L A, Monagham M, O'Reilly P.The turning of anAl/SiC metal-matrix composite [J].J. Mater. Process. Tech.,1992,33:553-557.[21] 费良军,朱秀荣,童文俊,等.颗粒增强铝基复合材料废料回收的试验研究[J].复合材料学报,2001,18(1):67-70.
长期以来,作为新能源 汽车 动力电池用的一种重要材料,锂电池负极材料受到国家 科技 政策和产业政策的大力支持。随着新能源 汽车 在全球范围内的快速发展,对锂电池产业链的发展将起到更加明显的促进作用,锂电池负极材料将会迎来更为广阔的发展空间。
高端产能不足
数据显示,受新能源 汽车 动力电池终端市场增长拉动,2019年中国负极材料出货量达到26.5万吨,同比增长38%。截止到2019年底,国内负极材料企业产能达到57.98万吨,同比增长超31%。进入2020年以来,国内负极材料产品供给延续快速增长态势,产能扩增趋势明显。
9月22日,湖北宝乾年产5万吨负极材料项目正式开工,该项目投资总额6亿元,计划于2021年6月份投产。其中一期将建设两条1万吨/年的负极材料生产线,全部项目建设完成后,形成总体年产5万吨负极材料的生产能力。
在此之前的9月17日,翔丰华正式在深交所挂牌上市。翔丰华计划募集资金扣除发行费用之后将全部用于3万吨高端石墨负极材料生产基地项目建设。据了解,2019年底翔丰华产能为2万吨左右,2020年产能预计为3万吨左右。未来随着募投项目3万吨产能投产,翔丰华将形成6万吨以上产销规模。
除此之外,8月24日,杉杉股份调整募集资金转投建年产10万吨锂离子电池负极材料项目。7月9日,璞泰来拟募资45.92亿元投建年产5万吨锂电负极材料、年产5万吨锂离子电池负极材料石墨化等项目。7月2日,中科星城在贵州新增建设的1万吨/年负极材料石墨化加工产线试产;公司预计到2020年年底将形成4万-5万吨负极材料产能。6月16日,贝特瑞精选层挂牌申请成功通过;公司拟募集20亿元,用于惠州市贝特瑞年产4万吨锂电负极材料等项目。4月27日,福鞍集团旗下天全福鞍公司年产4万吨的锂电池负极材料生产线建成投产。
从目前的市场格局来看,国内负极材料行业集中度较高,比较有实力的有“三大五小”。三大分别指贝特瑞、璞泰来(江西紫宸)、杉杉股份;五小分别指凯金能源、正拓能源、深圳斯诺、中科星城、翔丰华。
其中,贝特瑞自2013年以来负极材料出货量已经连续7年位列全球第一。贝特瑞是中国第一家把天然石墨做成负极材料,也是第一家把天然石墨出口国外的材料企业。璞泰来2019年负极材料出货4.6万吨,同比增54%,在国内人造石墨市场的份额达22%。
值得注意的是,虽然国内负极材料产能扩张力度很大,但整体的产能利用率并不高,结构性过剩显现,高端产品产能仍然供不应求。分析人士指出,未来负极材料市场竞争格局将聚焦于各龙头之间的竞争,低端产能将被逐步出清,拥有核心技术和优势客户渠道的企业将会获得更多市场份额,市场集中度将进一步提升。
硅碳材料研发应用提速
在下游新能源 汽车 、储能等终端应用领域对锂电池的性能、安全性、稳定性等方面要求持续提升,以及降成本的背景下,负极材料企业需要持续研发新技术、新工艺、新产品,来满足下游锂离子电池对关键材料的快速迭代需求。
目前,天然石墨、人造石墨是主流的负极材料技术路线,硅基等新型负极材料的应用也日趋广泛。从技术上来讲,石墨负极体系向硅基负极体系升级是重要方向。硅碳负极材料的比容量可以达到天然石墨电极、人工石墨电极的数倍,其在锂电池中应用将大幅提升能量密度上限。
据电池中国网了解,目前国内不少材料企业都在积极布局硅碳负极材料,贝特瑞、杉杉股份、江西紫宸、深圳斯诺、中科电气、江西正拓、硅宝 科技 、创亚动力、大连丽昌等都在积极推进硅碳负极的产业化。
“贝特瑞负极材料的产品门类和品种是非常齐全的,既有天然石墨负极材料,也有后来居上的人造石墨负极材料,还有引领潮流走在(技术创新)最前列的硅系列的负极材料。”贝特瑞董事长贺雪琴在接受媒体采访时表示。作为国内最早量产硅基负极材料的企业之一,2019年贝特瑞硅基负极材料出货量居业内前列。
据悉,目前贝特瑞的硅碳负极材料已经突破至第三代产品,比容量从第一代的650mAh/g提升至第三代的1500mAh/g,并且正在开发更高容量的第四代硅碳负极材料产品。
而作为锂电负极材料行业的新进者,硅宝 科技 一开始就瞄准了行业高端的硅炭负极材料。硅宝 科技 表示,2019年公司完成中试并建成产能50吨/年的硅碳负极材料中试生产线,同时公司“高比容量锂离子电池硅/碳复合负极材料”通过四川省经济和信息化厅组织的成果鉴定,鉴定结论为国际先进水平。
据硅宝 科技 董事长王有治透露,目前公司已送样多家电池厂商进行共同开发,将根据与厂商的合作进度放量生产。未来,硅宝 科技 将持续加大对硅炭负极材料的研发投入。
据了解,宁德时代、比亚迪、国轩高科、力神电池、微宏动力等电池生产企业正在加快硅碳负极体系的研发和试生产。数据显示,2018年国内硅碳复合材料用量已达2000-3000吨,同比增长一倍左右。据预测,2020年国内硅碳负极材料市场空间将达50亿元。
在全球锂电池业受益 汽车 电动化发展迅猛,带动锂电负极材料需求高速增长的背景下,硅碳负极未来市场空间十分巨大。
纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》 [摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。 [关键词]高聚物纳米复合材料 一、 纳米材料的特性 当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能: 1、尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。 2、表面效应 一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。 纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044×1034022.5×1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与 其它 原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。 3、量子隧道效应 微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际 应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。 二、高聚物/纳米复合材料的技术进展 对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类: 1、高聚物/粘土纳米复合材料 由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。 2、高聚物/刚性纳米粒子复合材料 用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性 方法 。随着无机粒子微细化技术和粒子表面处理技术的 发展 ,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。 3、高聚物/碳纳米管复合材料 碳纳米管于1991年由S.Iijima 发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。 三、前景与展望 在高聚物/纳米复合材料的研究中存在的主要问题是:高聚物与纳米材料的分散缺乏专业设备,用传统的设备往往不能使纳米粒子很好的分散,同时高聚物表面处理还不够理想。我国纳米材料研究起步虽晚但 发展 很快,对于有些方面的研究 工作与国外相比还处于较先进水平。如:漆宗能等对聚合物基粘土纳米复合材料的研究;黄锐等利用刚性粒子对聚合物改性的研究都在学术界很有影响;另外,四川大学高分子 科学 与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的手段。尽管如此,在总体水平上我国与先进国家相比尚有一定差距。但无可否认,纳米材料由于独特的性能,使其在增强聚合物 应用中有着广泛的前景,纳米材料的应用对开发研究高性能聚合物复合材料有重大意义。特别是随着廉价纳米材料不断开发应用,粒子表面处理技术的不断进步,纳米材料增强、增韧聚合物机理的研究不断完善,纳米材料改性的聚合物将逐步向 工业 化方向发展,其应用前景会更加诱人。 参考 文献 : [1] 李见主编.新型材料导论.北京:冶金工业出版社,1987. [2]都有为.第三期工程科技 论坛 ——‘纳米材料与技术’ 报告 会. [3]rohlich J,Kautz H,Thomann R[J].Polymer,2004,45(7):2155-2164. 纳米材料与技术3000字论文篇二:《试论纳米技术在新型包装材料中的应用》 【摘 要】作为一门高新科学技术,纳米技术具有极大的价值和作用。进入20世纪90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。 【关键词】纳米技术 包装材料 1 纳米技术促进了汽车材料技术的发展 纳米技术可应用在汽车的任何部位,包括发动机、底盘、车身、内饰、车胎、传动系统、排气系统等。例如,在汽车车身部分,利用纳米技术可强化钢板结构,提高车体的碰撞安全性。另外,利用纳米涂料烤漆,可使车身外观色泽更为鲜亮、更耐蚀、耐磨。内装部分,利用纳米材料良好的吸附能力、杀菌能力、除臭能力使室内空气更加清洁、安全。在排气系统方面,利用纳米金属做为触媒,具有较高的转换效果。 由于纳米技术具有奇特功效,它在汽车上得到了广泛的应用,提升汽车性能的同时延长使用寿命。 2 现代汽车上的纳米材料 (1)纳米面漆。汽车面漆是对汽车质量的直观评价,它不但决定着汽车的美观与否,而且直接影响着汽车的市场竞争力。所以汽车面漆除要求具有高装饰性外,还要求有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能。纳米涂料可以满足上述要求。纳米颗粒分散在有机聚合物骨架中,作承受负载的填料,与骨架材料相互作用,有助于提高材料的韧性和其它机械性能。研究表明,将10%的纳米级TiO2粒子完全分散于树脂中,可提高其机械性能,尤其可使抗划痕性能大大提高,而且外观好,利于制造汽车面漆涂料;将改性纳米CaCO3以质量分数15%加入聚氨酯清漆涂料中,可提高清漆涂料的光泽、流平性、柔韧性及涂层硬度等。 纳米TiO2是一种抗紫外线辐射材料,加之其极微小颗粒的比表面积大,能在涂料干燥时很快形成网络结构,可同时增强涂料的强度、光洁度和抗老化性;以纳米高岭土作填料,制得的聚甲基丙烯酸甲酯纳米复合材料不仅透明,而且吸收紫外线,同时也可提高热稳定性,适合于制造汽车面漆涂料。 (2)纳米塑料。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。随着汽车应用塑料数量越来越多,纳米塑料会普遍应用在汽车上。主要有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。阻燃塑料是燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。 目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料比较容易达到要求。增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。 抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上。据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。 (3)纳米润滑剂。纳米润滑剂是采用纳米技术改善润滑油分子结构的纯石油产品,它不会对润滑油添加剂、稳定剂、处理剂、发动机增润剂和减磨剂等产品产生不良作用,只是在零件金属表面自动形成纯烃类单个原子厚度的一层薄膜。由于这些微小烃类分子间的相互吸附作用,能够完全填充金属表面的微孔,最大可能地减小金属与金属间微孔的摩擦。与高级润滑油或固定添加剂相比,其极压可增加3倍-4倍,磨损面减小16倍。由于金属表面得到了保护,减小了磨损,使用寿命成倍增加。 另外,由于纳米粒子尺寸小,经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍。目前纳米陶瓷轴承已经应用在奔驰等高级轿车上,使机械转速加快、质量减小、稳定性增强,使用寿命延长。 (4)纳米汽油。纳米汽油最大优点是节约能源和减少污染,目前已经开始研制。该技术是一种利用现代最新纳米技术开发的汽油微乳化剂。它能对汽油品质进行改造,最大限度地促进汽油燃烧,使用时只要将微乳化剂以适当比例加入汽油便可。交通部汽车运输节能技术检测中心的专家经试验后认为,汽车在使用加入该微乳化剂的汽油后,可降低其油耗10%~20%,增加动力性能25%,并使尾气中的污染物(浮碳、碳氢化合物和氮氧化合物等)排放降低50%~80%。它还可以清除积碳,提高汽油的综合性能。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。 (5)纳米橡胶。汽车中橡胶材料的应用以轮胎的用量最大。在轮胎橡胶的生产中,橡胶助剂大部分成粉体状,如炭黑、白炭黑等补强填充剂、促进剂、防老剂等。以粉体状物质而言,纳米化是现阶段橡胶的主要发展趋势。新一代纳米技术已成功运用其它纳米粒子作为助剂,而不再局限于使用炭黑或白炭黑,汽车中最大的改变即是,轮胎的颜色已不再仅限于黑色,而能有多样化的鲜艳色彩。另外无论在强度、耐磨性或抗老化等性能上,新的纳米轮胎均较传统轮胎都优异,例如轮胎侧面胶的抗裂痕性能将由10万次提高到50万次。 (6)纳米传感器。传感器是纳米技术应用的一个重要领域,随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护上已得到应用。纳米材料来制作汽车尾气传感器,可以对汽车尾气中的污染气体进行吸附与过滤,并对超标的尾气排放情况进行监控与报警,从而更好地提高汽车尾气的净化程度,降低汽车尾气的排放。我国纳米压力传感器的研制已获得成功,产品整体性能超过国外的超微传感器,缩小了我国在这一技术领域与世界先进国家存在的差距。有专家认为,到2020年,纳米传感器将成为主流。 (7)纳米电池。早在1991年被人类发现的碳纳米管韧性很高,导电性极强,兼具金属性和半导体性,强度比钢高100倍, 密度只有钢的1/6。我国科学家最近已经合成高质量的碳纳米材料,使我国新型储氢材料研究一举跃入世界先进行列。此种新材料能储存和凝聚大量的氢气,并可做成燃料电池驱动汽车,储氢材料的发展还会给未来的交通工具带来新型的清洁能源。 结语 随着材料技术的发展,纳米技术已成为当今研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。纳米科技正在推动人类社会产生巨大的变革,未来汽车技术的发展,有极大部分与纳米技术密切相关,纳米材料和纳米技术将会给汽车新能源、新材料、新零部件带来深远的影响。对于汽车制造商而言,纳米技术的有效运用,有效地促进技术升级、提升附加价值。相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。 参考文献 [1]肖永清.纳米技术在汽车上的应用[J].轻型汽车技术,2004.12. [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报(工科版),2002. [3]周李承,蒋易,周宜开,任恕,聂棱.光纤纳米生物传感器的现状及发展[J].传感器技术,2002,(1):18~21 纳米材料与技术3000字论文篇三:《试谈纳米技术及纳米材料的应用》 摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。 关键词:纳米材料;应用;前景展望 1.纳米技术引起纳米材料的兴起 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家H.V.Gleiter成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的 热点 。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.纳米材料及其性质表现 2.1纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 2.2纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。 3.纳米材料的应用示例 目前纳米材料主要用于下列方面: 3.1高硬度、耐磨WC-Co纳米复合材料 纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。 3.2纳米结构软磁材料 Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。 3.3电沉积纳米晶Ni 电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。 3.4Al基纳米复合材料 Al基纳米复合材料以其超高强度(可达到1.6GPa)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为0.8~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。 4.纳米材料的前景趋向 经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。 近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。
试析《董卿主持风格》中央电视台的节目主持人,多年以来一直被各地的媒体公认为效仿的楷模,或者是追求的方向。可是就像萝卜青菜一样,央视的主持人风格不同,各有特点。而我则偏爱青菜的清新,喜欢即时尚又不乏营养的综艺节目主持人,这几年央视的领军人物当然就非董卿莫数了。 在观众的印象中董卿是一位专业的晚会节目主持人,大方得体,气质稳重,穿着成熟又不失风尚,在央视各套电视台的综艺节目中频频出现,成为中国观众最熟悉的主持人之一。我认为,央视的主持人从杨澜开始是我比较有印象的了,然后是倪萍,再后是周涛,一直到现在的董卿。除了董卿具有年龄优势以外,能在如此激烈的竞争与淘汰中站住脚,一定要有自己的特色。回头看,第一届比较著名的正大综艺主持人杨澜,当时的主持特点是比较阳光和知性。她一再证明着她被观众所喜爱。之后的倪萍,鲜明对比,主要是成熟稳重和亲切感强,易于带动现场气氛。经常用真情感染观众,把观众搞得眼泪汪汪,瞬时让观众耳目一新,也证明她获得了大多数观众的喜爱,可是这一特点,也有少数观众渐渐产生反感,随着时间的增长,观众们觉得这种过于煽情的主持风格已经看够看累了,需要新鲜血液。周涛正是当时观众眼中的新鲜血液,她外表时尚,和轻松干练的主持风格,正和大众的胃口,主持节目的时候,废话很少,语言干练,精巧。着实吸引了观众的眼球。而董卿,在我看来,她聪明的具备了以上三位的所有特点于自身,知性,时尚,又善于对着镜头抒发自身情感的她,在各种场合应变及时,大方得体,并且懂得看场合随时变换风格。比如《青歌大赛》时,她会让自己尽量轻松一些,和紧张的参赛选手形成对比,同时又可以缓和选手的情绪,却把握分寸不会因为自己的轻松,影响到赛场的严肃气氛,这里可以看见杨澜的知性。而《欢乐中国行》,正是一个半分百的娱乐节目,董卿拿出了自己一切的开朗活泼,尽量做到时尚又亲切,在台上表现活跃,却不像其他地方台的节目主持人在台上乱来,这里有一点周涛的时尚又精巧。我曾经还多次看过董卿主持的慈善类节目,比如说最近的《为了母亲的微笑》是一场为了灾区贫困儿童捐款的晚会。我想她有些效仿了倪萍的本事,在描述灾区儿童生活状态时动了真情,而感动了在场和电视机前的所有观众。而超越倪萍的是,恰到好处的只让眼泪在眼圈里打转。(这点是真本事!)另外,董卿的穿着时尚得体,身材苗条,所以在视觉上经常给人耳目一新的感觉,基本功扎实,虽然是上海人,但吐字归音非常清楚,是我最需要学习的,基本功是最最重要的,让观众听清楚,听明白是基本。因此在各种场合,她都可以展现她优秀的功底。这是我对董卿的基础了解,我印象中她没有出过书,所以了解不足,请师傅指正!
1. 航空航天,飞机的外壳和内部装备都可以用碳纤维来完成,同等强度,轻于合金,省燃料。2. 风力发电,发电机的叶片由碳纤维+玻纤制作,电力环保,未来能源的方向之一。3. 体育市场,高尔夫球杆身、网羽球拍、登山杖、自行车、滑雪板、溜冰鞋、钓竿、潜水气瓶等等高档产品都由碳纤维制作。4. 汽车配件,外壳、车架、空气动力学配件、座椅、内饰甚至轮毂都可以由碳纤维制作,同样属于高端市场。5. 建筑加固,碳纤维短切丝可以用于混凝土内,加强加固的作用6. 流行市场,由于碳纤维可以制作出高档感的外观,在鞋底、袖扣、皮带扣、高档烟酒包装、电子产品外壳等领域也被青睐,但用量少,都为高档产品。7. 音乐领域,提琴、吉他、笛、等乐器以及音箱由碳纤维制作的效果非常令人惊叹。8. 其他: 头盔、鼠标垫、眼镜架、三脚架、手表等领域亦有应用。
下面所说均为纤维增强复合材料,希望对你有帮助先说优势(以纤维增强复合材料为例)轻质高强相对密度在1.5~2.0之间,只有碳钢的1/4~1/5,可是拉伸强度却接近,甚至超过碳素钢,而比强度可以与高级合金钢相比。因此,在航空、火箭、宇宙飞行器、高压容器以及在其他需要减轻自重的制品应用中,都具有卓越成效。某些环氧FRP的拉伸、弯曲和压缩强度均能达到400Mpa以上。 耐腐蚀性能好FRP是良好的耐腐材料,对大气、水和一般浓度的酸、碱、盐以及多种油类和溶剂都有较好的抵抗能力。已应用到化工防腐的各个方面,正在取代碳钢、不锈钢、木材、有色金属等。 电性能好是优良的绝缘材料,用来制造绝缘体。高频下仍能保护良好介电性。微波透过性良好,已广泛用于雷达天线罩。 热性能良好FRP热导率低,室温下为1.25~1.67kJ/(m·h·K),只有金属的1/100~1/1000,是优良的绝热材料。在瞬时超高温情况下,是理想的热防护和耐烧蚀材料,能保护宇宙飞行器在2000℃以上承受高速气流的冲刷。 可设计性好(1)可以根据需要,灵活地设计出各种结构产品,来满足使用要求,可以使产品有很好的整体性。 (2)可以充分选择材料来满足产品的性能,如:可以设计出耐腐的,耐瞬时高温的、产品某方向上有特别高强度的、介电性好的,等等。 工艺性优良(1)可以根据产品的形状、技术要求、用途及数量来灵活地选择成型工艺。 (2)工艺简单,可以一次成型,经济效果突出,尤其对形状复杂、不易成型的数量少的产品,更突出它的工艺优越性。应用领域:FRP应用领域一:FRP在我国建筑领域的应用 80年代以前,FRP主要用于军工产品,院所之间受到保密限制,不便交流,建筑师对FRP的优良性能不了解,得不到可靠的性能数据,因此未大量用于建筑结构。90年代开始,随着对FRP研究工作的不断深入,使FRP的缺陷得以克服,产品价格有所下降。在大型建筑结构中的应用取得很好的效果。下面简要介绍几个实例:(1)大型FRP机房:1991年在杭州市建成,该机房与其下面宾馆取得建筑上的协调,从外观上难于区分,效果很好;(2)卡拉OK娱乐厅柱形屋盖:长26m,跨度10m,1992年在上海大中华橡胶厂楼顶建成,十分美观实用;(3)旋转餐厅球形屋盖:球径45m,1993年在上海长江口商城建成;(4)东方明珠电视塔大堂双曲面屋盖及内装饰件:直径60m,总面积约5000m2,1994年完成。从合同签订至安装完成仅用了三个多月,使用至今,效果很好;(5)方舟大厦尖顶(高7m)及拼装屋面(约300m2):1996年建成,1997年3月安装完毕。国外建筑领域应用FRP的数量大、品种多复合材料在整个工程材料中用量从1950年的2%将上升到2000年的14.7%,预计2020年将有望达到18.4%。美国1993年用量23.7万t,占总量的20%,仅次于交通运输业,是第二大应用领域;英国1992年占总用量的26.6%,是第一大应用领域;西欧1992年用量24.7万t,占总量的21.3%,是第二大应用领域;日本1993年用量23,7万t,占总用量的55%左右,是第一大应用领域。国外FRP在建筑领域的应用实例有①直径66m的全FRP球形娱乐场:该建筑位于美国西海岸临近旧金山的里诺市,该建筑由2000多块四边形FRP单元件拼装而成;②美国New Jersey州、大西洋城Trump Taj Mahal综合娱乐场:占地39万m2,门面1.6km长,大部分是FRP艺术造型装饰件,共有二万三千多件,总值约1500万美元;③美国New York 的 FRP可口可乐大广告牌:立体状l2.5m×19.8m,“可口可乐瓶”高12.8m,冰块高3m;④美国Boston许多建筑物门窗、门面、栏杆、屋檐板、装饰拱都采用FRP;⑤美国Atlanta银行大厅高楼层盖采用FRP,美国Florida Tampa市C&S银行大楼(该州西海岸最高的大厦,43层),采用半锥形FRP屋盖,高7.9m,都兼有防腐、透波和抗风等多种功能。还有机场和气象雷达罩等也都采用FRP。据粗略统计,FRP在建筑领域的应用主要有以下五个方面:①各种异形建筑结构物:雷达天线罩、岗亭、广告牌(物)、球形娱乐场、球幕影剧院、大跨度机库、车库、仓库、旋转餐厅屋盖、卡拉OK娱乐厅柱形屋盖、运动场大跨度看台屋盖、室内运动场屋盖和高层建筑锥形顶等;②各种功能性建筑物:电视塔透波墙、透波机房、屏蔽房、隔声墙、化工厂防腐车间、码头FRP与金属复合椿、医院防辐射复合墙、大型冷却塔、污水处理厂防腐板、大型耐腐蚀槽、罐等;③各种建筑物内外装饰件:屋檐、沿口、门楣、骑马廊、灯槽、灯饰、罗马柱、吊顶、艺术花瓶、假山瀑布、吉祥动物(狮子、牛、象等)等;④小康居室、办公室建筑构件:门、隔墙、隔段、家具、厨房用具、花园栏杆、围墙、小车库、游泳池、各种窗框、盆景等;⑤各种卫生洁具:整体卫生盒子间、整体淋浴间、水箱、移动厕所、净化池、洗面盆具、抽水马桶、浴缸、太阳能热水器等。二:运输部门:以汽车为中心增长1.7%,即使客车出售辆数下降,但玻璃纤维增强塑料(FRP)制品正在平稳上升。汽车主体使用400种以上的部件是SMC产品,2007年新型汽车使用100种以上的部件。玻璃纤维增强热塑性塑料(FRTP)的使用量迅速提高。汽车发动机使用的FR-Nylon制吸气集合管。比铝制汽车发动机效率高,而且经济。汽车传动轴是拉挤成型,材料采用碳纤维、乙烯基酯和铝管制成。目前,已活跃在汽车市场上。最主要的是用拉挤成型的空调设备用通风管。铁道部对全FRP制车辆进行了现场试验,并在今年投放市场。三:土木建筑部门:FRP制品在住宅方面也不断增加。在基础建筑方面有干线公路桥、人行桥、港湾用桥墩。另外也广泛使用用来增强混凝土的FRP筋。四:耐腐蚀器械方面:FRP在器械方面用途广泛。半导体界和化学界、污水处理和下水道处理方面、石油、煤气用平台、化工贮存罐等。五:船舶方面。六:电气、电子:印刷电路板、雷达罩的需求旺盛。用FW生产的照明电杆已有增长趋势,并开始进行电线杆子现场实验。目前欧洲已大量生产。美国也投放市场。电子方面的陈旧化也有待刺激。预计今后手提式电话机等也会采用FRP、FRTP制品。七:消费材料:FRP耐老化、外观美观,替代了原用材料。卫星广播天线以及DBS天线的销售量正在增长,特别是DBS天线的销售量增长迅速。用碳纤维生产的高尔夫球杆也势在必增,生产碳纤维的厂家也增加了设备。八:家电、办公设备:新设计的缝纫机壳的销售量也在增长。目前新建住宅受到转卖的影响,家电也不断增长。办公设备市场大、销售广、基础雄厚。FRTP玻璃钢格栅具有优良的耐腐蚀性能、耐热性、刚性、难燃性,所以在家电、办公设备的使用上占优势。九:航空、防卫方面。FRP型材应用实例FRP工具柄本系列产品主要应用在包括铲子、耙子、锄头、剪刀、锤子等园林工具和五金工具上。 FRP拉挤圆管本系列产品适用于制作帐蓬、蚊帐、箱包、手袋、X展架、工具柄、风车、高尔夫(球袋、旗杆、练习杆、练习网)、三脚架、喷雾杆、脚架杆、玩具骨架、飞碟骨架、空竹手柄、风筝杆等。 FRP拉挤圆棒本系列产品适用于制作雨伞骨、风筝骨架、PCB设备、航模飞机、支架毯、沙滩席、转动轴、轴芯、窗帘杆、玩具、箱包、飞蝶、旗杆(桌旗、车旗、手摇旗、刀型旗)、植物支撑架、篱笆、烟囱杆、游戏毯支撑架、窗帘转/拨棒等。 FRP拉挤扁条系列本系列产品适用于制作瑜珈健身圈、魔力圈、健身器材、玩具弓、窗帘条、箱包、手袋、旗杆横条、工具手柄等。 FRP格栅平台系列本系列产品主要有玻璃钢格栅、防腐平台、走道和围栏系统、绝缘梯子、冷却塔支撑架、电缆桥架、地铁轨道罩等。 拉挤产品深加工系列我们根据客户需求对玻璃纤维杆、玻璃纤维管、玻璃纤维棒表面包PP PE PVC,此产品已经广泛用于园艺及农业上。
纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》 [摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。 [关键词]高聚物纳米复合材料 一、 纳米材料的特性 当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能: 1、尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。 2、表面效应 一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。 纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044×1034022.5×1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与 其它 原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。 3、量子隧道效应 微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际 应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。 二、高聚物/纳米复合材料的技术进展 对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类: 1、高聚物/粘土纳米复合材料 由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。 2、高聚物/刚性纳米粒子复合材料 用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性 方法 。随着无机粒子微细化技术和粒子表面处理技术的 发展 ,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。 3、高聚物/碳纳米管复合材料 碳纳米管于1991年由S.Iijima 发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。 三、前景与展望 在高聚物/纳米复合材料的研究中存在的主要问题是:高聚物与纳米材料的分散缺乏专业设备,用传统的设备往往不能使纳米粒子很好的分散,同时高聚物表面处理还不够理想。我国纳米材料研究起步虽晚但 发展 很快,对于有些方面的研究 工作与国外相比还处于较先进水平。如:漆宗能等对聚合物基粘土纳米复合材料的研究;黄锐等利用刚性粒子对聚合物改性的研究都在学术界很有影响;另外,四川大学高分子 科学 与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的手段。尽管如此,在总体水平上我国与先进国家相比尚有一定差距。但无可否认,纳米材料由于独特的性能,使其在增强聚合物 应用中有着广泛的前景,纳米材料的应用对开发研究高性能聚合物复合材料有重大意义。特别是随着廉价纳米材料不断开发应用,粒子表面处理技术的不断进步,纳米材料增强、增韧聚合物机理的研究不断完善,纳米材料改性的聚合物将逐步向 工业 化方向发展,其应用前景会更加诱人。 参考 文献 : [1] 李见主编.新型材料导论.北京:冶金工业出版社,1987. [2]都有为.第三期工程科技 论坛 ——‘纳米材料与技术’ 报告 会. [3]rohlich J,Kautz H,Thomann R[J].Polymer,2004,45(7):2155-2164. 纳米材料与技术3000字论文篇二:《试论纳米技术在新型包装材料中的应用》 【摘 要】作为一门高新科学技术,纳米技术具有极大的价值和作用。进入20世纪90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。 【关键词】纳米技术 包装材料 1 纳米技术促进了汽车材料技术的发展 纳米技术可应用在汽车的任何部位,包括发动机、底盘、车身、内饰、车胎、传动系统、排气系统等。例如,在汽车车身部分,利用纳米技术可强化钢板结构,提高车体的碰撞安全性。另外,利用纳米涂料烤漆,可使车身外观色泽更为鲜亮、更耐蚀、耐磨。内装部分,利用纳米材料良好的吸附能力、杀菌能力、除臭能力使室内空气更加清洁、安全。在排气系统方面,利用纳米金属做为触媒,具有较高的转换效果。 由于纳米技术具有奇特功效,它在汽车上得到了广泛的应用,提升汽车性能的同时延长使用寿命。 2 现代汽车上的纳米材料 (1)纳米面漆。汽车面漆是对汽车质量的直观评价,它不但决定着汽车的美观与否,而且直接影响着汽车的市场竞争力。所以汽车面漆除要求具有高装饰性外,还要求有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能。纳米涂料可以满足上述要求。纳米颗粒分散在有机聚合物骨架中,作承受负载的填料,与骨架材料相互作用,有助于提高材料的韧性和其它机械性能。研究表明,将10%的纳米级TiO2粒子完全分散于树脂中,可提高其机械性能,尤其可使抗划痕性能大大提高,而且外观好,利于制造汽车面漆涂料;将改性纳米CaCO3以质量分数15%加入聚氨酯清漆涂料中,可提高清漆涂料的光泽、流平性、柔韧性及涂层硬度等。 纳米TiO2是一种抗紫外线辐射材料,加之其极微小颗粒的比表面积大,能在涂料干燥时很快形成网络结构,可同时增强涂料的强度、光洁度和抗老化性;以纳米高岭土作填料,制得的聚甲基丙烯酸甲酯纳米复合材料不仅透明,而且吸收紫外线,同时也可提高热稳定性,适合于制造汽车面漆涂料。 (2)纳米塑料。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。随着汽车应用塑料数量越来越多,纳米塑料会普遍应用在汽车上。主要有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。阻燃塑料是燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。 目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料比较容易达到要求。增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。 抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上。据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。 (3)纳米润滑剂。纳米润滑剂是采用纳米技术改善润滑油分子结构的纯石油产品,它不会对润滑油添加剂、稳定剂、处理剂、发动机增润剂和减磨剂等产品产生不良作用,只是在零件金属表面自动形成纯烃类单个原子厚度的一层薄膜。由于这些微小烃类分子间的相互吸附作用,能够完全填充金属表面的微孔,最大可能地减小金属与金属间微孔的摩擦。与高级润滑油或固定添加剂相比,其极压可增加3倍-4倍,磨损面减小16倍。由于金属表面得到了保护,减小了磨损,使用寿命成倍增加。 另外,由于纳米粒子尺寸小,经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍。目前纳米陶瓷轴承已经应用在奔驰等高级轿车上,使机械转速加快、质量减小、稳定性增强,使用寿命延长。 (4)纳米汽油。纳米汽油最大优点是节约能源和减少污染,目前已经开始研制。该技术是一种利用现代最新纳米技术开发的汽油微乳化剂。它能对汽油品质进行改造,最大限度地促进汽油燃烧,使用时只要将微乳化剂以适当比例加入汽油便可。交通部汽车运输节能技术检测中心的专家经试验后认为,汽车在使用加入该微乳化剂的汽油后,可降低其油耗10%~20%,增加动力性能25%,并使尾气中的污染物(浮碳、碳氢化合物和氮氧化合物等)排放降低50%~80%。它还可以清除积碳,提高汽油的综合性能。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。 (5)纳米橡胶。汽车中橡胶材料的应用以轮胎的用量最大。在轮胎橡胶的生产中,橡胶助剂大部分成粉体状,如炭黑、白炭黑等补强填充剂、促进剂、防老剂等。以粉体状物质而言,纳米化是现阶段橡胶的主要发展趋势。新一代纳米技术已成功运用其它纳米粒子作为助剂,而不再局限于使用炭黑或白炭黑,汽车中最大的改变即是,轮胎的颜色已不再仅限于黑色,而能有多样化的鲜艳色彩。另外无论在强度、耐磨性或抗老化等性能上,新的纳米轮胎均较传统轮胎都优异,例如轮胎侧面胶的抗裂痕性能将由10万次提高到50万次。 (6)纳米传感器。传感器是纳米技术应用的一个重要领域,随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护上已得到应用。纳米材料来制作汽车尾气传感器,可以对汽车尾气中的污染气体进行吸附与过滤,并对超标的尾气排放情况进行监控与报警,从而更好地提高汽车尾气的净化程度,降低汽车尾气的排放。我国纳米压力传感器的研制已获得成功,产品整体性能超过国外的超微传感器,缩小了我国在这一技术领域与世界先进国家存在的差距。有专家认为,到2020年,纳米传感器将成为主流。 (7)纳米电池。早在1991年被人类发现的碳纳米管韧性很高,导电性极强,兼具金属性和半导体性,强度比钢高100倍, 密度只有钢的1/6。我国科学家最近已经合成高质量的碳纳米材料,使我国新型储氢材料研究一举跃入世界先进行列。此种新材料能储存和凝聚大量的氢气,并可做成燃料电池驱动汽车,储氢材料的发展还会给未来的交通工具带来新型的清洁能源。 结语 随着材料技术的发展,纳米技术已成为当今研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。纳米科技正在推动人类社会产生巨大的变革,未来汽车技术的发展,有极大部分与纳米技术密切相关,纳米材料和纳米技术将会给汽车新能源、新材料、新零部件带来深远的影响。对于汽车制造商而言,纳米技术的有效运用,有效地促进技术升级、提升附加价值。相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。 参考文献 [1]肖永清.纳米技术在汽车上的应用[J].轻型汽车技术,2004.12. [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报(工科版),2002. [3]周李承,蒋易,周宜开,任恕,聂棱.光纤纳米生物传感器的现状及发展[J].传感器技术,2002,(1):18~21 纳米材料与技术3000字论文篇三:《试谈纳米技术及纳米材料的应用》 摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。 关键词:纳米材料;应用;前景展望 1.纳米技术引起纳米材料的兴起 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家H.V.Gleiter成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的 热点 。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.纳米材料及其性质表现 2.1纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 2.2纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。 3.纳米材料的应用示例 目前纳米材料主要用于下列方面: 3.1高硬度、耐磨WC-Co纳米复合材料 纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。 3.2纳米结构软磁材料 Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。 3.3电沉积纳米晶Ni 电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。 3.4Al基纳米复合材料 Al基纳米复合材料以其超高强度(可达到1.6GPa)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为0.8~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。 4.纳米材料的前景趋向 经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。 近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。
分享到: 收藏推荐 复合材料研究日新月异,其中纤维增强塑料复 合材料(FRP),亦称之为纤维增强聚合物或纤维增 强复合材料,是一种新型复合材料,主要由高性能纤 维、聚醋基、乙烯基或环氧树脂组成。常见FRP包 括玻璃纤维增强塑料(GFRP)、碳纤维增强塑料 (CFRP)、植物纤维增强塑料、有机纤维增强塑料 等。其具有高强、轻质、耐腐蚀、非磁性、耐疲劳,耐 腐蚀f’〕等优点,在社会各领域应用越来越广泛川。 1纤维增强塑料复合材料的现状 由于纤维增强塑料复合材料优异性能,备受国 内外专家学者及企业的关注,主要集中于几种纤维 增强材料,即玻璃纤维、碳纤维、有机纤维、植物纤 维、混杂纤维增强塑料等。20世纪60年代,美国为 其军事用途开发了高强度玻璃纤维即S玻璃纤维 (欧洲国家称为R玻璃纤维、日本称为T玻璃纤 维),由于制造成本相对较高,应用范围受到限制......(本文共计5页) 如何获取本文>>
试析《董卿主持风格》中央电视台的节目主持人,多年以来一直被各地的媒体公认为效仿的楷模,或者是追求的方向。可是就像萝卜青菜一样,央视的主持人风格不同,各有特点。而我则偏爱青菜的清新,喜欢即时尚又不乏营养的综艺节目主持人,这几年央视的领军人物当然就非董卿莫数了。 在观众的印象中董卿是一位专业的晚会节目主持人,大方得体,气质稳重,穿着成熟又不失风尚,在央视各套电视台的综艺节目中频频出现,成为中国观众最熟悉的主持人之一。我认为,央视的主持人从杨澜开始是我比较有印象的了,然后是倪萍,再后是周涛,一直到现在的董卿。除了董卿具有年龄优势以外,能在如此激烈的竞争与淘汰中站住脚,一定要有自己的特色。回头看,第一届比较著名的正大综艺主持人杨澜,当时的主持特点是比较阳光和知性。她一再证明着她被观众所喜爱。之后的倪萍,鲜明对比,主要是成熟稳重和亲切感强,易于带动现场气氛。经常用真情感染观众,把观众搞得眼泪汪汪,瞬时让观众耳目一新,也证明她获得了大多数观众的喜爱,可是这一特点,也有少数观众渐渐产生反感,随着时间的增长,观众们觉得这种过于煽情的主持风格已经看够看累了,需要新鲜血液。周涛正是当时观众眼中的新鲜血液,她外表时尚,和轻松干练的主持风格,正和大众的胃口,主持节目的时候,废话很少,语言干练,精巧。着实吸引了观众的眼球。而董卿,在我看来,她聪明的具备了以上三位的所有特点于自身,知性,时尚,又善于对着镜头抒发自身情感的她,在各种场合应变及时,大方得体,并且懂得看场合随时变换风格。比如《青歌大赛》时,她会让自己尽量轻松一些,和紧张的参赛选手形成对比,同时又可以缓和选手的情绪,却把握分寸不会因为自己的轻松,影响到赛场的严肃气氛,这里可以看见杨澜的知性。而《欢乐中国行》,正是一个半分百的娱乐节目,董卿拿出了自己一切的开朗活泼,尽量做到时尚又亲切,在台上表现活跃,却不像其他地方台的节目主持人在台上乱来,这里有一点周涛的时尚又精巧。我曾经还多次看过董卿主持的慈善类节目,比如说最近的《为了母亲的微笑》是一场为了灾区贫困儿童捐款的晚会。我想她有些效仿了倪萍的本事,在描述灾区儿童生活状态时动了真情,而感动了在场和电视机前的所有观众。而超越倪萍的是,恰到好处的只让眼泪在眼圈里打转。(这点是真本事!)另外,董卿的穿着时尚得体,身材苗条,所以在视觉上经常给人耳目一新的感觉,基本功扎实,虽然是上海人,但吐字归音非常清楚,是我最需要学习的,基本功是最最重要的,让观众听清楚,听明白是基本。因此在各种场合,她都可以展现她优秀的功底。这是我对董卿的基础了解,我印象中她没有出过书,所以了解不足,请师傅指正!
中科院化学所工程塑料国家重点实验室取得的成就有:单体插层缩聚制备了尼龙6/粘土纳米复合材料,可大幅度提高其热变形温度,扩大了材料的应用范围,并对插层剂的碳链长度与有机蒙脱土的层间距的关系进行了研究,在此基础上开发了PET/粘土、PBT/粘土纳米复合材料,提高了材料的热性能和阻隔性,其中PET/粘土纳米复合材料的结晶速度较PET提高了约5倍。此外还通过聚合物溶液插层及熔体插层分别制备出硅橡胶/蒙脱土及PS/粘土纳米复合材料,其中硅橡胶/蒙脱土纳米复合材料具有良好的耐磨性,各项物理、力学性能指标得到很大提高,可代替气相白炭黑填充硅橡胶,具有实用前景。相信在不久的将来,PLS纳米复合材料将会广泛应用于高分子材料及其它领域。
开题报告填写事项一、填写必须实事求是,字迹要端正、清楚。二、本报告的第一至第六部分由研究生本人填写(字数不少于2000字)。其余部分由指导教师、开题报告评议小组、教研室(研究室)主任、院长、研究生处填写。三、硕士研究生开题报告日期规定为进校后第三学期完成。四、开题报告评议小组由学院统一集中组织,对开题报告通不过者要在1至2个月内补做,重新审核合格后,才允许正式进入课题,否则取消进入论文阶段资格。五、此表留存研究生处学位办一份。 本课题所涉及的内容(包括实验数据、计算机程序、导师未公开发表的研究成果及心得等),除在毕业论文中所发表的以外,本人保证:未经导师正式同意,五年内不以任何形式向第三方公开。研究生(签字) 导 师(签字) 年 月 日 一、课题的来源及意义本课题主要来源于导师的研究课题。现代科学技术发展使得复合化成为材料发展的必然规律。近年来,纳米复合材料的研究发展迅速,无论是从学术研究角度考虑,还是从工业生产实际出发,人们都已开展了大量的实验研究工作。所谓纳米复合材料(Nanocomposites)是80年代初由Roy等人提出的,是指复合材料中分散相尺度至少有一维小于100nm的复合材料。由于纳米粒子具有小尺寸效应、大的比表面产生的界面效应、量子效应等特殊性能,故能赋予纳米复合材料许多特殊的性能,为设计和制备高性能、多功能新材料提供了新的机遇。纳米复合材料被誉为“21世纪最有前途的材料”,成为材料科学研究的热点之一。聚合物/层状硅酸盐(Polymer/Layered Silicate,PLS)纳米复合材料是纳米复合材料领域重要研究方向之一。PLS纳米复合材料既具有高分子材料的质轻、耐腐蚀、绝缘性好、易加工等特点,又具有无机材料的高强度、高模量、高耐热性等优点,有着广阔的发展前景。PLS纳米复合材料除具有一般纳米复合材料的性能外,还因其特有的纳米尺度上的片层结构使得复合材料的耐热性、尺寸稳定性、气体阻隔性及阻燃性等得到明显提高。PLS纳米复合材料的研制与开发为提高传统聚合物材料性能、拓宽聚合材料的应用范围起到了极大的促进作用。根据复合物的微观结构,可以把复合物分成四类:相容性差的粒子填充复合物;普通的微粒填充复合物;插层型纳米复合材料;剥离型纳米复合材料。只有第三、第四类复合物实现了纳米尺度上的插层复合,且第四类复合物即剥离型纳米复合材料由于无机物在聚合物基体中实现了充分均匀的分散,其纳米尺度效应显著、界面结合强度更高。此类复合材料具有优异的力学性能和耐热性,并且材料的阻隔性均有所提高,是当前研究的主方向。PLS纳米复合材料以其优良的性能越来越受到广泛地重视。目前,PLS纳米复合材料已从基础研究阶段向工业化生产阶段发展,日本的丰田公司(TOYOTA)、宇部公司(Unitsika)、美国的南方粘土(Southernay)等已经研制开发出PLS纳米复合材料的商业化产品。本课题利用省内层状硅酸盐矿物(膨润土)和高分子原料,对聚合物原料进行改性,对膨润土原料进行深加工处理。研究聚合物、层状硅酸盐二者之间的复合机理、结晶过程、界面特征以及结构性能之间的关系,研究加工制备工艺过程对PLS纳米复合材料性能的影响以及最佳制备工艺参数的确定。用合理的加工技术方法,制备出性能优良的剥离型纳米复合材料。这既是本课题的特色和创新之处也是纳米复合材料的研究发展趋势所在。二、简述该领域目前的国内外研究水平和发展趋势聚合物/层状硅酸盐纳米复合材料是当今众多无机纳米粒子改性复合材料中最有潜力的一类纳米复合材料,也是目前研究最多、最有希望工业化生产的聚合物纳米复合材料。自从1987年日本丰田公司的研究开发中心首次报道用插层聚合的方法制备了尼龙6/粘土纳米复合材料以来,由于聚合物/粘土纳米复合材料实现了纳米相分散、强界面作用和自组装并具有较常规聚合物/无机填料复合材料无法比拟的优点(如优异的力学、热学性能和气体阻隔性能等),因此倍受关注。据报导,预计今后PLS纳米复合材料的产值每年会增长约100%。到2009年,产值会达到15亿欧元/年,产量会达到50万吨/年。PLS纳米复合材料将会遍及人们生活的各个方面,飞机、汽车、包装、电子电器、建材、家俱等产业将广泛受益于这种新型材料。1、 国外PLS纳米复合材料研究现状自从20世纪80年代末期,Okada等人报道了PA6/层状硅酸盐纳米复合材料以来,迄今这一领域已得到长足的发展,成为目前聚合物材料的一个新热点。到目前为止,日本丰田研究中心、美国康耐尔大学、密歇根大学以及中国科学院化学研究所国内外众多研究单位都在这一领域进行深入的科学研究。1987年,丰田中心研究和发展公司的Fukushima和Inagaki仔细地研究了聚合物/层状硅酸盐复合材料后,用季铵盐取代粘土片层间的无机离子,成功地改善了粘土与聚合物基体的相容性,研制出PLS型尼龙6/硅酸盐纳米复合材料,材料的热变形温度较纯尼龙6有大幅度提高,同时力学性能与阻隔性能均有不同程度的提高。丰田中心研究和发展公司的Usuki、Fukushima用已内酰胺的原位聚合法制备了剥离型的尼龙6/蒙脱土纳米复合材料(季铵盐改性的蒙脱土事先被均匀地分散于已内酰胺中),并制备出聚酰亚胺/蒙脱土纳米复合材料,发现只需添加2%(质量分数)的粘土,材料的气体阻隔性及线胀系数显著降低,适合PI在微电子领域的应用,这极大地引起了材料科学家的关注。美国Comell大学的R A Vaia和E P Giannelis等对聚合物熔体插层进行了热力学分析,认为该过程是焓驱动的,因而必须加强聚合物与粘土间的相互作用以补偿整个体系熵值的减少。在此理论的指导下,他们通过聚合物熔体插层制备出PS/粘土,聚氧乙烯/粘土纳米复合材料,并对层间聚合物的受限运动行为进行了研究。Usuki等人深入研究了有机插层剂对插层复合的影响,并制备出一系列PLS纳米复合材料,并首先报道了“两步法”制备聚酰胺6/蒙脱土纳米复合材料,即先用12~18烷基氨基酸作插层剂对钠基蒙脱土进行阳离子交换处理,然后将阳离子交换后的蒙脱土与ε-己内酰胺复合,在常规条件下聚合,得到聚酰胺6/粘土纳米复合材料。西欧一些国家也先后制定了发展纳米复合材料研究的计划。一些国外的大公司特别是生产聚合物的厂家纷纷加入聚合物纳米材料的开发应用。目前,丰田汽车公司已成功地将Nylon 6/clay纳米复合材料应用于汽车上。由于层状硅酸盐是纳米尺度分散于聚合物基体中,可以成膜、吹瓶和纺丝。在成膜和吹瓶过程中,硅酸盐片层平面取向形成阻挡层,因此可用于高性能包装和保鲜膜。2、国内PLS纳米复合材料研究现状我国的PLS纳米复合材料研究开始于90年代,现已取得了许多成果,并已列入国家“863规划”和“九五计划”的重点研究开发课题。中科院化学所对聚合物基粘土纳米复合材料的研究,发明了“一步法”制备Nylon 6/粘土纳米复合材料(nc-PA6),即将蒙脱土阳离子交换、己内酰胺单体插层以及单体聚合在同一个分散体系中完成,在不降低产品性能的前提下缩短了工艺流程,降低了成本。黄锐等利用刚性粒子对聚合物改性的研究在学术界极有影响;另外,四川大学高分子科学与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的制备手段。中科院化学所工程塑料国家重点实验室取得的成就有:单体插层缩聚制备了尼龙6/粘土纳米复合材料,可大幅度提高其热变形温度,扩大了材料的应用范围,并对插层剂的碳链长度与有机蒙脱土的层间距的关系进行了研究,在此基础上开发了PET/粘土、PBT/粘土纳米复合材料,提高了材料的热性能和阻隔性,其中PET/粘土纳米复合材料的结晶速度较PET提高了约5倍。此外还通过聚合物溶液插层及熔体插层分别制备出硅橡胶/蒙脱土及PS/粘土纳米复合材料,其中硅橡胶/蒙脱土纳米复合材料具有良好的耐磨性,各项物理、力学性能指标得到很大提高,可代替气相白炭黑填充硅橡胶,具有实用前景。相信在不久的将来,PLS纳米复合材料将会广泛应用于高分子材料及其它领域。3、存在的问题及研究发展趋势PLS纳米复合材料的不断涌现以及大量研究结果的报道,让我们看到了这类复合材料具有的优异特性,使得层状无机物插层改性聚合物制备高性能纳米复合材料成为国际上最新技术热点之一,但也存在以下几个问题。① PLS纳米复合材料的研究尽管十分热门,但由于其插层复合机理复杂、结构与界面特征复杂,微区尺寸小,再加上量子效应、表面效应等,对它的研究还不够深入,特别是运用热力学、动力学和结晶学知识研究不够。对其结构、形态特征与材料性能的关系研究较少,合成方法大多基于合成宏观材料上的改进,存在着一定局限性;② 剥离型PLS纳米复合材料比其它类型的复合材料具有更优异的性能,但对原材料加工处理、制备方法要求严格,对其制备工艺及过程研究不够;③ 高聚物与纳米材料的混合、分散缺乏专业设备,用传统的设备往往使纳米粒子得不到良好的分散,要研究出新的混合分散技术方法及设备。三、课题所要研究的内容及实施方案(主要研究内容及预期成果,拟采用的研究方法、技术路线、实验方案的可行性分析。)1、研究内容(1)了解相应聚合物的物理化学性质,合成方法,用途及研究现状;了解PLS纳米复合材料所具备的优良性能,熟悉国内外PLS纳米复合材料的应用现状、研究进展、存在的问题及解决的措施; (2)研究层状硅酸盐(膨润土)矿物学特征和纳米结构特征(层间距、层面特征和边缘特征),熟悉测试表征方法;并掌握对测试结果分析的技术方法;(3)深入研究膨润土提纯、钠化、有机化的各种方法、反应机理;了解钠基土及有机土的应用价值和研究现状;制定合理的实验方案,对膨润土进行提纯,通过实验选择合适的反应条件和合适的钠化剂和表面修饰剂进行钠化、有机化,制备出亲油或亲水亲油的纳米膨润土;(4)了解剥离型PLS纳米复合材料制备方法及性能特点,从动力学、热力学、结晶学、流变学等方面探讨纳米材料复合过程和机理;(5)选择聚对苯二甲酸丁二醇酯(PBT)、聚氨酯(PU)两种聚合物,对其进行改性(接枝方法和离子化方法)制定合理的加工制备方案、确定最佳实验流程及实验参数,制备出剥离型PLS纳米复合材料;(6)从制备方法、表面改性剂的选择、加入第三组分等方面研究有机膨润土在聚合物中的分散形态;并探讨多相体系中物相界面结构特征,制备出剥离型纳米复合材料。 (7) 研究PLS纳米复合材料结构和性能之间的关系。进行产品结构分析、力学性能和阻燃性能对比测试分析。2、预期成果(1)制备出优良的有机膨润土,制备出改性性能良好的聚合物;(2)制备出剥离型PLS纳米复合材料;(3)预期在核心期刊发表2篇论文或申报1项发明专利;(4)完成毕业论文的编写,顺利通过答辩。3、研究方法及技术路线(1)实验研究流程图(2)实验研究过程(方案)① 层状硅酸盐的选择及改性处理目前为止,能够在PLS纳米复合材料中得到应用的有膨润土、高岭土、海泡石等少数几种属于层状硅酸盐的矿物质。这其中最根本的原因是绝大多数的层状无机矿物质无法利用插层处理的方式扩张其片层之间的重复间距。因此,虽然他们具有层状的结构,各相邻的片层之间也具有一定的空间,但却不足以容纳旋转半径为上百埃的聚合物分子链插入到各片层之间,形成所谓的插层复合材料;而仅仅允许离子、小分子等小的介质进入其中。对于膨润土、高岭土等粘土矿物, 由于他们具有较大的初始间距以及可交换的层间阳离子,使得我们可以利用离子交换的方式将他们的层间距扩大到允许聚合物分子链插入的程度,从而可以利用它们制备出性能优异的插层纳米复合材料。本课题利用省内矿产资源优势膨润土,其主要成分为蒙脱石。蒙脱石的基本结构单元是有一片铝氧八面体夹在两片硅氧四面体之间靠共用氧原子而形成的层状结构,属于2:1型层状硅酸盐。每个结构单元的尺度为1nm厚、长宽均为100nm的片层,层间有可交换性阳离子,如Na+、Ca2+、Mg2+等金属离子,因此容易与烷基季铵盐或其他有机阳离子进行交换反应生成有机膨润土。由于膨润土本身的亲油性较差,聚合物的单体或分子链又多为亲油性物质。因此,膨润土使用前必须经过有机化改性处理。膨润土改性处理方案。A、膨润土的提纯实验方案:将膨润土与水(固液比为1:10)配成悬浮液,再经高速旋转的离心机沉降分离,并且加入适量的分散剂(六偏磷酸钠),进一步分离粒度较细的碎屑矿物(长石、碳酸盐等),得到粒度小于5µm的膨润土浆料或悬浮液,再将该悬浮液抽滤、洗涤、干燥、打散解聚,即可得到高纯度的膨润土产品。测其吸蓝量,CEC,膨胀倍,胶质价等性能指标。B、钙基膨润土的钠化钠化原理:当膨润土-水系统中存在两种离子时,就存在一个动态的吸附-解吸平衡,即离子吸附与交换过程。如当膨润土-水系统中同时含有Ca2+、Na+时就会发生如下离子交换平衡: Ca-膨润土+2Na+ 2Na-膨润土+Ca2+钠化剂的选择、用量、钠化温度及钠化时间对钠化效果都有一定的影响,通过实验,确定最佳反应条件。C、膨润土的有机化在制备PLS纳米复合材料时,常采用有机阳离子(插层剂)进行离子交换而使层间距增大,并改善层间微环境,使粘土内外表面由亲水转变为疏水,降低硅酸盐表面能,以利于单体或聚合物插入粘土层间形成PLS纳米复合材料。因此插层剂的选择是制备PLS纳米复合材料的关键步骤之一。它必须符合以下几个条件:(1)容易进入层状硅酸盐晶片(001面)间的纳米空间,并能显著增大粘土晶片间层间距;(2)插层剂分子应与聚合物单体或高分子链具有较强的物理或化学作用;(3)价廉易得,最好是现有的工业品。在不同用量、酸碱性、反应温度等条件下,选择阳离子(十六烷基三甲基溴化铵)、阴离子(十二烷基硫酸钠)及阴阳双离子为插层剂,制备有机土,通过测试确定最佳反应条件。② 聚合物改性③ PLS纳米复合材料的制备A、复合材料的类型从微观结构上看,复合材料可分为四类,如下图。在第一类复合物中(a),蒙脱土颗粒分散在聚合物基体中,但聚合物与蒙脱土的接触仅限于蒙脱土的颗粒表面,聚合物没有进入蒙脱土颗粒中。第二类复合物(b)中,聚合物进入蒙脱土颗粒,但没有插层进入硅酸盐片层中。在插层型复合物(c)中,聚合物不仅进入蒙脱土颗粒,而且插层进入硅酸盐片层间,使蒙脱土的片层间距明显扩大,但还保留原来的方向,片层仍然具有一定的有序性。在剥离型复合物(d)中,蒙脱土的硅酸盐片层完全聚合物打乱,无规则地分散在聚合物基体中,此时蒙脱土片层与聚合物实现了纳米尺度上的均匀混合。四类复合材料中只有后两种才算是纳米复合材料,而且第四类剥离型复合材料比第三类插层型复合材料具有更理想的性能,是众多材料科学家追求的目标,也是本课题研究的重点。 B、制备方法插层复合法(Intercalation Compounding)是制备PLS纳米复合材料的方法。按照复合的过程,插层复合法可分为两大类。(1)插层聚合法(Intercalation Polymerization),即先将聚合物单体分散、插层进入层状硅酸盐片层中,然后原位聚合,利用聚合时放出的大量热量,克服硅酸盐片层间的库仑力,使其剥离(exfoliate),从而使硅酸盐片层与聚合物基体以纳米尺度相复合;(2)聚合物插层(Polymer Intercalation),即将聚合物熔体或溶液与层状硅酸盐混合,利用力化学或热力学作用使层状硅酸盐剥离成纳米尺度的片层并均匀分散在聚合物基体中。从制备方法来看,PLS纳米复合材料的制备可分为单体插层原位聚合与大分子直接插层;从实施途径来说有溶液法和熔体法。它们互相组合成四种具体制备过程:大分子熔体直接插层;大分子溶液直接插层;单体熔体插层原位本体聚合;以及单体溶液插层原位溶液聚合。制备PLS纳米复合材料流程图如下:C、有机土加入量的选取有机土加入量的多少直接影响着制品的质量和性能,有机土的加入量过高时,体系的粘度增大,很难脱泡及浇注;有机土加入量过低时,有机土在体系中的分散不好,起不到增强和增韧的效果。对于有机土加入量的多少,在研究领域内众口不一。我们采用不同含量(2-5%)的有机土进行插层复合,寻找最佳加入量。D、实验方案以PBT、PU聚合物为例,选用合适的插层方法,在不同的配料比下插层复合,测其力学性能、阻燃性能、热稳定性能等,从热力学、动力学等方面研究复合机理及影响复合过程的因素,得到性能优良的剥离型PLS纳米复合材料。(3)PLS纳米复合材料主要性能测试与表征① 甲醛容量法测膨润土阳离子交换容量(CEC),测吸蓝量计算膨润土中蒙脱土的含量,带塞量筒测其膨胀倍、胶质价;② 扫描电镜(SEM)测聚合物及PLS纳米复合材料的微观形貌;③ 傅立叶转换红外光谱(FTIR)分析,根据谱图的吸收峰判断有机化改性效果及插层效果;④ X射线衍射分析仪(XRD)测试膨润土的层间距和复合材料的剥离程度;根据谱图用Jade软件确定蒙脱土的化学成分及含量;⑤ 差热-热失重分析仪(TG-DTA)测定膨润土的转化温度及复合材料的热稳定性;⑥ 电子万能实验机测拉伸强度和断裂伸长率,判断聚合物及PLS纳米复合材料的力学性能。4、实验研究方案的可行性分析(1)实验室有一系列的实验仪器:如真空泵、磁力搅拌器、恒温水浴锅、高温炉、干燥箱、开练机、双螺杆机和造粒机等;学校测试中心有扫描电镜、X-射线衍射仪、傅立叶转换红外光谱仪、差热-热失重分析仪、原子力显微镜等测试用仪器;(2)导师长期从事这一领域的研究工作,有扎实的理论基础和丰富的实践经验,有师生组成的研究团队;(3)学校图书馆可以查到大量的中外文文献资料和学术专著,可供参考;(4)与企业合作,有丰富的实践基地和广阔的应用前景;(5)已做了一些实验前期工作,制得的复合材料力学性能显著提高,且热稳定性很好;(6)实验方案叙述合理,技术路线可行,理论基础清楚明了,实验研究条件基本具备,加上前期研究工作的进展,故本实验研究方案是可行的。四、课题研究的创新之处(研究内容、拟采用的研究方法、技术路线等方面有哪些创新之处。)(1)PLS纳米复合材料作为一个崭新的研究领域,对其研究尤其剥离型复合材料的研究可以说仍处于初级阶段,理论上不够成熟,制备技术不够完善,对材料的复合机理,材料的结构及结构与性能间的关系等方面还有待于进一步探索。本课题从热力学、动力学等方面研究聚合物与层状硅酸盐(膨润土)复合的界面特征、内部结合机理,并探讨复合过程、材料结构对其力学性能、阻隔性能、流变性能、结晶性能等的影响。(2)剥离型PLS纳米复合材料的发展水平仍处在实验研究或专利阶段,工业化项目极少,在高性能工程塑料、高性能树脂基体中的研究报道还较少。本课题从表面改性剂的选择、加入第三组分、高性能纳米膨润土的制备、聚合物的改性、合理制备方法的选择等方面进行系统实验研究,制备出性能优异的剥离型纳米复合材料。五、工作量及工作进度安排(包括文献查阅、方案设计与实现、计算与实验、论文书写等)起止日期 课题阶段工作进程2007.2~2007.92007.10~2007.122008.1~2008.22008.3~2008.42008.5~2008.62008.7~2008.82008.9~2008.102008.11~2008.122009.1~2009.3查阅文献资料、学术专著、参考书等,同时做了大量实验前期工作及一定的实验研究工作;写开题报告并进行答辩,准备实验所需试剂和仪器;研究钠基土、有机土的结构及结构与性能的关系,设计实验方案;通过实验和性能表征确定钠化、有机化过程最佳反应条件;在最佳反应条件下制备大量有机土,用XRD、FTIR、TG-DTA等表征,做好实验记录;以PBT、PU聚合物为例,了解其物理化学性能、合成机理、合成方法及应用现状;选择合适的反应装置、合成方法,用单体合成所需要的聚合物;查阅大量当前最新的中外文文献,了解纳米复合材料的研究现状及先进的制备方法;选择不同的有机土加入量(2-5%),用聚合物熔融插层法,聚合物熔液插层法,单体插入原位聚合法等不同的方法,控制反应条件,制备PLS纳米复合材料;对制品进行力学性能、热学性能、阻隔性能等方面的测试,确定有机土的最佳加入量,找出即使制品性能优异、成本低又环保的制备方法;用SEM测试产品的形貌,证实其剥离程度;用XRD测试有机土的层间距,分析其改性效果;复合材料中界面层的性质可以用示差扫描量热法(DSC)来表征;热失重分析(TGA)可以研究有机物对蒙脱土的改性程度及纳米复合材料的耐热性;选择最好的制备方法,将聚合物与有机土进行复合,研制出纳米复合材料制品并详细表征其各种性能;撰写论文,准备答辩。六、国内外主要参考文献(列出作者、论文名称、期刊名称、出版年月) 序号 参考文献名称 梁宏斌,倪靖滨.聚合物/纳米复合材料研究进展[J].化学工程师,2006,3:26-28.陈光明,李强,漆宗能.聚合物/层状硅酸盐纳米复合材料研究进展[J].高分子通报,1999,4:1-9.韩建竹,夏英.聚合物/蒙脱土纳米复合材料的研究进展[J].高分子通报,2006,12:66-70.李春生,周春晖,李庆伟.聚合物/蒙脱土纳米复合材料的研究进展[J].化工生产技术,2002,9(4):22-26. 陈国华,李明春.聚合物/粘土纳米体系[J].高分子材料科学与工程,1999,15(3):9-12.Jitendra K Pandey,et a1.Polymer Degradation and Stability,2005,88:234舒中俊,陈光明,漆宗能.聚合物/粘土纳米复合材料及其特殊阻燃性[J].2000,28(3):24-26.张秀英,李国昌,王萍等.利用山东膨润土生产有机膨润土研究[J].2007,27(1):35-36.潘兆橹,万朴应用矿物学[M].武汉:武汉工业大学出版社,1993.杨雅秀.中国粘土矿物[M].北京:地质出版社,1994.周建工,鲁安怀.利用低品位天然钙基膨润土制备低成本有机粘土实验研究[J].北京大学学报(自然科学版),2006,42(4)457-467.陈兴华.聚合物/层状硅酸盐纳米复合材料的最新研究进展[J].广西轻工业,2007,(1):35-37.黄锐,王旭,李忠明.纳米塑料-聚合物/纳米无机物复合材料研制、应用与进展[J].中国轻工出版社,2002,(4):10-12.祝启砷,黄志良,王西文等.膨润土提纯增白与钠化改型联合处理工艺[J].中国矿业,2002,11(5):44-46.漆宗能,尚文字.聚合物/层状硅酸盐纳米复合材料理论与实践[M].化学工业出版杜,2002.ChenTian Y.Synthesis and Characterization of Novel Segmented Polyurethane/Clay Nan composites.Polymer,2000,41(4):1345-1349.Cho,K.Lee, JKwon, K.J.Appl.Polymer Sci.2001,(79):1025-1028.G-M.Kim D-H,Lee,B.Hofmann,et a1.Influence of nanoflllers on the deformation process in layered silicate/polyamide-12 nanoeomposites.Polymer,2001,42(3):95-110.Hao Fong,Weidong Liu,Chi-Shan Wang,et a1.Generation of electro spun fibers of nylon 6-montmorillonite nanocomposite.Polymer,2002.43(3):775-780.Cheon II Park,Park et a1.Polymer.2001,42:7465-7475. Fornes T D,Yoo P J,et a1.Polymer.2001,42:9929-9940.Cho J W,Paul D R.Polymer,2001,42:1083-1094.Kaempfer D.Thomann R.el a1.Polymer.2002.43:2909-2916.Dennis H R,Hunter D L,a1.Polymer.2001,42:9513-9522.Marosi G,Keszei S Matko S,Bertalan G.Fire and Polymer,2006,4:117.Sorathia U,Lynon R,Gann R G.Fire Technology,1997,33(3):351.S.S.R.ay,K.YamadaM,Okamoto,et a1.New polylactide-layered silicate nanocomposites.Concurrent improvements of material properties,biodegradability and melt theology [J].Polymer,2003.44(3):857-866.宋军,倪卓,王宝辉,等.聚丙烯/蒙脱土纳米复合材料的制备和性能[J].现代塑料加工应用,2005,17(2):14-16.苏海霞,曾幸荣.聚吡咯/有机蒙脱土纳米复合材料的制备及其导电性[J].化学与黏合,2005,27(3):127-130.郑华,张勇,彭宗林,等.三元乙丙橡胶/蒙脱土纳米复合材料的制备与性能研究[J].世界橡胶工业,2005,32(6):l1-13.吴德峰,周持兴.聚对苯二甲酸丁二醇酯/蒙脱土纳米复合材料的结晶结构及流变行为[J].高分子材料与工程,2005,21(5):132-136.1、 至少列举国内外参考文献20篇;2、 教科书、工具书不能作为参考文献;3、 专著等参考书的数量小于总数量的三分之一;4、 近五年出版的参考书数量不小于总数量的三分之一;5、 外文参考文献的数量不小于总数量的三分之一。
着人民收入提高,生活方式和消费习惯的改变,美容健康服务逐渐成为一个新的消费 热点 。下面是我为你精心整理的关于美容与健康论文,希望对你有帮助!
摘要:要遵循(细部观察及不断询问客人的感觉及反应,客人极度不适,要停止观察)、专心照顾(一面护肤,一面专注观察过程的变化,一有肤变,立即停止)、小心使用护肤品(选择护肤用品要有专业常识,并小心使用,刺激性较弱的保养品为优先考虑)的“三心”原则,避免护肤过程中引发刺激产生类敏感的不适。
关键字:敏感、皮肤、保养、生活细节
敏感性皮肤就是容易因饮食、情绪或所用的护肤用品,导致皮肤表面干燥、发红、起斑点、眼肿、脱皮或生暗疮等。 敏感性皮肤最直接的定义就是“易受刺激而引起某种程度不适的皮肤”,易受刺激是主要关键,这种皮肤一般都比较白,毛孔也较细小。敏感性皮肤一般很脆弱,遇到外在环境出现变化,肌肤无法调适。而出现不舒服的感觉,这是一种不健康的皮肤类型。
要遵循(细部观察及不断询问客人的感觉及反应,客人极度不适,要停止观察)、专心照顾(一面护肤,一面专注观察过程的变化,一有肤变,立即停止)、小心使用护肤品(选择护肤用品要有专业常识,并小心使用,刺激性较弱的保养品为优先考虑)的“三心”原则,避免护肤过程中引发刺激产生类敏感的不适。敏感性肌肤在换季的季节最易发生,热温由热变冷,空气中的相对湿度由高变低,很多平常自觉皮肤较脆弱的人,在秋冬时期,无论护肤的选择方式以及护肤用品的选择,都是配合专业秉持“三心”的原则,逐渐改善肤质,让美丽的肌肤臻于至善至美。
一、敏感性皮肤主要具有下列特征表现:
1. 皮肤表皮薄,细腻白皙,皮脂分泌少,较干燥,微血管明显,皮肤呈现干燥机能减退,角质层保持水分的能力降低,肌肤表面的皮脂膜形成不完全。
2. 接触化妆品或季节过敏后易引起皮肤过敏,出现红、肿、痒。皮肤缺乏光泽,脸颊易充血红肿。
3. 因季节变化而使皮肤容易呈现不稳定的状态。主要症状是搔痒、烧灼感、刺痛、皮肤发痒和出小疹子。
4. 容易受冷风、食物、水质、紫外线、合成纤维、香味、色素等外在环境或物质的影响。
5. 当接触到刺激性物质就会引发肌肤的问题。对阳光、气候、水、植物(花粉)、化妆品、香水、蚊虫叮咬及高蛋白食物都有可能导致过敏。
二、敏感肌肤大致分为以下几种类型:
A.干燥性敏感肌肤
无论什么季节,肌肤总是干巴巴且粗糙不平,一搽上化妆水就会感到些微刺痛、发痒,有时会红肿,有这几种症状的人属于干燥性敏感肌肤。肌肤过敏的原因是因为肤持干燥,导致防卫机能降低,只要去除多余的皮脂和充分种保湿即可。
B.油性敏感肌肤
脸上易冒出痘痘和小颗粒,会红肿、发炎,就连脸颊等易干燥部位也会长痘痘,专家称有这些症状的人应属于油性敏感肌肤。敏感原因为过剩附着的皮脂及水分不足引起肌肤防护机能降低,只要去除多作的皮脂和充分保湿即可。
C.压力性敏感肌肤
季节交替及生理期前,化妆保养品就会变得不适用,只要睡眠不足或压力大,肌肤就会变得干巴巴,有这几种症状的人应属于压力性敏感肌肤。原因在于各种外来刺激或荷尔蒙失调所引起的内分泌紊乱。
D.永久性敏感肌肤
如同过敏性皮肤炎或阳光、香料、色素等异常敏感来源。特定的刺激物(过敏源)引起过敏反应,如果依然按照自己日常的保养方式会很危险,最好公平是马上到皮肤科诊所求诊,并用医师所建议的保养产品。
三、注意护理
成为敏感性肌肤后,皮肤会变得非常脆弱,外界轻微的变化都有可能导致肌肤过敏,因此在平常的养护中一定要注意小心呵护。
1.保持皮肤清洁。春天多风沙,这些灰尘与分泌旺盛的皮脂相混合,易造成皮肤粗糙,故应时刻保持皮肤清洁,可用温和的洗面奶及柔肤水,帮助杀菌、清洁、柔软肌肤。皮肤在冬季多因干燥缺水而异常敏感,因此在选择护理用品时,应选不含香料、酒精、重防腐剂的成分。
2、洁面剂方面,不要选太浓太刺激的碱性产品,由于碱性太强,会伤害皮肤,因此应以温和而偏微酸性的洁面乳为佳。 此外,洁面时亦不应使用洁面刷、海绵或丝瓜络,以免因摩擦而造成敏感。使用天然植物制成的护肤品,如用蔬菜水果制成的护肤品或面膜。不宜使用含有药物或动物蛋白的营养护肤品及面膜,因皮肤对其易发生过敏。
3.不要随意更改往日用惯的化妆品品牌,因为皮肤需要适应新的气候,正处于一种抵御、适应外界环境能力较为薄弱的时候,随意更改品牌的话,很容易出现过敏。
4.随时注意皮肤的保湿,增强皮肤的抵抗力,可选用清爽型、亲水性护肤品,原来冬季使用, 的含油多的护肤品应尽量少用。跟夏季不同,在干涸的秋冬,敏感性皮肤在使用粉底时,除要顾及防敏感的作用外,也应选择含高水分的湿粉底,以减少因干燥而造成的痒痛。
5.对寒风和紫外线过敏的皮肤,外出应保护好皮肤。如冬天戴好防寒帽及口罩,防止寒风侵袭。夏天应撑伞或戴遮阳帽,面部皮肤涂防晒霜,防止日光曝晒。
注意风沙对皮肤的影响,平时皮肤较敏感的人外出时要注意这些。
6.饮食上多吃新鲜水果、蔬菜,少食刺激性强、易引起过敏反应的食物如海鲜、笋类等。多补充维他命C ,缺乏维他命C,容易令皮肤粗糙枯干,从而引致皮肤炎、脱皮等敏感症状。在含丰富维他命C的蔬果中,梨与奇异果是首选,多吃可以加强皮肤组织,有助对抗外来敏感。
7、晚上护理皮肤时,应用水果汁或蔬菜汁护肤。既起到营养皮肤的作用又防止皮肤过敏。
8、定期到美容院做皮护,对改善皮肤的条件,增加皮肤的抗敏性有较好的作用。
四、注意化妆品的选择
1.洁面产品
我们的皮肤通常在秋冬季会因缺水干燥而异常敏感,因此护理品应以不含香料,酒精,防腐剂等成分为准。对于敏感性肌肤者而言,洁面产品不能太刺激,可选温和而偏微酸性的洁面乳。这里要强调的是,洁面时水温不能太热也不能太冷,更不能用肥皂和香皂洗脸等含碱性物质的洁面乳洗脸,那样会加重皮肤过敏的症状。另外,敏感性皮肤不宜使用磨砂膏、去死皮膏等。这是因为皮肤的角质层薄和角质层损伤是造成敏感的主要原因,因而保养的首要原则就是维护角质层不受伤害。像尚赫的海洋活肤洁颜露和蓝希活性金洗面乳就是两款不错的洁面品。前者集卸妆和清洁为一体,能彻底清除肌肤表面彩装及深层污垢,同时对皮肤进行滋养保护;后者由于其独特的成分,能让用者在彻底清洁面部污垢的同时使肌肤得到滋养并增强肌肤自身免疫机能。
2.爽肤水
洗完脸后涂上爽肤水能使面部有清爽及光滑的感觉,一般的爽肤水都含有酒精,除容易令敏感皮肤发红外,当酒精挥发后还会令皮肤感觉很紧绷。所以皮肤敏感的朋友应该选择性质温和又不含有酒精,香料的爽肤水。涂时应用手指指腹轻弹,不宜大力拍打。具有海洋高密度锁水分子,海洋粘多糖等成分的尚赫海洋活肤水,是爽肤水中的好品牌,它能在皮肤表面形成柔软平滑的保湿屏障,活化肌肤细胞,具有辅助、提高保养品吸收的功能。
3.日霜
皮肤敏感的朋友不宜选用带刺激性而浓度高的修复霜,偏微酸性而无香料或标明敏感皮肤专用的最好。由于秋冬阳光不如夏季强烈,日霜中便不需要使用油光控制的成分,但应以能着重锁紧肌肤水分的活性粒子成分为主. 比如内含海洋高密度锁水因子,锁水磁石的尚赫海洋活肤精华霜,它能在表皮形成3D保湿水网,平衡油水,超强保湿,同时修复受损细胞。
4.面膜
敏感性肌肤浅薄的角质层常常不能保持住足够的水分,无论是在夏天的冷气房中,或是在冬天干燥的气候中,具有这种肤质的人,会比一般人更敏锐地感觉到皮肤缺水、干燥,因而日常保养中加强保湿非常重要。除使用含保湿成分的化妆水、护肤品外,还应经常性地定期做保湿面膜。海洋活肤面膜,含有丰富的矿物质及微量元素,能提高细胞活力、达到油水平衡,促进血液循环及新陈代谢。将清洁,补水、美白一次完成。
5.隔离乳
敏感性肌肤者比非敏感性肌肤者更易在日常生活中对刺激性物质产生反应,因此外出或者上彩妆之前,涂上一层隔离乳就显得尤为重要。尚赫海洋活肤隔离乳,能隔离紫外线,粉尘等有害物质,提供全天候的保湿作用,抗自由基及氧化物质,防止皮肤衰老。它清爽透气,不油腻,同时修饰肤色,为肌肤增添光彩。
对于敏感性皮肤我们既要注重平时在日常生活中的饮食又要注重保养。希望每个人对自己的皮肤负责,还自己一个美丽。
参考文献:
1、农牧岗,梁作裕,覃君良,曹烁;中成药药理实验 方法 的探讨——美容中成药药理实验方法初探[J];中药药理与临床;1985年00期
2、吴琰瑜,王学民;敏感性皮肤的测试及其评定[J];中华医学美学美容杂志;2003年04期
3、胡晋红,朱全刚,范国荣;皮肤药理学的研究进展[J];中国临床药理学杂志;2001年05期
4、王旭平 ,任道凤 ,金锡鹏;皮肤屏障研究方法的新进展[J];国外医学.皮肤性病学分册;1999年06期
【摘要】所谓“一白遮白丑”,亚洲女性对于美白有执着的追求。果蔬中含有丰富的营养维生素,有一种人体皮肤内表层易于吸收的褪色素。维生素的种类很多,功用也多种多样。它们不仅是维持生命的必要之素,而且是美容的重要物质,通过食用以及外敷都可提高皮肤的光泽及亮度。
【关键词】美白、维生素、果实美容。
现在市场上各种美白产品琳琅满目,对于美白肌肤很多女生都喜欢使用昂贵的美白产品,有时候用得多还比不上内服的效果好,其实在我们的身边就存在很多可以美容的食物,省钱又有效。现代医学研究发现,果蔬中主要含有维生素、矿物质、纤维素、不饱和脂肪酸等营养物质。维生素不仅是维持生命的必要之素,而且是美容的重要物质。人体一旦严重缺乏维生素,会影响到美容与健康。
一、影响肤色的因素
人类的肤色因种族不同而不同。在同一种族的人中,皮肤颜色的深浅也不完全相同。即使在同一个体中,皮肤的颜色也可受年龄,环境、季节、食物、皮肤状态,健康情况等因素的影响。一般来说,皮肤的颜色与下列因素有关。
(1)皮肤表皮角质层的厚薄。表皮透明层及颗粒层的厚薄、真皮层内血管的充血程度及皮肤表面的光洁度都与肤色有关。若角质层厚,皮肤偏黄色;颗粒层和透明层厚,皮肤显白;真皮层血液循环充足,皮肤红润;皮表若不平整,有凹陷,可使皮肤发青。
(2)黑色素 黑色素是由黑色素细胞产生的,它是使毛发和皮肤着色的黑褐或黄褐色色素,其数量与分布影响皮肤黑色调的深浅,是引起皮肤颜色变化的主要原因。
(3)内分泌 内分泌对肤色的影响主要是通过对黑色素的影响来实现的。例如肢端肥大症患者因为垂体分泌的促黑素激素增加,所以黑素的形成增加,使皮肤出现色素沉着。性激素特别是雌激素也能刺激黑素细胞分泌黑素,孕激素则促进黑素的转运和扩散,二者联合作用的结果就使妊娠妇女出现明显的色素沉着--妊娠斑。
(4)营养 人体内的各种代谢过程包括色素代谢在内均与营养有关。动物实验表明,酪氨酸、色氨酸、赖氨酸等氨基酸在黑素形成中是必需的。泛酸、叶酸、生物素、对氨苯甲酸等也可参与黑素形成。维生素C在黑素代谢中可使深色氧化型酿式产物还原,从而使色素转淡。维生素A缺乏引起毛囊角化过度而使流基减少,引起色素沉着。烟酸缺乏可对光敏感而出现色素沉着。微量元素在黑素代谢中也起很大作用,其中以铜离子和锌离子较为重要。身体中若缺少了铜离子和锌离子,毛发就要变白。此外,一些重金属,如砷、钮、银、金等,可以通过增强酪氨酸酶的活性而使黑素生成增加,引起皮肤色素沉着。
>>>下一页更多精彩“关于美容与健康论文”
共发表论文51篇1 皮肤软组织扩张术新进展 《国外医学》创伤与外科学基本问题。1989;4:2112 皮肤软组织快速扩张对随意皮瓣长宽比例影响的实验研究 中华整形烧伤外科杂志 1992;8(3):208-2103 快速扩张后皮肤软组织生物力学特性的实验研究 中华整形烧伤外科杂志 1994 1;10(1):34-374 皮肤软组织扩张术在小儿整形外科中的应用 上海第二医科大学学报 1993;13(2):3555 人工合成敷料概况 上海第二医科大学学报 1993;13(2):1686 硅凝胶在烧伤创面及防治中的作用 中华整形烧伤外科杂志 1993;9(8):3887 Experimental study of biochemical properties on rapid expanded skin上海第二医科大学学报外文版 1994;8(2):748 皮肤软组织快速扩张的实验研究 中华整形烧伤外科杂志 1995;11(5):3759 硅凝胶药膜-- 一种新的创面合成敷料的研制与评估 中国中西医结合杂志 1995;15 特集 32410 隆乳术后纤维囊挛缩机制研究进展 实用美容整形外科杂志 1995;6(2)67-7011 成纤维细胞生物学特性与扩张皮肤回缩的实验研究 中华医学美容杂志 2000 2;6(1):29-3012 扩张皮肤回缩机理的实验研究 中华整形外科杂志 2000 5;16(3):12-1513 扩张皮肤组织自身修复过程动态观察的实验研究 中华医学美容杂志 1998 6;4(2):76-7814 生理盐水充注式乳房假体的临床应用 中华医学美容杂志 1996 6;2(2):59-6115 皮肤软组织快速扩张的实验研究 中华整形烧伤外科杂志 1995;11(5):375-37816 48例耳廓再造与修复体会 中华整形烧伤外科杂志 1999 9;15(5):391-39217 荧光定量PCR测定整合素β1在瘢痕中的表达 实用美容整形外科杂志 2003 10;14(5):275-27718 整合素和TGF-β受体在增生性瘢痕成纤维细胞中的表达研究 上海第二医科大学学报。 2004 1;24(1):1-419 皮肤软组织扩张术 组织工程与重建外科杂志 2005 12;1(6):345-34720 隆乳术乳房假体容积的选择上海交通大学学报2003 年11月 2003,2(6):530-53221 整合素在增生性瘢痕挛缩过程中作用机制的实验研究.中华整形外科杂志,2006,22(1):38-4022 面颈部除皱术的研究进展. [J]中国美容整形外科杂志,2007,18(5):390-39323 强脉冲技术脱毛的疗效. [J]上海交通大学学报(医学版),2006,26(5):538-54024 粘着斑激酶在增生性瘢痕成纤维细胞中的表达和意义. [J]中国美容整形外科杂志,2007,18(2):116-11925 .强脉冲光照射对皮肤成纤维细胞胶原代谢的影响.上海交通大学学报(医学版),2007,27(8)952-95326 隆胸术后效果综合评估方法研究进展[J]中国美容整形外科杂志,2007,18(6):445-44827 采用腋皱劈小切口微创组织瓣剥离法治疗腋臭157例报告,[J] 组织工程与重建外科,2007,3(3):149-15128 下颌骨斜形截骨11例. [J]组织工程与重建外科,2007,3(3):145-14629 FAK对增生性瘢痕成纤维细胞中信号转导因子表达的影响[J]组织工程与重建外科.2008,4(6):320-32230 反义寡核苷酸对人增生性瘢痕成纤维细胞FAK和胶原合成的作用[J]中华整形外科杂志,2008,20(6):31 Study on Function of Focal Adensive Kinase and Integrin in Hyertrophic Scar Fibroblasts[J]J of Shanghai Second Medical Universitu,2008,20(1):7-1232 树突状细胞与FOXP3细胞在瘢痕中的免疫调节作用[J]中国美容整形外科杂志,2009,20(4):250-25333 肉毒素A对大鼠创面愈合过程中SP、CGRP、TGF-β1和α-SMA的影响.中华整形外科. 2009,25(1):52-56.第二作者1 Medpore 外科种植体在颅面整形中的应用 中国修复重建外科杂志 1998 3;12(2):7l-73 182 应用网状聚乙烯材料修复颅骨缺损8例 中华医学美容杂志 1999 6;5(2):103-1043 Medpore修复颅眶形的临床体会 口腔颌面外科杂志 1999;9(4)287-2884 皮肤扩张后不同时段超微结构变化的实验研究 临床医学美容杂志 2000 6(2):57-605 扩张后皮肤挛缩动力环境的实验研究 中华医学美容杂志 2001 2;7(1):10-126 皮肤扩张后转化生长因子β1的变化与作用的实验研究 中华整形外科杂志 2002 1;18(1):33-357 整合素在瘢痕增生中的作用 实用美容整形外科杂志 2003 4 14(2)94-968 α-平滑肌肌动蛋白和β-肌动蛋白在瘢痕组织中的表达 上海第二医科大学学报 2004 1;24(1)5-79 整合素在增生性瘢痕中的研究现状和前景 上海第二医科大学学报 2004 1;24(1)8-1010 整合素的研究进展 上海第二医科大学学报 2004 1;24(1)11-1311 隆乳术后包膜挛缩防治的研究进展。上海第二医科大学学报 2004 2;24(2)147-14912 隆乳术后疗效综合评估的临床研究中华现代外科学杂志 2006 2:3(4)289-29213 强脉冲光技术脱毛的疗效平萍、范志宏 上海交通大学学报(医学版)2006, 26(5): 538-540第三作者1 转化生长因子β与组织创伤修复综述 中国修复重建外科杂志 1999 9;13(5):283-2862 多孔高分子聚合物在眶周缺损修复中的应用 上海第二医科大学学报1999;1(19):32-333 乳晕下缘切口行盐水充注式假体隆乳术 孙炳伟邰宁正范志宏杨群钱云良 2000Vol.9No.6P.436-4384 扩张器在颚部皮瓣鼻再造术中应用探讨——临床报道10例5 内窥镜乳房整性的发展 实用美容整性外科杂志 2002 6;13(3):129-1316 内窥镜在乳房假体包膜挛缩微创治疗中的应用研究。中国实用美容整形外科杂志 2004;15: 283-2857 整合素和转化生长因子β受体在疤痕组织中表达相关性的定量研究。中国实用美容整形外科杂志 2004; 15: 318-3208 整合素在增生性瘢痕挛缩过程中作用机制的实验研究 中华整形外科杂志 2006. Jan; 22(1); 38-40