首页 > 学术发表知识库 > 勒贝格积分毕业论文

勒贝格积分毕业论文

发布时间:

勒贝格积分毕业论文

分类: 理工学科 问题描述: rt希望能给一个不错的网页连接多谢了.... 解析: 实变函数论的积分理论研究各种积分的推广方法和它们的运算规则。由于积分归根到底 是数的运算,所以在进行积分的时候,必须给各种点集以一个数量的概念,这个概念叫做测 度。什么实测度呢?简单地说,一条线段的长度就是它的测度。测度的概念对于实变函数论 十分重要。 *** 的测度这个概念实由法国数学家勒贝格提出来的。 为了推广积分概念,1893年,约当在他所写的《分析教程》中,提出了“约当容度”的 概念并用来讨论积分。1898年,法国数学家波莱尔把容度的概念作了改进,并把它叫做测度 。波莱尔的学生勒贝格后来发表《积分、长度、面积》的论文,提出了“勒贝格测度”、“ 勒贝格积分”的概念。勒贝格还在他的论文《积分和圆函数的研究》中,证明了有界函数黎 曼可积的充分必要条件是不连续点构成一个零测度集,这就完全解决了黎曼可积性的问题。 勒贝格积分可以推广到无界函数的情形,这个时候所得积分是绝对收敛的,后来由推广 到积分可以不是绝对收敛的。从这些就可以看出,勒贝格积分比起由柯西给出后来又由黎曼 发扬的老积分定义广大多了。也可以看出,实变函数论所研究的是更为广泛的函数类。 自从维尔斯特拉斯证明连续函数必定可以表示成一致收敛的多项式级数,人们就认清连 续函数必定可以解析地表达出来,连续函数也必定可以用多项式来逼近。这样,在实变函数 论的领域里又出现了逼近论的理论。 什么是逼近理论呢?举例来说,如果能把 A类函数表示成 B类函数的极限,就说 A类函 数能以 B类函数来逼近。如果已经掌握了 B类函数的某些性质,那么往往可以由此推出 A类 函数的相应性质。逼近论就是研究那一类函数可以用另一类函数来逼近、逼近的方法、逼近 的程度和在逼近中出现的各种情况。 和逼近理论密切相关的有正交级数理论,三角级数就是一种正交级数。和逼近理论相关 的还有一种理论,就是从某一类已知函数出发构造出新的函数类型的理论,这种理论叫做函 数构造论。 总之,实变函数论和古典数学分析不同,它是一种比较高深精细的理论,是数学的一个 重要分支,它的应用广泛,它在数学各个分支的应用是现代数学的特征。 实变函数论不仅应用广泛,是某些数学分支的基本工具,而且它的观念和方法以及它在 各个数学分支的应用,对形成近代数学的一般拓扑学和泛涵分析两个重要分支有着极为重要 的影响。

中国知网 绝对能搜到你想要的

勒贝格积分与实变函数论集合论的观点在20世纪初首先引起积分学的变革,从而导致了实变函数论的建立。1854年黎曼(德,1826-1866年)定义了黎曼积分,19世纪末,分析的严格化迫使许多数学家认真考虑所谓“病态函数”,特别是不连续函数、不可微函数的积分问题,如,积分的概念可以怎样推广到更广泛的函数类上?1898年波莱尔(法,1871-1956年)的测度论(1925年曾任法国海军部长),1902年勒贝格(法,1875-1941年)的博士论文《积分,长度与面积》建立了测度论和积分论,使一些原先在黎曼意义下不可积的函数按勒贝格的意义变得可积了,可以重建微积分基本定理,从而形成一门新的学科:实变函数论。成为分析的“分水岭”,人们常把勒贝格以前的分析学称为经典分析,而把以由勒贝格积分引出的实变函数论为基础而开拓出来的分析学称为现代分析。黎曼积分的重要推广,分析数学中普遍使用的重要工具。19世纪的微积分学中已经有了许多直观而有用的积分,例如黎曼积分(简称R积分)、黎曼-斯蒂尔杰斯积分(简称R-S积分)等。只要相应的函数性质良好,用这些积分来计算曲边形面积、物体重心、物理学上的功、能等,是很方便的。然而,随着认识的深入,人们愈来愈经常地需要处理复杂的函数,例如,由一列性质良好的函数组成级数所定义出来的函数,两个变元的函数对一个变元积分后所得到的一元函数等。在讨论它们的可积性、连续性、可微性时,经常遇到积分与极限能否交换顺序的问题。通常只有在很强的假设下才能对这问题作出肯定的回答。因此,在理论和应用上都迫切要求建立一种新的积分,它既能保持R积分的几何直观和计算上的有效,又能在积分与极限交换顺序的条件上有较大的改善。1902年法国数学家H.L.勒贝格出色地完成了这一工作,建立了以后人们称之为勒贝格积分的理论,接着又综合R-S积分思想产生了勒贝格-斯蒂尔杰斯积分(简称l-S积分)。20世纪初又发展成建立在一般集合上的测度和积分的理论,简称测度论。

重积分的毕业论文

简析高等数学中的数学结构与数学理解【摘要】文章从分析高等数学的内容结构出发,代写论文 对数学结构与数学理解所起的作用,作了简单的剖析。【关键词】高等数学;数学结构;数学理解对数学来说,结构无处不在,结构是由许多节点和联线绘成的稳定系统。代写毕业论文 数学中最基本的就是概念结构,它们之间的联系组成了知识网络的结构,剖析高等数学的知识结构,有助于加深对高等数学的理解。由于理解是学习数学的关键,学生可以通过对数学知识、技能、概念与原理的理解和掌握来发展他们的数学能力。从认知结构,特别是结构的建构观点来看,学习一个数学概念、原理、法则,如果在心理上能够组织起适当的、有效的认知结构,并使其成为个人内部知识网络的一部分,那么这才是理解。而其中所需要做的具体工作,就是需要寻找并建立恰当的新、旧知识之间的联系,使概念的心理表象建构得比较准确,与其它概念表象的联系比较合理,比较丰富和紧密。在学习一个新概念之前,头脑里一定要具备与之相关的储备知识,它们是支撑新概念形成的依托,并且这些有关概念的结构,是能够被调动起来的,使之与新概念建立联系,否则就不会产生理解。所以要使新旧知识能够互相发生作用,建立联系,有必要建立一个相应的数学结构,以加强对基础知识的理解。布鲁纳的认知结构学习论认为,知识结构的学习有助于对知识的理解和记忆,也有助于知识的迁移。在微积分的学习中,通过对其结构的剖析,使学习者头脑中的数学结构处于不断形成和发展之中,并将其发展的结构与已形成的结构统一起来,以达到对数学知识的真正理解。1高等数学内容的结构特点高等数学以极限思想为灵魂,以微积分为核心,包括级数在内,它们都是从量的方面研究事物运动变化的数学方法,本质上是几种不同性质的极限问题。连续性质是自变量增量趋于零时,函数对应增量的极限;导数是自变量增量趋于零时,函数的增量(偏增量)与自变量增量之比(差商)的极限;一元或多元积分都是和式的极限,而无穷级数则是密切联系序列极限的另一种极限。微分是从微观上揭示函数的有关局部性质,积分则从宏观上揭示函数的有关整体性质,它们之间通过微积分基本定理联系起来;广义积分把无穷级数与积分的内部沟通起来;而微分方程又从方程的角度把函数、微分、积分有机地联系起来,展示了它们之间的内在的依赖转化关系。2如何利用结构加强理解2.1注重整体结构理解当代著名的认知心理学家皮亚杰认为“知识是主体与环境或思维与客体相互交换而导致的知觉建构,代写硕士论文 知识不是客体的副本,也不是有主体决定的先验意识。”虽然现今的教材基本上按一定框架编写,但其中相关的知识点要在学生的头脑中形成一个网络,并达到真正理解,还需要一个很长的过程,在这个过程中需要师生的共同努力。在教学中教师应将数学逻辑结构与心理结构统一起来,把学生看成是学习活动的主体,引导学生根据自己头脑中已有的知识结构和经验主动建构新的知识结构。心理学家J.R安德森认为:通过多种方式应用我们从自己的经验中得到知识,认知才能进行。理解知识的前提是理解它如何在头脑中表征的,这个过程主要表现为学生对概念的理解和掌握,在此基础上再加以运用,达到更深意义上的掌握。由于高等数学具有清晰的数学结构,因而其相关知识学习中也充满了知识的同化过程。在高等数学知识结构中,微积分建立在极限的基础之上。因此在高等数学中,新知识获得要依赖于认知结构中原有的适当观念,同时新旧知识还必须要有相互作用,即新旧意义的同化,才能形成高度分化的认知结构。如微分是差商的极限,积分为微分的逆运算,而定积分则为和的极限,只有将这些新旧概念在头脑中不断同化作用,才能形成新的高级知识结构网络,才能加强对相应数学知识的真正理解。这个过程实际上是一个内部认知过程,它要求学习者要有积极主动的精神,即有意义学习倾向;同时还要在学习者的认知结构中找到适当的同化点。学生的认知结构是从所接受的知识结构转化而来的,因此教学是一个动态的过程。2.2注重结构中的概念理解数学结构是有许多个结构所组成的,而个别的概念一定要融人其它概念,合成的概念结构才有用。数学中的概念往往不是孤立的,它们之间存在着一定的联系,理清概念之间的联系,既有助于数学结构的建立,有助于新的概念地自然引入,从而有助于对数学知识的理解与掌握。在微积分这部分内容中,多元函数的极限、连续、偏导数、全微分、方向导数这组概念之间的联系,与一元函数中的极限、连续、偏导数、微分概念之间的联系,这两者之间既有相同之处,又有不同之处,而且每个相对的概念之间又存在一定的联系与区别,多元函数中许多微分概念是在一元函数基础上的推广与发展,它们是密不可分。积分学中的定积分、重积分、二类曲线积分、二类曲面积分之间也存在着类似的关系。通过联想,可以从二维空间进入到三维空间,直至到更多维的空间,从有形进入无形,从现实世界进入虚拟世界,这样步步渗入,步步构建,不断引入新概念,不断更新组建数学结构,使学生头脑中的数学结构不断更新,不断完善,从而达到对知识的真正理解与掌握。2.3在教学中利用数学结构加强学生的数学理解教师对数学结构的理解对学生建立起自身的数学结构起着不可缺少的作用,代写医学论文 只有理解数学结构,才能领会到数学逻辑结构所隐含的精神思想,才能建立自己的数学结构,才能理解数学。首先,在数学中利用高等数学结构的纵向与横向联系,有意识地帮助学生建立自己的知识结构,如在利用求曲边梯形的面积来引入定积分的概念时,其基本思维方法是:分割、近似代替,求和、取极限,最后得出定积分的概念。而这一方法同样可解决求曲顶柱体的体积、空间物体的质量、曲线段的质量等问题,区别仅在于取极限时趋向于零的元素不同而已。在具体每一章的讲解中,要着重介绍此章知识的数学结构中的内在联系及其本章的关键与核心的处理方法,使学生能够抓住本质,真正做到变被动学习为主动学习,主动建构自己本章的数学结构,并能用框图展现出知识间的内在联系,只有这样才能提高学生学习高等数学的兴趣和积极性,增加对高等数学知识的理解,提高高等数学学习的质量。帮助学生建立自己的数学结构,也有利于培养学生的思维能力、归纳能力、分析问题、解决问题的能力,还能促进其自学,调动和增强学生学习高等数学的信心和自觉程度。[参考文献][1]邵瑞珍,皮连生.教育心理学[M].上海:上海教育出版社,1988.[2]李士琦.PME:数学教育心理[M].北京:高等教育出版社.[3]毛京中,高等数学概念教学的一些思考[J].数学教育学报,2003,12(2).[4]陈琼,翁凯庆.试论数学学习中的理解学习[J].数学教育学报,2003,12(1)[5]张定强.剖析高等数学结构,提高学生数学素质[J].数学教育学报,1996,5(1)[6]刘继合.简析高等数学结构与化归[J].聊城师范学院学报(自然科学版),1999,12(3).

太少啦,你给的财富值太少啦!要知道财富值与人民币的比值是1400:1

告诉你一个最简单的方法就是用谷歌翻译工具翻译就行

The second surface integral calculation is a difficulty and key content of higher mathematics. The second curved surface integral, also known as sitting target surface integral, it said the physical significance of the steady flow of incompressible fluid flow to the surface side of the flow. The second kind of surface integral calculation problem is a comprehensive calculus problem, involves the surface side and the normal vector, partial derivative of function of many variables, double integral and triple integrals, the first kind of curved surface integral and gauss formula, and other knowledge.This article, we respectively from two traditional calculation method and an innovative method to calculate the direction of generalizations about the second type of surface integral calculation method, and combined with typical examples illustrate the use of different methods, easy to master by the techniques of.

积分曲线毕业论文

太少啦,你给的财富值太少啦!要知道财富值与人民币的比值是1400:1

圆圈代表积分曲线是封闭曲线。

例1计算∫L√yds,其中L是抛物线y=x上点O(0,0)与点(1,1)之间的一段弧(图11-2)。

解由于L由y=x (0≤x≤1)

给出,因此

曲线积分分为:

(1)对弧长的曲线积分(第一类曲线积分)

(2)对坐标轴的曲线积分(第二类曲线积分)

两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds。对坐标轴的曲线积分的积分元素是坐标元素dx或dy。

例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号。

我也急。明天交,还没有逼出来。

积分运算毕业论文

小编准备了数学微积分论文选题-12月2日给2013毕业生这篇文章,希望会帮到2013年数学专业毕业生和各位老师们!例说微积分知识在数学解题中的应用微积分课堂教学与数学建模思想微积分课程教学中培养学生数学审美能力的探讨微积分MATLAB数学实验"微积分"教学中融入数学文化的教学设计微积分教学中渗透数学建模思想探讨《经济数学基础(微积分)》精品课程建设的实践与探索浅谈微积分与数学软件相结合的教学微积分MATLAB数学实验数学建模思想融入微积分课程教学初探微积分教学中渗入数学文化的实践与思考高中数学新课程微积分的课程设计分析2009年浙江省高等数学(微积分)文专组竞赛试题评析数学思想方法及其在微积分教学中的运用研究高中数学教科书中微积分内容的整体比较微积分中数学语言的时序性微积分方法在初等数学中的应用研究微积分方法在初等数学教学中的应用高等数学中微积分证明不等式的探讨转变教育教学观念培养学生的数学素质——浅议高职中《微积分》的教学逾越形式化极限概念的微积分课程--《普通高中数学课程标准(实验)》实证研究浅谈高等数学中微积分的经济应用英国A水平数学考试中的微积分简析高等数学教学中如何合理使用教材——从"微积分基本公式"一节的教材使用谈起大学数学教学中开展研究性学习的探索与实践——以《微积分》教学为例对高中数学微积分的理解及教学建议例谈微积分方法在初等数学教学中的应用关于中学数学中微积分教学的思考2008年浙江省高等数学(微积分)文专组竞赛试题评析将数学建模融入微积分教学的探索(责任编辑:论文题目网)

反常积分的论文格式

我的看法是反常积分和定积分的计算方法是一样的,但也有区别,定积分的求算方法比较简单,是求导等于他,而反常积分的求导方式与定积分是有差别的,就是进行反着来求导

观察得y=-e^(-x)的导数是y=e^(-x)所以他的定积分是 -e^(-∞)-(-e^0)=1

我们学了两种反常积分,一种是含有无穷积分限的,另一种是含有瑕点的。解决这两种反常积分的方法都是利用极限。关键所在就是要把对积分的极限转化为对牛顿——莱布尼茨公式的极限

反常积分和定积分计算方法不一样。反常积分不具有与常义积分(即定积分)相同的性质和积分方法,如换元法、分布积分法、偶倍奇零以及反常积分的牛顿-莱布尼茨公式等.

  • 索引序列
  • 勒贝格积分毕业论文
  • 重积分的毕业论文
  • 积分曲线毕业论文
  • 积分运算毕业论文
  • 反常积分的论文格式
  • 返回顶部