z=2*k*π*i,k是整数。都是一阶奇点。呵呵……
解:z^2+1=0,有一阶奇点z=i,z=-i,无穷远点为本性奇点z=∞,共三个。f(z)=(e^z)/(z^2+1);f(z)=-e^z/(zi+1)(zi-1);一阶奇点的残数:Res[f(z),i]=-e^i/(i*i-1)=e^i/2;Res[f(z),-i]=-e^(-i)/(-i*i+1)=-e^(-i)/2;共三个奇点,故对于本性奇点的残数有:Res[f(z),∞]=Res[f(z),i]+Res[f(z),-i]=[e^i-e^(-i)]/2=isin1;
孤立奇点分三类,一是可去奇点,二是极点,三是本性奇点。基本方法是在该点局部幂级数展开。如果没有主要部分就是可去的;如果只有有限项主要部分的就是极点;如果有无穷多项就是本性奇点。要搞懂还是要看书的。
数学系开题报告范文
开题报告是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。下面是我为大家整理的数学系开题报告范文,欢迎阅读。
课题名称: 实积分与复积分的比较研究
一、课题的来源及意义
通过对《数学分析》和《复变函数》的学习,我了解到《复变函数论》中的许多知识都是在《数学分析》基础上延伸、拓展的,而复积分在很大程度上说,它就是把实积分的变量范围拓宽了,即在复数域中进行积分。积分学是在古代东西方微积分思想萌发和微积分创立前夕欧洲的思想社会背景的基础上,经过多代数学家研究、探索最终形成完整的数学理论。实积分与复积分的比较研究是值得我思考和研究的一个课题。
积分学是函数论中的一个重要内容,无论是实积分还是复积分,都是研究函数的重要工具,而且在几何、物理和工程技术上,都有着广泛的应用。复积分是复变函数论中的一个重要部分,它在研究复变函数,特别是解析函数时所起的作用远远超过实积分在研究实变函数时所起的作用。无论是在研究复变函数、微分、级数,还是它们的各方面应用,都用到复变函数的积分理论。复积分是实积分的推广,而实积分的计算又用到复积分,因此,比较研复积分和实积分性质和应用对于深刻理解复变函数的理论,并用利用这些理论来解决数学及其他学科中的各种实际问题,都是有十分重要的意义。
二、国内外发展状况及研究背景
国内许多数学家对积分学进行分析和研究,而且许多大学教师也对复积分和实积分进行研究。陇东学院数学的完巧玲就对“利用复积分计算实积分”进行了全面的研究,而且还发表过相关的论文;陕西教育学院的王仲建也发表过“实积分与复积分的联系与区别”的相关论文。国外对积分学的研究要比国内的研究更广泛和深远。实积分和复积分是积分学的具体内容,现代的积分与以前的积分有着一定的区别,但它却是在以前的基础上,经过多代数学家的完善而形成的。积分学最初起源于微积分(微积分起源于牛顿、莱布尼兹),微积分的核心概念是----极限,这个理论的`完善得力于19世纪柯西和魏尔斯特拉斯的工作。17世纪利用积分学求面积、曲线长始于开普勒,他发表了《测量酒桶体积的新科学》。托里拆利、费马、帕斯卡等数学家对以前的积分进行了缺点修补和完善使得积分更接近现代的积分。积分不仅是研究函数的工具,而且在其他方面如几何、物理和工程技术上也有广泛的应用。
三、课题研究的目标和内容
通过对实积分与复积分的比较研究这个课题的研究,熟悉和掌握实积分和复积分的概念和类型,并对其进行分类、归纳,找出它们之间的区别与联系,并了解复积分和实积分的相关应用。
(1)实积分和复积分比较研究课题的研究背景、该课题目前国内外展的状况以及该课题研究的意义等。
(2)实积分和复积分的相关概念(定积分、曲线积分)及它们的性质和计算方法。
(3)对实积分与复积分的定义、性质、计算方法、应用方面进行比较;实积分与复积分的联系(应用复积分来计算实积分,结合例题进行分析、说明)。
四、本课题研究的方法
课题将通过分析、对比、综合等方法对实积分与复积分进行比较研究,最后通过例证说明利用复积分可以解决一些实积分问题。
五、课题的进度安排:
第一阶段:搜集资料,确定选题范围,联系指导老师(20XX秋1--7周)
第二阶段:选定题目、填写开题报告,准备开题 (20XX秋8--12周)
第三阶段:指导教师指导调研、收集资料、准备撰写初稿 (20XX秋13周--20XX春6周)
第四阶段:撰写初稿、在指导老师的指导下修改论文 (20XX春7--14周)
第五阶段:提交论文,准备答辩,论文总结 (20XX春15--16周)
六、参考文献
[1] 钟玉泉. 复变函数论[M]. 第3版.北京:高等教育出版社,2004
[2] 华东师范大学数学系. 数学分析[M].第3版.高等教育出版社,2001
[3] 四川大学数学系. 高等数学(第4册)[M].北京:高等教育出版社,2002
[4] 严子谦, 等. 数学分析(第一册)[M].北京:高等教育出版社,2004
[5] 孙清华, 赵德修. 新编复变函数题解[M]. 武汉:华中科技大学出版社,2002
[6] 王仲建. 实积分与复积分的联系与区别[N]. 陕西教育学院学报,1995,25:73-79
[7] 完巧玲. 利用复积分计算实积分[N]. 菏泽学院学报,2010,32(2):1673—2103
[8] 李敏,王昭海. 巧用复变函数积分证明实积分[J]. 数学教学与研究考试周刊,2009,41
[9] 金云娟. 解析函数唯一性定理在复积分上的应用[N]. 丽水学院学报,2009,31(5)
[10] 崔冬玲. 复积分的计算方法[J]. 淮南师范学院学报,2006,3:6-9
函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:1)首先确定函数的定义域,并判断其是否关于原点对称;2)确定f(-x)与f(x)的关系;3)作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .
首先看函数的定义域,是否关于原点对称,如果不对称,就是非奇非偶函数。如果对称,再来求出f(-x)看,若f(-x)=f(x)则为偶函数,若f(-x)=-f(x)则为奇函数。
1、利用奇偶函数的定义来判断(这是最基本,最常用的方法)定义:如果对于函数y=f(x)的定义域A内的任意一个值x,都有f(-x)=-f(x)则这个函数叫做奇函数f(-x)=f(x),则这个函数叫做偶函数
2、用求和(差)法判断:
若f(x)-f(-x)=2f(x),则f(x)为奇函数。
若f(x)+f(-x)=2f(x),则f(x)为偶函数。
奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数)。
偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。但由单调性不能倒导其奇偶性。验证奇偶性的前提要求函数的定义域必须关于原点对称。
扩展资料
1、奇偶函数图像的特征:
定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
2、奇偶函数运算
(1)两个偶函数相加所得的和为偶函数。
(2)两个奇函数相加所得的和为奇函数。
(3)一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。
(4)两个偶函数相乘所得的积为偶函数。
(5)两个奇函数相乘所得的积为偶函数。
(6)一个偶函数与一个奇函数相乘所得的积为奇函数。
参考资料来源:百度百科-函数奇偶性
首先讨论的是函数有意义的区间,必须为对称的。再就是F(x)=a与F(-x)=b的关系若a=b 则为偶函数,若a=-b则为奇函数
对于方程F(x,y)=0,假定由此可以确定一个函数,把F(x,y)看成x,y的一个二元函数,那么对于方程左右求导,左边就可以用复合函数的求导法则,右边就是0,再把得到的微分方程变形一下就可以得到隐函数的导数。
^e^y+xy-e=0;
y是x的函数
对等式两边取导数
左边:e^y求导的结果为:(e^y)*y'
xy求导的结果为:y+x*y'
e求导的结果为0.
所以:(e^y)*y'+y+x*y'=0
将y'换成dy/dx就是结果。
扩展资料:
如果不限定函数连续,则式中正负号可以随x而变,因而有无穷个解;如果限定连续,则只有两个解(一个恒取正号,一个恒取负号);如果限定可微,则要排除x=±1,因而函数的定义域应是开区间(-1 微分学中主要考虑函数z=F(x,y)与y=ƒ(x)都连续可微的情形。 参考资料来源:百度百科-隐函数 1、通常的隐函数,都是一个既含有x又含有y的方程,将整个方程对x求导;2、求导时,要将y当成函数看待,也就是凡遇到含有y的项时,要先对y求导,然后乘以y对x 的导数,也就是说,一定是链式求导;3、凡有既含有x又含有y的项时,视函数形式,用积的的求导法、商的求导法、链式求导法, 这三个法则可解决所有的求导;4、然后解出dy/dx;5、如果需要求出高次导数,方法类似,将低次导数结果代入高次的表达式中。 1、通常的隐函数,都是一个既含有x又含有y的方程,将整个方程对x求导; 2、求导时,要将y当成函数看待,也就是凡遇到含有y的项时,要先对y求导,然后乘以y对x 的导数,也就是说,一定是链式求导; 3、凡有既含有x又含有y的项时,视函数形式,用积的的求导法、商的求导法、链式求导法, 这三个法则可解决所有的求导; 4、然后解出dy/dx; 5、如果需要求出高次导数,方法类似,将低次导数结果代入高次的表达式中。 扩展资料: 隐函数求导法则: 隐函数导数的求解一般可以采用以下方法: 1、先把隐函数转化成显函数,再利用显函数求导的方法求导; 2、隐函数左右两边对x求导(但要注意把y看作x的函数); 3、利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值; 4、把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。 举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z)=0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。 参考资料来源:百度百科-隐函数 例如xy=e^y,其中y=y(x), 两边对x求导,y+xy'=y'e^y 所以y'=y/(e^y-x) 首先你得有个案例 然后 把提纲定下来 论文开题报告怎么写?分享论文开题报告模板给你!直接套用! 每一个内容都有参考句式,把自己的研究内容往上套即可。 1. 论题的背景及意义 例:...研究有利于全面...的特点,可以丰富现...的研究。 这一...研究可以弥补......研究的不足,深化与之密切相关......的研究......研究。 ......角度进行研究,运用相关的......理论分析...问题,突破传统的......的角度去研......的模式,使......的研究能从一个新的角度获得解决方法。 2. 国内外研究现状 例:......在国际的研究现状;......国内的研究现状。 文献评述(把上面的国内外的研究现状总结一下即可) 3. 研究目标、研究内容和拟解决的问题 A研究目标与内容 例: 本文拟......分析......分析两部分。首先对......情况重新审视,深入分析......,然后与其相关的......进行异同比较,最后归纳......的类型,并得......启示。本文的研究重点是.....情况 B拟解决的问题 例: 根据对......的现有研究成果,在全面考察的......情况下,结合......综合考虑......因素,以确定...... 绘制相应的......模型后,通过实验结论证实其......的有效性和合理性。 4. 研究方法 例: 文献研究法:通过图书馆、互联网、电子资源数据库等途径查阅大量文献,理解......等相关知识,理清......的发展脉络及研究现状,槐早搏学习......有关理论,获取......等相关数据信息,为设计......提供思路和参照。 实验铅祥研究法:通过设计......选取......,进行数据分析,考察.......。 统计分析法:运用......数据分析软件,采用人工操作和计算机统计向结合的方法,进行定性与定量分析。经过人工和计算机校对筛选睁戚出所有合乎要求的信息,在定量研究的基础上进行定性分析。 5. 创新之处和预期成果 例: 通过与现......技术的结合,使用......软件设计模型,......运用到......方面提供新的视角。 6. 进度计划(根据自己院校修改相应时间即可) 例: 2020年10月中旬-2020年11月底确定论文选题,完成开题报告及答辩。 2020年12月初-2021年1月底撰写论文大纲完成论文前X章 2021年2月初-2021年2月底撰写论文后X章,完成初稿。 2021年3月初-20213月底交导师审批修改,完成二稿。 2021年4月初-2021年4月底进一步修改格式,完成三稿。 2021年5月初-2021年5月中旬查重定稿,装订成册及论文答辩准备。 7. 已取得的研究工作成绩 例: 已积累了一定的相关文献,初步研读了其中的大部分文献,并将其分类以方便日后查阅参考,基本完成了本研究的准备工作。 8. 已具备的研究条件、尚缺少的研究条件和拟解决的途径 已具备的研究条件 例: 已经查阅到相关的论文和著作,并且研读了其的大部分文献,理清了论文的基本思路。 尚缺少的研究条件 例: 由......的使用权限有限,使得搜集到......不多,关......的搜集比较困难。 对......的理论知识的掌握还不够,自己......理论素养还不够深厚。 拟解决的途径 例: 利用图书馆的文献传递功能,向其他高校图书馆求助,同时向老师和前辈寻求帮助 你论文选题定好了吗?开题报告选题老师同意了?开题报告格式要求准备好了没还有什么不懂的地方可以问我,希望能够帮到你?提供一个开题报告写作心得,仅供参考,希望对你开题报告写作能有帮助。论文开题报告主要是给指导委员会阐明你的论文将要写什么以及为什么要写和如何写的问题。这里有几个方面:第一,你要写什么这个重点要进行已有文献综述,把有关的题目方面的已经有的国内外研究认真介绍一下(先客观介绍情况,要如实陈述别人的观点),然后进行评述(后主观议论,加以评估,说已有研究有什么不足),说现在有了这些研究,但还有很多问题值得研究。其中要包括你选题将要探讨的问题。由于目前研究不足,所以你要研究。所以,你的论文要写什么是根据文献综述得出来的,而不是你想写什么就写什么。如果不做综述,很可能你的选题早被别人做得很深了。第二,为什么要写这个这个主要是说明你这个选题的意义。可以说在理论上,你发现别人有什么不足和研究空白,所以你去做,就有理论价值了。那么你要说清楚你从文献综述中选出来的这个题目在整个相关研究领域占什么地位。这就是理论价值。然后你还可以从实际价值去谈。就是这个题目可能对现实有什么意义,可能在实际中派什么用场等等。第三,如何写在开题报告里你还应当说清楚你选了这个题目之后如何去解决这个问题。就是有了问题,你准备怎么去找答案。要说一下你大致的思路,同时,重点阐述你要用什么方法去研究。如文献分析法、访谈法、问卷法、定量研究、实验研究、理论分析、模型检验等等。在上述三个方面中间,文献综述是重点。没有文献综述,你就无法找到自己的题目,也不知道这个题目别人已经做得怎么样了,所以你要认真进行综述。当然,综述的目的还是引出你自己的话题,所以不能忘记评述哟。------------------------论文开题报告的基本结构大致可以包括这样几个部分:1、前言简单介绍本研究的研究背景、本研究的问题的意义以及一些核心概念界定。2、文献综述应该是报告的重点。要将跟你的研究问题相关的研究现状都给予综述。一般可以采用由宽到窄的综述方法。就是逐渐FOCUS DOWN到你的问题上去。基本的格式是:主要观点综述归纳起来予以介绍之后加以评述,说明有那些研究上的不足和空白点。有了这些不足和空白点就可以提出你的问题了。你的研究就是要解决这其中的某个空白点和不足的。所以,文献综述的最后应当是你的研究问题。3、基本理论框架和研究方法你通过文献综述提出了问题之后,你要设计如何解决这些问题。大概的思路是什么?如何解题?如何去寻找这个问题的答案?为什么要这样的方法去找答案?4、大致的提纲构想最后,可以在你的报告里简单提出一个论文提纲来就可以了。如果这个提纲你没有办法做,你可以介绍一下你已经有的研究准备和前期研究成果,以及今后的大致时间安排。这样,你通过以上四个方面就基本可以给别人说清楚你的学位论文要做什么事情了。--------------------------另外,在做文献综述的最常犯的错误有:1)不能做到NARROW DOWN。文献综述要从大处着手,但最后要FOCUS到你的研究问题上去。所以是一个NARROW DOWN的过程。而常见的不正确的文献综述方法就是把有关领域泛泛地进行综述。2)只有列举没有综述。文献综述要对相关研究进行整合,不能老是列举张XX发现XX,李XX认为XX,王XX主张XX。要根据所搜集到的研究文献,做出相应的归纳。3)过多主观评论。文献综述是客观介绍跟你的研究问题相关的研究现状,所以应该客观地展示。主观评论可以专门放在“已有研究的不足”里进行表述。--------------------------祝你开题成功哟! 1、本课题研究的现状。 2、本课题研究的内容。 3、本课题研究的意义。 选题意义和目的一般作为开题报告里面的第一块内容,是阐述你所研究的这个选题有没有专研究价值或者说讨论价值的。 写开题报告的目的,其实就是要请导师来评判我们这个选题有没有研究价值、这个研究方法有没有可能奏效、这个论证逻辑有没有明显缺陷。 写意义的时候根据你的选题来决定形式,可以分现实意义和理论意义,也可以不细分,把目的和意义和在一起写,总之突出你观点的新颖和重要性即可。 论文种类 1、专题型 这是分析前人研究成果的基础上,以直接论述的形式发表见解,从正面提出某学科中某一学术问题的一种论文。 2、论辩型 这是针对他人在某学科中某一学术问题的见解,凭借充分的论据,着重揭露其不足或错误之处,通过论辩形式来发表见解的一种论文。 3、综述型 这是在归纳、总结前人或今人对某学科中某一学术问题已有研究成果的基础上,加以介绍或评论,从而发表自己见解的一种论文。 4、综合型 这是一种将综述型和论辩型两种形式有机结合起来写成的一种论文。 数学小课题开题报告 在教学中引导学生掌握审题的具体步骤和方法。以下是我J.L为大家分享的2017年关于数学小课题的开题报告范文。 题目:初中数学主体合作学习方式的探究开题报告 一.本选题的意义和价值: 理论意义:国家课程改革的基本思想:以学生发展为本,关心学生需要,以改变学生学习方式为落脚点,强调课堂教学要联系学生生活,强调学生要充分运用经验潜力进行建构性学习。同时《初中数学新课程标准》突出体现基础性、普及性、和发展性,使数学教育面向全体学生,从而实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。动手实践、自主探索与合作交流是学生学习数学的重要方式。由此可见在数学学习中合作这种学习方式的确很重要。 应用价值: 有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践自主探索与合作交流是学生学习数学的重要方式。 主体合作学习作为一种新型的教学方式,在新课标下已成为数学课堂教学探讨的焦点问题之一。 通过本课题的研究,有利于充分确立学生的主体地位,有利于建立各教学要素之间的相互作用、彼此协调、取向一致的关系;使初中数学教学中学生的学习方式、教师的指导方式得到有效的改善,有利于激发学生学习的兴趣,达到数学教学 学习快乐、快乐学习 的目的。从而提高学生的学习效果,培养学生的合作,交流,创新的能力,进而提高学生的综合素质。 省内外同类研究现状述评:我国自90年代初期起,开始探讨合作学习,出现了合作学习的研究与实验,并取得了较好的效果,不少学生从中受益,教师们在实践中也开发了一些行之有效的实施策略。但目前国内对合作学习的研究主要是在高等学校,中学阶段的合作学习刚刚起步,随着素质教育的全面推进,初中阶段需要进一步开展合作学习,小学阶段尚未看到数学与合作学习整合的研究课题。因此现在进行初中数学与合作学习整合的研究带有前瞻性。国内目前的合作学习研究比较多的是提出一些原则,而对实践的、具体层面的、可操作的方式与途径的研究则比较少,本课题注重合作学习方式的探索,可以弥补这方面的不足。 二 研究内容、目标、思路 什么是主体合作学习形式就是通过小组目标 、小组分工、角色分配与转换 、集体奖励等形式,激发每个学生 荣辱与共 人人为我,我为人人 道德情感,通过感染舆论,集体荣誉体验等活动,使每个学生都感悟到只有自己努力对小组做贡献,人人都能获得必需的数学。 学习方式现状的调查与分析。 目前数学教与学形式上存在着种种弊端,要么是学习没有目标,或目标不能落实;要么教师责任心不强,对学生的问题不闻不问,要么是教师主观臆断,脱离学生实际,总之数学学习形式亟待改变。 主体合作学习在学习数学中的作用。 高效率地利用时间,使学生有更多主动学习的机会。更有利于培养学生社会合作精神与人际交往能力。能使学生互相取长补短,缩小两端学生的差距,双方都能获益,尤其对后进生有很大的帮助。更有利于培养学生主动探究、团结合作、勇于创新的精神。 教师在主体合作学习中的角色和地位。 转变观念是学习型社会的要求。在开放的教育环境下,教师的地位和角色也发生了改变。教师在小组中不是局外人,而是学习目标的制造者,程序的设计者,情景的创造者,讨论的参与者,协调者,鼓励者和评价者。 如何引导学生合作学习? 引导学生合作学习关键在于精心设计讨论话题。从教师这方面看,设计话题应突出趣味性、情景性、可操作性、创造性。 小组学生合作学习评价对象和方法。 评价的对象包括评价自己、评价同学等。评价的内容主要是学习态度、合作精神、学习能力、团队合作等几个方面。合作学习作为系统的学习方式,必须具备相应的评价机制,建立合理的合作学习评价机制能够把学生个体间的竞争,变为小组间的竞争,把个人计分改为小组计分,把小组总体成绩作为评价依据,形成一种组内成员合作,组间成员竞争的格局。把整个评价的重心由孤立的个人竞争达标转向大家合作达标。 本课题试图通过小组合作学习方式转变的实践过程,把学生自主学习与合作学习有机地结合起来,从而让学生真实地感受、理解、掌握数学思想、知识技能的形成过程,激发学生学习数学的兴趣,促进学生的数学思维能力、生活能力协同发展,培养学生能数学地分析、解释、解决现实生活问题的能力及运筹优化的意识和创新精神。 在教师指导下,学生逐步养成自主意识、合作意识和自我管理的能力。真正的实现自主学习与小组合作学习相融合。 转变观念是学习型社会的要求。在开放的教育环境下,教师的地位和作用也发生了改变,教师不再是单纯的知识传授者,而应该转变为学习者学习的向导、参谋、设计师、管理者和参与者。通过课题的研究,培养出一支具有先进教育理念,有一定教科研水平的教师队伍。 研究视角 本课题从新课标合作学习的角度出发,以小组活动为基本方式,建立合作研究的多元互动,注重开放的合作过程,强调合作方式的建构。 研究方法: ②. 调查法:运用座谈、问卷等方式,向学生了解数学学习的现状,并对此作出科学的分析。 ④. 实验法:在学习方式的实验阶段,通过实验班与对照班比较分析的方式,研究这一学习方式的实践操作效果。 ⑤.行动研究法:在课题实施研究过程中,通过学习、实践、反思、评价分析,寻找得失原因,不断提高小组合作的能力。 ⑥. 经验总结法: 在教学实践和研究的基础上,根据课题研究重点,随时积累素材,探索有效措施,总结得失,寻找有效的小组 合作 的途径、方法和原则。通过各种方式全面搜集反映小组 合作 学习中事实材料,经过分析、整理和加工到理性认识的高度,作为 合作 学习方式的理论依据。 研究阶段 ⑴准备阶段(2015年4月 2015年5月): ⑵实施过程(2015年6月 2015年1月) 根据课题设计方案,有计划、有步骤进行行动研究。不断实践,定期总结,每学期都有阶段成果。 ⑶总结阶段(2015年2月 2015年5月) 在以上成果总结的基础上,对课题进行全面、科学的总结。写出结题报告,召开成果汇报会。 课题研究的现实背景和意义: 从我校历年来的质量分析和龙胜县20XX年数学小考质量分析来看,学生丢分的原因主要是是不认真审题。其实在日常教学中,每次数学作业或测试题,都可听到老师们埋怨学生 太粗心了 , 不认真审题 等等,学生也为自己的不认真审题表现很后悔。在期中与期末质量分析上,任课教师总结得最多的一句就是 学生太粗心太马虎,不认真审题。 可见学生的审题能力困惑着我们每位教师,也困惑着每位学生。特别是农村的小学生,由于养成了粗心大意、对自己要求不严格、没有责任心等不良习惯,多数学生都不能做到认真审题再做题。 通过问卷调查,审题这最重要的一个步骤在实际操作中往往被大多数学生忽略或者轻视,从而直接影响了学生的解题速度和正确率,间接导致了学生对数学学习的畏惧和恐慌。小学生由于审题不清,导致解错题的现象十分普遍。学生的审题能力薄弱,审题习惯令人担忧。 审题能力是一种综合性的数学能力,我想通过对小学生数学学习审题能力培养的研究,促使学生的分析、判断和推理能力以及学生的创造性思维能力从无到有,从低水平向高水平发展,从而提高数学的解题能力。 概念界定与理论依据 理论依据 : 在《小学数学教学大纲》中明确指出: 在小学,使学生学好数学,培养起学习兴趣,养成良好的学习习惯,对于提高全民族的素质,培养有理想、有道德、有文化、有纪律的社会主义公民,具有十分重要的意义。 审题是一种能力,更是一种习惯。小学生数学学习审题能力的培养能促进学生养成良好的学习习惯。 课题的实施方案 研究内容 研究农村小学生审题能力弱的原因。 研究农村小学生数学学习审题能力培养方案。 针对学习内容,研究学生审题的方法。 研究农村小学生数学学习审题习惯的培养。 具体的操作措施 研究农村小学生审题能力弱的原因。通过问卷、谈话调查任课教师对培养学生审题能力的态度、方法、能力和学生解题审题习惯。对班级个别审题能力特别弱的学生进行深入了解与分析,找到审题能力弱的原因。 针对学习内容,研究学生审题的方法。基于学习内容不同,审题的方法也会有所不同。小学数学各年级从教学内容上均分为数与代数、空间与图形、统计与概率、实践活动(综合应用)四大板块,呈螺旋式上升,其中计算和解决问题占了相当大的比重。根据内容的不同探索出相应的有效的审题方法。 研究农村小学生数学学习审题习惯的培养审题习惯主要包括读题习惯、解题习惯、检查习惯。加强读题训练,研究读题方法。读题是审题的第一步。读题时要做到不添字,不漏字,把题目读顺,养成指读两三遍的习惯。读题时要求做到 口到、眼到、手到、心到 ;指导方法,培养良好的解题习惯。 在教学中引导学生掌握审题的具体步骤和方法。如首先认真读题,弄清题目说了一件什么事情,哪些数量是已知条件,所求问题是什么,并能用自己的语言准确复述题意;然后可以划出题中的关键字、词,并正确理解其含义;分析并找出题中的数量关系,知道要解决问题还需哪些条件,怎样求出这些条件等,遇到不懂的及时作上记号,养成用符号标记习惯;研究学生认真检查的良好习惯培养。 农村小学生做题往往没有检查的好习惯,这就特别需要教师进行引导,让学生体会到检查的好处,并且结合学生实际情况进行奖励,形成一种氛围。检查是一种对于审题的'最后补救。 研究步骤与方法 第二阶段:20XX年11月 20XX年7月课题实施阶段,按照方案分析原因,制定对策,并付诸实践。先调查学生审题能力差的原因,再与学生共同探讨审题的方法及注意事项,通过实践与训练,让学生分析自己的得与失,组织学生交流成功的做法与经验,并强化训练,让学生养成审题的良好习惯。最后测试成效并与探究前比较,总结经验,将研究成果推广到数学教研组。同时,撰写可以研究相关论文。 方法的选择: (1)调查研究法。通过调查了解农村小学生审题能力弱的原因。以及研究前后的变化。 (2)个案研究法。通过对班级个别审题能力特别弱的学生进行了解,制定相应措施,实施强化训练,观察结果,探索规律,总结经验。 (4)文献研究法。通过阅读与查找相关文献的研究,为此课题奠定理论基础;同时,了解同类课题研究的现状,为本课题研究提供借鉴,为创新性研究奠定基础。 (5)师生合作研究法。通过师生共同探讨、研究、训练、分析、总结等寻找提高审题能力的有效途径。 研究预期成果和成果形式 (1)在研究中探索出学生有效审题的方法和途径,通过研究提高农村小学生审题能力和培养农村小学生认真审题的良好学习习惯。 (2)课题研究报告一份。 我将以饱满的工作和探究热情,按照课题实施方案,一步一个脚印地去探究与实施,我想通过本课题的研究,在研究中探索出学生有效审题的方法和途径,通过研究培养农村小学生认真审题的良好学习习惯。希望我的课题研究工作在上级领导的指导与关怀下,通过我的努力能取得圆满成功! 论文题目:关于泰勒公式的应用 课题研究意义 在初等函数中,多项式是最简单的函数。因为多项式函数的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。那么一个函数只有什么条件才能用多项式函数近似代替呢?这个多项式函数的各项系数与这个函数有什么关系呢?用多项式函数近似代替这个函数误差又怎么样呢? 通过对数学分析的学习,我感觉到泰勒公式是微积分学中的重要内容,在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明等方面,泰勒公式是有用的工具。 文献综述 主要内容 Taylor公式的应用 Taylor公式在计算极限中的应用 对于函数多项式或有理分式的极限问题的计算是十分简单的,因此,对一些较复杂的函数可以根据泰勒公式将原来较复杂的函数极限问题转化为类似多项式或有理分式的极限问题。 满足下列情况时可考虑用泰勒公式求极限: (1)用洛比达法则时,次数较多,且求导及化简过程较繁; (2)分子或分母中有无穷小的差,且此差不容易转化为等价无穷小替代形式; (3)所遇到的函数展开为泰勒公式不难。 当确定了要用泰勒公式求极限时,关键是确定展开的阶数。 如果分母(或分子)是,就将分子(或分母)展开为阶麦克劳林公式。 如果分子,分母都需要展开,可分别展开到其同阶无穷小的阶数,即合并后的首个非零项的幂次的次数。 Taylor公式在证明不等式中的应用 有关一般不等式的证明 针对类型:适用于题设中函数具有二阶和二阶以上的导数,且最高阶导数的大小或上下界可知的命题。 证明思路: (1)写出比最高阶导数低一阶的Taylor公式; (2)根据所给的最高阶导数的大小或上下界对展开式进行缩放。 有关定积分不等式的证明 针对类型:已知被积函数二阶和二阶以上可导,且又知最高阶导数的符号。 证题思路:直接写出的Taylor展开式,然后根据题意对展开式进行缩放。 有关定积分等式的证明 针对类型:适用于被积函数具有二阶或二阶以上连续导数的命题。 证明思路:作辅助函数,将在所需点处进行Taylor展开对Taylor 余项作适当处理。 Taylor公式在近似计算中的应用 利用泰勒公式求极限时,宜将函数用带佩亚诺余项的泰勒公式表示;若用于近似计算,则应将余项以拉格朗日型表达,以便于误差的估计。 研究方法 为了写好论文我到中国期刊网、中国知识网和中国数字化期刊群查找相关论文的发表日期、刊名、作者,接下来要到图书馆四楼过刊室查找相关文献,到电子阅览室查找相关期刊文献。 从图书馆借阅相关书籍,仔细阅读,细心分析,通过自己的耐心总结、研究,老师的指导、改正,争取做好毕业论文工作。 具体采用了数学归纳法、分析法、反证法、演绎法等方法。 进度计划 为了有准备有计划的做好我的论文工作,我为自己安排了一个毕业论文进度计划,我会严格按照我的进度计划,及时完成我的毕业论文工作。 研究性学习:“数学在生活中的应用”结题报告一、课题研究背景:数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,在早期一些古代文明社会中已产生了数学的开端和萌芽。在bc3000年左右巴比伦和埃及数学出现以前,人类在数学上没有取得更多的进展,而在bc600—bc300年间古希腊学者登场后,数学便开始作为一名有组织的、独立的和理性的学科登上了人类发展史的大舞台。如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解直角三角形有关知识的应用。由此可见,古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。二、课题研究目的和意义:1.感受数学,体会数学的价值。“数学在生活中的应用”的研究性学习让同学收集和开发自己生活中的素材,感受数学与我们现实生活的密切关系,让大家感受生活与数学同在,来体验数学自身价值。2.领悟数学,思想升华。“数学在生活中的应用”的研究性学习让学生经历知识的再创造,体验知识的形成过程,形成自身有效的知识,使自己的思想得到进一步的升华。3.会用数学。“数学在生活中的应用”的研究性学习让自己学会应用数学,达到直接为社会创造价值的最终目的。三、研究过程1.成立课题小组(第一学期第12周)。2.开题(第一学期第13周)。组织学生做好开题报告,介绍本课题的选题背景、立意、课题论证和实施计划。3.研究。(第一学期第14周至第二学期第15周)在老师的启发引导下,本课题小组同学积极参与,利用课余、课外时间,通过数学课本、化学资料等对“数学在生活中的应用”课题进行探索、研究和计算,还有部分同学对研究成果通过实验来验证,体现了大家严谨的科学态度。在老师的指导下,将有关“数学在生活中的应用”的研究成果和心得体会写成小论文。四、课题:“数学在生活中的应用”的研究成果小论文:不等式、数列、函数在生活中的应用(见附件1)五、心得体会通过这次研究性学习我们学会了很多东西,也懂得了很多。以前学数学一般是理论性的比较多,缺乏与实际的联系,学了不知道怎么用。这次研究性学习的最大所得,不在于取得什么成果,而是培养一种思维习惯,一种将现实生活中的现象转化为问题并进行研究的习惯。当我们在黑板上写字,用力过大而将粉笔折断时,是否想到了粉笔多长才是最优化长度;又当我们去打电话时,是否能够联想到这类似于“函数模型”,从而求出电话费与时间的函数。甚至当我们玩游戏时,能否用离散和概率的思想。不禁一笑后,你会发现,其实这些问题都来自于我们的生活,但是它们的复合与延伸,就可能涉及到今日科学的前沿。 另外感觉自己的知识面还是不够宽,例如老师给了很多有价值的问题,由于我们知识浅薄,最终我们选择了“函数、不等式、数列在生活中的应用”等进行探索、研究。对问题数据计算还可以,但对计出的数据找规律时,就遇到了困难,老师给我们作了指导。在如果平时学习时,多注意理论与实践的结合,学以致用,做起研究性学习就更能得心手。 研究性学习毕竟是个集体项目,它不仅培养了我们的合作精神,而且也培养了大家的团结友爱,互助协作的精神。所以组成小组后,我们组就常常在一起讨论题目,等到讨论成熟后,就进行计算研究。俗话说,三个臭皮匠顶个诸葛亮。大家在一起如果做出一些东西来,就会有一种成就感,这也是 研究性学习带给我们的乐趣所在。研究性学习培养的是一种创新精神,以及快速解决问题的能力。参加研究性学习小组,也给了我们一次简单的科学研究工作的体验。科学工作所需要的严谨,大胆都在这样活动中有着完整的体现。使我们体会到了科研工作的艰辛,这些将对我们今后的学习与工作产生积极的作用和深远的影响。 “多元函数一致连续性”的论文的开题报告我擅长。。真的.孤独死论文开题报告
函数连续性论文开题报告