首页 > 学术发表知识库 > 近代数学的论文答辩

近代数学的论文答辩

发布时间:

近代数学的论文答辩

数学的美著名数学家陈省身先生曾不止一次地提出:“数学是美的。”数学的美体现在方方面面,也许美在她是探求世间现象规律的出发点,也许美在她用几个字母符号就能表示若干信息的简单明了,也许美在她大胆假设和严格论证的伟大结合,也许美在她对一个问题论证时殊途同归的奇妙感受,也许美在数学家耗尽终生论证定理的锲而不舍,也许美在她在几乎所有学科中的广泛应用。 而美的数学,在自古崇尚诗书传世的中国,竟也浸染着扑鼻的书香。中国悠久历史所积淀出来的文学底蕴,为中国的数学染上了一层夺目的别样颜色,这就是数学的文采。自然美 刘勰《文心雕龙》以为文章之可贵,在尚自然。文章是反映生活的一面镜子,脱离生活的文学是空洞的,没有任何用处。数学也是这样。 数学存在的意义,在于理性地揭示自然界的一些现象规律,帮助人们认识自然,改造自然。可以这样说,数学是取诸生活而用诸生活的。数学最早的起源,大概来自古代人们的结绳记事,一个一个的绳扣,把数学的根和生活从一开始就牢牢地系在了一起。后来出现的记数法,是牲畜养殖或商品买卖的需要,古代的几何学产生,是为了丈量土地。中国古代的众多数学著作(如:《九章算术》)中,几乎全是对于某个具体问题的探究和推广。 在中国,数学源于生活,在外国,历代数学家也都宗法自然。阿基米德的数学成果,都用于当时的军事、建筑、工程等众多科学领域,牛顿见物象而思数学之所出,即有微积分的创作。费尔玛和尤拉对变分法的开创性发明也是由探索自然界的现象而引起的。简洁美世事再纷繁,加减乘除算尽;宇宙虽广大,点线面体包完。这首诗,用字不多,却到位地概括出了数学的简洁明了,微言大义。数学和诗歌一样,有着独特的简洁美。诗歌的简洁,众所周知——着寥寥几字,却为读者创造出了广阔的想象空间,这大概正是诗歌的魅力所在。 美国著名心理学家L?布隆菲尔德(L.Bloonfield)说:“数学是语言所能达到的最高境界。”如果说,诗歌的简洁,是写意的,是欲言还休的,是中国水墨画中的留白,那么数学语言的微言大义,则是写实的,是简洁精确、抽象规范的,是严谨的科学态度的体现。数学的简洁,不仅使人们更快、更准确地把握理论的精髓,促进自身学科的发展,也使数学学科具有了很强的通用性。目前,数学作为自然科学的语言和工具,已经成了所有科学———包括社会科学在内的语言和工具。 最为典型的例子,莫过于二进制在计算机领域的的应用。试想,任何一个复杂的指令,都被译做明确的01数字串,这是多么伟大的一个构想。可以说,没有数学的简化,就没有现在这个互联网四通八达、信息技术飞速发展的时代。对称美 中国的文学讲究对称,这点可以从历时百年的楹联文化中窥见一斑。而更胜一筹的对称,就是回文了。苏轼有一首著名的七律《游金山寺》,便是这方面的上乘之作:《游金山寺》 潮随暗浪雪山倾,远浦渔舟钓月明。/桥对寺门松径小,槛当泉眼石波清。/迢迢绿树江天晓,霭霭红霞晚日晴。/遥望四边云接水,碧峰千点数鸥轻。 不难看出,把它倒转过来,仍然是一首完整的七律诗: 轻鸥数点千峰碧,水接云边四望遥。/晴日晚霞红霭霭,晓天江树绿迢迢。/清波石眼泉当槛,小径松门寺对桥。/明月钓舟渔浦远,倾山雪浪暗随潮。 这首回文诗无论是顺读或倒读,都是情景交融、清新可读的好诗。类似的又如“香莲碧水动风凉,水动风凉夏日长。长日夏凉风动水,凉风动水碧莲香”。这些诗凭着精巧的构思,给人以奇妙的感受,每每读之,读者都会暗自叫绝。而数学中,也不乏这样的回文现象,如:12×12=144,21×21=441;13×13=169,31×31=961;102×102=10404,201×201=40401;103×103=10609,301×301=90601;9+5+4=8+7+3,92+52+42=82+72+32。 而数学中更为一般的对称,则体现在函数图象的对称性和几何图形上。前者给我们探求函数的性质提供了方便,后者则运用在建筑、美术领域后给人以无穷的美感。悬念美 文学中的小说以设置悬念见长,在开头先抛出一个引人入胜的画面、出人意表的事件、叫人揪心的矛盾、令人关注的悬念、发人深省的问题,然后一步步去描写、讲述、展开、解答、思考;或者在最后留下一个无结局、无论断、无答案、无终点的结尾,让读者自己去想象、去求证、去追问、去体验。照米兰?昆德拉的说法:小说家的才智就是把一切肯定变成疑问,教读者把世界当成问题来理解。 这种现象,在数学中绝非少见。许多数学问题都是从一个看不出任何端倪的方程式开始,运用各种方法,一步步求解,最终得出一个清楚明白的结论。而数学的乐趣,在于人们抱着探求事实真相的态度,满怀好奇的求解过程和最终真相大白时的快感。这一点,和人们读悬疑小说所产生的感觉是相似的,难怪有人说,世界本身就是个未知数,而文学本身就是探索世界之谜的方程式。意象美诗与数学之间最深刻的关系莫过于数学概念或意象(imagery)与诗歌的结合。七八个星天外,两三点雨山前。(辛弃疾)一去二三里,烟村四五家。亭台六七座,八九十枝花。(邵雍)一帆一桨一渔舟,一个渔翁一钓钩。一俯一仰一顿笑,一江明月一江秋。(纪晓岚)一别之后,二地相悬,只说是三四月,又谁知五六年,七弦琴无心抚弹,八行书无信可传,九连环从中折断,十里长亭我眼望穿,百思想,千系念,万般无奈叫丫环。万语千言把郎怨,百无聊赖,十依阑干,九九重阳看孤雁,八月中秋月圆人不圆,七月半烧香点烛祭祖问苍天,六月伏天人人摇扇我心寒,五月石榴如火偏遇阵阵冷雨浇花端,四月枇杷未黄我梳妆懒,三月桃花又被风吹散!郎呀郎,巴不得二一世你为女来我为男。(卓文君) 读上面这些诗,每个人都能明显感到,诗的意境全来自那几个数词,无论是数词的单个应用,重复引用,抑或是循环使用,看似毫无感染力的数词竟也都能表现出或寂寥,或欣然,或恬淡,或伤感的思想感情。 在外国,中世纪欧洲两个最伟大的诗人——但丁(Dante,1265~1321)和乔叟(G.Chaucer,1342~1400)的作品也无不充满着数学知识。17世纪,英国著名形而上学诗人约翰?多恩(JohnDonne,1572~1631)和安德鲁?马佛尔(AndrewMarvell,1621~1678)通过圆规、欧氏几何中的平行线之类的数学概念来类比爱情。后者的《爱的定义》尤为有趣: 像直线一样,爱也是倾斜的/它们自己能够相交在每个角度/但我们的爱确实是平行的/尽管无限,却永不相遇。 爱情,向来是难以用语言表达清楚的一个名词。作者用读者都熟悉的平行线,借助数学丰富的意象,巧妙地向读者准确地传达了自己的意思。逻辑美 提起逻辑,就不能不提中国四大名著之一的《红楼梦》。复杂的人物关系,缜密的故事情节,引得至今仍有大量学者终生考证,乐此不疲。 《红楼梦》迷人之处在于由卷初一首诗开始,章回紧扣地发展下来。优美的数学也是在一个宏观的概念之下,经由严谨的论证,简单有力地表达出来。 数学规律就如《红楼梦》,由一些基本定理出发,雅洁、鲜明地表达出来。大多数的数学论文都是艰涩难懂,有些却能令人留连再三。牛顿三大定律,非常简单,但可以解释非常繁杂的现象,如天体运行的规律。这就是数学家的口味,不够严谨,经不起推敲,就不入法眼。 数学和文学作品不但同样讲究严谨的逻辑论证,还同样遵从由局部结构发展到大范围结构的发展规律。 同文学极为相似的是,从局部结构发展到大范围结构也是近代数学发展的过程。文学的局部到大范围,往往通过比兴的手法来处理:即对事物有不同的感受,同一事或同一物可以产生不同的吟咏。对事物有不同的感受后,往往通过比兴的方法另有所指,例如“美人”有多重意思,除了指美丽的女子外,也可以指君主。屈原《九章》:“结微情以陈词兮,矫以遗夫美人。”也可以指品德美好的人,《诗经?邶风》:“云谁之思,西方美人。”苏轼《赤壁赋》:“望美人兮天一方。”而几何学和数论都有这一段历史,代数几何学家在研究奇异点时通过爆炸的手段,有如将整个世界浓缩在一点。微分几何和广义相对论所见到的奇异点比代数流形复杂,但是也希望从局部开始,逐渐了解整体结构。数论专家研究局部结构时则通过素数的模方法,将算术流形变成有限域上的几何,然后和大范围的算术几何对比,得出丰富的结果。此外,数学家对某些重要的定理,也会提出很多不同的证明。例如勾股定理的不同证明有10个以上,等周不等式亦有五六个证明,高斯则给出数论对偶定律6个不同的看法。不同的证明让我们以不同的角度去理解同一个事实,往往引导出数学上不同的发展。这也可算是局部到大范围的一个例子。 总之,数学并不像有些人认为的那般枯燥乏味,它不是长篇的定理公式的累积,而是一种美的学科。在中国书香四溢的文学背景下,数学也闪烁着不一样的光辉。也许,用网友的一篇《沁园春?数学》来结束这篇文章是再合适不过的了:《沁园春?数学》数苑飘香,千载繁荣,百世流芳。读《九章算术》,何其精彩,《几何原本》,意味深长;复变函数,概统理论,壮阔雄奇涌大江;逢盛世,趁春明日暖,好学轩昂。难题四处飞扬,引无数英才细参详;仰枷罗华氏,煌煌群论,陈氏定理,笑傲万方;一代天骄,A?怀尔斯,求证费马破天荒;欣昂首,看数学发展,无可限量!

数学系毕业论文答辩陈述稿参考

尊敬的评委老师:

早上好!

我是师范学院数学系xx级2班的学生xxx,我的毕业论文题目是《运用化归与类比思想的解题策略》。本论文是在陈建州老师的悉心指点下完成的。在此,我十分感谢他长期以来对我的大力帮助,并对四年来教育、培养过我的老师表示深深的敬意。同时感谢百忙之中抽出宝贵的时间参与对我这篇论文审阅的老师们。

下面我将对我的学位论文的基本内容做一个简要的陈述:

我想从以下四个方面对这篇论文的写作进行介绍:首先是选题的研究现状和背景,其次是本题研究的目的和意义,再次是论文的主要内容,最后谈谈本论文的不足之处。

首先,选题的现状和北京

我国火电企业也已经进行政企分开,公司化改组,商业化运营,法制化管理的改革。这些改革归根结底就是使火电企业能够顺利进入市场,参与竞争,这对火电企业来说既是一种挑战,也是一次发展的机遇:厂网分开、竞价上网等改革为火电企业拓展电力市场提供了条件;国家对供电营业区的划分和对限制用电政策的取消或调整,为火电企业提供了生存空间和政策支持;全社会口益提高的环保意识、优化能源结构和人规模城乡电网改造又为火电企业拓展电力市场创造了良机。火电企业正在这次机遇中迅猛发展。虽然当前我国发电企业去的了不俗的成绩,但仍存在着电网安全隐患较大,电力交易不规范行为屡见不鲜,各方利益矛盾冲突难以解决等问题。同时,当前火力发电企业经营环境面临电力需求增速趋缓、资金矛盾凸现、煤炭持续涨价、电价调整不到位等压力。随着我国建设资源节约型和环境友好型社会理念的提出,各种社会收费项目如水资源费、环保收费逐年增加,发电企业的生存与发展仍然面临着严峻的考验。

技术经济学是现代管理科学中一门新兴的综合性学科,其主要任务是从经济角度对具体工程项目、技术方案进行分析评价,为决策者提供有关经济效益方面的科学依据,帮助决策者作出正确的抉择。改革开放以来,我国技术经济学科获得了巨大发展。技术经济分析方法及其应用作为技术经济学科的重要组成部分在整个技术经济体系中占据着越来越重要的地位。

其次,本题的研究目的和意义

当前火力发电企业经营环境面临电力需求增速趋缓、资金矛盾凸现、煤炭持续涨价、电价调整不到位等压力。随着我国建设资源节约型和环境友好型社会理念的提出,各种社会收费项目如水资源费、环保收费逐年增加,发电企业的生存与发展面临严峻的考验。技术经济分析方法对于整个发电企业来起着极为重要的意义。浙能乐清电厂作为浙能集团旗下的新兴电厂和浙江省电力工程的重要组成部分,各个重大项目的规划和设备的购置更需经过详细的计算和分析,从而在达到效益最大化的同时兼顾未来发展和周边环境。乐清电厂要想的到更好的发展必须依赖精准可靠的技术经济分析方法。

再次,论文的'主要内容,

本文共分成三个部分:

第一部分主要阐述了论文的研究背景现状及研究的目的意义

第二部分主要阐述了技术经济分析方法包括盈亏平衡分析、敏感性分析、风险分析这三项不确定性分析及综合分析法、层次分析法和模糊综合评价法三个重要的系统综合法的基本原理及优缺点介绍。

第三部分主要阐述了上诉集中重要技术经济分析方法在浙能乐清电厂中的实际应用

最后一点,想说说论文存在的一些不足。

第一,搜集材料的问题;虽然在校期间从事家教辅导,但是对中学教学的经验仍有待提高,因此,在写作的过程中,仅从几个问题上阐述了我肤浅的理解。

第二,由于实践研究不够,总结出的策略可操作性不强。论文对这些问题没有深入展开探讨,与导师期望达到的水平仍有一定的差距。

主要表现为:调研统计资料不够齐全,样本数量不足,合理性、全面性不够,技术经济分析方法选取代表性不足等。

经过本次论文写作,本人学到了许多有用的东西,也积累了不少经验,但由于本人才疏学浅,能力不足,加之时间和精力有限,在许多内容表述、论证上存在着不当之处,与老师的期望还相差甚远,许多问题还有待进行一步思考和探究,借此答辩机会,万分肯切的希望各位老师能够提出宝贵的意见,多指出我的错误和不足之处,本人将虚心接受,从而不断进一步深入学习研究,使该论文得到完善和提高。

以上是我对自己的论文简单介绍,请各位老师提问,谢谢。

人类是动物进化的产物,最初也完全没有数量的概念。但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。比如捕获了一头野兽,就用1块石子代表。捕获了3头,就放3块石子。"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。我国古书《易经》中有"结绳而治"的记载。传说古代波斯王打仗时也常用绳子打结来计算天数。用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。这些办法用得多了,就逐渐形成数的概念和记数的符号。 数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同。 古罗马的数字相当进步,现在许多老式挂钟上还常常使用。 实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数: 1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:"III"表示"3";"XXX"表示"30"。 2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。 3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。如:""表示 "15,000",""表示"165,000"。 我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用。到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算。筹算用的算筹是竹制的小棍,也有骨制的。按规定的横竖长短顺序摆好,就可用来记数和进行运算。随着筹算的普及,算筹的摆法也就成为记数的符号了。算筹摆法有横纵两式,都能表示同样的数字。 从算筹数码中没有"10"这个数可以清楚地看出,筹算从一开始就严格遵循十位进制。9位以上的数就要进一位。同一个数字放在百位上就是几百,放在万位上就是几万。这样的计算法在当时是很先进的。因为在世界的其他地方真正使用十进位制时已到了公元6世纪末。但筹算数码中开始没有"零",遇到"零"就空位。比如"6708",就可以表示为"┴ ╥ "。数字中没有"零",是很容易发生错误的。所以后来有人把铜钱摆在空位上,以免弄错,这或许与"零"的出现有关。不过多数人认为,"0"这一数学符号的发明应归功于公元6世纪的印度人。他们最早用黑点(·)表示零,后来逐渐变成了"0"。 说起"0"的出现,应该指出,我国古代文字中,"零"字出现很早。不过那时它不表示"空无所有",而只表示"零碎"、"不多"的意思。如"零头"、"零星"、"零丁"。"一百零五"的意思是:在一百之外,还有一个零头五。随着阿拉数字的引进。"105"恰恰读作"一百零五","零"字与"0"恰好对应,"零"也就具有了"0"的含义。 如果你细心观察的话,会发现罗马数字中没有"0"。其实在公元5世纪时,"0"已经传入罗马。但罗马教皇凶残而且守旧。他不允许任何使用"0"。有一位罗马学者在笔记中记载了关于使用"0"的一些好处和说明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握笔写字。 但"0"的出现,谁也阻挡不住。现在,"0"已经成为含义最丰富的数字符号。"0"可以表示没有,也可以表示有。如:气温0℃,并不是说没有气温;"0"是正负数之间唯一的中性数;任何数(0除外)的0次幂等于1;0!=1(零的阶乘等于1)。 除了十进制以外,在数学萌芽的早期,还出现过五进制、二进制、三进制、七进制、八进制、十进制、十六进制、二十进制、六十进制等多种数字进制法。在长期实际生活的应用中,十进制最终占了上风。 现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。 数的概念、数码的写法和十进制的形成都是人类长期实践活动的结果。 随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了。中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。自然数也称为正整数。 随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。为了表示这样的量,又产生了负数。正整数、负整数和零,统称为整数。如果再加上正分数和负分数,就统称为有理数。有了这些数字表示法,人们计算起来感到方便多了。 但是,在数字的发展过程中,一件不愉快的事发生了。让我们回到大经贸部2500年前的希腊,那里有一个毕达哥拉斯学派,是一个研究数学、科学和哲学的团体。他们认为"数"是万物的本源,支配整个自然界和人类社会。因此世间一切事物都可归结为数或数的比例,这是世界所以美好和谐的源泉。他们所说的数是指整数。分数的出现,使"数"不那样完整了。但分数都可以写成两个整数之比,所以他们的信仰没有动摇。但是学派中一个叫希帕索斯的学生在研究1与2的比例中项时,发现没有一个能用整数比例写成的数可以表示它。如果设这个数为X,既然,推导的结果即x2=2。他画了一个边长为1的正方形,设对角线为x ,根据勾股定理x2=12+12=2,可见边长为1的正方形的对角线的长度即是所要找的那个数,这个数肯定是存在的。可它是多少?又该怎样表示它呢?希帕索斯等人百思不得其解,最后认定这是一个从未见过的新数。这个新数的出现使毕达哥拉斯学派感到震惊,动摇了他们哲学思想的核心。为了保持支撑世界的数学大厦不要坍塌,他们规定对新数的发现要严守秘密。而希帕索斯还是忍不住将这个秘密泄露了出去。据说他后来被扔进大海喂了鲨鱼。然而真理是藏不住的。人们后来又发现了很多不能用两整数之比写出来的数,如圆周率 就是最重要的一个。人们把它们写成 π、等形式,称它们为无理数。 有理数和无理数一起统称为实数。在实数范围内对各种数的研究使数学理论达到了相当高深和丰富的程度。这时人类的历史已进入19世纪。许多人认为数学成就已经登峰造极,数字的形式也不会有什么新的发现了。但在解方程的时候常常需要开平方如果被开方数负数,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁。于是数学家们就规定用符号"i "表示"-1"的平方根,即i=,虚数就这样诞生了。"i "成了虚数的单位。后人将实数和虚数结合起来,写成 a+bi的形式(a、b均为实数),这就是复数。在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,所以虚数总让人感到虚无缥缈。随着科学的发展,虚数现在在水力学、地图学和航空学上已经有了广泛的应用,在掌握和会使用虚数的科学家眼中,虚数一点也不"虚"了。 数的概念发展到虚和复数以后,在很长一段时间内,连某些数学家也认为数的概念已经十分完善了,数学家族的成员已经都到齐了。可是1843年10月16日,英国数学家哈密尔顿又提出了"四元数"的概念。所谓四元数,就是一种形如的数。它是由一个标量 (实数)和一个向量(其中x 、y 、z 为实数)组成的。四元数的数论、群论、量子理论以及相对论等方面有广泛的应用。与此同时,人们还开展了对"多元数"理论的研究。多元数已超出了复数的范畴,人们称其为超复数。 由于科学技术发展的需要,向量、张量、矩阵、群、环、域等概念不断产生,把数学研究推向新的高峰。这些概念也都应列入数字计算的范畴,但若归入超复数中不太合适,所以,人们将复数和超复数称为狭义数,把向量、张量、矩阿等概念称为广义数。尽管人们对数的归类法还有某些分歧,但在承认数的概念还会不断发展这一点上意见是一致的。到目前为止,数的家庭已发展得十分庞大

近代史400字小论文答辩

联系到中国近代史,大陆学者一般认为,英国发动的侵略中国的鸦片战争是一个起点,此后,英、法、美、俄、德、日、意等世界强权先后参与或者发动对中国的侵略,中国在列强的武力压迫之下“门户开放”,主权沦丧,外国人在中国自由出入,可以任便在中国经商、办厂、办学和传教,路矿利权严重外溢,中国的内河和领海失去屏障,从北京到秦皇岛的出海口等十二处地方由外国驻兵,大片土地被割让,十多个城市设有外国的租界,还有旅大、威海、胶州湾、香港新界、广州湾以及澳门等外国的租借地,全国几乎都被外国划分为势力范围。如此主权国家,其何以堪?有识之士,能无抚膺!十九世纪六七十年代以来,忧国忧民者常常为此发出呼吁。三元里抗英、广州反入城斗争、太平天国的反对外国侵略、各地绵延不断的反洋教以至北方爆发著名的义和团爱国运动、1905年抵制美货运动、由抗议巴黎和会处理山东问题不公引发的五四反帝爱国运动、上海五卅运动、省港大罢工、收回汉口九江英租界,以及大革命时期响彻全国的“打倒列强”的呼声,在在说明反帝斗争在近代中国历史上有着广泛的群众基础。卢沟桥事变发生、日本全面侵华以后,国民政府主持了全国的抗日战争,也赢得了全国各政党包括中国共产党和全国人民群众的支持。谴责帝国主义侵华,正面评价中国人民、政府的反帝斗争,是研究中国近代史的学者必须面对的严肃课题。研究这个课题,很可能是两岸学者较少有原则分歧的地方。 帝国主义侵华引起了中国社会性质的变化。关于近代中国社会性质,本世纪二三十年代之间中国学界曾爆发热烈的争鸣。经过思想理论界的反复讨论,学界相当多人士赞成近代中国是半殖民地半封建社会。中共中央于1929年2月在自己的一份文件中采纳了这个概念。三十年代末中共中央、毛泽东在分析中国国情时,就是依据这个概念来立论。对近代中国社会性质的体认,是确立中国革命的任务、革命的对象、革命的前途的基本出发点。对这一点,台湾的学者指斥其非,是不遗余力的。本文限于篇幅,不可能展开讨论。仅指出,采纳这个概念,对认识近代中国历史是至为重要的。我们往往强调近代中国的反帝反封建斗争,就是以对近代中国社会性质的这个认识为依据的。 如果说对帝国主义侵华这一史实两岸学者尚无大的原则分歧,那么,对于近代中国的反帝,可能认识就不尽一致了。仅举一例。张玉法教授在一篇书评中说;“不可否认的,近代以来帝国主义对中国的侵略非常严重。到八国联军之后始趋缓和,缓和的原因,一般的解释归于门户开放政策,该书则归于义和团的阻赫。义和团式的排外,实是无可鼓励的。”八国联军之役后,帝国主义对中国的侵略是否缓和了,尚待讨论。此处仅就义和团立言。1900年弥漫于华北、京津地区的义和团运动,彼岸学人往往因袭旧时学人的看法,指义和团为“拳匪”,为笼统排外,轻易加以否定。义和团起自乡间,本是农民自发组织的一种比较散漫的组织形态,因外国势力深入穷乡僻壤,更因民教纠纷,衙府庇护教民,损及农民利益,于是揭竿而起,号称“扶清灭洋”,后得官府支持,进入京津。他们以血肉之躯,敢于面对八国联军的武装剿灭,虽然失败是难以避免的,但他们身上所体现的中华民族反抗外敌侵略的民族精神是值得称颂的。他们的“排外”,是中国人民的反帝斗争的初级形态,其缺点当然是明显的,但他们在帝国主义面前发挥了中国人民的民气,使得八国联军统帅、德国人瓦德西也不能不慨叹欧洲人无此脑力和物力统治中国,“瓜分中国实为下策”。义和团失败以后,国内多有骂义和团为“团匪”、“拳匪”者,但有识之士已经看出了义和团的功绩。1901年在日本横滨出版的中国留学生刊物《开智录》发表文章,称颂“义和团此举,实为中国民气之代表”。1924年孙中山在广州演说“三民主义”,也称颂义和团:“其勇锐之气,殊不可当,真是令人惊奇佩服。所以经过那此血战之后,外国人才知道,中国还有民族思想,这种民族是不可消灭的。”

已发一篇,看能不能用。

1840年,英国发动侵略中国的鸦片战争,用大炮轰开中国的大门。随后,西方列强接踵而来,发动了一系列侵华战争。第二次鸦片战争、甲午中日战争、八国联军侵华战争等,给中国人带来深重灾难。然而,面对强敌,中国人民从来没有屈服过。他们不屈不挠,前仆后继,英勇反抗外来侵略,积极探索复兴道路。太平天国运动、辛亥革命、五四爱国运动和中国共产党的诞生、抗日战争、解放战争,一浪高过一浪。在反对外来侵略的过程中,经历抗争、失败、在抗争的多次反复,中国人民终于赢得了抗日战争的伟大胜利;在反对国内外反动派的斗争中,取得了新民主主义革命的胜利。这样,近代中国人民反抗侵略压迫、追求民族独立、反抗封建专制、追求民主进步的愿望终于实现了。可以说中国近代是反对外来侵略反帝反封建,追求民族独立、民主自由的历史

近世代数毕业论文

近世代数是关于群环域理论的学科,讲述群环域的基本概念和性质,是对运算的深层次刻画,将普通的对某些数或某些函数等等的运算,抽象成在集合上的定义运算,以研究他们的共性

引言:近世代数的研究对象是代数系统.三个最基本的代数系统是群,环,域.其中群是最简单的代数系统,因为它在一个集合中只定义了一种代数运算.正由于在群中只定义了一种代数运算,也就决定了群中元素之间的联系不甚紧密.群内的子群反映了群的结构和性质,因此需要进一步的研究有关群内子群的性质.在进一步研究子群的过程中,定义了左、右陪集,而在一个群里所定义的乘法不一定满足交换律,所以一个子群的左、右陪集不一定相等,于是有进一步定义了不变子群.不变子群对刻画群的性质有十分重要的作用,有了不变子群之后,通过一个群的不变子群的所有陪集构造出了新的群即商群.群的同态是群论中一个关键概念,它描写了两个群的某种相似性.群的同构是一种特殊的同态,通过群同态的一些定理,可以得出每个群同态都可以确定一个不变子群,因而也确定了一个商群.群同构的三大定理便是对商群与同态象之间密切联系的一个深入刻画.群同构的三大定理在群论中有着重要的作用,它们的内容非常抽象,但同时也是非常精彩的.下面便是对群同构的三大定理的详细介绍以及有关它们的一些简单应用.

大学数学论文范文

导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。

论文题目: 大学代数知识在互联网络中的应用

摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。

关键词: 代数;对称;自同构

一、引言与基本概念

《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。

互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。

下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。

设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:

e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。

●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。

●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。

●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。

一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。

二、三类网络的对称性

先来看n维超立方体网络的对称性。

定理一:n维超立方体网络Qn是顶点和边对称的。

证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。

下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。

利用和定理一相似的办法,我们进一步可以得到如下定理。

定理二:n维折叠立方体网络FQn是顶点和边对称的。

最后,来决定n维交错群图网络的对称性。

定理三:n维交错群图网络AGn是顶点和边对称的。

证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。

下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。

因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。

至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:

1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?

2、完全决定这些网络的全自同构群。

实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。

三、小结

大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。

结束语

本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。

【摘要】

随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。

【关键词】

数学史;大学数学教育;作用

一、引言

数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:

第一,数学史研究方法论的相关问题;

第二,数学的发展史;

第三,数学史各个分科的历史;

第四,从国别、民族、区域的角度进行比较研究;

第五,不同时期的断代史;

第六、数学内在思想的流变与发展历史;

第七,数学家的相关传记;

第八,数学史研究之中的文献;

第九,数学教育史;

第十,数学在发展之中与其他学科之间的关系。

二、数学史是在大学数学教学之中的作用

数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。

笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。

从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。

再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。

三、数学史在大学数学教学之中的应用

第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。

第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

近世代数论文题目

近世代数是关于群环域理论的学科,讲述群环域的基本概念和性质,是对运算的深层次刻画,将普通的对某些数或某些函数等等的运算,抽象成在集合上的定义运算,以研究他们的共性

大学数学论文范文

导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。

论文题目: 大学代数知识在互联网络中的应用

摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。

关键词: 代数;对称;自同构

一、引言与基本概念

《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。

互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。

下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。

设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:

e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。

●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。

●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。

●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。

一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。

二、三类网络的对称性

先来看n维超立方体网络的对称性。

定理一:n维超立方体网络Qn是顶点和边对称的。

证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。

下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。

利用和定理一相似的办法,我们进一步可以得到如下定理。

定理二:n维折叠立方体网络FQn是顶点和边对称的。

最后,来决定n维交错群图网络的对称性。

定理三:n维交错群图网络AGn是顶点和边对称的。

证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。

下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。

因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。

至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:

1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?

2、完全决定这些网络的全自同构群。

实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。

三、小结

大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。

结束语

本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。

【摘要】

随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。

【关键词】

数学史;大学数学教育;作用

一、引言

数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:

第一,数学史研究方法论的相关问题;

第二,数学的发展史;

第三,数学史各个分科的历史;

第四,从国别、民族、区域的角度进行比较研究;

第五,不同时期的断代史;

第六、数学内在思想的流变与发展历史;

第七,数学家的相关传记;

第八,数学史研究之中的文献;

第九,数学教育史;

第十,数学在发展之中与其他学科之间的关系。

二、数学史是在大学数学教学之中的作用

数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。

笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。

从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。

再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。

三、数学史在大学数学教学之中的应用

第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。

第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

数学论文的格式和其他论文格式差不多。这是我获广东中山市三等奖的数学论文,供参考。保障一年级数学学业成绩经验点滴 [论文摘要]:近年来,中山市古镇镇小学阶段年度的期末考试成绩出现了这样的一个怪现象:一年级的数学成绩与其他年级相比,平均分一直居于下游,学困生占的比例也不小。本人通过提问学生及亲身教学经历从数学能力、数学习惯、心理因素三方面来分析导致成绩不理想的原因,并提出几点经验。[关键词]:数学能力 因素 经验近年来,中山市古镇镇小学阶段年度的期末考试成绩出现了这样的一个怪现象:一年级的数学成绩与其他年级相比,平均分一直居于下游,学困生占的比例也不小。按理说,试卷难度、题量与其他年级相比,差别并不大,试题的编排也不会超“课程标准”,导致成绩不理想的原因根源在哪?我们对一年级两个班的学生进行研究,具体做法是:在单元测试结束后,每班将学生分为优生、中等生、学困生三类,面批试卷,采取个别谈话形式,让他们自己根据错题分析出错原因,结果大致是:优生的原因分析 没细致审题,忘记检验,考试时间长中等生的原因分析 不理解题意,时间不够,计算出错学困生的原因分析 不识字,不会做通过上面的调查、提问和我们平时在实践教学中的观察、了解,我从数学能力、数学习惯、心理因素三方面来分析导致成绩不理想的原因:(一) 数学能力方面1、 认字能力不强 不理解题意, 《语文课程标准》中提到:认识常用汉字1600—1800字,其中800—1000字会写。对于刚刚入学的一年级学生来说,学生识字量不大,认字能力与理解能力还处于成长阶段,并且同年级的学生,认字与理解题意能力也因人而异。当数学试卷中出现了不认识的字时,部分学生做题的心理与思维会受到影响,有的学生还会“误解”题意,导致将题做错。比如,一年级下册期末练习测试卷中有这样一道题: 部分学生不认识“原”“卖掉”“剩”这几个字,导致有学生将本子算式列成“60—28=32”又比如:一年级下册中段测试卷中有这样一道题“和50相邻的数是( )和( )”如果学生不理解“相邻”的意思,或者把“相邻”误解成“相近”或“相似”等意思,那就很难把正确的数写出来。2、形成固定思维《数学课程标准》中提到:学生能根据观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据,给出证明,举出反例。但在解决数学问题时,学生很容易对例题进行简单的模仿,忽略对题目数学信息的梳理和对数学过程及意义的理解,导致做错题目。如:女孩买了一个 ,找回17元,女孩付给售货员多少元?关于“人民币找钱”问题,教材例题运用的是减法,而这道题灵活地将数学信息调换。但是,有部分学生不能“举一反三”,依旧参照例题形式,用减法来解决,将算式列成:63—17=46(元)3、 应试技巧没掌握应试技巧主要指在应对考试时,考生为更好的解答各类题而采取的一些特殊的方法。应试技巧在考试中起了极大的作用。比如,在做题时,有的同学因为一道难题苦苦思索,坚持到底,最后时间不够,后面“一片空白”,导致失分惨重;也有的同学在面对选择题、连线题等类型题时,因为不能确定答案,就“留下空白”,类似这样的情况而失分的同学比比皆是,令人遗憾。(二) 数学习惯方面审题不细致,检验习惯没养成由于一年级学生的年龄以及心理特点具有特殊性,,他们还没有完全形成细致审题与再次细心检查的习惯。即使老师苦口婆心地一次次强调“认真审题,做完检查”,但大多数学生在真正测试时往往粗略地看了一遍题目后就开始答题,甚至有的学生根本没看题目就答题。比如:“把下面的数按从小到大的顺序排列”,有部分学生没审题,会把数按“从大到小”的顺序排列。在检查阶段,大部分学生虽然从头至尾地看了自己的答案与题目,但也没能比较好地发现错误。(三)心理因素1、态度 健康 注意力因素影响 一年级学生入学不久,学习态度还没有完全端正,学习责任心还不够强。遇到难题时,部分学生“知难而退”,不愿意动脑筋;还有的学生在考试时身体不舒服,如:肚子痛、想上厕所。这也会对他的成绩造成影响;有的学生在规定的一小时内,注意力不能较长时间集中,在测试过程中会发现学生会玩手指、玩橡皮而忘记答卷。2、依赖心理强对于一年级学生来说,他们的分析、思考、解决问题的能力,才刚起步。心理学研究表明,一年级学生学习的依赖心理强。而部分家长辅导时“坚守阵地”, “陪坐”身旁,只要发现孩子不会做题,就“义不容辞”,再三教导。家长的做法更加促进孩子的依赖性,导致学生在做试卷时,产生惧怕或抵抗心理。有一年级的孩子到我面前反映:“老师,我不喜欢考试。”我问其原因,孩子天真地回答:“考试的时候,我不会,没人教我;但在家里,父母会教我。”针对以上的种种问题,教师要想保障学生的期末学业成绩,根据我三年低年段的亲身教学实践经验和日常的观察,总结出了以下几点经验:(一)阅读的日常训练 数学同样离不开阅读,教师可以利用晨读、午读时间鼓励孩子多阅读,让孩子学会“置身于其境”。通过多阅读,增加学生识字量,提高想象能力。平时鼓励一年级学生通过绘声绘色地阅读,让自己“入情入境”,从而帮助孩子理解文章意思,进而更好地理解数学题意。(二)审题与检验习惯的日常训练 一年级的孩子就像一张白纸,你在上面画什么就收获什么。好习惯容易形成,不好的习惯也容易形成。因此,教师要把握一年级这关键期,把审题与检验习惯植根于孩子脑中,好习惯受用一生。在日常练习中,要与孩子一起读题,读到学生理解为止。教师读题时要注意语调的变化、声音高低、停顿,关注到后进学生。而且每次读题时都要强调:“认真读题,读到明白为止。” 计算时,告诉孩子“检验”就是计算的一部分,没有“检验”的计算是不完整的。教师还要采用奖励制度,激励能够检验的孩子。(三)应试技巧的日常训练在日常练习训练中,强调学生做题先易后难,合理分配时间,注意“抓大放小”,把握分值大和不费时的题。在单元测试过程中,老师要观察学生答题过程,特别关注后进生的答题情况。当发现哪个孩子不懂得技巧时,课后,老师要单独找他谈心,并通过多次训练,用各种机制表扬他,激发他的应试意识。(四)学习责任心的培养学生的学习态度决定学习状态及学习效果。责任,是一个人应该而且必须承担的义务;而责任心则是强制自己去承担这些义务的心理意识。对于一年级学生来说,培养责任心是当务之急。教师要利用班会,讲故事,家校联合,培养对孩子对自己对他人负责等办法,促进孩子的责任心进一步加强。(五)发散思维的培养为了培养学生的思维能力,扎实基础知识,提高学生解决问题的能力,不少教师采用题海战术,通过反复练习,使学生熟练掌握各种题型的答题技巧,这样的做法显然不符合新课改的要求。教师在日常教学中要注重知识的形成过程,以“生”为主体,多给学生表达的机会;还要针对不同层次学生“因材施教”,注意“培优扶差”,促使优生更优,后进生不掉队。(六)独立作业的培养在处理家庭作业时,家长应培养孩子独立作业的习惯。在遇到孩子不懂的问题时,我认为家长应做到以下几点:先鼓励孩子继续读题,理解题意,给孩子足够多的时间,让孩子进行多方位的思考。如果还不会做,要让孩子表达出哪一方面弄不懂,家长在这一方面进行一点点地暗示或启发,点到为止,然后继续让孩子再思考,当孩子解决出问题时就会收获成功的喜悦感,以后就会更加积极地动脑。总之,想要保障一年级学生的学业成绩,需要教师把工作落实在日常教学中的点点滴滴,这样学生才能养成良好的答题习惯。

近世代数中的论文题目高

第一题必要性易证,充分性的话考虑n=2的情况,两边左乘a逆右乘b逆即得第二题必要性:如果F为无限域那么F(a)一定是无限域了充分性:已知F为有限域,又因为[F(a):F]=a在F上极小多项式的次数,而F(a)又是代数扩张,所以a在F上极小多项式次数有限,所以F(a)为有限域第三题Z12={1,w,w2,……,w11} 其中w是12次单位根,所以Z12的生成元有四个:w,w5,w7,w11(w2就是w的二次方,等等)。。。。。。。。。剩下题不爱做了。。。。

不知道partition是不是指这个意思1.单元素只有一种划分{a}==>{{a}}2.两元素两种{a,b}==>{{a,b}}{{a}{b}}3.三元素五种3=3+0.......1=1+2........3=1+1+1......1{a,b,c,d,e}==>{ {a}, {b}, {c} } { {a}, {b, c} } { {b}, {a, c} } { {c}, {a, b} } { {a, b, c} } 4.四元素15种==>4=4+0......1=3+1.......4=2+2.......3=1+1+2.....6=1+1+1+1...15.五元素52种==>5=5+0......1=4+1.......5=3+2.......10=1+1+3.....10=1+2+2.....15=1+1+1+2....10=1+1+1+1+1..1

我是初一的 这还没讲呢 抱歉

就是问把集合分成1、2、3、4、5块有多少种方法partitions是划分的意思我们学离散数学时学过

  • 索引序列
  • 近代数学的论文答辩
  • 近代史400字小论文答辩
  • 近世代数毕业论文
  • 近世代数论文题目
  • 近世代数中的论文题目高
  • 返回顶部