首页 > 学术发表知识库 > 蛋白质的分离与检测技术论文

蛋白质的分离与检测技术论文

发布时间:

蛋白质的分离与检测技术论文

蛋白质提取与制备的原理和方法 蛋白质提取与制备蛋白质种类很多,性质上的差异很大,既或是同类蛋白质,因选用材料不同,使用方法差别也很大,且又处于不同的体系中,因此不可能有一个固定的程序适用各类蛋白质的分离。但多数分离工作中的关键部分基本手段还是共同的,大部分蛋白质均可溶于水、稀盐、稀酸或稀碱溶液中,少数与脂类结合的蛋白质溶于乙醇、丙酮及丁醇等有机溶剂中。因此可采用不同溶剂提取、分离及纯化蛋白质和酶。蛋白质与酶在不同溶剂中溶解度的差异,主要取决于蛋白分子中非极性疏水基团与极性亲水基团的比例,其次取决于这些基团的排列和偶极矩。故分子结构性质是不同蛋白质溶解差异的内因。温度、pH、离子强度等是影响蛋白质溶解度的外界条件。提取蛋白质时常根据这些内外因素综合加以利用。将细胞内蛋白质提取出来。并与其它不需要的物质分开。但动物材料中的蛋白质有些可溶性的形式存在于体液(如血浆、消化硫等)中,可以不必经过提取直接进行分离。蛋白质中的角蛋白、胶原及丝蛋白等不溶性蛋白质,只需要适当的溶剂洗去可溶性的伴随物,如脂类、糖类以及其他可溶性蛋白质,最后剩下的就是不溶性蛋白质。这些蛋白质经细胞破碎后,用水、稀盐酸及缓冲液等适当溶剂,将蛋白质溶解出来,再用离心法除去不溶物,即得粗提取液。水适用于白蛋白类蛋白质的抽提。如果抽提物的pH用适当缓冲液控制时,共稳定性及溶解度均能增加。如球蛋白类能溶于稀盐溶液中,脂蛋白可用稀的去垢剂溶液如十二烷基硫酸钠、洋地黄皂苷(Digitonin)溶液或有机溶剂来抽提。其它不溶于水的蛋白质通常用稀碱溶液抽提。蛋白质类别和溶解性质 白蛋白和球蛋白:溶于水及稀盐、稀酸、稀碱溶液,可被50%饱和度硫酸铵析出。真球蛋白:一般在等电点时不溶于水,但加入少量的盐、酸、碱则可溶解。拟球蛋白:溶于水,可为50%饱和度硫酸铵析出醇溶蛋白:溶于70~80%乙醇中,不溶于水及无水乙醇壳蛋白:在等电点不溶于水,也不溶于稀盐酸,易溶于稀酸、稀碱溶液精蛋白:溶于水和稀酸,易在稀氨水中沉淀组蛋白:溶于水和稀酸,易在稀氨水中沉淀硬蛋白质: 不溶于水、盐、稀酸及稀碱缀合蛋白(包括磷蛋白、粘蛋白、糖蛋白、核蛋白、脂蛋白、血红蛋白、金属蛋白、黄素蛋白和氮苯蛋白等): 此类蛋白质溶解性质随蛋白质与非蛋白质结合部分的不同而异,除脂蛋白外,一般可溶于稀酸、稀碱及盐溶液中,脂蛋白如脂肪部分露于外,则脂溶性占优势,如脂肪部分被包围于分子之中,则水溶性占优势。蛋白质的制备是一项十分细致的工作。涉及物理学、化学和生物学的知识很广。近年来虽然有了不改进,但其主要原理仍不外乎两个方面:一是利用混合物中几个组分分配率的差别,把它们分配于可用机械方法分离的两个或几个物相中,如盐析、有机溶剂提取、层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于不同区域而达到分离的目的,如电泳、超离心、超滤等。由于蛋白质不能溶化,也不能蒸发,所能分配的物相只限于固相和液相,并在这两相间互相交替进行分离纯化。制备方法可按照分子大小、形状、带电性质及溶解度等主要因素进行分类。按分子大小和形态分为差速离心、超滤、分子筛及透析等方法;按溶解度分为盐析、溶剂抽提、分配层析、逆流分配及结晶等方法;按电荷差异分为电泳、电渗析、等电点沉淀、离子交换层析及吸附层析等;按生物功能专一性有亲合层析法等。由于不同生物大分子结构及理化性质不同,分离方法也不一样。即同一类生物大分子由于选用材料不同,使用方法差别也很大。因此很难有一个统一标准的方法对任何蛋白质均可循用。因此实验前应进行充分调查研究,查阅有关文献资料,对欲分离提纯物质的物理、化学及生物学性质先有一定了解,然后再着手进行实验工作。对于一个未知结构及性质的试样进行创造性的分离提纯时,更需要经过各种方法比较和摸索,才能找到一些工作规律和获得预期结果。其次在分离提纯工作前,常须建立相应的分析鉴定方法,以正确指导整个分离纯化工作的顺利进行。高度提纯某一生物大分子,一般要经过多种方法、步骤及不断变换各种外界条件才能达到目的。因此,整个实验过程方法的优劣,选择条件效果的好坏,均须通过分析鉴定来判明。另一方面,蛋白质常以与其他生物体物质结合形式存在,因此也易与这些物质结合,这给分离精制带来了困难。如极微量的金属和糖对巨大蛋白质的稳定性起决定作用,若被除去则不稳定的蛋白质结晶化的难度也随之增加。如高峰淀粉酶A的Ca2+,胰岛素Zn2+等。此外,高分子蛋白质具有一定的立体构象,相当不稳定,如前所述极易变性、变构,因此限制了分离精制的方法。通常是根据具体对象联用各种方法。为得到天然状态的蛋白质,尽量采用温和的手段,如中性、低温、避免起泡等,并还要注意防腐。注意共存成分的影响。如蝮蛇粗毒的蛋白质水解酶活性很高,在分离纯化中需引起重视。纯化蝮蛇神经毒素时,当室温超过20℃时,几乎得不到神经毒素。蝮蛇毒中的蛋白水解酶能被0.1mol/L EDTA完全抑制,因此在进行柱层析前先将粗毒素0.1mol/LEDTA溶液处理,即使在室温高于20℃,仍能很好的得到神经毒素。整个制备过程一般可分为5个阶段:①材料的选择和预处理②细胞的破碎(有时需进行细胞器的分离)③提取④纯化(包括盐析,有机溶剂沉淀,有机溶剂提取、吸附、层析、超离心及结晶等)⑤浓缩、干燥及保存。以上5个阶段不是要求每个方案都完整地具备,也不是每一阶段截然分开。不论是哪一阶段使用哪一种方法,均必须在操作中保存生物大分子结构的完整性。保存活性防止变性及降解现象的发生。因空间结构主要依靠氢键、盐键和范德华力的存在,遇酸、遇碱、高温、剧烈的机械作用及强烈的辐射等均可导致活性丧失。因此选择的条件应为十分温和。同时应注意防止系统中重金属离子、细胞自身酶系及其他有毒物质的污染。蛋白质提取与制备的注意事宜:一、原料的选择早年为了研究的方便,尽量寻找含某种蛋白质丰富的器官从中提取蛋白质。但至目前经常遇到的多是含量低的器官或组织且量也很小,如下丘脑、松果体、细胞膜或内膜等原材料,因而对提取要求更复杂一些。原料的选择主要依据实验目的定。从工业生产角度考虑,注意选含量高、来源丰富及成本低的原料。尽量要新鲜原料。但有时这几方面不同时具备。含量丰富但来源困难,或含量来源均理想,但分离纯化操作繁琐,反而不如含量略低些易于获得纯品者。一般要注意种属的关系,如鲣的心肌细胞色素C较马的易结晶,马的血红蛋白 较牛的易结晶。要事前调查制备的难易情况。若利用蛋白质的活性,对原料的种属应几乎无影响。如利用胰蛋白 酶水解蛋白质的活性,用猪或牛胰脏均可。但若研究蛋白质自身的性质及结构时,原料的来源种属必须一定。研究由于病态引起的特殊蛋白质(本斯.琼斯氏蛋白 、贫血血红蛋白 )时,不但使用种属一定的原料,而且要取自同一个体的原料。可能时尽量用全年均可采到的原料。对动物生理状态间的差异(如饥饿时脂肪和糖类相对减少),采收期及产地等因素也要注意。二、前处理1、细胞的破碎材料选定通常要进行处理。要剔除结缔组织及脂肪组织。如不能立即进行实验,则应冷冻保存。除了提取及胞细外成分,对细胞内及多细胞生物组织中的蛋白质的分离提取均须先将细胞破碎,使其充分释放到溶液中。不同生物体或同一生物体不同的组织,其细胞破坏难易不一,使用方法也不完全相同。如动物胰、肝、脑组织一般较柔软,作普通匀浆器磨研即可,肌肉及心组织较韧,需预先绞碎再制成匀桨。⑴机械方法主要通过机械切力的作用使组织细胞破坏。常用器械有:①高速组织捣碎机(转速可达10000rpm,具高速转动的锋利的刀片),宜用于动物内脏组织的破碎;②玻璃匀浆器(用两个磨砂面相互摩擦,将细胞磨碎),适用于少量材料,也可用不锈钢或硬质塑料等,两面间隔只有十分之几毫米,对细胞破碎程度较高速捣碎机高,机械切力对分子破坏较小。小量的也可用乳钵与适当的缓冲剂磨碎提取,也可加氧化铝、石英砂及玻璃粉磨细。但在磨细时局部往往生热导致变性或pH显著变化,尤其用玻璃粉和氧化铝时。磨细剂的吸附也可导致损失。⑵物理方法主要通过各种物理因素的作用,使组织细胞破碎的方法。Ⅰ反复冻融法于冷藏库或干冰反复于零下15~20℃使之冻固,然后缓慢地融解,如此反复操作,使大部分细胞及细胞内颗粒破坏。由于渗透压的变化,使结合水冻结产生组织的变性,冰片将细胞膜破碎,使蛋白质可溶化,成为粘稠的浓溶液,但脂蛋白 冻结变性。Ⅱ冷热变替法将材料投入沸水中,于90℃左右维持数分钟,立即置于冰浴中使之迅速冷却,绝大部分细胞被破坏。Ⅲ超声波法暴露于9~10千周声波或10~500千周超声波所产生的机械振动,只要有设备该法方便且效果也好,但一次处理量较小。应用超声波处理时应注意避免溶液中气泡的存在。处理一些超声波敏感的蛋白质酶时宜慎重。Ⅳ加压破碎法加一定气压或水压也可使细胞破碎。⑶化学及生物化学方法Ⅰ有机溶媒法粉碎后的新鲜材料在0℃以下加入5~10倍量的丙酮,迅速搅拌均匀,可破碎细胞膜,破坏蛋白质与脂质的结合。蛋白质一般不变性,被脱脂和脱水成为干燥粉末。用少量乙醚洗,经滤纸干燥,如脱氢酶等可保存数月不失去活性。Ⅱ自溶法将待破碎的鲜材料在一定pH和适当的温度下,利用自身的蛋白 酶将细胞破坏,使细胞内含物释放出来。比较稳定,变性较难,蛋白质不被分解而可溶化。利用该法可从胰脏制取羧肽酶。自体融解时需要时间,需加少量甲苯、氯仿等。应防止细菌污染。于温室30℃左右较早溶化。自体融解过程中PH显著变化,随时要调节pH。自溶温度选在0~4℃,因自溶时间较长,不易控制,所以制备活性蛋白质时较少用。Ⅲ酶法与前述的自体融法同理,用胰蛋白酶等蛋白酶除去变性蛋白质。但值得提出的是溶菌酶处理时,它能水解构成枯草菌等菌体膜的多糖类。能溶解菌的酶分布很广。尤其卵白中含量高,而多易结晶化。1g菌体加1~10mg溶菌酶,pH6.2~7.01h内完全溶菌。于生理食盐水或0.2mol蔗糖溶液中溶菌,虽失去细胞膜,但原形质没有脱出。除溶菌酶外,蜗牛酶及纤维素酶也常被选为破坏细菌及植物细胞用。表面活性剂处理较常用的有十二烷基磺酸钠、氯化十二烷基吡淀及去氧胆酸钠等。此外一些细胞膜较脆弱的细胞,可把它们置于水或低渗缓冲剂中透析将细胞胀破。2、细胞器的分离制备某一种生物大分子需要采用细胞中某一部分的材料,或者为了纯化某一特定细胞器上的生物大分子,防止其他细胞组分的干扰,细胞破碎后常将细胞内各组分先行分离,对于制备一些难度较大需求纯度较高的生物大分子是有利的。尤其近年来分子生物学、分子遗传学、遗传工程等学科和技术的发展,对分布在各种细胞器上的核酸和蛋白质的研究工作日益增多,分离各种细胞器上的各类核酸和特异性蛋白质已成为生物大分子制备工作重要内容之一。各类生物大分子在细胞内的分布是不同的。DNA几乎全部集中在细胞核内。RNA则大部分分布于细胞质。各种酶在细胞内分布也有一定位置。因此制备细胞器上的生物大分子时,预先须对整个细胞结构和各类生物大分子在细胞内分布匹有所了解。以肝细胞为例,蛋白质、酶及核酸在肝细胞内分布情况为: 细胞核: 精蛋白、组蛋白、核酸合成酶系 RNA占总量10%左右 DNA几乎全部粒线体: 电子传递、氯化磷酸化、三羧酸循环、脂肪酸氧化、氨基酸氧化、脲合成等酶 系RNA占总量5%左右 DNA微量内质网(微粒体): 蛋白质合成酶系、羟化酶系 RNA占总量50%左右溶酶体:水解酶系(包括核酸酶、磷酸脂酶、组织蛋白酶及糖苷及糖苷酶等) 高尔基氏体: 糖苷转移酶、粘多糖及类固醇合成酶系 细胞膜:载体与受体蛋白、特异抗蛋、ATP酶、环化腺苷酶、5’-核苷酸酶、琥珀酸脱氢酶、葡萄糖-6-磷酸酶等 ,细胞液 嘧啶和嘌呤代谢、氨基酸合成酶系、可溶性蛋白类 RNA(主要为tRNA)占总量30%.细胞器的分离一般采用差速离心法。细胞经过破碎后,在适当介质中进行差速离心。利用细胞各组分质量大小不同,沉降于离心管内不同区域,分离后即得所需组分。细胞器的分离制备、介质的选择十分重要。最早使用的介质是生理盐水。因它容易使亚细胞颗粒发生聚集作用结成块状,沉淀分离效果不理想,现一般改用蔗糖、Ficoll(一种蔗糖多聚物)或葡萄糖-聚乙二醇等高分子溶液。1.水溶液提取大部分蛋白质均溶于水、稀盐、稀碱或稀酸溶液中。因此蛋白质的提取一般以水为主。稀盐溶液和缓冲溶液对蛋白质稳定性好、溶度大,也是提取蛋白质的最常用溶剂。以盐溶液及缓冲液提取蛋白质经常注意下面几个因素。盐浓度等渗盐溶液尤以0.02~0.05mol/L磷酸盐缓冲液和碳酸盐缓冲液常用。0.15mol/L氯化钠溶液应用也较多。如6-磷酸葡萄糖脱氢酶用0.1mol/L碳酸氢钠液提取等。有时为了螯合某些金属离子和解离酶分子与其他杂质的静电结合,也常使用枸橼酸钠缓冲液和焦磷酸钠缓冲液。有些蛋白质在低盐浓度下浓度低,如脱氧核糖核蛋白质需用1mol/L以上氯化钠液提取。总之,只要能溶解在水溶液中而与细胞颗粒结合不太紧密的蛋白质和酶,细胞破碎后选择适当的盐浓度及PH,一般是不难提取的。只有某些与细胞颗粒上的脂类物质结合较紧的,需采用有机溶剂或加入表面活性剂处理等方法提取。PH值蛋白质提取液的PH值首先应保证在蛋白质稳定的范围内,即选择在偏离等电点两侧。如碱性蛋白质则选在偏酸一侧,酸性蛋白质选择偏碱一侧,以增大蛋白质的溶解度,提高提取效果。如细胞色素C属碱性蛋白质,常用稀酸提取,肌肉甘油醛-3-磷酸脱氢酶属酸性蛋白质,用稀碱提取。某些蛋白质或酶与其分物质结合常以离子键形式存在,选择pH3~6范围对于分离提取是有利的。温度多数酶的提取温度在5℃以下。少数对温度耐受性较高的蛋白质和酶,可适当提高温度,使杂蛋白变性分离且也有利于提取和进一步纯化。如胃蛋白酶等及许多多肽激素类,选择37~50℃条件下提取,效果比低温提取更好。此外提取酶时加入底物或辅酶,改变酶分子表面电荷分布,也能促进提取效果。2.有机溶剂提取有机溶剂提取用于提取蛋白质的实例至今是不多的。但一些和脂结合较牢或分子中非极性侧链较多的蛋白质,不溶于水、稀盐或稀碱液中,可用不同比例的有机溶剂提取。从一些粒线体(Mitochondria)及微粒体(Microsome)等含多量脂质物质中提取蛋白质时,采用Morton的丁醇法效果较好。因丁醇使蛋白质的变性较少,亲脂性强,易透入细胞内部,与水也能溶解10%,因此具有脂质与水之间的表面活性作用,可占据蛋白质与脂质的结合点,也阻碍蛋白质与脂质的再结合,使蛋白质在水中溶解能力大大增加。丁醇提取法的pH及温度选择范围较广(pH3~10,温度-2℃至40℃)。国内用该法曾成功地提取了琥珀酸脱氢酶。丁醇法对提取碱性磷酸脂酶效果也是十分显著的。胰岛素既能溶于稀酸、稀碱又能溶于酸性乙醇或酸性丙酮中。以60―70%的酸性乙醇提取效果最好,一方面可抑制蛋白质水解酶对胰岛素的破坏,同时也达到大量除去杂蛋白的目的。3.表面活性剂的利用 对于某些与脂质结合的蛋白质和酶,也有采用表面活性剂如胆酸盐及十二烷基磺酸钠等处理。表面活性剂有阴离子型(如脂肪酸盐、烷基苯磺酸盐及胆酸盐等),阳离子型(如氧化苄烷基二甲基铵等)及非离子型(Triton X-100 、Tirton X-114、吐温60及吐温80)等。非离子型表面活性剂比离子型温和,不易引起酶失活,使用较多。对于膜结构上的脂蛋白和结构,己广泛采用胆酸盐处理,两者形成复合物,并带上净电荷,由于电荷再排斥作用使膜破裂。近年来研究膜蛋白使用表面活性剂的稀溶液提取时,较喜欢用非离子型表面活性剂。4.对提取物的保护在各种细胞中普遍存在着蛋白水解酶,提取时要注意防止由它引起的水解。前面所讲的降低提取温度其目的之一也是防止蛋白水解酶的水解。多数蛋白水解酶的最适PH在3~5或更高些,因在较低PH条件下可降低蛋白质水解酶引起的破坏程度。低pH可使许多酶的酶原在提取过程中不致激活而保留在酶原状态,不表现水解活力。加蛋白质水解酶的抑制剂也同样起保护作用,如以丝氨酸为活性中心的酶加二异丙基氟磷酸,以巯基为中心的酶加对氯汞苯甲酸等。提取溶液中加有机溶剂时也能产生相类似的作用。蛋白水解酶的性质变化很大,上述条件均视具体对象而变化。有一些蛋白含巯基,这些巯基可能是活性所必需。在提取这种蛋白不要带入金属离子和氧化剂。前者可往提取液中加金属螯合剂如EDTA,后者可加入还原剂如抗坏血酸。有某些蛋白质带一些非共价键结合的配基。提取时要注意保护,不要使酸基丢失。蛋白质提取与制备的方法:1.分离纯化的原则从破碎材料或细胞器提出的蛋白质是不纯的,需进一步纯化。纯化包括将蛋白质与非蛋白质分开,将各种不同的蛋白质分开。选择提取条件时,就要考虑尽量除去非蛋白质。一般总是有其它物质伴随混入提取液中。但有些杂质(如脂肪)以事先除去为宜。先除去便于以后操作。常用有机溶剂提取除去。对于异类物质,提纯蛋白质和酶时常混有核酸或多糖,一般可用专一性酶水解,有机溶剂抽取及选择性部分沉淀等方法处理。小分子物质常在整个制备过程中通过多次液相与固相转化中被分离或最后用透析法除去。而对同类物质如酶与杂蛋白、RNA、DNA以及不同结构的蛋白质、酶、核酸之间产分离,情况则复杂得多。主要采用的方法有盐析法、有机溶剂沉淀法,等电点沉淀法、吸附法、结晶法、电泳法、超离心法及柱层析法等。其中盐析法、等电点法及结晶法用于蛋白质和酶的提纯较多,有机溶剂抽提和沉淀用于核提纯较多,柱层析法、梯度离心法对蛋白质和核酸的提纯应用十分广泛。如前所述,蛋白质的分离纯化较难,而且其本身的性质又限制了某些方法的使用,因此要研究目的物的微细特征,巧妙的联用各种方法并进行严密的操作,同时有必要了解精制各过程的精制程度和回收率。具有活性的蛋白质可利用吸收光谱等物理性质或以相当于单位氮活性增加为尺度进行追踪。其他蛋白质可用电泳、超离心、层析、扩散及溶解等测定纯度。如结晶核糖核酸酶经层析分为两个成分。可见对确定蛋白质结晶纯度尚无最终的尺度。根据经验即或纯净的标准品,有极微量的不纯物时,也会给实验带来较大的影响。不稳定的蛋白质,如分离SH-酶时使用试剂及缓冲液等,要确认不含重金属离子(特级试剂也需检定)。蛋白质纯化的操作如脱盐、浓缩干燥等均与低分子化合物不同,必须经过独特的繁琐操作。蛋白质和蛋白质相互分离主要利用它们之间的各种性质的微小差别。诸如分子形状、分子量大小、电离性质、溶解度、生物功能专一性等。蛋白质提取液中,除包含所需要的蛋白质(或酶)外,还含有其它蛋白质、多糖、脂类、核酸及肽类等杂质。杂质除去的方法有:A.核酸沉淀法该法可用核酸沉淀剂和氯化锰、硫酸鱼精蛋白或链霉素等。必要时也可用脱氧核糖核酸酶除去核酸。即在粗匀浆中加入少量DNase,于4℃保温30~60min,可使DNA降解为足够小的碎片,以致不影响以后的纯化。B.醋酸铅沉淀法利用醋酸铅沉淀剂除去杂蛋白。因这些沉淀剂也常常使需要的酶(或蛋白质)缓缓变性而失去活性,所以用这类试剂时应迅速进行盐析,使样品与这类试剂脱离接触。C.调pH值或加热沉淀法利用蛋白质酸碱变性性质的差异除去杂蛋白。利用蛋白质的热变性的温度系数差异,可在一定的PH下将蛋白提取液加热到一定的温度,使对热不稳定的杂蛋白性沉淀而除去。D.选择性变性法利用各种蛋白质稳定性的不同,可用选择性变性法来除去杂蛋白 。例如胰蛋白 酶及细胞色素C等少数特别稳定的酶,甚至可用2.5%三氯醋酸处理,此时其它杂蛋白 均变性而沉淀,而胰蛋白 酶和细胞色素C则仍留在溶液中。E.透析法小分子物质常在整个制备过程中多次液相与固相互转化中被分离,或最后用透析法除去。F.利用溶解度不同的纯化方法2.盐析法盐析法对于许多非电解质的分离纯化均适合。对蛋白质和酶的提纯应用也最早。至今还广泛使用,一般粗抽提物经常利用盐析法进行粗分。也有反复用盐析法得到纯的蛋白质的例子。其原理是蛋白质在低盐浓度下的溶解度随盐液浓度升高而增加(盐溶,与离子强度10~1间成比例增加)。球蛋白 当盐浓度不断上升时,蛋白质的溶解度又以不同程度下降并先后析出(盐析)(离子强度I2~10)。这是由于蛋白质分子内和分子间的电荷的极性基团有静电引力。当水中加入少量盐时,盐离子与水分子对蛋白质分子一的极性基团的影响,使蛋白质在水中溶解度增大。但盐浓度增加一定程度时,水的活度降低,蛋白质表面的电荷大量被中和,水化膜被破坏,于是蛋白质相互聚集而沉淀析出。盐析法是根据不同蛋白质在一定浓度盐溶液中溶解度降低程度不同达到彼此分离的方法。盐的选择如上所述,蛋白质在水中溶解度取决于蛋白质分子上离子基团周围的水分子数目,即取决于蛋白质的水合程度。因此,控制水合程度,也就是控制蛋白质的溶解度。控制方法最常用的是加入中性盐。主要有硫酸铵、硫酸镁 、硫酸钠、氯化钠、磷酸钠等。其中应用最广的是硫酸铵,它的优点是温度系数小而溶解度大(25℃时饱满和溶解度为4.1mol,即767g/l;0℃时饱满和溶解度为3.9mol,即676g/l)。在这一溶解度范围内,许多蛋白质均可盐析出来,且硫酸铵价廉易得,分段效果较其它盐好,不易引起蛋白质变性。应用硫酸铵时对蛋白 氮的测定有干扰,另外缓冲能力较差,故有时也应用硫酸钠,如盐析免疫球蛋白 ,用硫酸钠的效果也不错,硫酸钠的缺点是30℃以下溶解度太低。其它的中性盐如磷酸钠的盐析作用比硫酸铵好,但也由于溶解度太低,受温度影响大,故应用不广。氯化钠的溶解度不如硫酸铵,但在不同温度下它的溶解度变化不大,这是方便之处。它也是便宜不易纯化的试剂。硫酸铵浓溶液的PH常在4.5~5.5之间,市售的硫酸铵还常含有少量游离硫酸,PH值往往降至4.5以下,当用其他PH值进行盐析时,需用硫酸或氨水调节.确定沉淀蛋白质所需硫酸铵浓度的方法将少量样品冷却到0~5℃,然后搅拌加入固体硫酸铵粉末,见蛋白质产生沉淀时,离心除去沉淀,分析上清液确定所要蛋白质的浓度,如它仍在溶液中则弃去沉淀,再加更多的硫酸铵于上清液中,直到产生蛋白质沉淀时止。以所要提取的蛋白质在溶液中的浓度对硫酸铵浓度作图,得沉淀曲线,找出蛋白质开始沉淀的浓度。如不考虑收率,饱和度区间可取得窄一些,使纯度高一些。盐析时注意的几个问题:(1)盐的饱和度: 不同蛋白质盐析时要求盐的饱和度不同。分离几个混合组成的蛋白质时,盐的饱和度常由稀到浓渐次增加。每出现一种蛋白质沉淀进行离心或过滤分离后,再继续增加盐的饱和度,使第2种蛋白质沉淀。例如用硫酸铵盐析分离血浆中的蛋白质饱和度达20%时,纤维蛋白原首先析出;饱和增至28~33%时,优球蛋白 析出;饱和度再增至33~50%时,拟球蛋白 析出;饱和度大于50%以上时清蛋白 析出。用硫酸铵不同饱和度分段盐析法,可从牛胰酸性提取液中分离得到9种以上蛋白质及酶。(2)PH值: pH值在等电点时蛋白质溶解度最小易沉淀析出。因此盐析时除个别特殊情况外,pH值常选择在被分离的蛋白质等电点附近。由于硫酸铵有弱酸性,它的饱和溶液的pH值低于7,如所要蛋白质遇酸易变性则应在适当缓冲液中进行。(3)蛋白质浓度: 在相同盐析条件下蛋白质浓度愈高愈易沉淀。使用盐的饱和度的极限也愈低。如血清球蛋白 的浓度从0.5%增至3.0%时,需用中性盐的饱和度的最低极限从29%递减至24%.某一蛋白质欲进行两次盐析时,第1次由于浓度较稀,盐析分段范围较宽,第2次则逐渐变窄.例如胆碱酯酶用硫酸铵盐析进时,第1次硫酸铵饱和度为35%至60%,第2次为40%至60%.蛋白质浓度高些虽然对沉淀有利,但浓度过高也易引起杂蛋白的共沉作用.因此,必须选择适当浓度尽可能避免共沉作用的干扰。(4)温度: 由于浓盐液对蛋白质有一定保护作用,盐析操作一般可在室温下进行。至于某些对热特别敏感的酶,则宜维持低温条件。通常蛋白质盐析时对温度要求不太严格。但在中性盐中结晶纯化时,温度影响则比较明显。================================================

范文 我这里有的

蛋白质检测论文

……%你就给10分,让人给你写2500个字……

随着分子生物学的飞速发展,最为世人瞩目的人类基因组计划即将提前完成。人类将向了解自己的生命奥秘这一目标迈进一大步。但是,由于基因是遗传信息的携带者,而生命活动的执行者却是蛋白质,即基因的表达产物。因此,即使得到人类全部基因序列,也只是解决了遗传信息库的问题。人类揭示整个生命活动的规律,就必须研究基因的物产——蛋白质。相对于基因组而言,后者称为蛋白质组。1 蛋白质组概述及其相关研究技术和方法鉴于基因组研究的局限性,1994年澳大利亚Macquaie 大学的Wilkins和Williams等在意大利的一次科学会议上首次提出了蛋白质组(Proteome)这个概念。定义为“蛋白质组指的是一个基因组所表达的蛋白质”,即“PROTEOME”是由蛋白质的”PROTE”和基因组的“OME”字母拼接而成[1].这个新术语很快得到了国际生物学界的认可。目前对蛋白质组的分析工作大两个方面。一方面,通过二维胶电泳等技术得到正常生理条件下的机体、组织或细胞的全部蛋白质的图谱,相关数据将作为待测机体、组织或细胞的二维参考图谱和数据库。另一方面是比较分析在变化了生理条件下蛋白质组所发生的变化。目前蛋白质组研究技术常用以下手段:(1)用于蛋白质分离技术方面的如双向凝胶电泳(2-DE)、双向“高效”柱层析等。(2)用于蛋白质鉴定的技术如质谱技术、凝胶图像分析、蛋白质和多肽的N端、C端测序及氨基酸组成分析等。(3)用于蛋白质相互作用及作用方式研究的双杂交系统。(4)用于分析大量数据的生物工程信息学等[2].。2 蛋白质组在医学研究中的现状和前景自蛋白质组概念提出以来,已发表相关论文及论著数篇。并于是1997年举行了第一届国际性的“蛋白质组学”会议。同年出版式了第一部蛋白质组学的专著。目前蛋白质组在医学方面的研究重点在于对人类疾病的发病机制、早期诊断及治疗,对致病微生物的致病机理、耐药性及发现新的抗生素为主。现将这两方面的进展情况综述如下。2.1 人类疾病的蛋白质组研究2.1.1 直肠癌 直肠癌的发生是因多个基因的突变,导致肿瘤抑制基因失能所致,但确切机制仍不清楚。为探讨其发病机制,Sanchez等对15例结肠癌和13例正常人的结肠上皮进行2-DE,每个多肽模式用Melanie I12-DE分析软件进行分析。据此建立了包括882和861个斑点的结肠癌及正常人结肠粘膜的标准胶图。结果发现在分子量为13kD和pI值为5.6处的蛋白质仅出现在结肠癌的组织中。15例结肠癌患者中13/5.6蛋白有13例(87%)。此外,发现13/5.6蛋白不仅在中度、低度分化的结肠癌及有24年病史的溃疡性结肠炎过度表达,而且出现在7例分化程度不同的腺瘤的癌前病灶。但对照组则极少出现。这表明该蛋白的出现对检测早期直肠癌有很强提示。通过对该蛋白HPLC及测序等分析后,发现与钙粒蛋白B(calgranulin B)及钙卫蛋白(calprotectin)有很大关系[3]。2.1.2 肝癌 醛糖还原酶(aldose reductase, E.C.1.1.1.21)是醛酮还原酶超家族中的一个成员。它催化葡萄糖还原为山梨醇,通过减少内源或外源性代谢产物而起到解毒作用。Peter R等在用N-甲基-N-亚基脲诱导(N-methly-N-nitrosourea-induced)的小鼠肝癌中,用2-DE及氨基酸微型测序可分辩出一种肝癌诱导的醛糖还原酶样的蛋白质(35Kd/P17.4)。而在小鼠的晶状体中,则发现一种醛糖还原的同工酶,该酶与已知的小鼠醛糖还原酶有98%的同源性,而与肝癌诱导的醛糖还原酶样的蛋白质截然不同。这表明两种蛋白质是由相关的两条基因编码,在小鼠不同的器官中表达不同。肝癌诱导的醛糖还原酶蛋白质优先表达在肝癌及胎肝中,它们均受到纤维细胞生长因子的刺激,但随小鼠鼠器官的生理及病理环境而表现不同的形式。经免疫组化证实,肝癌诱导的醛糖还原酶样的蛋白质在成人肝脏中不表达,但在小鼠的肝癌 中又重新表达。同时发现该蛋白在癌前病变及肝癌中表达强烈,而在肝脏周围的正常组织不表达[4]。表明该蛋白可能与肝癌的发病有很大关系。2.1.3 扩张型心肌病 扩张型心肌病是一种严重的可导致心衰的心脏病,大多数患者需行心脏移植术。目前其发病机理不明,推测可能为多种因素所致。1990年已有两组人员进行该病的蛋白质组分析。其后不久心肌的2-DE数据库建成,并进入国际互联网络。Knecht等采用2-DE取得了3300个心肌蛋白条带,通过氨基酸序列分析、Edman降解法及基质辅助的激光解吸离子化质谱(MALDI-MS)等分析了其中150条。经活检及术后病理证实,有12条为扩张性心肌病特有的蛋白。但具体资料尚在进一步分析之中[5]。Arnott D等对新福林诱导的肥大心肌细胞进行蛋白质组分析,同对照相比亦发现有8种蛋白质的表达水平发现了变化[6]。2.1.4 膀胱癌 IFN-γ除抗病毒外,还有一项重要的功能即抗肿瘤作用。目前其抗肿瘤作用机制不明。有资料表明,IFN-γ可能通过在相关细胞中增强或抑制有关基因而发挥抗肿瘤作用。重组IFN-γ和IL-2已开始应用于膀胱癌的治疗中。为探明其作用机制,George等将四种分级程度不同的人膀胱癌新鲜活检标本,用50U/ml IFN-γ作用20个小时后,采用2-DE、微型序列分析、等电聚集、蛋白质印迹等方法,对标本进行蛋白质组分析。结果表明有五种蛋白质(色按酸-tRNA合成酶、IFN-γ诱导的r3,超氧化物歧化酶及两种分子量为35.8kD和11.2kD的未知蛋白)的表达量增加了75%,而醛糖还原酶表达量则下降。为研究IFN-γ对治疗膀胱癌的作用机制提供了一种方法[7]。此外,由于缺乏对膀胱鳞状细胞癌客观可靠的组织学分级标准,因而很其进行早期诊断。为此,Morten等对150例膀胱癌进行双盲法2-DE,并结合了蛋白质印迹法、微型序列分析及质谱等技术,建立了新鲜膀胱癌标本的2-DE数据库,且发现角蛋白10、14及银屑病相关的脂肪酸结合蛋白(psoriasis-associated fatty acid-binding protein,PA-FABP)等可以作为膀胱癌不同分化程度的标记物[8]。为早期诊断提供了一种新的手段。[ 本帖最后由 snow_white 于 2007-7-20 16:32 编辑 ]查看完整版本请点击这里:蛋白质组学研究〔综述〕05我也来说两句 查看全部回复 最新回复snow_white (2007-7-20 16:31:50)2.1.5 其它 目前人的各种组织、器官、细胞乃至各种细胞器已被广泛研究。以期为疾病诊治及了解发病机制提供新的手段。在一项利用蛋白质组研究技术进行的酒精对人体毒性的研究中发现,乙醇 会改变血清蛋白糖基化作用,导致许多糖蛋白的糖基缺乏,如转铁蛋白[9]。Jagathpala等对免疫所致的不孕症的男性精子蛋白质进行蛋白质组分析,发现了导致不孕症的6种自体及异体抗 精子抗体[10]。在对肾癌的研究中,发现有4种蛋白质存在于正常肾组织而在肾癌细胞中缺失。其中两种分别是辅酶Q蛋白色素还原酶和线粒体乏醌氧化还原复合物I。这提示线粒体功能低下可能在肿瘤发生过程中起重要作用[11]。Ekkehard Brockstedt等利用2-DE、Edman微型序列法、MALDI-MS等对人BL60-2伯基特淋巴瘤细胞系进行了细胞凋亡机制的研究,结果发现RNA聚合酶转录因子3a(BTF3a)和/或BTF3b与抗IgM抗体介导(anti-IgM antibody-mediated)的细胞凋亡有很大关系[12]。2.2 致病微生物的蛋白质组研究 近年来,WHO越来越重视感染性疾病对人类健康的影响。除结核、多重耐药链球菌感染及机会致病菌外,出现了一些新的感染因素如HIV、博氏疏螺旋体及埃博拉病毒等。因此这些致病微生物的蛋白质组分析,对于了解其毒性因子、抗原及疫苗的制备非常重要,此外对疾病的诊断、治疗和预防也同样重要。现已获得18种微生物的全部基因组序列,另有60余种的基因序列正在研究之中。这些工作的开展为蛋白质组的研究提供了有利条件。2.2.1 检测博氏疏螺旋体与免疫有关的蛋白质 博氏疏螺旋体(Borrelia burgdorferi)是莱姆病的主要病因,表现为环形红斑及流感样症状,大约有50%的未治患者发展为神经系统及关节系统疾病。该螺旋体可分为3种类型:B.burgdorferi sensu stricto,B.garinii, B.afzelii。其诊断需依靠血清学检查,但存在敏感性及特异性变化的缺点。为获得更可靠的血清学检查,Peter等用2-DE从B.garinii得到217个银染的蛋白斑点。从中国兔多克隆抗体鉴别出6个已知的讥原。将不同临床表现莱姆病患者的血浆用b.garinii 2-DE图杂交。用抗IgM及抗IgG作为第二抗体,在10例有游走性红斑的患者血浆中,检测出60~80个抗原。同时发现在有关节炎的患者血浆中,包含有抗15种抗原的IgM抗体及抗76种不同抗原的IgG抗体。而晚期有神经系统症状的患者血浆中,则包含有抗33种抗原的IgM抗体及抗76种抗原的IgG抗体。上述3种类型患者的血浆中均包含有抗6种已知抗原的抗体,且被SDSPAGE杂交所证实。这些抗原均是潜在的具有特异性诊断的标志物。2.2.2 弓形体抗原的检测 弓形体病是由鼠弓形体虫引起的寄生虫病。全球人口大约有30%是携带者,在欧洲是最常见的寄生虫病。如果妊娠者感染,该虫可通过胎盘引起胎儿的感染。且随着妊娠时间的增加,感染的机会也增加。大约50%母体的感染可引起新生儿先天性疾病。因此诊断及治疗越早越好。目前要依靠血清学及PCR,而单独采用血清学如用IgG,IgM,或IgA抗体对疾病活动期敏感性不够,尤其对于妊娠或有免疫抑制的患者。潜在感染常发生在有免疫抑制的患者中。对AIDS患者来说,鼠弓形体虫是最主要的致命性脑损伤的病因。因此,能否早期诊断对治疗来说尤为关键。Jungblut等将鼠弓形体虫RH株在人羊膜细胞系FL521中传代后,用2-DE得到300个银染的斑点。再将其与以下3种患者的血浆进行免疫杂交:(1)患有急性弓形体病的妊娠女性(n=11); (2)患急性弓形体病的非妊娠者(n=6)(3)有潜在感染的患者(n=9)。结果有9个斑点对各阶段的弓形体感染均反应,这9种斑点被用来当作弓形体感染的标记。其中7种标记可用作区别疾病的不同阶段。但对区别急性期与潜在期仍需联合应用多种抗原[4]。2.2.3 白色念珠菌 芽管结构是白色念珠菌向菌丝体转变的早期阶段,该结构能增强白色念珠菌对宿主细胞的粘附力、穿透力及破坏性。目前通过蛋白质组分析方法如2-DE、质谱等已检测出在芽管结构所表达的一组特异蛋白如DNA结合蛋白等,为致病提高了一些参考指标[13]。Monkt等发现,在conA反应后的SDS-PAGE图中,在芽管结构的膜上,分子量为80kD复合糖处,出现很淡的考马斯亮蓝染色,而在孢子时则未出现。提示膜的整合、出现未与ConA结合的80kD复合糖可能与芽管结构的发生及生长有关。粘附素(adhesin)是白色念珠菌表面的组成部分,介导其与宿主的结合,是侵入宿主所需的重要蛋白,包含多种成分如白色念珠菌胞壁上的疏水蛋白等,通过增强菌株的粘附性而在其致病机制中发挥一定作用。但由于这些蛋白有很大同源性、多种糖基化作用及与胞壁或胞浆膜上其它成分形成共价结合,故提纯及分析很难。现通过等电聚集、2-DE及洗脱电泳等方法,可使这些蛋白得到很好的纯化、分离及分析[14]。抗真菌药通过改变真菌胞壁组分的生物合成和重组胞壁相关酶的结合位置而发挥作用。抗真菌药远少于抗细菌药就在于对真菌细胞壁蛋白分析了解太少。现在临床上用于抗真菌的药物多为咪唑类(咪康唑、酮康唑)及三唑类(氟康唑、伊曲康唑),但有很多患者出现耐药现象。在白色念珠菌中,目前发现至少有8种CDR家族的基因可产生耐药株的表现型。且有55种基因分别表达ABC及MFS蛋白(菌内药物输出泵)[15.16]。但这些基因、蛋白与耐药之间的关系仍未清楚。应用2-DE、免疫检测蛋白质等技术,对这些蛋白在菌内的表达量进行分析,发现Cdrlp及CaMdrlp蛋白在耐咪唑类菌株中过量表达。在对咪唑类每感及去除CDR1基因的白色念珠菌株CA114中,提取并检测耐氟康唑突变子(FL3)的表达。结果发现FL3对氟康唑的耐是去除CDR1的基因的白色念珠菌株CA114的500倍 ,是CA114的250倍。且CDR1 mRNA在FL3的量是Ca114的8倍[17]。同时,对敏感性及耐药株蛋白质的2-DE图分析发现,在耐中有25种蛋白质增加,有76种蛋白质减少。推测白色念株菌是通过改变染色体数目或染色体重组来调节基因的表达量,进而产生耐药性[18]。随着蛋白质组技术成熟完善,将对真菌壁及耐药基因分泌的各种蛋白组成分析带来重大突破,并对抗真菌的研制提供重要资料。虽然蛋白质组学还处在一个初期发展研段,但我们相信随着其不断地深入发展,蛋白质组(学)研究在提示诸如生长、发育和代谢调控等生命活动的规律上将会有所突破,对探讨重大疾病的机理、疾病诊断、疾病防治和新药开发将提供重要的理论基础。[ 本帖最后由 snow_white 于 2007-7-20 16:33 编辑 ]snow_white (2007-7-20 16:34:25)二、蛋白质组学的研究进展蛋白质组学强调的是针对蛋白质的一个整体思路。从整体的角度看,蛋白质组研究大致可分为两种类型:一种是针对细胞或组织的全部蛋白质,也就是着眼点是整个蛋白质组;而另一种是以与一个特定的生物学机制或机制相关的全部蛋白质为着眼点,在这里整体是局部性的。针对细胞蛋白质组的完整分析的工作已经比较全面地展开,不仅如大肠杆菌、酵母等低等模式生物的蛋白质组数据库在建立之中,高等生物如水稻和小鼠等的蛋白质研究也已开展,人类一些正常和病变细胞的蛋白质数据库也已在建立之中。与此同时,更多的蛋白质组研究工作则是将着眼点放在蛋白质组的变化或差异上,也就是通过对蛋白质组的比较分析。首先发现并去鉴定在不同生理条件下或不同外界条件下蛋白质组中有差异的蛋白质组分。限于篇幅,本文不对这方面的工作做进一步论述。本文接下来重点介绍近期发表的关于蛋白质组学的几个工作,从中可以看到蛋白质组学的思想方法在蛋白质整体(或局部整体)水平上是如何解决生理学的一些重要问题的。1999年11月《Nature》杂志发表了一篇用蛋白质组学方法研究蛋白质折叠的研究论文[10]。在这篇文章中,Houry等报道了在大肠杆菌胞质中的2500种新生多肽链种只有近300种以GroEL作为分子伴侣来帮助其折叠成正确构象。在以往的相关研究中,通常只是针对某个或某些特定的蛋白质,观察它(们)在折叠过程中是否需要诸如GroEL等分子伴侣的帮助。而在这个工作中,研究是从一个整体的思路出发,首先通过免疫共沉淀的方法获得所有与GroEL结合的肽链,再通过二维电泳和数据库比较等蛋白质研究的手段对这些肽链进行分析鉴定,从而实现了对大肠杆菌近2500条新生多肽链与分子伴侣GroEL的关系的全面分析。在这个工作中,研究者还通过对其中50种与GroEL作用的肽链的鉴定,进一步揭示了决定这些蛋白质能与GroEL相互作用的关键结构特征。应该说,这个工作很好地体现了蛋白质组学的思想方法和技术手段的运用。过去在细胞生物学领域还没有得到过一个主要亚细胞结构的完整的分子图。核孔复合体是一个巨大的跨核膜的八角形结构,是控制大分子在胞质和核质间运输的通道。多年来,很多方法被用来分析这一复合体的组成成分。虽然这些工作取得了很大的进展,但究竟在多大程度上反映了这一复合体的分子原貌仍然是一个未知数。最近通过使用蛋白质组学的手段,Rout等[11]鉴定了完整的酵母核孔复合体所有能检测到的多肽,并系统地对每种可能的蛋白质组分在细胞中定位,结合免疫电镜的方法将各组分在复合体内定位并定量,从而揭示了酵母核孔复合体的完整分子构造,并在此基础上揭示了其工作原理。这个工作可以说是蛋白质组学解决构造生物学问题的一个典范,为揭示其他巨大分子机器的"构造"和工作原理指出了一条新路[12]。通过分析一个蛋白质是否跟功能已知的蛋白质相互作用可得到揭示其功能的线索。因为经验告诉我们,如果两个蛋白质相互作用,那么它们一般参与相同或相关的细胞活动[13]。从近期国际上蛋白质组学研究的发展动向可以看出,揭示蛋白质之间的相互作用关系,建立相互作用关系的网络图,已成为揭示蛋白质组复杂体系与蛋白质功能模式的先导,业已成为蛋白质组学领域的研究热点。2000年初,《Science》登载了一篇应用蛋白质组学的大规模双杂交技术研究线虫生殖器发育的文章[14]。在这个工作中,Walhout等以线虫的生殖发育过程作为研究对象,从已知的27个与线虫发育的蛋白质出发,构造了一个大规模的酵母双杂交系统,得到了100多个相互作用的结果,初步建立了与线虫生殖发育相关的蛋白质相互作用图谱,从而为深入研究和揭示线虫发育的机制等提供了丰富的线索。这个工作不同于一般的应用酵母双杂交进行研究的地方在于,它出于对一个生物学问题的整体思考,尽可能地从所有已知的蛋白质而不只是个别的蛋白质为出发点。这一个工作为以前专注于信号转导过程中单个蛋白质作用的科学家们提供了一个新的思路,即将整个途径的相关蛋白质一起考虑。那么,能否通过酵母双杂交系统来分析一种细胞或特定组织的所有可能的蛋白质之间的相互作用呢?在今年初,《Nature》发表了一篇通过大规模双杂交技术研究酵母近6000个蛋白质之间相互作用的论文[15]。啤酒酵母基因组DNA的全序列业已测定,这为通过双杂交技术来鉴定酵母基因组编码的全部6000种左右的蛋白质间的可能相互作用提供了非常有利的条件。在这个工作中,研究人员采用了两种不同的策略对酵母的蛋白质间的相互作用作了全面分析。一是所谓的列阵筛选法(array screening)。在此方法中,6000株表达不同"猎物"蛋白的酵母单克隆分别加在微滴定板上,带有不同的"诱饵"蛋白的酵母株与前面6000株细胞一一接合形成二倍体细胞,"猎物"蛋白与"诱饵"蛋白的相互作用通过报道基因的表达而被鉴定。这篇文章中报道了192种不同的"诱饵"蛋白与近6000种"猎物"蛋白的相互作用的结果。另一种方法是文库筛选法。该方法与前一种方法的区别是,将表达6000种不同"猎物"蛋白的酵母细胞混在一起构成文库,再将这个文库分别与6000株表达不同"诱饵"蛋白的酵母细胞接合,再进一步筛选鉴定阳性克隆,即"诱饵"与"猎物"发生相互作用的克隆。根据这篇报告,上述两种策略得到了不同的结果,相比之下阵列筛选法更为有效,而文库筛选法的长处是通量大。这一工作的重要意义在于我们已经看到,在基因组序列被了解的基础上,可以利用大规模双杂交技术全面地,当然也是初步地,分析其物种或其细胞、组织的所有蛋白质之间的相互作用关系。相信类似的工作将很快针对其他物种开展,特别是基因组序列已被揭示的物种。由此可见,蛋白质组学已经开始从建立数据库走向解决生命科学的重大问题,成为研究生物学问题或机制的强有力手段。snow_white (2007-7-20 16:37:32)三、蛋白质组学研究进展与趋势曾 嵘 夏其昌(中国科学院上海生命科学研究院生物化学与细胞生物学研究所蛋白质组学研究分析中心 上海 200031)如果在五年前提到蛋白质组学(Proteomics),恐怕知之者甚少,而在略知一二者中,部分人还抱有怀疑态度。但是,2001年的Science杂志已把蛋白质组学列为六大研究热点之一,其“热度”仅次于干细胞研究,名列第二。蛋白质组学的受关注程度如今已令人刮目相看。1.蛋白质组学研究的研究意义和背景随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析(Serial analysis of gene expression, SAGE)等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA 蛋白质,存在三个层次的调控,即转录水平调控(Transcriptional control ),翻译水平调控(Translational control),翻译后水平调控(Post-translational control )。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相关性更差。更重要的是,蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等则几乎无法从mRNA水平来判断。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。传统的对单个蛋白质进行研究的方式已无法满足后基因组时代的要求。这是因为:(1) 生命现象的发生往往是多因素影响的,必然涉及到多个蛋白质。(2) 多个蛋白质的参与是交织成网络的,或平行发生,或呈级联因果。(3) 在执行生理功能时蛋白质的表现是多样的、动态的,并不象基因组那样基本固定不变。因此要对生命的复杂活动有全面和深入的认识,必然要在整体、动态、网络的水平上对蛋白质进行研究。因此在上世纪90年代中期,国际上产生了一门新兴学科-蛋白质组学(Proteomics),它是以细胞内全部蛋白质的存在及其活动方式为研究对象。可以说蛋白质组研究的开展不仅是生命科学研究进入后基因组时代的里程碑,也是后基因组时代生命科学研究的核心内容之一。虽然第一次提出蛋白质组概念是在1994年,但相关研究可以追溯到上世纪90年代中期甚至更早,尤其是80年代初,在基因组计划提出之前,就有人提出过类似的蛋白质组计划,当时称为Human Protein Index计划,旨在分析细胞内的所有蛋白质。但由于种种原因,这一计划被搁浅。90年代初期,各种技术已比较成熟,在这样的背景下,经过各国科学家的讨论,才提出蛋白质组这一概念。国际上蛋白质组研究进展十分迅速,不论基础理论还是技术方法,都在不断进步和完善。相当多种细胞的蛋白质组数据库已经建立,相应的国际互联网站也层出不穷。1996年,澳大利亚建立了世界上第一个蛋白质组研究中心:Australia Proteome Analysis Facility ( APAF )。丹麦、加拿大、日本也先后成立了蛋白质组研究中心。在美国,各大药厂和公司在巨大财力的支持下,也纷纷加入蛋白质组的研究阵容。去年在瑞士成立的GeneProt公司,是由以蛋白质组数据库“SWISSPROT” 著称的蛋白质组研究人员成立的,以应用蛋白质组技术开发新药物靶标为目的,建立了配备有上百台质谱仪的高通量技术平台。而当年提出Human Protein Index 的美国科学家Normsn G. Anderson也成立了类似的蛋白质组学公司,继续其多年未实现的梦想。2001年4月,在美国成立了国际人类蛋白质组研究组织(Human Proteome Organization, HUPO),随后欧洲、亚太地区都成立了区域性蛋白质组研究组织,试图通过合作的方式,融合各方面的力量,完成人类蛋白质组计划(Human Proteome Project)。snow_white (2007-7-20 16:37:49)2.蛋白质组学研究的策略和范围蛋白质组学一经出现,就有两种研究策略。一种可称为“竭泽法”,即采用高通量的蛋白质组研究技术分析生物体内尽可能多乃至接近所有的蛋白质,这种观点从大规模、系统性的角度来看待蛋白质组学,也更符合蛋白质组学的本质。但是,由于蛋白质表达随空间和时间不断变化,要分析生物体内所有的蛋白质是一个难以实现的目标。另一种策略可称为“功能法”,即研究不同时期细胞蛋白质组成的变化,如蛋白质在不同环境下的差异表达,以发现有差异的蛋白质种类为主要目标。这种观点更倾向于把蛋白质组学作为研究生命现象的手段和方法。早期蛋白质组学的研究范围主要是指蛋白质的表达模式(Expression profile), 随着学科的发展,蛋白质组学的研究范围也在不断完善和扩充。蛋白质翻译后修饰研究已成为蛋白质组研究中的重要部分和巨大挑战。蛋白质-蛋白质相互作用的研究也已被纳入蛋白质组学的研究范畴。而蛋白质高级结构的解析即传统的结构生物学,虽也有人试图将其纳入蛋白质组学研究范围,但目前仍独树一帜。

蛋白质融合技术毕业论文

生态 的蛋白质我肯定好的

是指将两个或多个基因的编码区首尾相连,由同一调控序列控制构成基因表达产物的技术。该技术可以构建具有双重功能的目的蛋白,在医药、农业、环境等中有广泛的应用。

蛋白质的改造,从简单的物理、化学法到复杂的基因重组等等有多种方法。物理、化学法:对蛋白质进行变性、复性处理,修饰蛋白质侧链官能团,分割肽链,改变表面电荷分布促进蛋白质形成一定的立体构像等等;生物化学法:使用蛋白酶选择性地分割蛋白质,利用转糖苷酶、酯酶、酰酶等去除或连接不同化学基团,利用转酰胺酶使蛋白质发生胶连等等。以上方法只能对相同或相似的基团或化学键发生作用,缺乏特异性,不能针对特定的部位起作用。采用基因重组技术或人工合成DNA,不但可以改造蛋白质而且可以实现从头合成全新的蛋白质。 蛋白质是由不同氨基酸按一定顺序通过肽键连接而成的肽构成的。氨基酸序列就是蛋白质的一级结构,它决定着蛋白质的空间结构和生物功能。而氨基酸序列是由合成蛋白质的基因的DNA序列决定的,改变DNA序列就可以改变蛋白质的氨基酸序列,实现蛋白质的可调控生物合成。在确定基因序列或氨基酸序列与蛋白质功能之间关系之前,宜采用随机诱变,造成碱基对的缺失、插入或替代,这样就可以将研究目标限定在一定的区域内,从而大大减少基因分析的长度。一旦目标DNA明确以后,就可以运用定位突变等技术来进行研究。 定位突变蛋白质中的氨基酸是由基因中的三联密码决定的,只要改变其中的一个或两个就可以改变氨基酸。通常是改变某个位置的氨基酸,研究蛋白质结构、稳定性或催化特性。噬菌体M13的生活周期有二个阶段,在噬菌体粒子中其基因组为单链,侵入宿主细胞以后,通过复制以双链形式存在。将待研究的基因插入载体M13,制得单链模板,人工合成一段寡核苷酸(其中含一个或几个非配对碱基)作为引物,合成相应的互补链,用T4连接酶连接成闭环双链分子。经转染大肠杆菌,双链分子在胞内分别复制,因此就得到两种类型的噬菌斑,含错配碱基的就为突变型。再转入合适的表达系统合成突变型蛋白质。 盒式突变1985年Wells提出的一种基因修饰技术——盒式突变,一次可以在一个位点上产生20种不同氨基酸的突变体,可以对蛋白质分子中重要氨基酸进行“饱和性”分析。利用定位突变在拟改造的氨基酸密码两侧造成两个原载体和基因上没有的内切酶切点,用该内切酶消化基因,再用合成的发生不同变化的双链DNA片段替代被消化的部分。这样一次处理就可以得到多种突变型基因。 PCR技术DNA聚合酶链式反应是应用最广泛的基因扩增技术。以研究基因为模板,用人工合成的寡核苷酸(含有一个或几个非互补的碱基)为引物,直接进行基因扩增反应,就会产生突变型基因。分离出突变型基因后,在合适的表达系统中合成突变型蛋白质。这种方法直接、快速和高效。 高突变率技术从大量的野生型背景中筛选出突变型是一项耗时、费力的工作。有两种新的突变方法具有较高的突变率:①硫代负链法:核苷酸间磷酸基的氧被硫替代后修饰物(α-(S)-dCTP)对某些内切酶有耐性,在有引物和(α-(S)-dCTP)存在下合成负链,然后用内切酶处理,结果仅在正链上产生“缺口”,用核苷酸外切酶III从3`→5`扩大缺口并超过负链上错配的核苷酸,在聚合酶作用下修复正链,就可以得到二条链均为突变型的基因;②UMP正链法:大肠杆菌突变株RZ1032中缺少脲嘧啶糖苷酶和UTP酶,M13在这种宿主中可以用脲嘧啶(U)替代胸腺嘧啶(T)掺入模板而不被修饰。用这种含U的模板产生的突变双链转化正常大肠杆菌,结果含U的正链被寄主降解,而突变型负链保留并复制。 蛋白质融合将编码一种蛋白质的部分基因移植到另一种蛋白质基因上或将不同蛋白质基因的片段组合在一起,经基因克隆和表达,产生出新的融合蛋白质。这种方法可以将不同蛋白质的特性集中在一种蛋白质上,显著地改变蛋白质的特性。现在研究的较多的所谓“嵌合抗体”和“人缘化抗体”等,就是采用的这种方法。

糖化血红蛋白检测分析论文

红细胞生存的周期一般只有120天,做糖化血红蛋白测定可以观察到患者的血糖在120天之内,是否是稳定的。一般能和葡萄糖结合的血红蛋白只是占到了一小部分,可能只有4%到6%,所以说糖化血红蛋白测定的正常值也就在这个范围之内,可以代表我们身体在120天左右内血糖的平均值,结果更具参考性。对于糖尿病患者来说,进行糖尿病治疗,平时最重要的就是使血糖趋于稳定,在这过程我们要及时了解血糖到底有没有控制住,因此,血糖的测量是必须要做的事情,除了在家用血糖仪进行检测外,还可以用三诺的A1CNow+糖化血红蛋白检测仪进行检测,一般三个月检测一次就行。

1、阳离子交换色谱法原理:糖化导致血红蛋白分子表面阳离子丢失。在弱的阳离子交换剂中,例如Biorex70,伴有增加的离子浓度和(或)pH下降,糖化血红蛋白在非糖化血红蛋白前先洗脱。这现象产生了糖化血红蛋白最初的术语“快速血红蛋白”。阳离子交换色谱法可用于小型、微型或大型柱层析方法或部分或全自动的PHLC/FPLC方法。因为,其他翻译后修饰血红蛋白,例如醛亚胺型、甲酰化、乙酰化、乙醛加合物、降解物、老化人工物品和异常血红蛋白电荷交换也不同于正常的HbA0,所以已经列出了许多阳离子交换层析法的干扰因素。使用常规HPLC的方法。分离糖化血红蛋白亚组分是能达到满足需求的临床精密度。然而,已知HbA1c的峰不是均一的而是包含一重要的非糖化血红蛋白部分。少数糖化血红蛋白也整合到HbA0主峰中。通过使用特殊的柱原料(poly-CATA)和30~40 min分离时间可以改善分离效果。这些方法可以作为参考步骤但不适合常规使用。所有的阳离子交换色谱法对pH和温度的变化敏感,因此要控制pH和温度。说明:根据红细胞代谢动力学推测初始HbA1c值大约每日破坏1/120(≈0.83%)。因为糖化在合适的治疗下甚至健康人也产生,故这个理论值在体外不能达到。控制不理想的糖尿病患者通过加强治疗而达到血糖量正常,可以发现HbA1c值最大下降率以大约每10 d下降正常血糖的1%(绝对的)。由于测定糖化血红蛋白方法的精确性,两次测定值HbA1c的差异大约1%就可认为具有临床相关性。因为这些原因,在HbA1c两次测定间至少有2周的时间,推荐4~6周的间隔。因为升高的糖化血红蛋白值是长期高糖血症的糖尿病患者相当可靠的指示剂,因而是可能诊断糖尿病的。在未治疗的个体,正常的糖化血红蛋白值临床上可以排除明显的糖尿病。但由于它不能检测糖耐量受损,所以作为诊断和(或)筛选目的唯一的参数,使用糖化血红蛋白是存在问题的。2、电泳法原理:相比于非糖化血红蛋白,因糖化而变化的总电荷和糖化血红蛋白的等电点变化是琼脂糖凝胶或者pH梯度5.0~6.5的凝胶等电聚焦电泳分离的基础。琼脂糖凝胶电泳的血红蛋白亚组分分辨率很小,而等电聚焦可以更好地使亚组分分离。可能由于试验的自动化程度不足,重要性已经下降。3、亲和层析法原理:硼酸结合顺式-羟基。商品化的m-氨基苯硼酸琼脂糖共价结合的亲和柱已可用于微柱分析检测。将血样本中的血红蛋白加到层析柱后,所有的糖化血红蛋白(HbA1和旁链糖化的血红蛋白;总糖化血红蛋白)与硼酸结合而非糖化血红蛋白通过层析柱可被测量。在加入高浓度也包含顺式-羟基的多羟基复合物,例如山梨醇后,糖化血红蛋白与硼酸的结合被替换而从柱子上洗脱下来。亲和层析法对经翻译以后修饰的血红蛋白和病理血红蛋白的影响相对不敏感。利用亲和层析法,仅能测定总糖化血红蛋白。广泛使用的亲和层析方法,允许用经验算法从总糖化血红蛋白值计算出“标准的HbA1c”。4、免疫分析法在缬氨酸β-N-末端糖化的血红蛋白提供了一个容易被抗体识别的抗原表位。可以用单克隆抗体或多克隆抗体进行放射免疫分析和免疫酶学分析测定,抗体特异识别β链N-末端糖化的血红蛋白最后4~8个氨基酸组成的抗原表位。异常的血红蛋白或翻译后经修饰的血红蛋白无干扰。目前的免疫化学试验不仅检测HbA1c,通常也同时检测HbA2c,因为血红蛋白A2糖化δ链的表位是相同的。抗体直接抗β-链的最后四个氨基酸的糖化表位的免疫化学试验也可用进行检测,例如HbS1c。在大多数情况下HbA2c意义不大,虽然镰刀细胞病时可以准确地测定缬氨酸β-N-氨基末端糖化程度,但它仍不能100%代表HbA1c。5、离子层析法离子层析法精密度高、重复性好且操作简单, 被临床广泛采用。检测原理由于血红蛋白β-链N 末端缬氨酸糖化后所带电荷不同, 在偏酸溶液中总糖化血红蛋白( GH b) 及H bA 均具有阳离子的特性, 因此经过阳离子交换层析柱时可被偏酸的缓冲液平衡过的树脂来吸附, 但二者吸附率不同, GH b正电荷较少吸附率较低, H bA 正电荷较多吸附率较高。用不同pH 的磷酸盐缓冲液可以分次洗脱出GH b 和H bA, 用KCN 可将H b转化为高铁氰化血红蛋白, 用分光光度计测定。或者得到相应的H b层析谱, 其横坐标是时间, 纵坐标是百分比。HbA1c值以百分率来表示。现在大部分都用全自动测定仪测定。6、等电点聚集法是测定GH b的新技术, 它是在聚丙烯酞凝胶中加人载体两性介质的薄板上形成一个由阳极到阴极逐渐增加的pH 梯度, 溶血液中各个组份将移动到各自的等电点的pH 位置上, 这样就得到比一般电泳法更好的分划效果和比较集中的色带, 通过分辨率高的微量光密度仪扫描, 可以准确地测定出各自组份的含量。由于它能够分辨出一级结构不同的HbA、HbAc、HbF、HbS 及HbC等, 可完全避开各种物质的干扰。7、化学发光法采用离子捕捉免疫分析法, 应用抗原抗体反应原理, 联以荧光标记物, 通过连接带负电的多阴离子复合物, 吸附到带正电的纤维表面, 经过一系列彻底清洗等步骤后, 测定荧光强度变化率, 计算浓度。采用专用试剂包和免疫发光分析仪,其检测系统易于规范和重复, 可减少操作技术误差, 检测的灵敏度和特异性高, 批内、批间变异系数小, 回收率高, 准确度高, 交叉污染率小, 影响因素少。8、酶法原理为用特殊蛋白酶分解Hb, 3~ 5 min内果糖基氨基酸从H b分离, 果糖基氨基酸氧化酶( FAOD )从果糖基氨基酸产生H2O2, H2O2经POD与DA- 64反应, 选择751 nm 测吸光度改变求得GHb浓度。

但看一次的结果意义不大,需要看前后的结果的比较。来观察血糖的控制情况。糖化血红蛋白也有生理性的波动,如果没有高血糖不必担心。

随着社会的不断发展,随着大量的护理专业 毕业 生走向工作岗位,这种过于强调专业技术而忽略了护理人文 教育 的护理专业课程设置方式的不足之处逐渐显现。下面是我为大家推荐的护士毕业论文,供大家参考。

护士毕业论文 范文 一:糖尿病患者门诊健康教育护理运用

糖尿病是一种持续高血糖的代谢性疾病,长时间患有此病会导致眼睛、肾脏、心脏、血管、神经等慢性衰退,从而引发其他的各种病变,增加糖尿病患者的死亡率[1]。临床上治疗该种疾病的主要方式是药物治疗、饮食疗法、运动疗法等。由于该疾病是一种慢性疾病,因此在治疗的同时给予有针对性的门诊健康教育,可以有效提高治疗效果[2,3]。我院在糖尿病患者门诊护理中应用健康教育,取得了良好的治疗效果,现报道如下。

1资料和 方法

1.1一般资料

从本院2013年10月-2014年10月所诊治的糖尿病患者中选取84例为观察对象,将其随机分为观察组和对照组各42例,观察组中,男23例,女19例,年龄35~67岁,空腹血糖为8.7~13.7mmol/L;对照组中,男22例,女20例,年龄36~70岁,空腹血糖为8.6~13.6mmol/L。两组患者的性别、年龄、空腹血糖等一般临床资料相比差异无统计学意义(P>0.05),具有可比性。

1.2方法

对照组给予常规门诊护理。观察组在常规护理基础上给予门诊健康教育护理:(1)每个月对患者进行一对一的门诊健康教育,健康教育内容包括糖尿病基本知识,糖尿患者的饮食、运动训练、生活习惯、血糖检测等。平时给予电话随访,共随访护理1年。(2)发放糖尿病防治宣传册,并根据患者的具体情况,给予有针对性的指导和建议。(3)对患者及其家属进行健康心理教育,帮助患者消除不良情绪,营造良好的治疗氛围。

1.3评价指标

(1)在护理干预前、后分别对患者进行空腹血糖以及糖化血红蛋白指标水平进行检测。(2)患者的护理满意度。1.4统计学分析利用统计学分析软件SPSS16.0对相关数据展开统计学分析,对计数数据进行χ2检验。当结果满足P<0.05时,二者对比具有显著差异,且具统计学意义。

2结果

2.1两组患者护理前、后空腹血糖、糖化血红蛋白等血糖指标比较

护理前两组患者的空腹血糖、糖化血红蛋白等血糖指标差异无统计学意义(P>0.05),护理后,两组患者的空腹血糖、糖化血红蛋白等血糖指标较护理前明显改善,且观察组明显优于对照组,差异具有统计学意义(P<0.05)。

2.2两组患者对护理的满意度

经过1年的护理,对照组患者中对护理满意31例,满意度为73.8%,观察组患者中对护理满意40例,满意度为95.2%,通过对比,两组之间存在较大差异,具有统计学意义(χ2=6.515,P<0.05)。

3讨论

随着人们生活水平的提高、饮食结构的改变,患有糖尿病的人数在不断的增长。据有关统计显示,全国糖尿病现患人数在3万左右[4]。糖尿病是由于胰岛素分泌缺陷或胰岛素生物作用受损而引起的以高血糖为特征的代谢性疾病[5]。长期的高血糖会导致各种组织,特别是眼、肾、心脏、血管、神经等慢性损害、功能障碍。作为一种慢性终身性疾病,糖尿病的长期性会给患者的身心健康、日常工作和生活带来极大的影响。临床上治疗该种疾病的主要方式有药物治疗、运动治疗、饮食疗法等[6]。但由于该疾病是一种慢性疾病,因此在治疗的同时给予有针对性的门诊健康教育,可以有效提高治疗效果。门诊护理是患者进入医院首先享受到的护理服务,门诊护理工作的优劣直接影响患者的就诊心理,影响患者对医院医疗水平和医疗服务的评价[7]。门诊护理人员通过实施完善的健康宣教,每个月对患者进行一对一的门诊健康教育,平时给予电话随访,可以让患者认识到按量服用降糖药的重要性,提高临床治疗的依从性;通过对患者及其家属进行健康心理教育,帮助患者消除不良情绪,营造良好的治疗氛围;通过根据患者的病情变化情况动态的实施有针对性的健康教育护理 措施 ,能够有效控制血糖,从而延缓病情的进展[8]。本文中,对照组给予常规门诊护理,观察组给予门诊健康教育护理,护理前两组患者的空腹血糖、糖化血红蛋白等血糖指标差异无统计学意义(P>0.05),护理后,两组患者的空腹血糖、糖化血红蛋白等血糖指标较护理前明显改善,且观察组明显优于对照组,差异具有统计学意义(P<0.05)。对照组患者对护理的满意度为73.8%,观察组患者对护理的满意度为95.2%,两组患者护理满意度之间存在较大差异,具有统计学意义(χ2=6.515,P<0.05)。综上所述,在糖尿病患者门诊护理中应用健康教育能够有效控制患者的血糖,延缓病情发展,提高治疗效果,因此值得临床上推广使用。

护士毕业论文范文二:颅脑损伤气管切开护理医学论文

1、临床资料

本组50例患者中,男38例,女12例;年龄19~81岁,平均52.7岁。所有病例均经CT和(或)MRI检查:脑干损伤10例,广泛脑挫裂伤22例,颅内血肿合并脑挫裂伤8例,硬膜下血肿5例,硬膜外血肿5例。GCS评分均少于8分。实施气管切开术最短为发病后3h,最长为12天。昏迷时间为1~7个月不等。带套管时间最短为7天,最长45天,平均带管治(40.00±5.08)d,其中7~9天13例(26%),10~14天25例(50%),15~30天8例(16%),31~45天4例(8%)。住院天数30~78,治愈46例;死亡4例,死亡原因均为脑疝,抢救成功率为92%。

2、术后护理措施

2.1体位护理

重型颅脑损伤病人气切术后,常因误吸、长期卧床等诱发各种并发症,正确舒适的卧位可使病人安全舒适预防并发症发生。气管切开术后24~48h患者需去枕平卧,保持头颈伸展位,保证气管套管在气管内的居中位置。颅内压增高者应将床头抬高15°~30°,以利于静脉回流,减轻脑水肿。每2小时给患者翻身1次,以减少分泌物潴留。同时叩拍背部使黏稠的分泌物松动、脱落并排出。拍背时右手掌屈曲成杯状,腕微屈呈150°,用腕力或肘关节力,力度应均匀一致,不可用掌心或掌根,由下向上,由外向脊柱方向震动,可有效地协助患者排痰。防止套管移动,堵塞或脱出而造成窒息。昏迷患者应平卧与侧卧交替变换,防止造成坠积性肺炎。在患者睡眠时,将患者安置于舒适的体位,创造舒适的睡眠环境,治疗护理过程中给予心理与技术的周到服务,使昏迷恢复期的病人睡眠舒适。

2.2切口护理

气管切开口及周围皮肤应保持清洁干燥,每日用无菌的生理盐水棉球清洁切口局部,用酒精棉球清洁切口周围皮肤,一般每日换药2次,切口周围用0.5%碘伏消毒后更换无菌纱布,严格无菌操作,并注意观察有无伤口出血或皮下气肿的发生。使用无菌纱布剪一Y型切口垫于切口处,上层用Y型塑料薄膜保护防止痰液浸湿敷料。内套管每日清洗消毒2次,用2%戊二醛浸泡消毒后,置管前应反复冲洗干净,预防切口感染效果好。

2.3心理护理

患者气管切开之前,需向家属进行全面的解释,讲清楚气管切开的必要性、安全性和重要性。气管切开之后,患者均呈昏迷状态,无自主运动及意识,告知家属可能遇到的问题,指导他们更好地配合治疗和护理,并取得家属的信任。意识清醒的患者对疾病对环境等有更多的害怕心理,对医务人员做的每一项检查和护理都会害怕,患者会出现不同程度的焦虑、恐惧等心理。因此,医护人员每进行一项操作要及时跟患者沟通,给患者精神上的支持,增强其战胜疾病的信心。由于气管切开术后患者不能发音,护理人员应主动关心、体贴病人,采用非语言性沟通方式,通过观察患者面部表情、口形、手势、眼神等情况进行有效沟通,也可让患者用书写的方式表达自己的需求。使患者能积极配合治疗,并用语言和手势对患者的配合表示赞赏和鼓励,让患者获得精神上的满足感。尽最大努力满足患者的需求,鼓励其树立战胜疾病的信心,争取早日康复出院。

2.4呼吸道护理

2.4.1固定外套管

护理人员应该严格执行操作规程,在合理使用范围内选用较粗的气管套管,使套管居于气管中央而不易偏向一侧。套管固定要松紧适当,固定套管的系带要打外科结,系带的松紧度应以能容一指为宜,系带每天更换1次,发现被痰液或渗液污染时应立即更换。根据患者颈部肿胀程度随时调整系带的松紧度,防止脱管等并发症导致的窒息。

2.4.2气道湿化

①超声雾化吸入。我院神经外科采用的是用无菌蒸馏水20ml+α-糜蛋白酶4000U+庆大霉素8万U+地塞米松5mg配成雾化液,经气管套管口给予超声雾化吸入,以稀释痰液,使痰易于咳出或吸出,起到抗菌消炎作用。无菌蒸馏水湿化效果优于生理盐水,是因为生理盐水进入支气管内水分蒸发快,Na离子沉积在肺泡支气管形成高渗状态,不利于气体交换,极易引起支气管炎、肺水肿。雾化吸入每6~8小时1次,每次15~20min。同时给氧,并注意保持雾化器喷嘴距人工气道6~10cm,以免因过于接近导致只有雾气进入而造成窒息。②湿化液间隔注入法。用一次性注射器抽取湿化液2~3ml后取下针头,在患者吸气末时沿气管导管内壁缓缓滴入,间隔时间为1次/30min,当患者吸气时沿套管内壁滴入,以减少对呼吸道的刺激

2.4.3内套管的清洗消毒

在气管切开期间,内套管分泌物过多过于粘稠,应每隔4小时清洗、煮沸消毒一次。分泌物多或粘稠,应增加清洗消毒次数。从拔出内管到重新放回,每次间隔时间不宜超过30分钟(先将水烧开,再投入清洗好的内管,可缩短时间),以免外套管内存积痰痂,使内套管不易放入。目前随着塑料套管的广泛运用,用3%双氧水溶液浸泡5min后彻底清洗,再用同样溶液浸泡5min,最后用生理盐水冲洗,无菌纱布擦干,每日4次。临床实验证明,消毒效果与煮沸法相同,但可缩短内外套管脱离时间。

2.4.4更换气管内套管

取内管时,应一手按住外管的双耳,另一手旋开外管口上的活瓣。再将管取出,操作要轻,否则有将外管一并带出之危险。避免刺激气道引起患者剧烈咳嗽。有研究表明更换套管间隔8小时一次较为合理。

2.4.5吸痰

吸痰是气管切开术后护理的关键,但同时吸痰本身对呼吸道又是一种损伤。因此必须严格掌握吸痰的时机、方法和技巧。吸痰前、中、后密切注意患者心率、呼吸、意识、面色的改变。心电监护者可密切注意氧饱和度,出现心律失常或血氧饱和度<90%时立即停止操作吸痰并吸氧。先调好吸引器负压,并将吸痰管放入无菌生理盐水中,以测试导管是否通畅及吸引力是否适宜。成人一般控制在10.64~15.98kPa, 儿童 一般控制在7.98~10.64kPa。吸痰前必须充分给氧,严格执行无菌操作,动作轻柔,在无负压情况下,当插入一定深度后一边轻轻旋转一边缓慢退出,同时进行吸引,切忌做上下抽吸,每次吸痰时间不能超过15s,每次吸痰时均应更换吸痰管。协助患者翻身,以手掌叩击患者背部,使附着于肺部周围、气管、支气管壁的痰液松动、脱落,以利于痰液吸出。避免拉锯式的吸痰,否则容易损伤呼吸道黏膜,也不易保持血氧饱和度和氧分压。吸痰管应选择较粗一些,吸引管沿套管的内壁稍用力,边吸边下滑,可把内壁的痰块吸出。

2.5口腔护理

重型颅脑损伤患者由于昏迷、禁食、中枢性高热等原因,易发生黏膜糜烂,加之抗生素应用,易发生真菌感染。口腔分泌物是进入下呼吸道重要的感染源,患者吞咽、咳嗽反射减弱或消失,口腔分泌物更容易进入下呼吸道,而引发肺部感染。因此,应加强患者口腔护理,根据病人唾液pH值用生理盐水或2%NaHCO3棉球擦拭口腔每天4~6次,擦拭时动作要轻,避免损伤口腔黏膜。口腔护理可使口腔内的细菌数减少,促进唾液分泌,增强口腔的自净力,从而保持口腔清洁、湿润,使患者舒适、清爽。本组患者无一例发生口腔感染。

2.6泌尿系护理

重型颅脑损伤并气管切开患者,由于昏迷,经常发生尿失禁,须留置尿管排尿。但由于留置时间长,护理至关重要,须随时更换尿管,一般每周1次,定期冲洗,减少或预防感染发生。

3、结果

本组50例重型颅脑损伤并气管切开患者采取相应的护理措施,46例治愈,4例于手术后4~15d内因病情严重,抢救无效而死亡,未发生窒息和继发肺部感染等并发症。对气管切开患者,术后严格执行消毒隔离及无菌技术操作规程,及时清除气道分泌物。

4、讨论

重度颅脑损伤常伤及中枢神经系统,是神经外科的常见疾病。临床表现为眼底、瞳孔和、生命体征的改变,呕吐、头痛、意识障碍和脑疝等。重型颅脑损伤极其凶险,死亡率高,如不及时有效处理及护理,均可造成呼吸道堵塞而死亡。气管切开是重型颅脑损伤病人常用的抢救措施之一。重型颅脑损伤气管切开的患者由于机体内环境发生变化,免疫力下降,加上昏迷、卧床、禁食,使各种生理反射减弱或消失。特别是实施气管切开术后人工气道的建立,增加了患者的感染机会。采取正确的体位护理、切口护理、心理护理、呼吸道护理等有效的护理措施,能减少肺部、切口等感染的发生,给病人创造最佳康复环境,重型颅脑病人的救治是能达到满意效果的。

综上所述,笔者认为:重度颅脑损伤气管切开术后科学的护理非常重要,能有效减少和预防气管切开术后并发症的发生。医患密切配合,和患者成为朋友,使治疗护理工作有效开展、顺利完成,能够有效地提高患者的生活质量。

儿童血红蛋白检测分析论文

你好,孩子目前有α地中海贫血的风险,正常胎儿体内不会出现Hb Barts,只有HbA、HbF和HbA2三种珠蛋白。人体的血红蛋白由珠蛋白和血红素组成,1分子珠蛋白有4个肽链(两种肽链类型,α和非α,前者由16号染色体表达——同源染色体表达,每个染色体均有两个α基因位点,后者由11号染色体表达),每个肽链有个血红素,每个血红素可以携带1分子氧气,故一个血红蛋白可携带4分子氧气;正常人体内珠蛋白为HbA(α2β2,占95%)、HbA2(占2%-3%)及胎儿血红蛋白(HbF,占1%)三种类型;对正常胎儿来说HbA 值为25.0%;Hb F 值为75%,Hb A2 <1%,不会出现Hb Barts;α地中海贫血按照基因缺失,对出生几天的胎儿采血电泳检测,可分为以下几种(从轻到重):1、静止型(1个α基因异常,HbBarts<2%); 2、标准型(2个α基因异常,Hb Barts在2%-10%);3、HbH病(3个α基因异常,Hb Barts在2%-30%);4、Hb Barts病(4个α基因异常,HbBarts在80%以上),前面两种基本无临床症状,血红蛋白电泳基本无异常,而最后这种是最严重的α地中海贫血,导致胎儿血红蛋白无法载氧,组织严重缺氧。胎儿苍白,全身水肿伴腹水,多数宫内死亡。目前从电泳图谱比例中发现,您孩子的Hb Barts含量较低,所以相对来说风险较低,有可能是α地中海贫血中最轻微的静止型,该型即贫血携带者,一般无临床症状,我的建议也是对其进行α地中海贫血基因检测,以便明确其贫血类型。参考文献:《内科学》人民卫生出版社 第八版 第六章溶血性贫血,第四节 血红蛋白病

儿童是爸爸妈妈的宝贝,孩子的健康都受到爸爸妈妈的精心呵护。然而许多家长没有意识为孩子测量血红蛋白,因此如果孩子的血红蛋白量出现异常的时候,并没有办法知道并进行治疗,让孩子的健康多了一个不必要的危险。因此本文介绍儿童怎么测生蛋白,希望能够让更多的家长意识到血红蛋白的重要性,更好的为宝宝营造一个健康的生长环境。血红蛋白能够携带氧气从肺部到全身,满足身体各个机能的氧气成分,正常的情况下,红细胞的数量和降蛋白的含量会随着年龄的变化而变化,当如果检测到儿童血红蛋白的含量,可以更加清楚的认识到儿童的发育状况。便携式血红蛋白分析仪方法:待测全血粘到试纸条后,带刺的血液会迅速在反应膜上进行扩散,在这个过程中,红细胞会被溶解时放出适量蛋白,最后转化成高铁血红蛋白,根据不同的含量,最终决定反应的颜色强度,从而确定血红蛋白的浓度。另外如果儿童缺铁性贫血的时候,也可能是由于血红蛋白缺失造成的,它严重影响儿童的生长发育和认知能力,导致注意力不集中,免疫力下降,因此血红蛋白的含量就是评价儿童是否贫血的重要指标。一旦出现了贫血的现象,父母要提供大量的含铁锌食物给孩子,应及时寻找医生的帮助,并且及时进行药物治疗。最后,家长要意识到测量血红蛋白对儿童的重要性,还要了解血红蛋白测量的原理,一旦发现血红蛋白含量不足的症状时,应该及时到医院进行就诊,并且寻找声音的专科医师进行解释并给出合理的建议。相信以上检测血红蛋白的方法和重要性,可以让家长更加意识到血红蛋白的作用。

现代城市供水水质化验室装备和建设摘要:结合深圳市自来水(集团)有限公司新水质实验室的建设,探讨了建设满足一类水司水质检测及未来需要的城市供水水质实验室,在仪器装备、实验环境、安全防护和建筑装修等方面的实践经验。关键词:城市供水 水质检验 实验室 装备城市供水是保障城市发展、人民生活和身体健康的重要基础设施。根据建设部《城市供水行业2000年技术进步发展规划》要求,第一类水司(最高日供水量超过100万m3)到本世纪末,能做到检验89个水质项目并达到规定的水质指标值,使我国第一类水司的供水水质接近国际先进水平。为此,必须加强各大水司的中心实验室的工作,建立一个完善的现代化的供水水质实验室,是落实第一类水司水质目标的基础环节。深圳市自来水(集团)有限公司在1994年以公司中心实验室为基础组建了城市供水水质监测机构——国家城市供水水质监测站,并通过国家计量计证,获得了提供检测数据具有公证性的地位。1997年6月底,集团公司建成“万德大厦”,位于大厦20~22层的集团公司新化验中心(监测站),于1998年7月正式启用,共计建筑面积2 630m2,使用面积1 800m2。新的化验中心(监测站)的建设原则是功能既要满足一类水司水质检测的需要,又要考虑21世纪水质检测的发展要求,要合理、先进实用、美观大方。在仪器装备、实验环境、安全防护和建筑装修等方面,体现出高起点、高水平、突破传统化验中心的模式。1 实验室的设计检验能力(1)自来水水质检验项目共89项(包括Ames试验)。(2)原水水质检验项目,按GB3838-88为30项,按建设部要求与自来水一样须检验88项(余氯不检),但仍需补充4项:化学需氧量、凯氏氮、总磷、五日生化需氧量,故原水需检92项。(3)因制水工艺试验需要,另增11项,如藻类、总氮等。(4)水处理剂检验2项,如聚合氯化铝、石灰。以上合计,总设计检验能力为106项。2 建设原则、功能区的划分及科室设置2.1 建设原则按照国家设计监督局对实验室认可规范中有关环境条件的要求,作为实验室建设及功能区划分的依据。a.根据检测项目及不同种类的仪器设备的具体要求,建立相应的实验室。b.实验室应与办公室隔开,与实验室无关的物品,不得在实验室内存放;与实验无关的活动,不得在实验室内进行。c.实验室内,仪器室与预处理室应分开。d.在一间实验室内,会造成相互干扰的检测项目也要分隔开,等等。2.2 功能区设置及使用面积分配(见表1)表1 功能分区及使用面积分配 功能分区 楼层 职能分类 建筑面积(m2) 使用面积(m2) 分配比(%)行政管理 22 行政办公 630 380 21.11其它设施 20小计 400生物理化检验区 21 生物检验室 1 000 270 15.00理化检验室 350 19.44其它设施 80小计 700大型仪器检验区 20 大型仪器室 1 000 550 30.56其它设施 150小计 700建筑面积合计使用面积合计其中:(1)检验室合计(2)其它设施合计 2 6301 8001 17025013.89注:其它设施属中心管理;行政管理区的资料档案室40m2。2.3 科室设置及主要装备、仪器配备(见表2)表2 科室设备及主要装备、仪器装备 职能分类 科室名称 间数 使用面积/m2 主要装备及数量 主要仪器设备办公室(第22层) 领导办公室 2 80行政办公室 3 08专业办公室 6 190更衣室 2 30水样管理室* 1 20 化验室1套生物检验室(第21层) 常规检验室 1 30 通风柜(美)1套,化验盆(实验台、仪器台等略,下同)细菌检验室 1 40 化验盆1套无菌1室 1 25 无菌、洁净10万级毒理室 1 30 通风柜1套,化验盆1套Ames试验室 2 40 化验盆2套 冷冻离心机、低温冰箱等无菌2室 1 25 无菌、洁净10万级BOD5DO室 2 35 化验盆1套,排风罩1套 生化培养箱、溶解氧仪藻类检验室 3 45 化验盆1套 双目电光生物显微镜、倒置显微镜理化检验室(第21层) 天平室 1 10 天平台(德) 天平(瑞士)标物室(质控) 1 25 活动排风罩1套,化验盆1套纯水室 1 10 排风罩1套,化验盆1套 蒸馏水器,纯水器(美)理化检验1室 2 85 通风柜1台,排风罩1套,化验盆3套 浊度仪,pH计,电导率仪等流动注射仪室 1 20 活动排风罩2套,供气站1套 流动注射分析仪(法)理化检验2室 1 48 通风柜2台,排风罩1套,化验盆2套光度计室 1 20 紫外可见分光光度计4台自动滴定仪室 1 12 多功能自动滴定分析仪2台测汞仪室 1 30 活动排风罩1套 测汞仪(美)理化检验3室 1 40 通风柜1台,化验盆2套原材料检验室 1 30 通风柜1台,化验盆1套混凝试验室 1 20 化验盆1台 烧杯试验机2套,多功能检测仪1套技术培训室* 1 80大型仪器室(第20层) 纯水室 1 24 排风罩1套,化验盆2套 蒸馏水器,纯水器(美)天平室 1 10 天平台(德) 电子分析天平(瑞士)预处理1室 1 80 通风柜2套,化验盆2套,供气站1套气相色谱仪室 1 34 活动排风罩2套,用气板1套 气相色谱仪2台(美)气质联用仪室 1 32 活动排风罩1套,用气板1套 气质联用仪(美),吹扫捕集装置预处理2室 1 80 通风柜1台,化验盆2台,供气站1套原子吸收仪室 1 42 活动排风罩4套,用气板1套 原子吸收分光光度计,设计共3台,现有Z-5000(日)ICP仪室 1 20 活动排风罩1套,用气板1套 等离子体发射光谱-质谱联用仪(美)预处理3室 1 48 通风柜1台,化验盆2套,供气站1套 自动固相萃取工作站(美)液相离子色谱仪室 1 38 排风罩1套,用气板1套 液相色谱仪(美)、离子色谱仪(美)、毛细管电泳仪(美)总有机碳仪室 1 30 活动排风罩1套,用气板1套 总有机碳分析仪(英)总有机卤仪器及预处理室 1 30 通风柜1台,化验盆1套,用气板1套 总有机卤仪,颗粒计数仪放射性检验室 4 82 通风柜2台,化验盆1套,用气板1套 总α、β放射性测定仪(美)、电子分析天平(瑞士)其它(第20层) 仓库* 3 94 排气罩5套,化验盆1套 安全柜(德)维修间* 1 20 化验盆1套供水器材检验室* 1 36 通风柜1台,化验盆3套注:*为其它设施,不属专业检验室管理。3 实验室主要装备设施及其选用实验室装备,是指为满足实验操作条件,创造优良检验环境,保障实验人员人身安全和健康,而在实验室中设置的基本装备。3.1 实验室装备现状随着技术的和我国综合国力、实力的增强,我国实验室的实验装备正在发生变化,即由原来主要以化验盆、沙石、砖头、木材、钢铁等原材料,在现场现做成水泥台、通风柜等实验装备,转变为直接采用组合式成套成型产品。组合式成套成型产品采用现代新型材料和现代化生产工艺,其优势主要有:产品系列化、结构灵活、实验室布局可调整,耐酸耐碱耐热性能优良、美观耐用、高档豪华、整齐划一、先进实用、安装施工迅速等。3.2 实验室装备的主要项目(1)实验台柜包括中央实验台、实验台、边台、仪器台、天平台、药品柜、毒品柜、玻璃器皿柜等。(2)空调通风设施。在新的化验中心,所有的建筑面积均有空调。通风系统包括通风柜(毒气柜)、排风罩(固定式)、活动式排风罩、排气扇等。(3)用水设施包括化验盆、洗涤池、化验水龙头等。(4)安全设施包括消防喷水灭火系统,惰性气体灭火系统,安全柜,紧急事故淋洗器、洗眼器等。(5)供气设施包括供气站、供气板、用气板及其管路系统等。(6)电脑管理系统。等等。3.3 实验台柜的选用据悉,国内外有多家不同的大公司分别主产不同品牌、层次、形式、系列的实验台柜,主要有:美国VWR Scientific公司的REDISHIP品牌;德国Kottermann品牌;法国的TESTLAB品牌;礼学社股份公司的LABTECH品牌;马来西亚LSI公司的LABTEK品牌;深圳美加丽公司生产的美加丽品牌。这些产品分别代表着不同的档次和水平,并各有特点。美国的VWR和德国的Kottermann实验台柜,除面板外,整体均为全钢制造,设计科学、用料考究、做工精细、美观大方、高档实用;表面静电喷涂特殊油漆,防火防水防酸碱,坚固耐用,不易刮伤。代表着最高档次,但价格昂贵。香港水务署化验所、香港特灵制药厂和玛丽等单位都使用这类实验台柜。法国的TESTLAB品牌,设计、外观、做工、用材都较好,代表着中等档次。我国大亚湾核电站正在使用此款实验台柜。台湾礼学社股份公司的LABTECH品牌实验台柜产品,除面板外,也是全钢制造,除了有坚固、安全、防火、不生锈等优点外,其与众不同的特点是其实验台柜系统以多功能及结构弹性为特点,可以在不改变主结构体的状况下调整桌上的配件和桌下的柜子,以符合新的工作条件。也属于中等档次。目前,香港理工大学及香港牛奶公司化验所都有使用。马来西亚LSI公司的LABTEK品牌,其结构用钢,其它部分用木。用材、设计式样及做工都属一般。属一般档次。香港海洋公园化验所正在使用此款实验台柜。其优点是价格较低。深圳美加丽公司,是国内最早自行设计、制造生产实验装备的公司之一,其所生产的实验室台柜外观大方稳重,设计实用;采用全钢结构,坚固耐用;主体采用静电喷涂,不易划伤;面板选用多种优质进口材料,光滑平整,防水防酸防碱。代表着国内同类产品的较高水平,而且价格低廉。我单位实验台、天平台等选用了德国Kottermann产品,主要装备了全部化验预处理室、天平室和部分仪器室;而仪器台、设备台等产品选用了深圳美加丽公司的产品,主要用来放置一些重的、大型的仪器设备。3.4 通风柜的选用国内外生产厂家和品牌也很多,但性能、价格、式样各异。一流产品主要有:美国VWR SCIENTIFIC公司的REDSHIP牌和SUPREME AIR牌,美国LABCONCO公司的LABCONCO牌,德国Kottermann公司的Kottermann牌,台湾礼学社有限公司的LABTECH牌。这些属于一流产品,用料设计考究,性能和质量优良,耐腐蚀耐高温,寿命长,气流科学,风机平稳宁静,风门开合开滑自如,外观高档豪华。但价格十分昂贵。深圳美加丽公司通风柜的性能、质量、抽气效率和外观设计还算可以,虽在某些方面还存在不足,但有物美价廉、售后服务好的优势。我公司万德大厦化验中心通风柜选用了美国LABCONCO公司的LABCONCO牌通风柜,而下属水厂实验室则选用了深圳美加丽公司生产的通风柜。3.5 台柜等台面材料的种类及选用实验台、仪器台及通风柜等台面材料的选用十分重要,因为化验工作主要是在台柜的面板上完成的,而化验工作通常需要加热或用强酸强碱、有机溶剂等破坏性化学试剂,因此对于台面材料有较高的、特殊的要求,一般要求对高温及试剂腐蚀有一定的耐受力。国内常用的化验台面有木台面、水泥台面、水磨石台面、贴瓷片台面和大理石台面等,均可根据工作需要适当选用。这里重点介绍一些国外流行的、性能优良的、可在现场切割安装或可自由组合成型的台面材料。3.5.1 TRESPA TOPLAB由荷兰HOECHST公司生产,主要成分是(树脂)。有灰色和黑色两种颜色,灰色显得亮丽、洁净;黑色显得沉实,与周围环境对比度大,可使实验室有一定的层次感。厚度有12mm和18mm两种,可根据需要选用。其优点是硬度高,抗撞击,抗磨损,耐高温180℃,耐强酸强碱。它的一个特点是承重量较大,因此可以放置中小型的设备或仪器,它的另一个特点是易切割,因此对于结构不规则的实验室,可以根据环境的需要进行切割,使实验台和墙体之间没有缝隙,使得实验室整齐美观,但价格较贵。3.5.2 EPOXY它是世界上最著名的、最好的实验台面之一。由美国的DURCON公司生产。主要成分是树脂。有白色、灰色和黑色三种颜色,低反光。DURCON公司的EPOXY RESIN台面平整光滑,由单片整体制造,没有容易产生鼓泡和缝隙的层叠结构,没有容易渗透液体的气孔。其台面是惰性的,它的化学结构对酸碱和其它化学试剂有极高的耐受力。除此之外,它还耐高温(180℃),不燃烧,耐刮伤和耐起泡。3.5.3 其它其它台面材料有树脂防火板台面、三聚氰酰胺树脂涂层木质台面、陶瓷台面、聚丙烯台面和贴砖台面等,可根据需要选用。我单位实验台和仪器台台面选用的是荷兰产的黑色TRESPA TOPLAB,而通风柜则选用了DURCON公司的EPOXY RESIN台面,大型仪器台台面则选用德国生产的树脂防火板。3.6 化验盆水龙头的选用国内看到的化验盆水龙头基本上都是铁的、不锈钢的或表面镀铬的,这里向大家介绍一种外表亮丽、高档豪华的国外优质水龙头。该产品的品牌是“BROEN”,号称“老板实验室设备”,由驰名的丹麦BROENLAB集团公司制造。此产品除了具有方便、耐用、灵活、质优、外形美观并有容易清洗玻璃器皿的水流设计等优点外,其最大的一个特点是:表面处理采用了彩色处理技术。即表面采用静电喷涂名为BROEN POLYCOAT的粉沫漆,除了对大部分的化学试剂有极高耐腐蚀性能外,其颜色还有多种选择,如蓝、红、黄、深绿、棕、黑、深灰和白色等十多种颜色,具有十分吸引人的外观。其所有水龙头的阀芯均采用优质瓷质球阀,具有操作性能优秀、寿命长和免于维护等优点。我单位化验盆(包括通风柜内的水池)水龙头选用了此款产品。3.7 排气罩的选用在实验室,排气罩主要用于蒸馏装置、电热蒸馏水器和产生有害气体的仪器设备(如原子吸收仪、测汞仪等)的排气。按其局部排气功能,可分为两种,一种是固定式的排气罩,另一种是活动式的排气罩。活动式的排气罩有一个可上下左右移动的活动臂,可根据需要在一定范围内移到需要排气的地方。国外驰名的两种排气罩分别为美国LABCONCO固定式排气罩和丹麦活动式排气罩。我公司购买了这两种排气罩。3.8 安全柜和紧急事故淋洗器的选用实验室安全柜用于储存易燃易爆剧毒化学物品,以确保实验室和楼层公共安全。经过多方调研,我们选用了德国Kottermann公司的安全柜,该产品有毒气排泄装置、火警自动闭锁装置和特殊安全报警装置,安全可靠,但价格较贵。紧急事故淋洗器是用于当有化验事故发生时,特别是有毒或腐蚀性化学药品试剂溅入眼睛或洒在人身上等时,进行紧急清洗。国内外有多种品牌可供选择,我单位选购了美国SPEAKMAN公司的紧急事故淋洗器(兼有淋身和洗眼功能)。3.9 供气站及其管路系统的选用实验室里,有些实验及仪器设备(如气相色谱、气质联用、原子吸收、ICP、液相色谱等)需用到多种高纯特殊气体,如氩气、氮气、氦气、乙炔、一氧化二氮和高压空气等,还有的在同一个仪器室如气相色谱室里可能同时放置有3~4台气相色谱仪,而每一台仪器或每个用气点都配备一套独立的供气系统、一套高压钢瓶,不仅没必要,也不安全、不整齐美观。因此需要有一个集中供气的供气站及将所需气体分配到各实验室、各仪器的管路系统,一个典型的系统如图1所示。供气站及其管路系统一般包括以下几部分:高压气瓶、供气板,供气管道及用户端等。供气站及其管路系统通常要求能够优质、稳定、安全地供气。对设备的要求多种多样,有的要求较高,如:气质联用仪,要求气体的纯度极高;ICP仪用气量很大,要求最好能不间断供气等等。下面介绍一下我们对此系统选配的设备。①对于供气板,根据不同的需要,选用了由法国Rotarex公司生产的单瓶供气板和可自动在两个气瓶间切换、可连续不间断供气的双瓶供气板。②对于用户端,为了使气点整齐、美观,我们选用了同样由法国Rotarex公司生产的用户终端板,用户只需将仪器的进气管道连接,即可使用。③供气管道也有多种选择,如不锈钢管、铜管、塑管和特氟隆管等。铜管的优点是性能较好、价廉、易切割、易安装等,缺点是暴露在空气中容易氧化变黑,而且铜管也不能用于输送乙炔气。塑管易老化,还会析出杂质气体,不适用于输送高纯气体。特氟隆管性能优良,易弯曲、易安装、不易老化,也可以用于输送高纯气体,价格适中,是一种较好的选择,缺点:如果没有较好的隐藏措施,容易被老鼠咬破。内表面经过惰化处理的不锈钢管(法国生产),除了价格较高外,可以克服上述管材的各种缺点,而且美观耐用。我们实验室选用的就是这种不锈钢管。3.10 无尘无菌洁净室的建设无尘无菌洁净室是细菌、生物和毒理等生物学检验所必需的基本条件。我单位新建两间洁净室,一间用于普通水质生物学检验,另一间专用于Ames试验。根据《药物生产管理规范实施指南》(1992年版)的规范和检验工作的需要,我们选择了十万级的洁净室(即要求沉降菌≤10菌落/皿,浮游菌≤500个/m3)。按此要求,我们采取了以下工艺措施,如空调冷气通过三级高效滤芯过滤,吊顶、隔墙和工作台面采用聚苯乙烯喷涂双面夹心板,门采用双面密封彩钢板,窗采用双面斜压密闭固定观察窗,直角处采用弧面角料收边,地面采用SEC环氧树脂涂料等,真正做到不产尘、不积尘、易清洁的洁净室要求。经测试,达到了十万级的洁净室要求。

  • 索引序列
  • 蛋白质的分离与检测技术论文
  • 蛋白质检测论文
  • 蛋白质融合技术毕业论文
  • 糖化血红蛋白检测分析论文
  • 儿童血红蛋白检测分析论文
  • 返回顶部