数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
分块矩阵,求解!授人予鱼不如授人予渔,在《线性代数》的学习中,方法尤为重要。下面就让我们一起解决《线性代数》中令人头痛的——矩阵分块法吧!如果您对——矩阵分块法的学习比较吃力,建议您先学习——矩阵乘法,传送门开启,嘛咪嘛咪哄!工具原料线性代数课本纸,笔(任何)方法/步骤分步阅读1/12前言:想要学会《线性代数》中的——矩阵分块法,我们这次的学习将按照下面的步骤进行:(1) 了解什么是矩阵分块法;(2) 矩阵分块的例子;(3) 分块矩阵的运算规则;(4) 利用矩阵相乘求解复杂运算;(5) 分块矩阵之间的运算规则;2/12让我们首先了解矩阵分块的定义,如下图:3/12矩阵分块示例,如下图:4/12分块矩阵的运算规则一,如下图:5/12分块矩阵的运算规则二,如下图:6/12分块矩阵的运算规则三,如下图:7/12分块矩阵的运算规则四,如下图:8/12分块矩阵的运算规则五,如下图:9/12分块矩阵运算示例一,如下图:10/12分块矩阵运算示例二,如下图:11/12分块矩阵运算总结,如下图:12/12关于分块矩阵已经讲解完了,祝贺您今天又学习了新知识。注意事项今天讲解了矩阵分块,更多精彩内容,敬请关注!如果您觉得这篇经验有所帮助,别忘了投上您宝贵的一票哦!内容仅供参考并受版权保护
分块矩阵bai是一个矩阵, 它是把矩阵分别按照横竖du分割成一些小的子矩阵 。 然后zhi把每个dao小矩阵看成一个元素。如果分块矩阵的非零子矩阵都在对角线上,就称为对角分块矩阵。分块矩阵仍满足矩阵的乘法和加法。任何方阵都可以通过相似变换, 变为约当标准型。 约当标准型是最熟知的分块矩阵。利用分块矩阵可以简化很多有关矩阵性质的证明。
线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。 线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数 上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
下些论文,找个模板,按要求拼凑一下,一般就差不多了
分块矩阵:处理阶数较高的矩阵时常采用的技巧。
分块矩阵是高等代数中的一个重要内容,是处理阶数较高的矩阵时常采用的技巧,也是数学在多领域的研究工具。对矩阵进行适当分块,可使高阶矩阵的运算可以转化为低阶矩阵的运算,同时也使原矩阵的结构显得简单而清晰。
分块矩阵
对矩阵进行适当分块,可使高阶矩阵的运算可以转化为低阶矩阵的运算,同时也使原矩阵的结构显得简单而清晰,从而能够大大简化运算步骤,或给矩阵的理论推导带来方便。有不少数学问题利用分块矩阵来处理或证明,将显得简洁、明快。
分块矩阵bai是一个矩阵, 它是把矩阵分别按照横竖du分割成一些小的子矩阵 。 然后zhi把每个dao小矩阵看成一个元素。如果分块矩阵的非零子矩阵都在对角线上,就称为对角分块矩阵。分块矩阵仍满足矩阵的乘法和加法。任何方阵都可以通过相似变换, 变为约当标准型。 约当标准型是最熟知的分块矩阵。利用分块矩阵可以简化很多有关矩阵性质的证明。
分块矩阵是一个矩阵, 它是把矩阵分别按照横竖分割成一些小的子矩阵 。 然后把每个小矩阵看成一个元素。如果分块矩阵的非零子矩阵都在对角线上,就称为对角分块矩阵。分块矩阵仍满足矩阵的乘法和加法。任何方阵都可以通过相似变换, 变为约当标准型。 约当标准型是最熟知的分块矩阵。利用分块矩阵可以简化很多有关矩阵性质的证明。
百度文库有篇很好的,直接搜“毕业论文分块矩阵的应用”就行了。
《矩阵分析史荣昌第二版》百度网盘pdf最新全集下载:链接:
三角分解法是将原正方 (square) 矩阵分解成一个上三角形矩阵或是排列(permuted) 的上三角形矩阵和一个 下三角形矩阵,这样的分解法又称为LU分解法。它的用途主要在简化一个大矩阵的行列式值的计算过程,求逆矩阵,和求解联立方程组。不过要注意这种分解法所得到的上下三角形矩阵并非唯一,还可找到数个不同 的一对上下三角形矩阵,此两三角形矩阵相乘也会得到原矩阵。MATLAB以lu函数来执行lu分解法, 其语法为[L,U]=lu(A)。
矩阵的分解是矩阵相关运算中的重要内容,MATLAB提供了用于矩阵分解运算的多种函数。本节将集中介绍MATLAB所提供的矩阵分解运算函数的功能及使用。
矩阵的三角分解又称高斯消去法分解,它的目的是将一个矩阵分解成一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。MATLAB提供了专门的函数lu来计算矩阵的LU分解。该函数的调用格式如下:
其中,返回矩阵U为上三角阵,矩阵L为下三角阵或其变换形式,且满足LU=X。返回矩阵P为单位矩阵的行变换矩阵,满足LU=PX。
奇异值分解在矩阵分析中占有极其重要的作用。MATLAB提供了用于矩阵奇异值分解的函数svd,该函数是利用LINPACK程序库中的ZSVDC编制而成的。在计算的过程中假如经过75步QR分解仍得不到一个奇异值,那么系统会给出“不收敛”的提示。奇异值分解函数svd的几种调用格式如下:
其中,命令①返回向量s包含矩阵X分解所得到的全部奇异值向量。命令② 返回一个与X同大小的对角矩阵S和两个酉矩阵U与V,且满足= U S V'。命令③ 得到一个“有效大小”的分解,如果m×n维矩阵X中m>n则只计算出矩阵U的前n列,矩阵S的大小为n×n。
MATLAB提供了eig函数来对矩阵进行特征值分解,该函数的几种调用格式如下:
其中,①计算矩阵A的特征值d,返回结果以向量形式存放。②计算方阵A和B的广义特征值d,返回结果以向量形式存放。③计算矩阵A的特征值对角阵D和特征向量阵V,使AV=VD成立。④计算矩阵A的特征值对角阵D和特征向量阵V,使AV=VD成立。当矩阵A中有与截断误差数量级相差不远的值时,该指令可能更精确。'nobalance'起误差调节作用。⑤计算矩阵A和B的广义特征值向量阵V和广义特征值阵D,满足AV=BVD。最后一条命令⑥由flag指定算法计算矩阵A和B的特征值D和特征向量V。其中,flag的可能值为:'chol' 和'qz' 。当flag值为'chol'时表示对B使用Cholesky分解算法,其中A为对称Hermitian矩阵,B为正定阵。当flag值为'qz'时表示使用QZ算法,其中A、B为非对称或非Hermitian矩阵。
MATLAB提供了chol函数来对矩阵进行Cholesky分解,该函数的调用格式为:
函数调用格式①如果X为n阶对称正定矩阵,则存在一个实的非奇异上三角阵R,满足R'*R = X;若X非正定,则产生错误信息。②不产生任何错误信息,若X为正定阵,则p=0,R与上相同;若X非正定,则p为正整数,R是有序的上三角阵。
正交矩阵是指矩阵的列向量相互正交,且各个列向量的长度相等。QR分解就是将矩阵A分解成一个正交矩阵与一个上三角矩阵的乘积。MATLAB提供了用于矩阵QR分解的函数,表3.7中介绍用于矩阵QR分解的函数调用格式和功能。 表3.7 矩阵QR分解
Schur分解将使用schur函数,该函数的调用格式为:
命令行①-③返回正交矩阵U和schur矩阵T,满足A = U T U'。其中,若A有复特征根,则flag='complex',否则flag='real'。
即使是实阵,在其特征值中也可能出现复数。实际使用中常需要把这一对对共轭复数特征值转化为一个(2x2)的实数块。函数调用格式为:
MATLAB提供了gsvd函数对矩阵进行广义奇异值分解,其具体调用格式为:
其中,函数调用格式①返回酉矩阵U和V、一个普通方阵X、非负对角矩阵C和S,满足A = U C X',B = V S X',C' C + S' S = I (I为单位矩阵)。A和B的列数必须相同,行数可以不同。函数调用格式②和①基本相同,而③则返回广义奇异值sigma值。
MATLAB提供了qz函数对矩阵进行特征值问题的QZ分解,该函数的调用格式为:
其中函数调用格式①中A、B为方阵,返回结果AA和BB为上三角阵,Q、Z为正交矩阵或其列变换形式,V为特征向量阵,且满足Q A Z= AA 和Q B Z = BB。命令行②产生由flag决定的分解结果,flag取值为'complex'表示复数分解(默认);取值为'real'表示实数分解。
如果矩阵H的第一子对角线下元素都是0,则H为海森伯格(Hessenberg)矩阵。如果矩阵是对称矩阵,则它的海森伯格形式是对角三角阵。MATLAB可以通过相似变换将矩阵变换成这种形式,具体调用格式为:
论文?呵呵你开玩笑吧。一篇论文一百来页就30分,你给我500我都不一定给你,你太2了,没写过论文吧你。。