首页 > 学术发表知识库 > 数学和生活的关系论文参考文献

数学和生活的关系论文参考文献

发布时间:

数学和生活的关系论文参考文献

在《数学课程标准》中提出这样一个理念,要让我们的学生明白数学来源于生活,同时又服务于生活。现代数学教育最缺失和欠缺的地方,就是很多学生无法在现实生活当中感受到数学的存在,或者是无法学会运用数学知识去解决实际生活问题。

大部分家长、学生和老师学习数学,都已习惯通过多做题、多刷题方式来认识数学。数学学习离不开解题做题,这没有错,学好数学更离不开解题,但我们不能把数学学习和解题进行简单的等价起来。

通过对数学历史的研究,我们发现数学其实来源于实践,生产和生活中充满着大量的数学影子, 如人们生活最基本的方式衣、食、住、行等,都可以看到数学的作用。同时随着现代社会不断发展,文明程度不断提高,生活中的科学化、经济活动中的最优化,无不需要人们具有更多的能有效运用的数学知识、思想和方法。

与“食”有关联的生活例子

某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.

(1)当售价定为30元时,一个月可获利多少元?

(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?

解:(1)获利:(30-20)[105-5(30-25)]=800;

(2)设售价为每件x元时,一个月的获利为y元,

由题意,得y=(x-20)[105-5(x-25)]

=-5x2+330x-4600

=-5(x-33)2+845,

当x=33时,y的最大值为845,

故当售价定为33元时,一个月的利润最大,最大利润是845元.

考点分析:

二次函数的应用;销售问题。

高等数学在我们生活中的具体应用论文

从小学、初中、高中到大学乃至工作,大家都尝试过写论文吧,论文是探讨问题进行学术研究的一种手段。你写论文时总是无从下笔?以下是我收集整理的高等数学在我们生活中的具体应用论文,希望对大家有所帮助。

摘要:

进入21世纪,随着经济的不断发展,社会竞争越来越大,对于人才的要求也越来越高。在这种情况下,高等数学的重要作用就凸显了出来,高等数学能够培养人们的思维能力,培养人们发现问题、解决问题的思维方式。高等数学在我们生活中的应用越来越广泛,并且渗透到了各行各业中,许多问题的解决都离不开数学模型的构建。针对高等数学的特点,分析其在我们生活中的具体应用。

关键词 :

高等数学;经济社会;应用;

引言:

数学既是一门理论学科,又是一门应用广泛的工具性学科,在理学、工学、管理学、经济学等各个领域都发挥着重要的作用,如何将抽象的数学理论应用到具体的经济科学实践中去,作为学管理学、经济学的我们更应该对数学有更深的认识。

一、高等数学在学术中的应用

高等数学在众多的学科中扮演着重要的角色,在物理学科中,高等数学与其关系极为紧密,高等数学中最为重要的一部分便是微积分,众所周知,微积分是其创始人,著名的物理学家、数学家牛顿先生在解决经典力学问题的过程中所创立的,力学作为物理学中重要的知识,几乎贯穿于整个物理知识体系中,而微积分就是解决物理知识的关键工具,构建了地球和天体主要运动现象的完整力学体系。

在生物学中,高等数学同样扮演着重要的角色,19世纪时,就有生物学家试图通过数学方法来研究生命现象。而在上世纪20年代中期,就有生物学家利用高等数学的一些知识来解决著名的地中海鳖鱼问题,经历了几十年的发展,生物数学已经成为了生物学中重要的部分,无论是心脏的跳动还是血液的循环、脉搏的周期,都可以用高等数学的知识通过方程组的形式进行表示,并且通过求解的方法来掌握一定的规律,描述生物界的一些现象。

二、高等数学在经济社会的应用

随着社会经济的不断进步以及高等数学的不断发展,数学的手段越来越多样化,经济问题也越来越多样化,利用数学问题对经济环节进行定量分析是十分重要的,最简单的例子就是我们平时生活中的存取款问题以及利率问题。高等数学在经济生活中的应用不止如此,除此之外,高等数学还可以为经营者提供科学合理的数据,以高等数学作为工具来得到最佳的决策。在经济学当中,许多的量如边际成本、边际收益、边际利润都需要用导数来进行计算。而通过这些量可以计算企业生产过程中的一些数据,来对企业的正常运转进行调控,从而达到最优的生产效果。每个经营者都希望用最少的钱创造更多的`价值,在实际经营过程中,难免会出现资金的浪费,利用高等数学知识,能够使资金得到最合理的应用,使成本降低,创造更加大的利润,这种问题,其实就是高等数学中最大值最小值的问题,将其转化为数学模型,能够更好地配置相关资源,合理安排生产,实现最大利润。

三、高等数学在军事中的应用

纵观两次世界大战,无论哪一次都少不了高等数学的身影。射击火力表一直都是数学家需要计算的重要任务。除此之外,各种新型武器装备的研发以及投产,都离不开高等数学的研究。不仅仅是空气动力学、流体动力学还是弹道学,等等,其中都包含着高等数学的知识,这充分说明了高等数学的重要地位。除此之外,高等数学还在原子弹、声呐等新型装备的研发过程中扮演着重要的角色,可能直接影响战争的格局和走向。未来,随着科学技术的不断发展,军事技术也一定会作用于各种新的高科技,而一切高科技领域都少不了高等数学的"加持"。

四、高等数学中概率和数理统计的应用

高等数学中涵盖的知识点较多,概率作为其中的一个知识点,在多种领域尤其是自然科学方面以及社会科学方面的应用十分广泛,而且,还与我们的日常生活息息相关。举例子来说,几年前,我国全面开放了二孩政策,在这项政策开放的背后,是相关专家针对我国人口发展的问题,根据众多的资料数据进行统计分析,判断后做出的决定。近几年,随着我国科学技术的不断进步,以高等数学为核心的生活方式迅速地辐射到了人们日常生活中的各个领域,从移动支付以及购物到智能机器人的应用,办公的自动化,这些都需要我们具有高等数学知识以及素养。

五、高等数学在学生思维构建方面的应用

高等数学通过建立模型,能够有效地培养学生的综合素质,开拓学生的思维。在教学过程中,教师通过给学生树立建模的思想,使学生能够得到全面的发展,能够最大程度地提高学生的学习热情。高等数学可以通过构建数学模型,以此来对现实中的一些事物进行有规律的描述。而高等数学进行数学模型的构建需要人类的思维活动,也就是说,高等数学能够提高学生对于数学理论以及思维方法应用的意识,使学生培养数学思维,利用数学知识解决生活实际问题。

六、结语

当代大学生学习数学的重要性显而易见,我们要想在21世纪的社会有一个立足之地就需要全面地发展自己,而我们学习的高等数学又是其中的重中之重。我们要认清当今社会的人才培养目标,深入地学习高等数学,为中国的经济建设献出自己的力量,为早日实现中华民族的伟大复兴而奋斗。

参考文献

[1]苏丽论高等数学在经济分析中的应用[J].信息记录材料,2016,(06)

[2]卢明宇浅析微积分在金融领域的作用[J].经贸实践,2017,(05)

[3]马源谈谈数学学习在经济金融学中的作用[J].经贸实践,2017,(15)

拓展:

专业论文格式模板

一、毕业论文(设计)资料按以下顺序排列:

(一)封面。包括论文题目、指导教师、学生姓名、学号、院(系)、专业、毕业时间等内容。论文封面由学校统一印制。

(二)中、外文摘要(包括关键词)。外文论文(设计)的中文摘要放在英文摘要后面编排。

(三)正文。

(四)注释。

(五)附录。

(六)参考文献。

(七)致谢。

二、毕业论文的打印与装订

除要检验学生书写规范的专业外,毕业论文(设计)须用计算机打印,一律采用A4纸。

(一)页面设置

毕业论文(设计)要求纵向打印,页边距的要求为:

上(T):2.5cm

下(B):2.5cm

左(L):2cm

右(R):2cm

装订线(T):0.5cm

装订线位置(T):左

其余采取系统默认设置。

(二)排式与用字

文字图形一律从左至右横写横排。

文字一律通栏编辑。

论文采用宋体,字迹清楚整齐,除特殊需要,一般不使用繁体字。

(三)段落设置

采用多倍行距,行距设置值为1.25。

其余采取系统默认设置。

(四)页眉、页脚设置

论文题目(不包括副题目)居中,采用五号宋体字。

页脚需设置页码,页码采用五号黑体字,加粗,居中放置,格式如:1,2,3……页。

三、毕业论文(设计)撰写的内容与要求

(一)封面

1、封面。

纸质封面由学校统一印制。不编排页码。

2、封一(中文摘要)

中文摘要:“中文摘要”四字在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。中文摘要一般不超过250—300字。

关键词:接中文摘要打印,“关键词”三字空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。关键词一般在3—8个之间。

3、封二(外文摘要)

外文摘要:“外文摘要”英文单词在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。外文摘要一般不超过250个实词。

关键词:接外文摘要打印,“关键词”英文单词空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。外文关键词应与中文关键词相对应。

(二)正文

正文一般使用小四号宋体字,重点文句加粗。

1、标题层次。

毕业论文的全部标题层次应整齐清晰,相同的层次应采用统一的表示体例,正文中各级标题下的内容应同各自的标题对应,不应有与标题无关的内容。

各层标题均单独占行。第一级标题居中放置;第二、三、四等级标题序数顶格放置,后空一格接标题内容,末尾不加标点。

标题序数采用1.、2.……1.1、1.2……1.1.1、1.1.2……1.1.1.1……的层次。正文中对总项包括的分项采用一、二、……(一)、(二)……1、2……(1)、(2)……①②……的层次,括号后不再加其他标点。

2、量和单位。各种计量单位一律采用国家标准GB3100—GB3102-93。非物理量的单位可用汉字与符号构成组合形式的单位。

3、标点符号。标点符号应按照国家新闻出版署公布的“标点符号使用方法”的统一规定正确使用,忌误用和含糊混乱。

4、外文字母。外文字母采用我国规定和国际通用的有关标准写法。要分清正斜体、大小写和上下脚码。

5、名词、名称。科学技术名词术语采用全国自然科学技术名词审定委员会公布的规范词或国家标准、部标准中规定的名称,尚未统一规定或叫法有争议的名称术语,可采用惯用的名称。

6、数字。文中的数字,除部分结构层次序数和词、词组、惯用语、缩略语、具有修辞色彩语句中作为词素的数字必须使用汉字外,应当使用阿拉伯数码,同一文中,数字表示方法应前后一致。

7、公式。公式一般居中放置;有编号的公式顶格放置,编号需加圆括号标在公式右边,公式与编号之间不加虚线。

公式下有说明时,应在顶格处标明“注: ”。

较长公式的转行应在加、减、乘、除等符号处。

8、表格和插图。

(1)表格。每个表格应有自己的表序和表题。表内内容应对齐,表内数字、文字连续重复时不可使用“同上”等字样或符号代替。表内有整段文字时,起行处空一格,回行顶格,最后不用标点符号。

(2)插图。每幅图应有自己的图序和图题。一般要求采用计算机制图。

文中图表需在表的上方、图的下方排印表号、表名、表注或图号、图名、图注。

(三)注释

注释采用页末注(将注文放在加注页的页脚)或篇末注(将全部注文集中在文章末尾),不可行中加注。注释编号选用带圈阿拉伯数字,注文使用小五号宋体字。

以下为引用各类文献注释格式:

专著:注释编号.作者.专著.书名[m].出版社,出版年.起止页码

期刊:注释编号.作者.期刊.题名[J].刊名,出版年(卷、期):起止页码

论文集:注释编号.作者.论文名称:论文集名[C].出版地:出版社,出版年度.起止页码

学位论文:注释编号.作者.题名[D].保存地点:保存单位,写作年度.

专利文献:注释编号.专利所有者.题名[P].专利国别:专利号,出版日期

光盘:注释编号.责任者.电子文献题名[电子文献及载体类型标识],出版年(光盘序号)

互联网:注释编号.责任者.文献题名.电子文献网址.访问时间(年-月-日)

文献作者3名以内的全部列出;3名以上则列出前3名,后加“等”(英文加“etc"”)

(四)附录

“附录”两字在第一行居中位置,使用小二号黑体字,加粗。

附录项目名称使用四号黑体字,加粗,居左顶格放置。另起一行空两格,使用小四号宋体字标注附录序号和题名,编排样式可参照正文。

(五)参考文献

参考文献一律放在文后,其书写格式应根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:M专著,C论文集,N报纸文章,J期刊文章,D学位论文,R研究报告,S标准,P专利;对于专著、论文集中的析出文献采用单字母“A”标识,其他未说明的文献类型,采用单字母“Z”标识。

“参考文献”四字居中放置,使用小二号黑体字,加粗。

内容使用小四号宋体字,居左,空两格放置。具体结构格式与标注方法同注释中交代引文出处的注文格式。

数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活关系的精彩描述。《数学课程标准》十分强调数学与现实生活的联系,要求“重视从学生的生活经验和已有知识中学习数学和理解数学”,指出“数学教学必须从学生熟悉的生活情景和感兴趣的事情中提供观察和操作的机会,使他们感受到数学就在身边,感受到数学的趣味和作用,对数学产生亲切感。”这就强化了数学教学的生活性和实用性。因此,在教学中,我们必须架起数学与生活的桥梁,不但要把生活引进课堂,促其“生活化”,而且要让学生带着数学走进生活,去理解生活中的数学,去体会数学的价值,促其“数学化”。

数学源于生活,生活中又充满着数学。学生的数学知识与才能,不仅来自于课堂,还来自于现实生活实际。在课堂教学中,把数学和学生的生活实际衔接起来,让数学贴近生活,使学生感到生活中处处有数学,学起来自然、亲切、真实。实现“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。 如何把握数学与生活的衔接,提高教学效果,我在教学中注意从以下几方面入手。一、 数学语言生活化,理解数学前苏联数学教育家斯托利亚尔曾说过:数学教学也就是数学语言的教学。在课堂教学的师生交往中,主要是通过言语交流。同一堂课,不同的教师教出来的学生接受程度不一样,主要还是取决于教师的语言素质如何,尤其是在我们数学课堂教学中,要将抽象化的数学使学生形象地接受、理解。一个没有高素质语言艺术的教师是不能胜任的。看似枯燥无味的数学,实则里面蕴藏着生动有趣的东西。鉴于此,教师的数学语言生活化是学生引导理解数学、学习数学的重要手段。教师要结合儿童的认知特点、兴趣爱好、心理特征等个性心理倾向,在不影响知识的前提下,对数学语言进行加工、装饰,使其通俗易懂、富有情趣。如认识“ <”、“>”,教师可引导学生学习顺口溜:大于号、小于号,两个兄弟一起到,尖角在前是小于,开口在前是大于,两个数字中间站,谁大对谁开口笑。区别这两个符号对学生来说有一定的难度,这个富有童趣的顺口溜可以帮助学生有效的区分。又如把教学长度单位改成“长长短短”;把教学元、角、分改成“小小售货员”,把比大小说成“排排队”等等,学生对这些生活味十足的课题知识感到非常好奇,感到学习数学很有趣。二、数学问题生活化,感受数学新的课程标准更多地强调学生用数学的眼光从生活中捕捉数学问题,探索数学规律,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。在教学中我们要善于从学生的生活中抽象数学问题,从学生的已有生活经验出发,设计学生感兴趣的生活素材以丰富多彩的形式展现给学生,使学生感受到数学与生活的联系——数学无处不在,生活处处有数学。因此,通过学生所了解、熟悉的社会实际问题(如环境问题、治理垃圾问题、旅游问题等等),为学生创设生动活泼的探究知识的情境,从而充分调动学生学习数学知识的积极性,激发学生的探索欲望。比如:生活中每时每刻都要用到估算,要求学生估算一下每天上学到校需多少时间,以免迟到;或估算一下外出旅游要带多少钱,才够回来等等。在教学中引导学生寻找生活中的数学问题,既可积累数学知识,让学生通过如此切身的问题感受到学数学的价值所在,更是培养学生探索意识和应用意识的最佳途径。三、数学情境生活化,体验数学教育心理学的研究表明:学生在没有精神压力,没有心理负担,心情舒畅,情绪饱满的情境下,大脑皮层容易形成兴奋中心,思维最活跃,实践能力最强。在日常的教学中,应该提供这样的思维环境,创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,使学生感觉到在课堂上学习就像在日常生活中遇到了数学问题一样,需要大家一起来实践解决,通过自己的动手操作,集体的共同研究,最终得出学习结论。如在空间与图形的教学中,要充分利用学生生活中的事物,引导学生探索图形的特征,丰富空间与图形的经验,建立初步的空间观念。教学中可以组织学生分小组到操场上选定一个建筑物,让学生站在不同角度看这个建筑物,体会从不同的角度看同一个物体时,所看到的形状的变化,并用简单的图形画下来。也可让学生在方格纸画出示意图:假设图书馆在学校的正东方向200米处,小红家在学校正北方向500米处,医院在学校的正南方向1000米处,车站在学校的正西方向800米处。学生可以根据这些信息,在方格纸上确定适当的单位距离,标出相对位置后,教师再及时组织引导学生进行交流,逐步发展学生的空间观念。又如教学“元角分的认识”,组织学生开展一次“我是一位出色的售货员”活动,让他们在逼真的买卖中掌握、消化和应用知识。再如,相遇问题应用题教学,教师采用学生登台表演,情景再现的方法,把抽象的相关的各种数学术语让学生迅速地理解,既活跃了课堂气氛,又高效率地完成了教学任务。四、数学作业生活化,运用数学数学来源于生活而最终服务于生活。尤其是小学数学知识 ,在生活中都能找到其原型。把所学的知识应用到生活中,是学习数学的最终目的。由于课堂时间短暂,所以作业成了课堂教学的有益延伸,成了创新的广阔天地。学生适当运用课堂内容的自然延伸,能从广阔的大千世界中学习知识。教师在教学中应努力激发学生运用知识解决问题的欲望,引导学生自觉地应用知识解决生活中相关的问题。如学习了长度单位,可以测自己和父母的身高,从家到学校的路程;认识了人民币可以用自己零用钱买所需要的东西;学习了统计知识和百分比应用题,可以去统计本校学生人数以及男女生比例;会计算图形面积可以算一算自己家里的面积,所用瓷砖的块数等。再如布置学生“观察你家中的物品,找出几道乘法算式”;“你家一天的生活费用是多少,记录下来,制成表格,再进行计算”,这样把抽象的知识具体化,有助于学生理解,同时能用所学的知识解释生活中的现象,也培养学生收集处理信息的能力、观察能力、实践能力。这样,学生在轻松愉快地交流中,学得积极、主动,思维随之展开,兴趣随之激起。将数学教学与生活相衔接,让学生从生活中寻找数学素材,感受生活中处处有数学,学习数学如身临其境,就会产生强烈的亲近感和认同感,有利于形成似曾相识的接纳心理。教学实践使我体会到:数学即生活,只有将学生引到生活中去,切实地感受数学在生活的原型,才能让学生真正的理解数学,使学生感受到我们生活的世界是一个充满数学的世界,从而更加热爱生活,热爱数学生活中的数学在现实生活中,人们的生活越来越趋向于经济化,合理化.但怎样才能达到这样的目的呢?一天,我就遇到了这样一道实际生活中的问题:某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖10000元1名,一等奖1000元2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售。请你想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大?面对问题我们并不能一目了然。我做了一个假设,假如有16人,其中8人愿意去甲家,6人喜欢去乙家,还有两人则认为去两家都可以。调查结果表明:甲商厦的销售方式更吸引人,但事实是否如此呢?在实际问题中,甲商厦每组设奖销售的营业额和参加抽奖的人数都没有限制。所以我们认为这个问题应该有几种答案。一、苦甲商厦确定每组设奖,当参加人数较少时,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客,二、若甲商厦的每组营业额较多时,它给顾客的优惠幅度就相应的小。因为甲商厦提供的优惠金额是固定的,共14000元(10000+2000+1000+1000= 14000)。假设两商厦提供的优惠都是14000元,则可求乙商厦的营业额为280000元(14000÷5%=280000)。所以由此可得:(l)当两商厦的营业额都为280000元时,两家商厦所提供的优惠同样多.(2)当两商厦的营业额都不足280000元时,乙商厦的优惠则小于14000元,所以这时甲商厦提供的优惠仍是14000元,优惠较大。(3)当两家的营业额都超过280000元时,乙商厦的优惠则大于14000元,而甲商厦的优惠仍保持14000元时,乙商厦所提供的实惠大。像这样的问题,我们在日常生活中随处可见。例如。有两家液化气站,已知每瓶液化气的质和量相同,开始定的价也相同.为了争取更多的用户,两站分别推出优惠政策.甲站的办法是实行七五折错售,乙站的办法是对客户自第二次换气以后以7折销售。两站的优惠期限都是一年.你作为用户,应该选哪家好?这个问题与前面的问题有很大相同之处。只要通过你所需要的罐数来分析讨论,这样,问题便可迎刃而解了。随着市场经济的逐步完善,人们日常生活中的经济活动越来越丰富多彩.买与卖,存款与保险,股票与债券,……都已进入我们的生活.同时与这一系列经济活动相关的数学,利比和比例,利息与利率,统计与概率。运筹与优化,以及系统分析和决策,都将成为数学课程中的“座上客”。作为跨世纪的小学生,我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题。这样才能更好地适应社会的发展和需要。再给你一些地址:自己拼接吧

化学和生活的关系论文参考文献

浅谈现代生活与化学的联系 摘 要:21世纪人类的生活与化学有密切的关系,化学在信息与生命科学中有着及其重要的作用,化学学科 与这些学科交叉,会给人类的生活带来深刻的变革。化学与国民经济各个部门、各尖端科学技术领域以及人 民生活各个方面都有着密切联系。21世纪人们越来越多 地享受和依赖化学带给我们生活的方便和高质量。 关键词:化学与生活;生物技术;信息技术 生活中处处有化学,日常生活以及材料、能 源、环境、生命科学等诸多问题,都体现了化学与 人类、社会发展的密切关系以及化学发展的最新 成果 。随着生活水平的提高,人们越来越追求健康、高品位的生 活,化学与生活的联系也日趋密切。只要你留心观察、用心思 考,就会发现生活中的化学知识到处可见。 化学是一门自然科 学,有着丰富的实验内容。化学本应是一门生动的、贴近生活 的、探求自然奥秘的一门学科。生活中充满着化学的踪影,化学 就在我们身边,用化学知识可以解决生活中的实际问题。化学可 以服务于社会,服务于其它学科,服务于人类自身。 21世纪的生活对化学的要求和利用会日益 加大,人们对衣、食、住、行等各个方面新的需求都 与化学紧密相连。基因疗法、转基因食品、干细胞 技术、生态环保型服装、智能材料、生物质洁净能 源、纳米生物技术等,人们要用化学方法不断创造 新的化学产品;创造新药品战胜癌症、艾滋病、 SARS等病毒性疾病;战胜老年性痴呆、心脏病与 中风等影响健康长寿的顽疾。 在21世纪,生物化学领域对于生物结构的研 究已经从静态进入动态,从分子结构进入分子以 上甚至细胞层次的复杂结构研究,对生物功能分 子的结构、性质、功能三者关系的研究从单一分子 进入多分子体系以至细胞体系的研究。现代技术 已经能够分离和鉴定对制造特殊蛋白质有指令作 用的基因,然后把这些基因结合到生物体如酵母 菌中以制造人们所期望的蛋白质。例如对人类有 重要作用的胰岛素或人体生长素,科学家可以通 过化学的方法来改变基因以修饰其序列,生成更 好性质的蛋白质。二十一世纪有一个特别受到关 注的领域,即人体基因组的序列化问题,人体中所 有重要蛋白质都是在基因的指导下制造出来的, 基因组指在细胞核中的遗传性DNA 的全部物 质,它携带着成千上万单独的基因,每一个都包含 有数百个或更多的DNA单元,起着密码信的作 用;人体中有数以亿计的这种单元,要找出人体这 种基因序列并对每种基因中的化学序列进行测 定。进一步了解生命的化学本质和重要性以及对 健康的重要性是十分重要的。在二十一世纪医疗 卫生领域内可能最令人感兴趣的新领域之一是基 因疗法。人体有些疾病并不是由于某种微生物的 侵害而引起的,而是和我们自身的基因缺陷有关。 药物化学家正在尝试着发展一种用向细胞释放 DNA片段的方法,使其替代有缺损的部分;这是 在二十一世纪充满竞争的领域,未来的基因疗法 将有助于目前尚不能解决的与健康有关的问题。 美国前总统克林顿曾向公众展示了未来个性化医 疗的蓝图:如果你到了医院,经过医生和系列化验 诊断为某种疾病,医生只给你提供一组治疗信息 供选择,你只要将带有自己遗传档案的软盘插入 电脑,同时输入疾病和治疗相关信息,电脑就会提 示应该选择什么药、最佳剂量和剂型、服用的效 果。这样,人们将会获得最佳的治疗效果,药物的 毒副作用避免到最小。 进入21世纪,我们正在经历着一场新的技术 革命,其核心和主流是信息科学技术革命,它必将 对我们的生活产生巨大的影响。在信息科学和信 息技术中比较典型的是传感技术、通信技术和计 算机技术。它们大体相当于人的感觉器官、神经 系统和思维器官。将传感、通信和计算机技术连 接成网,融为一体,标志着信息化社会的到来。 传感技术的任务是要精确、高效、可靠地采集 各种形式的信息。因此,需要努力发展遥感、遥测 及各种高性能的传感器、换能器和显示器,如卫星 遥感技术,红外遥感技术,次声和超声检测技术, 各种热敏、声敏、味敏、嗅敏及智能传感系统。 信息技术的发展正日益改变着人们的生活水 平。信息技术与化学的紧密联系集中表现在通过 各种化学合成手段,制造出功能各异的信息材料, 主要包括电子材料和光电子材料。各种电学、磁 学和光学性能不断改进的新材料推动着电子学的 发展。计算机的功能和速度将来会变成什么样 子,是否真的有一天能够达到和人脑相比拟,甚至 于超过人脑的水平?这恐怕要取决于是否能够把 计算机电路的微型化继续做下去,同时不断提高 芯片的集成度。以半导体硅为基础的微电子技 术,遵循着一个非常著名的定律:摩尔定律,即每 经过18至24个月,电路的运算速度大约翻一番, 历经40年的变化后,固态微电子学已经发展到在 面积小到几个平方厘米的硅片上,可以做出几百 万个尺寸为0.18(微米)的晶体管的水平。但是 如果和分子器件相比,它仍然是太大了。假设现 在的晶体管相当于布满文字的一页纸,分子器件 大约只相当于其中的一个句点,即使像现在技术 界提出的,12年内硅晶体管的尺度可能缩小到 12Ohm(纳米)的水平,但是硅芯片和分子器件相 比,仍然要大60o00倍!再者,没有人认为传统的 硅基微电子学会继续按照摩尔定律发展下去,这 和芯片制造专家认为继续做下去经济上不再合算 有关。当把更多的晶体管做在一张芯片上时,杂 散信号、因为器件过于密集而带来的芯片散热问 题以及制造器件本身的困难等等,都将影响到这 项技术的进展。事实上,制造有效的超小型硅晶 体管以及它们之间的连接等技术的革新,已经是 越来越困难了。不少专家认为,当晶体管达到0.1 微米的水平时,挑战将变得更加激烈,因为集成电 路加工技术所遇到的困难是随着晶体管密度的增 加呈指数增长的,但是它的经济效益却不一定能 够达到同样的增长速度。不少专家认为在2015 年左右,芯片的产值将达到2000亿美元,此时它 的不断小型化的势头也将停滞,因为这时用来提 高芯片能力的成本实在太高了。近年来在分子计 算机研究方面的巨大进步,为解决这个问题提供 了另一个可能的方向。虽然目前预言它的成功还 为时过早,但是近年来在这个领域内取得的许多 成果所展示的前景却是极其鼓舞人心的。 总之,在21世纪,化学与国民经济各个部门、 尖端科学技术各个领域以及人民生活各个方面都 有着密切联系。它是一门重要的基础科学,它在 整个自然科学中的关系和地位,正如[美]Pi— mentel GC在《化学中的机会——今天和明天》一 书中指出的“化学是一门中心科学,它与社会发展 各方面的需要都有密切关系。”化学与其他学科的 交叉将是21世纪科学发展的必然趋势,生命科 学、材料科学、环境化学、绿色化学、能源化学、药 物化学、计算化学、纳米化学等众多新兴的交叉领 域将大大地改变传统的化学科学的范畴与意义, 并已经改变且将更大程度上改变社会和个人的生 存、发展及生活方式。

人类正面临有史以来最严重的环境危机,由于人口急剧的增加,资源的消耗日益扩大,人均耕地、淡水和矿产等资源占有量逐渐减少,人口与资源的矛盾越来越尖锐;环保问题就成为经济与社会发展的重要问题之一。作为国民经济支柱产业之一的化学工业及相关产业,在为创造人类的物质文明作出重要贡献的同时,在生产活动中不断排放出大量有毒物质,化学工业也为环境和人类的健康带来一定的危害。发达国家对环境的治理,已开始从治标,即从末端治理污染转向治本,即开发清洁工业技术,消减污染源头,生产环境友好产品。“绿色技术”已成为21世纪化工技术与化学研究的热点和重要科技前沿。 绿色化学又称绿色技术、环境无害化学、环境友好化学、清洁化学。绿色化学即是用化学及其它技术和方法去减少或消除那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂、试剂、产物、副产物等的使用和产生。 化学可以粗略地看作是研究从一种物质向另一种物质转化的科学。传统的化学虽然可以得到人类需要的新物质,但是在许多场合中却既未有效地利用资源,又产生大量排放物,造成严重的环境污染。绿色化学则是更高层次的化学,它的主要特点是“原子经济性”,即在获得物质的转化过程中充分利用每个原料原子,实现“零排放”,因此既可以充分利用资源,又不产生污染。传统化学向绿色化学的转变可以看作是化学从“粗放型”向“集约型”的转变。绿色化学可以变废为宝,可使经济效益大幅度提高。绿色化学已在全世界兴起,它对我国这样新兴的发展中国家更是一个难得的机遇。1 采用无毒、无害并可循环使用的新物料1.1 原料选择 工业化的发展为人类提供了许多新物料,它们在不断改善人类物质生活的同时,也带来大量生活废物,使人类的生活环境迅速恶化。为了既不降低人类的生活水平,又不破坏环境,我们必须研制并采用对环境无毒无害又可循环使用的新物料。 以塑料为例,据统计,到1989年美国在包装上使用的塑料就超过55.43亿kg(20世纪90年代数量进一步上升),打开包装后即被抛弃,这些塑料废物破坏环境是我们面临的一大问题:掩埋它们将永久留在土地里中;焚烧它们会放出剧毒。 我国也大量使用塑料包装,而且在农村还广泛地使用塑料大棚和地膜,造成的“白色污染”也越来越严重。解决这个问题的根本出路在于研制可以自然分解或生物降解的新型塑料,目前国际上已有一些成功的方法,例如:光降解塑料和生物降解塑料。前者已经投入生产。光生物双降解塑料研究是我国“八五”科技攻关的一个重大项目,已取得一些进展。1.2 溶剂的选择 大量的与化学制造相关的污染问题不仅来源于原料和产品,而且源自在其制造过程中使用的物质。最常见的是在反应介质,分离和配方中所用的溶剂。在传统的有机反应中,有机溶剂是最常用的反应介质,这主要是因为它们能较好地溶解有机化合物。但有机溶剂的毒性和难以回收又使之成为对环境有害的因素。因此,在无溶剂存在下进行的有机反应,用水作反应介质,以及超临界流体作反应介质或萃取溶剂将成为发展洁净合成的重要途径。1.2.1 固相反应 固相化学反应实际上是在无溶剂化作用的新颖化学环境下进行的反应,有时可比溶液反应更为有效并达到更好的选择性。它是避免使用挥发性溶剂的一个研究动向。1.2.2 以水为溶剂的反应 由于大多数有机化合物在水中的溶解性差,而且许多试剂在水中会分解,因此一般避免用水作反应介质。但水作为反应溶剂有其独特的优越性,因为水是地球上自然丰度最高的“溶剂”,价廉、无毒、不危害环境。此外水溶剂特有的疏水效用对一些重要有机转化是十分有益的,有时可提高反应速率和选择性,更何况生命体内的化学反应大多是在水中进行的。 水相有机合成在有机金属类反应,水相Lewis酸催化的反应现都已取得较大进展。因此在某些有机化学反应中,开发利用以水作溶剂是大有可为的。1.2.3 超临界流体作为有机溶剂 超临界流体是指超临界温度及超临界压力下的流体,是一种介于气态与液态之间的流体。在无毒无害溶剂的研究中,最活跃的研究项目是开发超临界流体(SCF),特别是超临界CO2作溶剂。超临界CO2是指温度和压力在其临界点(31.10℃,7 477.79KPa)以上的CO2流体。它通常具有流体的密度,因而有常规常态溶剂的溶解度;在相同条件下,它又具有气体的粘度,因而又具有很高的传质速度。而且,由于具有很大的可压缩性,流体的密度,溶剂溶解度和粘度等性能可由压力和温度的变化来调节。其最大优点是无毒、不可燃、价廉等。1.3 催化剂的选择 许多传统的有机反应用到酸、碱液体催化剂。如烃类的烷基化反应一般使用氢氟酸、硫酸、三氯化铝等液体酸做催化剂,这些液体酸催化剂的共同缺点是:对设备腐蚀严重,对人身危害和产生废渣污染环境。为了保护环境,多年来人们从分子筛、杂多酸、超强酸等新催化材料入手,大力开发固体酸做为烷基催化剂。其中采用新型分子筛催化剂的乙苯液相烃化技术较为成熟,这种催化剂选择性高,乙苯收率超过99.6%,而且催化剂寿命长。2 化学反应的绿色化 为了节约资源和减少污染,合成效率成了当今合成方法学研究中关注的焦点。合成效率包括两方面,一是选择性(化学、区域、非对映体和对映体选择性),另一个就是原子经济性,即原料分子中究竟有百分之几的原子转化为产物,理想的原子经济反应是原料分子中的原子百分之百的转变为产物,不产生副产物或废弃物,实现废物的“零排放”。为此,化学化工工作者在设计合成路线时,要减少“中转”、增加“直快”、“特快”,更加经济合理地利用原料分子中的每一个原子,减少中间产物的形成,少用或不用保护基或离去基,避免副产物或废弃物的产生。实现原子经济反应的有效手段很多,在些不作赘述。3 生物技术的应用 生物科学是当代科学的前沿。生物技术是世界范围内新技术革命的重要组成部分,生物化工是21世纪最具有发展潜力的产业之一,它将成为创造巨大社会财富的重要产业体系。采用生物技术已在能源、采油、采矿、肥料、农药、蛋白质、聚合物、表面活性剂、催化剂、基本有机化工原料、精细化学品的制造等方面得到广泛应用。从发展绿色化学的角度出发,它最大的特点和魅力就在节约能源和易于实现无污染生产而且可以实现用一般化工技术难以实现的化工过程,其产品常常又具有特殊性能。因此,生物技术的研究和应用倍受青睐。 绿色化学是人类的一项重要战略任务。绿色化学的根本目的是从节约资源和防止污染的观点来重新审视和改革传统化学,从而使我们对环境的治理可以从治标中转向治本。绿色化学的发展不仅将对环境保护产生重大影响,而且将为我国的企业与国际接轨创造条件。

萨芬的第三方的手个的梵蒂冈速度奋斗

和生活有关的数学论文参考文献

有呀,汉斯的应用数学进展这本刊上的文献就是呀,你有时间可以去看看呐

数学在生活中的应用 数学是一门很有用的学科。早在远古时代,就有原始人“涉猎计数”与“结绳记事” 如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们 购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便 利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门” ;运动场跑 道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定; 折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解 Rt 三角形有关知识的应 用。 因此我们的研究性课题是数学在生活中的运用,希望通过这次小研究,提高我们的数 学能力,能够在生活中自觉地运用数学知识。 结合高中知识:函数、不等式、数列等方面,我们上网查了资料相关资料,并结合自身生活 实际思考,整理归纳如下。 第一部分 函数的应用 我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、 对数函数及分段函数等八种。这些函数从不同角度反映了自然界中变量与变量间的依存关 系,因此代数中的函数知识是与生产实践及生活实际密切相关的。 一、一元一次函数的应用 一元一次函数在我们的日常生活中应用十分广泛。 当人们在社会生活中从事买卖特别是 消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。 例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往 往会为我们提供两种或多种付款方案或优惠办法。 这时我们应三思而后行, 深入发掘自己头 脑中的数学知识,做出明智的选择。俗话说: “从南京到北京,买的没有卖的精。 ”我们切不 可盲从,以免上了商家设下的小圈套,吃了眼前亏。 过年这几天和家人上街购物, 商家纷纷采取各种优惠措施, 我就运用自己的数学函数知 识精打细算了一次。 我去“好日子”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠, 这似乎很少见。更奇怪的是,居然有两种优惠方法: (1)卖一送一(即买一只茶壶送一只茶 杯)(2)打九折(即按购买总价的 90% 付款) ; 。其下还有前提条件是:购买茶壶 3 只以上 (茶壶 20 元/个,茶杯 5 元/个) 。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种 更便宜呢?我便很自然的联想到了函数关系式, 决心应用所学的函数知识, 运用解析法将此 问题解决。 我在纸上写道: 设某顾客买茶杯 x 只,付款 y 元,(x>3 且 x∈N),则 用第一种方法付款 y1=4×20+(x-4)×5=5x+60; 用第二种方法付款 y2=(20×4+5x)×90%=4.5x+72. 接着比较 y1y2 的相对大小. 设 d=y1-y2=5x+60-(4.5x+72)=0.5x-12. 然后便要进行讨论: 当 d>0 时,0.5x-12>0,即 x>24; 当 d=0 时,x=24; 当 d<0 时,x<24. 综上所述,当所购茶杯多于 24 只时,法(2)省钱;恰好购买 24 只时,两种方法价格相等; 购买只数在 4—23 之间时,法(1)便宜. 可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜 绝了浪费,真是一举两得啊! 二、一元二次函数的应用 在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时, 其利润随投资的变化关系一般可用二次函数表示。 企业经营者经常依据这方面的知识预计企 业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益, 从而判断企业经济效益是否得到提高、 企业是否有被兼并的危险、 项目有无开发前景等问题。 常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。 三、三角函数的应用 三角函数的应用极其广泛,最简的也是最常见的一类——锐角三角函数的应用: “山林 绿化”问题。 在山林绿化中, 须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地 树木间距保持一致。 (如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。 这便要用到锐角三角函数的知识。 第二部分 不等式的应用 日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前两 类不等式的应用与其对应函数及方程的应用如出一辙, 而平均值不等式在生产生活中起到了 不容忽视的作用。下面,我们主要谈一下均值不等式和均值定理的应用。 在生产和建设中, 许多与最优化设计相关的实际问题通常可应用平均值不等式来解决。 平均 值不等式知识在日常生活中的应用, 均值不等式和极值定理通常可有如下几方面的极其重要 的应用: (表后重点分析“包装罐设计”问题) 实践活动 已知条件 最优方案 解决办法 设计花坛绿地 周长或斜边 面积最大 极值定理一 经营成本 各项费用单价及销售量 成本最低 函数、极值定理二 车船票价设计 航行里程、限载人数、 票价最低 用极值定理二求出 速度、各项费用及相应 最低成本,再由此 比例关系 计算出最低票价 (票价=最低票价+ +平均利润) 包装罐设计 (见表后) (见表后) (见表后) 包装罐设计问题 1、 “白猫”洗衣粉桶 “白猫”洗衣粉桶的形状是等边圆柱(如右图所示) , 若容积一定且底面与侧面厚度一样,问高与底面半径是 什么关系时用料最省(即表面积最小)? 分析:容积一定=>лr h=V(定值) =>S=2лr +2лrh=2л(r +rh)= 2л(r +rh/2+rh/2) ≥2л3 (r h) /4 =3 2лV (当且仅当 r =rh/2=>h=2r 时取等号), ∴应设计为 h=d 的等边圆柱体. 2、 “易拉罐”问题 圆柱体上下第半径为 R,高为 h,若体积为定值 V,且上下底 厚度为侧面厚度的二倍,问高与底面半径是什么关系时用料最 省(即表面积最小)? 分析:应用均值定理,同理可得 h=2d∴应设计为 h=2d 的圆柱体. 事实上, 不等式特别是均值不等式在生产实践中的应用远不止这些, 在这里就不一一列 举了。 第二部分 第二部分 数列的应用 在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人 口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。 重点分析等差数列、等比数列在实际生活和经济活动中的应用。 (一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大 地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知, 按揭货款 (公积金贷款) 中都实行按月等额还本付息。 这个等额数是如何得来的, 此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这 一问题的解决办法。 若贷款数额 a0 元,贷款月利率为 p,还款方式每月等额还本付息 a 元.设第 n 月还款后的本 金为 an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, ...... an+1=an(1+p)-a,.........................(*) 将(*)变形,得 (an+1-a/p)/(an-a/p)=1+p. 由此可见,{an-a/p}是一个以 a1-a/p 为首项,1+p 为公比的等比数列。日常生活中一切有关 按揭货款的问题,均可根据此式计算。 研究总结 第三部分 研究总结这次研究运用数学知识解决实际问题给我们带来了许多发现和思考的愉快,这也正验证 了苏霍姆林斯基所说的: “在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是 一个发现者 、研究者、探索者。 ”这也正是研究性学习的意义所在。作为中学生,我们不仅 要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题.这样才能更好地 适应社会的发展和需要。 但这次研究性学习也有不足之处, 首先寒假大家联系不便, 也较难取得辅导老师的帮助, 我们想,毕竟高中所学数学知识有限,如果能在数学老师指导下,学习一些大学深入研究的 数学应用知识,可以更好的拓宽知识面,加深理解。其次,我们的生活和经济理财打交道较 少, 如果能结合学校的饭卡使用过程中的经济问题问题结合统计学知识, 调查出同学们的消 费水平,一些节俭消费的措施和手段,那数学知识就真的帮上大忙了。最后,希望学校能将 其他同学较为优秀的研究性学习成果进行展示,为我们提供借鉴。 高二(22)班 刘丽华 张晶晶 洪泓 曹静 沈彤 夏叶宁 潘玥

数学与生活的关系论文参考文献

有呀,汉斯的应用数学进展这本刊上的文献就是呀,你有时间可以去看看呐

数学在生活中的应用 数学是一门很有用的学科。早在远古时代,就有原始人“涉猎计数”与“结绳记事” 如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们 购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便 利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门” ;运动场跑 道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定; 折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解 Rt 三角形有关知识的应 用。 因此我们的研究性课题是数学在生活中的运用,希望通过这次小研究,提高我们的数 学能力,能够在生活中自觉地运用数学知识。 结合高中知识:函数、不等式、数列等方面,我们上网查了资料相关资料,并结合自身生活 实际思考,整理归纳如下。 第一部分 函数的应用 我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、 对数函数及分段函数等八种。这些函数从不同角度反映了自然界中变量与变量间的依存关 系,因此代数中的函数知识是与生产实践及生活实际密切相关的。 一、一元一次函数的应用 一元一次函数在我们的日常生活中应用十分广泛。 当人们在社会生活中从事买卖特别是 消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。 例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往 往会为我们提供两种或多种付款方案或优惠办法。 这时我们应三思而后行, 深入发掘自己头 脑中的数学知识,做出明智的选择。俗话说: “从南京到北京,买的没有卖的精。 ”我们切不 可盲从,以免上了商家设下的小圈套,吃了眼前亏。 过年这几天和家人上街购物, 商家纷纷采取各种优惠措施, 我就运用自己的数学函数知 识精打细算了一次。 我去“好日子”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠, 这似乎很少见。更奇怪的是,居然有两种优惠方法: (1)卖一送一(即买一只茶壶送一只茶 杯)(2)打九折(即按购买总价的 90% 付款) ; 。其下还有前提条件是:购买茶壶 3 只以上 (茶壶 20 元/个,茶杯 5 元/个) 。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种 更便宜呢?我便很自然的联想到了函数关系式, 决心应用所学的函数知识, 运用解析法将此 问题解决。 我在纸上写道: 设某顾客买茶杯 x 只,付款 y 元,(x>3 且 x∈N),则 用第一种方法付款 y1=4×20+(x-4)×5=5x+60; 用第二种方法付款 y2=(20×4+5x)×90%=4.5x+72. 接着比较 y1y2 的相对大小. 设 d=y1-y2=5x+60-(4.5x+72)=0.5x-12. 然后便要进行讨论: 当 d>0 时,0.5x-12>0,即 x>24; 当 d=0 时,x=24; 当 d<0 时,x<24. 综上所述,当所购茶杯多于 24 只时,法(2)省钱;恰好购买 24 只时,两种方法价格相等; 购买只数在 4—23 之间时,法(1)便宜. 可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜 绝了浪费,真是一举两得啊! 二、一元二次函数的应用 在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时, 其利润随投资的变化关系一般可用二次函数表示。 企业经营者经常依据这方面的知识预计企 业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益, 从而判断企业经济效益是否得到提高、 企业是否有被兼并的危险、 项目有无开发前景等问题。 常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。 三、三角函数的应用 三角函数的应用极其广泛,最简的也是最常见的一类——锐角三角函数的应用: “山林 绿化”问题。 在山林绿化中, 须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地 树木间距保持一致。 (如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。 这便要用到锐角三角函数的知识。 第二部分 不等式的应用 日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。前两 类不等式的应用与其对应函数及方程的应用如出一辙, 而平均值不等式在生产生活中起到了 不容忽视的作用。下面,我们主要谈一下均值不等式和均值定理的应用。 在生产和建设中, 许多与最优化设计相关的实际问题通常可应用平均值不等式来解决。 平均 值不等式知识在日常生活中的应用, 均值不等式和极值定理通常可有如下几方面的极其重要 的应用: (表后重点分析“包装罐设计”问题) 实践活动 已知条件 最优方案 解决办法 设计花坛绿地 周长或斜边 面积最大 极值定理一 经营成本 各项费用单价及销售量 成本最低 函数、极值定理二 车船票价设计 航行里程、限载人数、 票价最低 用极值定理二求出 速度、各项费用及相应 最低成本,再由此 比例关系 计算出最低票价 (票价=最低票价+ +平均利润) 包装罐设计 (见表后) (见表后) (见表后) 包装罐设计问题 1、 “白猫”洗衣粉桶 “白猫”洗衣粉桶的形状是等边圆柱(如右图所示) , 若容积一定且底面与侧面厚度一样,问高与底面半径是 什么关系时用料最省(即表面积最小)? 分析:容积一定=>лr h=V(定值) =>S=2лr +2лrh=2л(r +rh)= 2л(r +rh/2+rh/2) ≥2л3 (r h) /4 =3 2лV (当且仅当 r =rh/2=>h=2r 时取等号), ∴应设计为 h=d 的等边圆柱体. 2、 “易拉罐”问题 圆柱体上下第半径为 R,高为 h,若体积为定值 V,且上下底 厚度为侧面厚度的二倍,问高与底面半径是什么关系时用料最 省(即表面积最小)? 分析:应用均值定理,同理可得 h=2d∴应设计为 h=2d 的圆柱体. 事实上, 不等式特别是均值不等式在生产实践中的应用远不止这些, 在这里就不一一列 举了。 第二部分 第二部分 数列的应用 在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人 口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。 重点分析等差数列、等比数列在实际生活和经济活动中的应用。 (一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大 地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知, 按揭货款 (公积金贷款) 中都实行按月等额还本付息。 这个等额数是如何得来的, 此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这 一问题的解决办法。 若贷款数额 a0 元,贷款月利率为 p,还款方式每月等额还本付息 a 元.设第 n 月还款后的本 金为 an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, ...... an+1=an(1+p)-a,.........................(*) 将(*)变形,得 (an+1-a/p)/(an-a/p)=1+p. 由此可见,{an-a/p}是一个以 a1-a/p 为首项,1+p 为公比的等比数列。日常生活中一切有关 按揭货款的问题,均可根据此式计算。 研究总结 第三部分 研究总结这次研究运用数学知识解决实际问题给我们带来了许多发现和思考的愉快,这也正验证 了苏霍姆林斯基所说的: “在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是 一个发现者 、研究者、探索者。 ”这也正是研究性学习的意义所在。作为中学生,我们不仅 要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题.这样才能更好地 适应社会的发展和需要。 但这次研究性学习也有不足之处, 首先寒假大家联系不便, 也较难取得辅导老师的帮助, 我们想,毕竟高中所学数学知识有限,如果能在数学老师指导下,学习一些大学深入研究的 数学应用知识,可以更好的拓宽知识面,加深理解。其次,我们的生活和经济理财打交道较 少, 如果能结合学校的饭卡使用过程中的经济问题问题结合统计学知识, 调查出同学们的消 费水平,一些节俭消费的措施和手段,那数学知识就真的帮上大忙了。最后,希望学校能将 其他同学较为优秀的研究性学习成果进行展示,为我们提供借鉴。 高二(22)班 刘丽华 张晶晶 洪泓 曹静 沈彤 夏叶宁 潘玥

生活和设计的关系论文参考文献

去google(谷歌)里面随便就找到了。

室内设计毕业论文参考文献一:

[1]杨淘,王曌一.基于环境心理学的学习空间室内设计[J].设计,2018(01):132-133.

[2]邱海东,符红柳.格式塔意向下的设计创意--以室内设计思维与装饰材料运用为例[J].设计,2018(01):139-141.

[3]黄晟.基于互联网背景下的室内设计的课堂创新与教学反思[J].江西建材,2018(03):208+211.

[4]王葵.室内设计教学观念的转变及教学思维创新[J].江西建材,2018(03):229+233.

[5]赵倩红.基于工作过程系统化的住宅室内设计课程改革实践[J].天津职业院校联合学报,2017(12):92-96.

[6]梁童,赵培,胡凯,尤明曦.室内覆盖网络智能设计审核平台研发与应用[J].电信工程技术与标准化,2018(01):14-19.

[7]陈媛媛.论现代中式风格室内设计中漆艺的运用[J].山西建筑,2018(01):213-214.

[8]高翌崴.对新中式的研究与新中式在室内设计中的应用[J].建材与装饰,2018(01):96-97.

[9]王佩.浅析室内设计中的绿色环保设计[J].建材与装饰,2018(01):113.

[10]刘青蓝.试论建筑室内设计中灯光与色彩的搭配运用[J].建材与装饰,2018(01):115.

设计与人类的生活方式有着紧密的联系。首先,设计所产生的产品提供了人们日常生活的物质基础和条件。人们的日常生活是生活方法、形式和内容的具体化,它既是社会的,又是个人的。日常生活是以衣、食、住、行、以及和各种交流为主要内容的个人生活领域。这一领域中的建筑、家具、用具等物质设施组成了个人日常生活的物质基础,是经过设计艺术化的物质基础。从餐具到家具乃至整个生活环境,设计使其处于美感的和艺术化的层面上,从而使生活具备了艺术文化的意义。 设计同时也是人们为了使自己生活得更有质量而创造出的一种开创性方法,也是人们通过日常生活来理解艺术的一种普及化的方法。虽然设计出来的产品不一定属于艺术品,但是并非不具有美观性,它的美存在于实用价值之中。这种存在实际上是一种集中形式的表现。 设计不仅是对物体或环境的设计,同时也是一种对使用方式的设计。使用方式的改变必然会对生活方式产生一定的影响。随着物质设计向服务、程序、关系一类的非物质设计方式的扩展,设计对生活方式的影响将日益扩大。但生活方式毕竟离不开物质的条件,受各种物质条件的限制,一定的生活方式产生一定的设计。因而,设计又是适应生活方式的产物。

设计是根据人类生活的方式来定的,为了更好的生活

  • 索引序列
  • 数学和生活的关系论文参考文献
  • 化学和生活的关系论文参考文献
  • 和生活有关的数学论文参考文献
  • 数学与生活的关系论文参考文献
  • 生活和设计的关系论文参考文献
  • 返回顶部