A、需求分析阶段:综合各个用户的应用需求。 B、在概念设计阶段:用E-R图来描述。 C、在逻辑设计阶段:将E-R图转换成具体的数据库产品支持的数据模型,如关系模型,形成数据库逻辑模式。然后根据用户处理的要求,安全性的考虑,在基本表的基础上再建立必要的视图(VIEW)形成数据的外模式。 D、在物理设计阶段:根据DBMS特点和处理的需要,进行物理存储安排,设计索引,形成数据库内模式。 一展开就够论文字数了
数据库完整性(Database Integrity)是指数据库中数据的正确性和相容性。数据库完整性由各种各样的完整性约束来保证,因此可以说数据库完整性设计就是数据库完整性约束的设计。数据库完整性约束可以通过DBMS或应用程序来实现,基于DBMS的完整性约束作为模式的一部分存入数据库中。通过DBMS实现的数据库完整性按照数据库设计步骤进行设计,而由应用软件实现的数据库完整性则纳入应用软件设计(本文主要讨论前者)。数据库完整性对于数据库应用系统非常关键,其作用主要体现在以下几个方面: 1.数据库完整性约束能够防止合法用户使用数据库时向数据库中添加不合语义的数据。 2.利用基于DBMS的完整性控制机制来实现业务规则,易于定义,容易理解,而且可以降低应用程序的复杂性,提高应用程序的运行效率。同时,基于DBMS的完整性控制机制是集中管理的,因此比应用程序更容易实现数据库的完整性。 3.合理的数据库完整性设计,能够同时兼顾数据库的完整性和系统的效能。比如装载大量数据时,只要在装载之前临时使基于DBMS的数据库完整性约束失效,此后再使其生效,就能保证既不影响数据装载的效率又能保证数据库的完整性。 4.在应用软件的功能测试中,完善的数据库完整性有助于尽早发现应用软件的错误。 数据库完整性约束可分为6类:列级静态约束、元组级静态约束、关系级静态约束、列级动态约束、元组级动态约束、关系级动态约束。动态约束通常由应用软件来实现。不同DBMS支持的数据库完整性基本相同,Oracle支持的基于DBMS的完整性约束如下表所示: 数据库完整性设计示例 一个好的数据库完整性设计首先需要在需求分析阶段确定要通过数据库完整性约束实现的业务规则,然后在充分了解特定DBMS提供的完整性控制机制的基础上,依据整个系统的体系结构和性能要求,遵照数据库设计方法和应用软件设计方法,合理选择每个业务规则的实现方式;最后,认真测试,排除隐含的约束冲突和性能问题。基于DBMS的数据库完整性设计大体分为以下几个阶段: 1.需求分析阶段 经过系统分析员、数据库分析员、用户的共同努力,确定系统模型中应该包含的对象,如人事及工资管理系统中的部门、员工、经理等,以及各种业务规则。 在完成寻找业务规则的工作之后,确定要作为数据库完整性的业务规则,并对业务规则进行分类。其中作为数据库模式一部分的完整性设计按下面的过程进行。而由应用软件来实现的数据库完整性设计将按照软件工程的方法进行。 2.概念结构设计阶段 概念结构设计阶段是将依据需求分析的结果转换成一个独立于具体DBMS的概念模型,即实体关系图(ERD)。在概念结构设计阶段就要开始数据库完整性设计的实质阶段,因为此阶段的实体关系将在逻辑结构设计阶段转化为实体完整性约束和参照完整性约束,到逻辑结构设计阶段将完成设计的主要工作。 3.逻辑结构设计阶段 此阶段就是将概念结构转换为某个DBMS所支持的数据模型,并对其进行优化,包括对关系模型的规范化。此时,依据DBMS提供的完整性约束机制,对尚未加入逻辑结构中的完整性约束列表,逐条选择合适的方式加以实现。 在逻辑结构设计阶段结束时,作为数据库模式一部分的完整性设计也就基本完成了。每种业务规则都可能有好几种实现方式,应该选择对数据库性能影响最小的一种,有时需通过实际测试来决定。 数据库完整性设计原则 在实施数据库完整性设计的时候,有一些基本的原则需要把握: 1.根据数据库完整性约束的类型确定其实现的系统层次和方式,并提前考虑对系统性能的影响。一般情况下,静态约束应尽量包含在数据库模式中,而动态约束由应用程序实现。 2.实体完整性约束、参照完整性约束是关系数据库最重要的完整性约束,在不影响系统关键性能的前提下需尽量应用。用一定的时间和空间来换取系统的易用性是值得的。 3.要慎用目前主流DBMS都支持的触发器功能,一方面由于触发器的性能开销较大,另一方面,触发器的多级触发不好控制,容易发生错误,非用不可时,最好使用Before型语句级触发器。 4.在需求分析阶段就必须制定完整性约束的命名规范,尽量使用有意义的英文单词、缩写词、表名、列名及下划线等组合,使其易于识别和记忆,如:CKC_EMP_REAL_INCOME_EMPLOYEE、PK_EMPLOYEE、CKT_EMPLOYEE。如果使用CASE工具,一般有缺省的规则,可在此基础上修改使用。 5.要根据业务规则对数据库完整性进行细致的测试,以尽早排除隐含的完整性约束间的冲突和对性能的影响。 6.要有专职的数据库设计小组,自始至终负责数据库的分析、设计、测试、实施及早期维护。数据库设计人员不仅负责基于DBMS的数据库完整性约束的设计实现,还要负责对应用软件实现的数据库完整性约束进行审核。 7.应采用合适的CASE工具来降低数据库设计各阶段的工作量。好的CASE工具能够支持整个数据库的生命周期,这将使数据库设计人员的工作效率得到很大提高,同时也容易与用户沟通。你可以围绕相关内容发表自己的看法
论文你可以去知网看看相关资料
数据库完整性(Database Integrity)是指数据库中数据的正确性和相容性。数据库完整性由各种各样的完整性约束来保证,因此可以说数据库完整性设计就是数据库完整性约束的设计。数据库完整性约束可以通过DBMS或应用程序来实现,基于DBMS的完整性约束作为模式的一部分存入数据库中。通过DBMS实现的数据库完整性按照数据库设计步骤进行设计,而由应用软件实现的数据库完整性则纳入应用软件设计(本文主要讨论前者)。数据库完整性对于数据库应用系统非常关键,其作用主要体现在以下几个方面: 1.数据库完整性约束能够防止合法用户使用数据库时向数据库中添加不合语义的数据。 2.利用基于DBMS的完整性控制机制来实现业务规则,易于定义,容易理解,而且可以降低应用程序的复杂性,提高应用程序的运行效率。同时,基于DBMS的完整性控制机制是集中管理的,因此比应用程序更容易实现数据库的完整性。 3.合理的数据库完整性设计,能够同时兼顾数据库的完整性和系统的效能。比如装载大量数据时,只要在装载之前临时使基于DBMS的数据库完整性约束失效,此后再使其生效,就能保证既不影响数据装载的效率又能保证数据库的完整性。 4.在应用软件的功能测试中,完善的数据库完整性有助于尽早发现应用软件的错误。 数据库完整性约束可分为6类:列级静态约束、元组级静态约束、关系级静态约束、列级动态约束、元组级动态约束、关系级动态约束。动态约束通常由应用软件来实现。不同DBMS支持的数据库完整性基本相同,Oracle支持的基于DBMS的完整性约束如下表所示: 数据库完整性设计示例 一个好的数据库完整性设计首先需要在需求分析阶段确定要通过数据库完整性约束实现的业务规则,然后在充分了解特定DBMS提供的完整性控制机制的基础上,依据整个系统的体系结构和性能要求,遵照数据库设计方法和应用软件设计方法,合理选择每个业务规则的实现方式;最后,认真测试,排除隐含的约束冲突和性能问题。基于DBMS的数据库完整性设计大体分为以下几个阶段: 1.需求分析阶段 经过系统分析员、数据库分析员、用户的共同努力,确定系统模型中应该包含的对象,如人事及工资管理系统中的部门、员工、经理等,以及各种业务规则。 在完成寻找业务规则的工作之后,确定要作为数据库完整性的业务规则,并对业务规则进行分类。其中作为数据库模式一部分的完整性设计按下面的过程进行。而由应用软件来实现的数据库完整性设计将按照软件工程的方法进行。 2.概念结构设计阶段 概念结构设计阶段是将依据需求分析的结果转换成一个独立于具体DBMS的概念模型,即实体关系图(ERD)。在概念结构设计阶段就要开始数据库完整性设计的实质阶段,因为此阶段的实体关系将在逻辑结构设计阶段转化为实体完整性约束和参照完整性约束,到逻辑结构设计阶段将完成设计的主要工作。 3.逻辑结构设计阶段 此阶段就是将概念结构转换为某个DBMS所支持的数据模型,并对其进行优化,包括对关系模型的规范化。此时,依据DBMS提供的完整性约束机制,对尚未加入逻辑结构中的完整性约束列表,逐条选择合适的方式加以实现。 在逻辑结构设计阶段结束时,作为数据库模式一部分的完整性设计也就基本完成了。每种业务规则都可能有好几种实现方式,应该选择对数据库性能影响最小的一种,有时需通过实际测试来决定。 数据库完整性设计原则 在实施数据库完整性设计的时候,有一些基本的原则需要把握: 1.根据数据库完整性约束的类型确定其实现的系统层次和方式,并提前考虑对系统性能的影响。一般情况下,静态约束应尽量包含在数据库模式中,而动态约束由应用程序实现。 2.实体完整性约束、参照完整性约束是关系数据库最重要的完整性约束,在不影响系统关键性能的前提下需尽量应用。用一定的时间和空间来换取系统的易用性是值得的。 3.要慎用目前主流DBMS都支持的触发器功能,一方面由于触发器的性能开销较大,另一方面,触发器的多级触发不好控制,容易发生错误,非用不可时,最好使用Before型语句级触发器。 4.在需求分析阶段就必须制定完整性约束的命名规范,尽量使用有意义的英文单词、缩写词、表名、列名及下划线等组合,使其易于识别和记忆,如:CKC_EMP_REAL_INCOME_EMPLOYEE、PK_EMPLOYEE、CKT_EMPLOYEE。如果使用CASE工具,一般有缺省的规则,可在此基础上修改使用。 5.要根据业务规则对数据库完整性进行细致的测试,以尽早排除隐含的完整性约束间的冲突和对性能的影响。 6.要有专职的数据库设计小组,自始至终负责数据库的分析、设计、测试、实施及早期维护。数据库设计人员不仅负责基于DBMS的数据库完整性约束的设计实现,还要负责对应用软件实现的数据库完整性约束进行审核。 7.应采用合适的CASE工具来降低数据库设计各阶段的工作量。好的CASE工具能够支持整个数据库的生命周期,这将使数据库设计人员的工作效率得到很大提高,同时也容易与用户沟通。你可以围绕相关内容发表自己的看法
恩,这个问题,太突兀了.触发器不需要"研究"两个字吧?触发器就是官方也没有给多少资料,太简单的一个东西,做出了肯定不会让你过,到时候你也会发现没有话说.不如,做个联系数据库的ASP网站,或者,前台应用程序之类的.这样保证你论文也有话说,而且也内容丰富!再者说,本科学习毕业论文总在实践而非理论.所以,其他,我就不多说了.呵呵....祝你顺利通过吧
1. 了解当前主流数据库管理系统的特点;2. 掌握Oracle11g数据库使用管理的方法;3. 掌握Oracle11g数据库安全性控制方法;4. 掌握基本的Oracle11g数据库备份与恢复方法;5. 掌握PL/SQL编程,存储过程、触发器等。要求:根据教员在Oracle数据库方面的使用经验,结合案例细化管理方法,深层次掌握Oracle数据库管理知识,为以后从事数据库开发和管理打下坚实的基础。
要最新的实例你用sql? 我们学习都是总结别人的经验,你还想创新啊创新就不要用asp 最起码.net 3.5 吧
中文科技期刊数据库(CNKI)社会科学是套刊,它是CNKI旗下社会科学领域期刊数据库,收录了中国社会科学院数字图书馆、中国社科院文献情报中心及中科院、中国图书馆以及全国各个省市图书馆编辑出版的重要期刊,总量超过50万篇。此外,CNKI社会科学还提供了以语篇为单位的原文检索服务,可以快速查找指定的期刊文献来源。
中文科技期刊数据库社会科学不是套刊中文科技期刊数据库属于混合型期刊,《中文科技期刊数据库》收录了中国境内历年出版的中文期刊14000余种,全文5700余万篇,引文4000余万条,分三个版本(全文版、文摘版、引文版)和8个专辑(社会科学、自然科学、工程技术、农业科学、医药卫生、经济管理、教育科学、图书情报)定期出版发行。《中文科技期刊数据库》已经成为文献保障系统的重要组成部分,是科技工作者进行科技查新和科技查证的必备数据库。
中文科技期刊数据库社会科学是一套包含多种社会科学期刊的数据库,它收录了多种社会科学期刊,如社会学、政治学、经济学、法学、教育学、文化学、历史学、哲学等学科的期刊,其中包括中国社会科学院出版社出版的《中国社会科学》、《中国社会科学评论》等期刊,以及中国社会科学院出版社出版的《中国社会科学文摘》等期刊。因此,中文科技期刊数据库社会科学是一套期刊,而不是一套刊物。
不属于。超星数字图书馆、方正阿帕比电子书数据库是电子书数据库,维普科技期刊数据库不属于电子书数据库,英文全称是ChinaScienceandTechnologyJournaDatabase。
Web数据挖掘技术探析论文
在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。
引言
当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。
计算机web数据挖掘概述
1.计算机web数据挖掘的由来
计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。
2.计算机Web数据挖掘含义及特征
(1)Web数据挖掘的含义
Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。
(2)Web数据挖掘的特点
计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。
(3)计算机web数据挖掘技术的类别
web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。
计算机web数据挖掘技术与电子商务的关系
借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。
计算机web数据挖掘在电子商务中的具体应用
(1)电子商务中的web数据挖掘的过程
在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。
(2)Web数据挖掘技术在电子商务中的应用
目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:
一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。
二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。
三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。
四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。
结语
本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。
摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。
关键词: 电子商务;数据挖掘;应用
1概述
电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。
2数据挖掘技术概述
数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。
3Web数据挖掘特点
Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。
1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。
2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。
3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。
4电子商务中Web挖掘中技术的应用分析
1)电子商务中序列模式分析的应用
序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。
2)电子商务中关联规则的应用
关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。
3)电子商务中路径分析技术的应用
路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。
4)电子商务中分类分析的应用
分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。
5)电子商务中聚类分析的应用
聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。
5结语
随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。
参考文献:
[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.
[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.
[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):234-235.208
[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.
[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.
python数据挖掘技术及应用论文选题如下:1、基于关键词的文本知识的挖掘系统的设计与实现。2、基于MapReduce的气候数据的分析。3、基于概率图模型的蛋白质功能预测。4、基于第三方库的人脸识别系统的设计与实现。5、基于hbase搜索引擎的设计与实现。6、基于Spark-Streaming的黑名单实时过滤系统的设计与实现。7、客户潜在价值评估系统的设计与实现。8、基于神经网络的文本分类的设计与实现。
问题一:毕业论文附录怎么写? 毕业论文包括以下内容:其中“附录”视具体情况安排,其余为必备项目。如果需要,第二、各项目含义(1)封面封面由文头、论文标题、作者、学校名称、专业、年级、指导教师、日期等项内容组成。(2)内容提要与关键词内容提要是论文内容的概括性描述,应忠实于原文,字数控制在300字以内。关键词是从论文标题、内容提要或正文中提取的、能表现论文主题的、具有实质意义的词语,通常不超过7个。后记等对应的页码。(4)正文正文是论文的主体部分,通常畅绪论(引论)、本论、结论三个部分组成。这三部分在行文上可以不明确标示。(5).注释对所创造的名词术语的解释或对引文出处的说明,注释采用脚注形式。(6)附录附属于正文,对正文起补充说明作用的信息材料,可以是文字、表格、图形等形式。作者在写作过程中使用过的文章、著作名录。 问题二:毕业论文附录怎么写啊 毕业论文包括以下内容: 封面、内容提要与关键词、目录、正文、注释、附录、参考文献。其中“附录”视具体情况安排,其余为必备项目。如果需要,可以在正文前加“引言”,在参考文献后加“后记”。 第二、各项目含义 (1)封面 封面由文头、论文标题、作者、学校名称、专业、年级、指导教师、日期等项内容组成。 (2)内容提要与关键词 内容提要是论文内容的概括性描述,应忠实于原文,字数控制在300字以内。关键词是从论文标题、内容提要或正文中提取的、能表现论文主题的、具有实质意义的词语,通常不超过7恭。 (3)目录 列出论文正文的一二级标题名称及对应页码,附录、参考文献、后记等对应的页码。 (4)正文 正文是论文的主体部分,通常由绪论(引论)、本论、结论三个部分组成。这三部分在行文上可以不明确标示。 (5).注释 对所创造的名词术语的解释或对引文出处的说明,注释采用脚注形式。 (6)附录 附属于正文,对正文起补充说明作用的信息材料,可以是文字、表格、图形等形式。 (7)参考文献 作者在写作过程中使用过的文章、著作名录。 问题三:毕业论文附录怎么写啊 毕业论文包括以下内容: 封面、内容要与关键词、目录、正文、注释、附录、参考文献。其中“附录”视具体情况安排,其余为必备项目。如果需要,可以在正文前加“引言”,在参考文献后加“后记”。 第二、各项目含义 (1)封面 封面由文头、论文标题、作者、学校名称、专业、年级、指导教师、日期等项内容组成。 (2)内容提要与关键词 内容提要是论文内容的概括性描述,应忠实于原文,字数控制在300字以内。关键词是从论文标题、内容提要或正文中提取的、能表现论文主题的、具有实质意义的词语,通常不超过7个。 (3)目录 列出论文正文的一二级标题名称及对应页码,附录、参考文献、后记等对应的页码。 (4)正文 正文是论文的主体部分,通常由绪论(引论)、本论、结论三个部分组成。这三部分在行文上可以不明确标示。 (5).注释 对所创造的名词术语的解释或对引文出处的说明,注释采用脚注形式。 (6)附录 附属于正文,对正文起补充说明作用的信息材料,可以是文字、表格、图形等形式。 (7)参考文献 作者在写作过程中使用过的文章、著作名录。 问题四:毕业论文审批表中题目完成形式那栏填什么 论文审批表不是我们要整的 是系里要给学校上交的时候 综合整理我们的论文然后搐按顺序排列的名称次序表 我们不用有这个 问题五:知网查重 查不查论文最后的附表 知网是全选检测,附录也是检查的。 关于学校查重率、相似率、抄袭率: 各个学校不一样,全文重复率在30%一下(而有的学校,本科是20%)。每章重复率应该没有要求,这个每个学校会出细则的,并且学校也出给出他们查重复率的地方――基本都是中国知网。具体打电话问老师,每界每个学校要求都不一样 相关查重系统名词的具体作用: 查重率的具体概念就是抄袭率,引用率,要用专业软件来测试你的文章与别人论文的相似度,杜绝抄袭。基本就这意思。 一个是自写率 就是自己写的 一个是复写率 就是你抄袭的 还有一个引用率 就是那些被画上引用符号的 是合理的引用别人的资料 修改重复率或抄袭率论文的经验: CNKI是连续的字数相同不能超过13个字,万方是连续的字数相同不能超过15个字。否则就会标注出来,算进重复率。我们学校规定是CNKI检测重复率不能超过30%.两种数据库检测重复率会有结果上的误差,一般CNKI会更严格一点,先在用万方检测一下,然后对照重复段落,句子反复修改一下,最后用CNKI检测一下,就放心了。 在国内就是知网/维普/万方这三大系统,这里面的资源是不断更新的,每一年毕业生的论文除有保密要求外的基本上都是收这三大系统收录作为比对资源库,所以你就可不能大意啊!!国内就是三大系统,知网/维普/万方知网不对个人开放,维普及万方对个人开放万方不检测互联网及英文,知网及维普都检测互联网及英文。现在,所有学校对于硕士、博士毕业论文,必须通过论文检测查重才能算合格过关。本科毕业生,大部分211工程重点大学,采取抽检的方式对本科毕业论文进行检测查重。抄袭或引用率过高,一经检测查重查出超过百分之三十,后果相当严重。相似百分之五十以下,延期毕业,超过百分之五十者,取消学位。辛辛苦苦读个大学,花了好几万,加上几年时间,又面临找工作,学位拿不到多伤心。但是,所有检测系统都是机器,都有内在的检测原理,我们只要了解了其中内在的检测原理、系统算法、规律,通过检测报告反复修改,还是能成功通过检测,轻松毕业的。 大概当今所有的研究生毕业论文都会经过中国知网的“学术不端检测”,即便最后不被盲审。这个系统的初衷其实是很好的,在一定程度上能够对即将踏入中国科研界的硕士研究生们一个警示作用:杜绝抄袭,踏实学问。但正所谓“世界万物,有矛就有盾”的哲学观,中国知网的这个“学术不端检测系统”并不是完善的。原因有二,其一是目前的图文识别技术还不够先进;其二是目前的机器识别还达不到在含义识别上的智能化。求索阁一贯的观点就是“战略上蔑视,战术上重视”和“知己知彼百战百胜”。要破敌,必先知敌;要过学术检测这一关,当然必先了解这一关的玄机。 一、查重原理 1、知网学位论文检测为整篇上传,格式对检测结果可能会造成影响,需要将最终交稿格式提交检测,将影响降到最小,此影响为几十字的小段可能检测不出。对于3万字符以上文字较多的论文是可以忽略的。对比数据库为:中国学术期刊网络出版总库,中国博士学位论文全文数据库/中国优秀硕士学位论文全文数据库,国重要会议论文全文数据库,中国重要报纸全文数据库,中国专利全文数据库,个人比对库,其他比对库。部分书籍不在知网库,检测不到。 2、上传论文后,系统会自动检测该论文的章节信息,如果有自动生成的目录信息,那么系统会将论文按章节分段检测,否则会自动分段检测。 3、有部分同学反映说自己在段落中明明引用或者抄袭了其他文献的段落或句子,为什么没有检测出来,这是正常的。中......>> 问题六:毕业生登记表中的毕业论文或毕业设计题目怎么写? 就把你毕业设计的题目写上去就好了啊 问题七:毕业论文附录必须有么 是的 问题八:毕业论文中表格下面的注要什么字体 8.表格和插图论文中的表格应有表头(含表序和表名),表头置于表格正上方居中位置,且依序连续编号,标注形式为:表1、表2、表3。表内内容应对齐,表内数字、文字连续重复时不可使用“同上”等字样或符号代替。表内有文字时,起行处空一格,回行顶格,文末不用标点符号。表头及表格内的文本字号比正文字号小一号,表头加粗。论文中的图应有图题(含图序和图名),图题位于图正下方居中位置,且应依序连续编号,编号格式为:图1、图2、图3。图题的字号比正文字号小一号,并加粗。 问题九:毕业论文的图表目录具体什么格式,能否给个范例? 目录:采用目录生成器自动生成,并按如下格式排版。 目 录(三号,黑体,居中,段前、段后各空1行) (小四号,宋体,1.5倍行距;一级目录左对齐,二级目录缩进1个字符,三级目录缩进2个字符。)
论文你可以去知网看看相关资料
难啊,数据库完整性连微软自己也没搞明白
数据库完整性(Database Integrity)是指数据库中数据的正确性和相容性。数据库完整性由各种各样的完整性约束来保证,因此可以说数据库完整性设计就是数据库完整性约束的设计。数据库完整性约束可以通过DBMS或应用程序来实现,基于DBMS的完整性约束作为模式的一部分存入数据库中。通过DBMS实现的数据库完整性按照数据库设计步骤进行设计,而由应用软件实现的数据库完整性则纳入应用软件设计(本文主要讨论前者)。数据库完整性对于数据库应用系统非常关键,其作用主要体现在以下几个方面: 1.数据库完整性约束能够防止合法用户使用数据库时向数据库中添加不合语义的数据。 2.利用基于DBMS的完整性控制机制来实现业务规则,易于定义,容易理解,而且可以降低应用程序的复杂性,提高应用程序的运行效率。同时,基于DBMS的完整性控制机制是集中管理的,因此比应用程序更容易实现数据库的完整性。 3.合理的数据库完整性设计,能够同时兼顾数据库的完整性和系统的效能。比如装载大量数据时,只要在装载之前临时使基于DBMS的数据库完整性约束失效,此后再使其生效,就能保证既不影响数据装载的效率又能保证数据库的完整性。 4.在应用软件的功能测试中,完善的数据库完整性有助于尽早发现应用软件的错误。 数据库完整性约束可分为6类:列级静态约束、元组级静态约束、关系级静态约束、列级动态约束、元组级动态约束、关系级动态约束。动态约束通常由应用软件来实现。不同DBMS支持的数据库完整性基本相同,Oracle支持的基于DBMS的完整性约束如下表所示: 数据库完整性设计示例 一个好的数据库完整性设计首先需要在需求分析阶段确定要通过数据库完整性约束实现的业务规则,然后在充分了解特定DBMS提供的完整性控制机制的基础上,依据整个系统的体系结构和性能要求,遵照数据库设计方法和应用软件设计方法,合理选择每个业务规则的实现方式;最后,认真测试,排除隐含的约束冲突和性能问题。基于DBMS的数据库完整性设计大体分为以下几个阶段: 1.需求分析阶段 经过系统分析员、数据库分析员、用户的共同努力,确定系统模型中应该包含的对象,如人事及工资管理系统中的部门、员工、经理等,以及各种业务规则。 在完成寻找业务规则的工作之后,确定要作为数据库完整性的业务规则,并对业务规则进行分类。其中作为数据库模式一部分的完整性设计按下面的过程进行。而由应用软件来实现的数据库完整性设计将按照软件工程的方法进行。 2.概念结构设计阶段 概念结构设计阶段是将依据需求分析的结果转换成一个独立于具体DBMS的概念模型,即实体关系图(ERD)。在概念结构设计阶段就要开始数据库完整性设计的实质阶段,因为此阶段的实体关系将在逻辑结构设计阶段转化为实体完整性约束和参照完整性约束,到逻辑结构设计阶段将完成设计的主要工作。 3.逻辑结构设计阶段 此阶段就是将概念结构转换为某个DBMS所支持的数据模型,并对其进行优化,包括对关系模型的规范化。此时,依据DBMS提供的完整性约束机制,对尚未加入逻辑结构中的完整性约束列表,逐条选择合适的方式加以实现。 在逻辑结构设计阶段结束时,作为数据库模式一部分的完整性设计也就基本完成了。每种业务规则都可能有好几种实现方式,应该选择对数据库性能影响最小的一种,有时需通过实际测试来决定。 数据库完整性设计原则 在实施数据库完整性设计的时候,有一些基本的原则需要把握: 1.根据数据库完整性约束的类型确定其实现的系统层次和方式,并提前考虑对系统性能的影响。一般情况下,静态约束应尽量包含在数据库模式中,而动态约束由应用程序实现。 2.实体完整性约束、参照完整性约束是关系数据库最重要的完整性约束,在不影响系统关键性能的前提下需尽量应用。用一定的时间和空间来换取系统的易用性是值得的。 3.要慎用目前主流DBMS都支持的触发器功能,一方面由于触发器的性能开销较大,另一方面,触发器的多级触发不好控制,容易发生错误,非用不可时,最好使用Before型语句级触发器。 4.在需求分析阶段就必须制定完整性约束的命名规范,尽量使用有意义的英文单词、缩写词、表名、列名及下划线等组合,使其易于识别和记忆,如:CKC_EMP_REAL_INCOME_EMPLOYEE、PK_EMPLOYEE、CKT_EMPLOYEE。如果使用CASE工具,一般有缺省的规则,可在此基础上修改使用。 5.要根据业务规则对数据库完整性进行细致的测试,以尽早排除隐含的完整性约束间的冲突和对性能的影响。 6.要有专职的数据库设计小组,自始至终负责数据库的分析、设计、测试、实施及早期维护。数据库设计人员不仅负责基于DBMS的数据库完整性约束的设计实现,还要负责对应用软件实现的数据库完整性约束进行审核。 7.应采用合适的CASE工具来降低数据库设计各阶段的工作量。好的CASE工具能够支持整个数据库的生命周期,这将使数据库设计人员的工作效率得到很大提高,同时也容易与用户沟通。你可以围绕相关内容发表自己的看法