数学是知识的工具,亦是 其它 知识工具的泉源。所有研究顺序和度量的科学均和数学有关。下文是我为大家搜集整理的关于数学小论文3000字的内容,欢迎大家阅读参考! 数学小论文3000字篇1 浅析小学数学中创设有效情境教学 新课程标准中明确规定了情境教学法在小学数学中的地位,倡导教师通过创建情境,引导学生展开学习。情境教学法的优势在于能够将抽象、难懂的数学知识更加直观地展现出来,符合小学阶段学生的学习特点以及因材施教的原则,针对小学数学教学中情境教学法的应用进行几点研究。 生活情境小学数学 高效课堂 情境教学法是倾向于学生的 教学 方法 ,而不是单纯地追求教学效果,为何要创建生活情境?它是以小学生实际能力为基础,在它们所能理解消化知识的最大范围内,运用更加便于学生理解的方式,来进行教学,从这一点可以看出生活情境完全符合因材施教,以生为本的原则,是非常值得在小学数学教学中应用和推广的。 一、小学数学课堂中情境教学法的优势 数学学科的特点是逻辑性强,要求学生具有一定的推理能力、分析能力以及理论联系实际的能力。小学阶段的数学,虽然在难度上有所控制,但是数学学科原本的性质并没有改变,它依旧具有抽象性、逻辑性以及实用性的特点,小学课本中一些图形、定义,教师如果单抽说教,学生很难理解和掌握。为了达到教有所成的目的,教师需要借助一定的教学方法,来简化这些数学知识,使学生能够更加轻松、快速地理解和掌握,情境教学法恰恰能够满足小学数学的有需求,借助情境教学法,能够将抽象知识点直观化的呈现出来,激发学生的学习欲望。教师通过构建一个个生动的情境,为学生营造更加生动、活泼的学习气氛,鼓励学生参与教学活动、学生的学习兴趣和热情被调动起来,教师的教学效率必然会得到提升。举例说明,进行“中心对称图形”这部分知识的讲解,采用传统的教学工具以及单一的口头讲述,学生很难理解其中的内涵和意义,而采用创建情境教学法,将学生带入到一个直观化的思维空间中,并通过多媒体技术将概念、关键知识点制作成动态的课件,学生很快就会投入学习状态,学习成效显著,教学效率得以提升。 二、合理创设情境,提升小学数学课堂教学效率 1.结合学生能力特点,创建教学情境 小学阶段,学生的学习能力不完善,学生第一次系统化的接触数学知识,学习起来难免会有些吃力,教师在教学情境创建的时候,应该尽量使用简单易懂、富有趣味性的语言,确保学生能够了解教师说什么,这是开展教学的第一步,在这个基础之上构建情境,才能够真正发挥情境教学的优势和作用。 比如,进行“分数的基本性质”这个知识点教学的时候,教师可以创建这样的情境:白兔子妈妈将一个苹果分成4块,准备分给白兔3兄弟吃,她将1块苹果分给了大哥,而二哥却嚷着要吃2块,妈妈没有办法就切了第2个苹果,分成了8块,给了二哥2块,可是这个时候,三弟又不开心了,他想吃3块,猴妈妈就把第3个苹果平均分成12块,给了三弟3块。那么问题来了,白兔三兄弟,谁分到的苹果最多呢?这个情境不仅富有趣味性,容易理解,同时也蕴含了把“单位1”平均分成几份,取出不同的分数,但是却表示相同的大小这个含义。 2.从学生兴趣出发,创建教学情境 首先教师要明确兴趣对于学习的重要性。激趣是学生主动学习数学的关键,激趣过程中运用运用学生熟悉并且感兴趣的话题创建情境,满足学生对于学习的各种需求,这样才能够达到提升教学效率与质量的目的,同时也培养了学生主动学习的习惯,激发了他们的学习欲望。 比如,在进行“用乘法口诀进行表内乘除法的口算”这个知识点的时候,教师可以将学生最喜欢的动画形象“熊大、熊儿”编成 故事 :有20个桃子,5个小动物,这个时候熊大和熊儿可为难了,它们要怎么分,才能够让每个小动物都获得一样多的桃子呢?这个时候学生的兴趣高涨,都会纷纷举手回答,这个导入成功的激发了学生的学习欲望和好奇心,也活跃了课堂气氛,在这样环境下,学生的学习效果会更好。教师在创建教学情境的时候,不能拘泥于一个方法,或者一种形式,根据不同的教学内容和目标,故事可以随时进行改编,即便是在课堂上,教师也可以灵活改变情境的设计,目的就是更好的带动学生学习,帮助学生更加轻松的领会数学知识和魅力。 3.结合学生心理特点,创建教学情境 创建教学情境,要注意结合小学生的心理发育特点。这个阶段游戏和动画是最能够吸引学生的手段,教师利用这一点进行情境创建,既能够寓教于乐,又做到了因材施教。在情境教学基础上,鼓励学会独立思考,强化学生数学应用意识,提升 逻辑思维 能力。 比如,“克与千克”知识点的讲解,教师可以采用小组合作做游戏的方式,游戏的规则是“比比谁最快、比比谁最准”。教师先将学会分成若干小组,每个小组都发一包黄豆,一瓶矿泉水,一本新华字典。然后先让这些小组自行估算这些物品的重量,然后将其填入表格中。然后教师再带领大家用称来测量,看看哪个小组估算最准确,并给予这个小组的成员一定的奖励,通过这样的游戏方法,锻炼学生的观察、估算以及验证意识。 三、结束语 教师应该基于教材基础,结合学生的自身的学习特点、兴趣等各方面因素,合理创建教学情境,丰富课堂教学内容,增加课堂教学趣味性。通过大量的实践教学分析发现,在小学数学教学中引入情境教学法,不仅有效提升了学生学习数学的兴趣,也培养了学生独立思维的能力,提升了小学数学课堂教学效率。 数学小论文3000字篇2 浅析中学数学的兴趣教学 中学数学在难度上和内容上都比小学阶段的数学要深广,因此学生在学习的时候经常出现畏难情绪,一开始产生学习困难而没有得到正确的解决,因此便一步步丧失对自己的信心。例如不少学生觉得自己学不好数学就是因为自己不够聪明,从而丧失学习的兴趣,上课心不在焉,很难集中注意力,这都需要教师给予高度的重视。如何有效解决这些负面现象的影响是教师应该着手的方面之一,我认为,要想真正使学生主动喜欢学习数学就必须要有兴趣的支撑,中学阶段学生自我的意识和约束力相对较弱,学习目的性不强,因此更加需要兴趣的辅助作用,有了兴趣之后,学生就会积极主动参与到学习活动中来,认真学习课本内容甚至还会对于一些拓展思考题有兴趣,自己进行研究探求。以下我结合自身的教学 经验 针对中学数学的兴趣教学谈几点看法。 一、建立和谐的师生关系 帮助学生培养兴趣,教师必须关注师生关系的建构。在中学阶段教师和学生相处的时间较长,因此教师自身对于学生的态度会对学生产生较大影响。尤其是中学时期,学生的个性和 兴趣 爱好 、人格、情感、意志等都在发展的过程中,教师的行为和语言都会对学生产生持久的影响,教师可以充分利用这一点,通过自身对学生的数学学习兴趣产生有效的引导作用。 第一,数学教师无论是否担任班主任都应该对学生十分用心。关注学生整体的发展,不仅仅是要求学生一定要把数学学好,占有学生课下的时间,实践证明数学教师如果要求过分苛刻会令学生产生逆反心理。例如,在每个阶段性考试进行完之后,询问学生整体的学习情况,并且及时给出建设性意见。学生都希望能够得到老师的关注和鼓励,这对于学生兴趣的建立有莫大的好处,良好的师生关系能够推动学生兴趣的培养进度。 第二,教师要关注学生非智力因素的发展。作为数学教师仍然有义务帮助学生建立积极乐观的价值观,教师应该以正确的价值引导,使学生对数学形成正确的认识,在心理上真正接受这门学科。例如,教师在课上讲到一些数学定理的时候,教师可以引导学生对数学家进行学习了解,继承和发扬数学家的精神。这需要教师明确自身的教学任务和作为 教育 者的责任,全面推动学生品质和能力的发展,当学生感到教师的用心和关注之后自然会产生亲切感,这无疑会对课堂教学效果和师生和谐关系的构建起到推动作用。 总之,师生关系的建立需要教师充分调动一切积极因素,帮助学生建立对教师的正确态度和认识,促进他们对数学学科的关注和学习,这是兴趣建立的重要步骤。 二、注重学生在教学中的主体性 主体性是建立兴趣的重要支撑,有了主体性,学生就会自觉产生对数学学习的认识,并且积极进行知识的学习,甚至会主动发现问题、解决问题,进行预习和主动复习等。中学阶段的数学教学内容多且课时紧,教师在课堂上都是紧赶慢赶,一节课下来以自己为中心,灌输式的学习方式严重压抑学生此阶段继续发展的主体性,导致学生无法获得相应的自由空间来发展自己,从而致使兴趣的失落。因此,教师应该充分尊重学生的主体性,在教学的过程中帮助学生建构主体性特征和能力,从而推动兴趣的发展。那么如何在教学形式和内容方面全方位建构学生的主体性呢?我认为从以下几点出发效果明显。 第一,在课堂教学中,教师应该减小功利性,不要总是告诉学生什么考什么不考,要让学生真正对于数学形成自己的认知感受,而不是为了应付考试才学数学。那么,教师就应该加大拓展思考题的训练和学习,打开学生的思维,形成开放性思维模式和创造性思维能力,这是建立主体性的主要内容之一。 第二,教师要采取启发式的教学方法,在课堂授课的过程中,很多教师发现虽然让学生主动预习,但是由于中学阶段学业压力较大,学生没有养成习惯进行预习,也没有时间和精力去提前预习准备,而这一过程实际上是很重要的,尤其对于学生主体性的发展很关键。因此,教师应该提前为每个阶段的学生设置合适的预习目标,并且给学生充分的时间进行预习讲解,学生之间相互检查和学习可以增强他们自我表现的意识,在自己预习的过程中,逐步养成积极主动的学习习惯,继而对今后的发展奠定良好的基础。 总之,主体性的建立是培养学生学习兴趣的必要过程,教师应该结合该阶段学生的发展特征进行主体性的建构和教学过程中的设置,充分尊重学生的发展需求和方向,满足其自我表达和个性发展的欲求,从而产生良好的教学影响。 三、加强合作 合作是开展兴趣教学的推动力和组成部分之一。合作教学和合作学习本身作为一种教学方法就是中学数学教育的重要内容,但是合作又可以作为兴趣教学的重要组成部分而开展,提高学生之间的互帮互助,有效帮助学困生的提升和困难克服,同时帮助学生在自由轻松的学习氛围中感受数学学习的乐趣,从而建立持久的兴趣。 第一,合作是学生之间的合作,教师要对学生进行有效的分组,并不是随机进行分组,小组的构成合理可以提高学生的参与兴趣。例如,有的小组构成差距过大,学困生产生自卑心理,几乎很少参与到合作中来,只会产生负面作用,因此教师要根据学生的性格发展和学习水平进行合理划分。 第二,合作不仅仅是学生之间的合作,也需要教师的参与,学生自由合作讨论可能会降低效率,学生自控力差,很难高效完成学习任务,因此教师要充分发挥引导和监督的作用,帮助学生快速完成任务,从而建立自信,在自豪感的形成过程中,学生逐步产生对数学的喜爱之情。 第三,教师也要充分利用多媒体来激发学生的兴趣,多媒体是符合时代发展的教学手段,学生对于电脑和高科技充满好奇和兴趣,教师应该及时学习最新教学技术,应用到数学课堂教学中来,作为激发因素帮助学生建立学习兴趣。总之,开展兴趣教学形式多样,需要广大教师群体不断进行探索和完善。 通过以上论述,我发现中学阶段数学的兴趣教学必须以学生的发展特征和需求为立足点,充分发挥教师的能动作用,围绕建立主体性为中心,关注学生全方面的发展情况和趋势,从而实现兴趣的有效建立。 猜你喜欢: 1. 数学文化论文3000字 2. 初中数学论文3000字 3. 数学论文范文3000字 4. 数学文化的论文范文参考 5. 物理学术论文3000字
数学文化 人类共同的精神财富——数学,数学是人类智慧的结晶,它表达了人类思维中生动活泼的意念,表达了人类对客观世界深入细致的思考,以及人类追求完美和谐的愿望。 早在古希腊时代,哲学家柏拉图把数学看作是文化的最高理想。他说:“几何学可以将灵魂引向真理,并且创造出理性精神”。他认为学习数学不只是为了求真,也是为了求善、求美。他认为人通过研究几何同时也不断地塑造自己,使自己成为更高尚、更丰富、也更有力量的人。既人们在认识宇宙同时,也认识人类自己。在这个认识过程中,数学起着独特的作用。现在它几乎是任何科学都不可缺少的,它是现代科学技术的语言和工具,它的成果为众多学科所共识,积极推动着这些学科理论的建立和深化,它的思维方式和方法渗透到各学科,为这些学科的发展增添了活力。数学追求一种完全确定、完全可靠的知识。数学的对象必须是明确无误的概念,作为以推理为出发点的命题必须明确、清晰,推理过程的每一步骤都必须明确可靠、容不得半点的含糊,整个认识过程必须前后一贯而不容许自相矛盾。当然,任何一个法律文件、一篇有说服力的学术文章也必须概念清晰、逻辑严谨,但是数学对知识可靠性的要求更高、更明确。正因为如此,数学方法成为人们一种典范的认识方法,帮助人们正确地、客观地认识宇宙和人类自己。几千年来,人类的思想发生了巨大变化,人类的知识在不断地增长。而在由历史积累而形成的人类知识文化宝藏中,数学思想和方法却一直延续发展了几千年,表现出了强大的生命力。数学不断地追求最简单、最深层次这是认识的根本。用简洁的数学公式来表示复杂的事物、理解变化的客观规律。在科学技术领域内,人们现在己经能习惯地用非常简洁的数学公式来表示牛顿定律,以此来描述物体多种多样的运动,解释各种现象,同时借助于数学探求事物的机理,预测事物未来的发展变化,探求超出人类感官所及的宇宙的根本。人们借助计算机通过建立数学模型进行数学计算,在数学思想方法的启发和帮助下,解决各式各样的问题。人们在认识客观世界的探索中越来越相信,世界的合理性可以用数学来描述。数学不仅研究客观世界的数量关系和空间形式,而且也研究它自己。数学史中出现过的一个又一个悖论,记录了数学在研究自身的过程中所经历的一次又一次的危机,危机似乎动摇了数学的基础,而数学正是在不断严格地审视自己、不断地克服自身一个又一个矛盾的过程中夯实了自己的基础,使之变得更为扎实、牢靠。一些公理化体系就是数学对自己的基础出现多次“危机”后深思熟虑的结果。在探讨数学自身的过程中,也形成了像数理逻辑这样的数学新分支,推动了数学自身的发展。数学发展的历史正是体现了人类追求真理而不断探索的精神。数学的基础是逻辑和直觉、分析和推理、共性和个性,这种思维方式是数学外在的表现。而实质上也和其他文化领域一样,其自身的发展受到不同的时代精神、不同的思维方式的影响。反过来它也影响着人的精神和思维,影响一个民族文化进步。解析几何和微积分的创立,使变量成为数学的研究对象。数学思想、内容、方法上的革新,使数学的面貌焕然一新。而数学研究运动、变化的思想和方法,以及数学所取得的进展,对打破科学研究中形而上学的枷锁,把辩证法引入到科学的思维中,起到了推波助澜的作用。今天,恐怕没有一个有文化的人不懂得“增长速度”,“变化率”的含义,人们己经习惯从运动和变化的观点来研究事物。数学促进了几乎所有学科的发展,直接或间接地影响了每一个有文化的人的思维。影响人类的精神生活,提高和丰富了人类的整个精神文明水平。(2)数学对人的文化素养影响面对飞跃发展的科学技术,人必须具备必要的数学知识和技能,以训练心智、陶冶情操,更好的理解周围的世界,从而更客观的认识人类社会。例如“今年前六个月的居民存款比去年同期增速下降1个百分点。”“今天降水概率是50%”。“信息高速公路”、“数字信息”等他们的含义都是什么?数学对人的文化素质的影响,至少表现在如下几个方面:有利于培养严谨的思维方式。尽管大多数人将来不会成为数学家,但是条理性、逻辑性作为一种文化素质对人们将来从事任何一种职业都是需要的。同时,数学思维能力的培养对人的智力发展起着关键的作用。如圆是一个完美的图形,可用方程来表示,我们可以从这个方程中找出圆的所有美妙的性质,进一步还可以用方程来表示球,那么我们为什么不考虑下列方程以及。仅仅靠类比就使我们从三维空间进入了高维空间,从有形进入了无形,从现实进入了虚拟世界。有利于培养人的创新精神。数学是人类理性文明高度发展的结晶,又是人类创新的锐利工具。无论数学知识的应用或是数学知识的发展,都需要研究新问题,根据实际情况做出恰如其分的分析,并由此找到解决问题的途径。这就体现出人的巨大创造力。有利于培养科学的审美观。人对美的理解各不相同,但总之美和完善、完美、和谐、秩序……等相联系。而数学本身体现出的简洁美(抽象美、符号美、统一美等)、和谐美(对称美、形式美等)、奇异一,数学文化的存在价值在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(White)的数学文化论力图把数学回归到文化层面。克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。二,数学:一种思想方法数学是研究量的科学。它研究客观对象量的变化、关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法。数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一、内容与形式的统一的最有效的表现方式。这些表现方式主要有:提供数量分析和计算工具;提供推理工具;建立数学模型。任何一种数学方法的具体运用,首先必须将研究对象数量化,进行数量分析、测量和计算。毛泽东同志曾指出:“对情况和问题一定要注意到它们的数量方面,要有基本的数量的分析。任何质量都表现为一定的数量,没有数量也就没有质量。”(注:《毛泽东选集》第4卷第1443页,人民出版社1990年版。)例如太阳系第八大行星——海王星的发现,就是由亚当斯(J. C. Adams)和勒维烈(U. J. Leverrier)运用万有引力定律,通过复杂的数量分析和计算,在尚未观察到海王星的情况下推理并预见其存在的。数学作为推理工具的作用是巨大的。特别是对由于技术条件限制暂时难以观测的感性经验以外的客观世界,推理更有其独到的功效,例如正电子的预言,就是由英国理论物理学家狄拉克根据逻辑推理而得出的。后来由宇宙射线观测实验证实了这一论断。值得指出的是,数学模型方法作为对某种事物或现象中所包含的数量关系和空间形式所进行的数学概括、描述和抽象的基本方法,已经成为应用数学最本质的思想方法之一。模型这一概念在数学上已变得如此重要,以致于许多数学家都把数学看成是“关于模型的科学”。怀特海(A. N. Whitehead )认为:“模式具有重要性的看法和文明一样古老……社会组织的结合力也依赖于行为模式的保持;文明的进步也侥幸地依赖于这些行为模式的变更。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)并进一步指出:“数学对于理解模式和分析模式之间的关系,是最强有力的技术。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)物理学家博尔茨曼(L.E. Boltzmann)认为:“模型,无论是物理的还是数学的,无论是几何的还是统计的,已经成为科学以思维能力理解客体和用语言描述客体的工具。”这一观点目前不仅流行于自然科学界,还遍布于社会科学界。为自然界和人类社会的各种现象或事物建立模型,是把握并预测自然界与人类社会变化与发展规律的必然趋势。在欧洲,在人文科学和社会科学中称为结构主义的运动,雄辩地论证了所有各种范围的人类行为与意识都有形式的数学结构为基础。在美国,社会科学自夸有更坚实、定量的东西,这通常也是用数学模型来表示的。从模型的观点看,数学已经突破了量的确定性这一较狭义的范畴而获得了更广泛的意义。既然数学的研究对象已经不再局限于“量”而扩展为更广义的“模型”,那么,数学概念的本质也在发生嬗变。数学正成为一个动态的、变化的、泛化了的概念体系,其涵盖的科学对象也必然随之增加。数学在社会科学中的模型建构大都以结构分析为目标,即在高度简化与理想化的框架中去理解社会行为机制。在某些框架下,利用科学去预测与控制一个社会系统的一切变量的更高层次的目标已经实现。数学的模型方法把数学的思想方法功能转化成科学研究的实际力量。数学中有一个分支叫应用数学,主要就是研究如何从实际问题中提炼数学模型。这是一个对研究对象进行具体分析、科学抽象和做出判断与预见的过程。如对客观事物的必然现象,人们用确定性模型去描述,而对或然现象,人们建立了随机性模型。模糊数学被用于刻画弗晰现象。而各种突变现象,如地震、洪灾等,则可以由突变理论给出数学模型。三,数学:理性的艺术通常人们认为,艺术与数学是人类所创造的风格与本质都迥然不同的两类文化产品。两者一个处于高度理性化的巅峰,另一个居于情感世界的中心;一个是科学(自然科学)的典范,另一个是美学构筑的杰作。然而,在种种表面无关甚至完全不同的现象背后,隐匿着艺术与数学极其丰富的普遍意义。数学与艺术确实有许多相通和共同之处,例如数学和艺术,特别是音乐中的五线谱,绘画中的线条结构等,都是用抽象的符号语言来表达内容。难怪有人说,数学是理性的音乐,音乐是感性的数学。事实上,由于数学(特别是现代数学)的研究对象在很大程度上可以被看成“思维的自由想象和创造”,因此,美学的因素在数学的研究中占有特别重要的地位,以致在一定程度上数学可被看成一种艺术。对此,我们还可做出如下进一步的分析。艺术与数学都是描绘世界图式的有力工具。艺术与数学作为人类文明发展的产物,是人类认识世界的一种有力手段。在艺术创造与数学创造中凝聚着人类美好的理想和实现这种理想的孜孜追求。尽管艺术家与数学家使用着不同的工具,有着不同的方式,但他们工作的基本的目的都是为了描绘一幅尽可能简化的“世界图式”。艺术实践与数学活动的动机、过程、方法与结果,都是在其自身价值的弘扬中,不断地实现着对世界图式的有力刻画。这种价值就是在充分、完全地理解现实世界的基础上,审美地掌握世界。艺术与数学都是通用的理想化的世界语言。艺术与数学在描绘世界图式的过程中,还同时发展并完善着自身的表现形式,这种表现形式最基本的载体便是艺术与数学各自独特的语言体系。其共同特征有:(1)跨文化性。艺术与数学所表达的是一种带有普遍意义的人类共同的心声,因而它们可以超越时间和地域界限,实现不同文化群体之间的广泛传播和交流。(2)整体性。艺术语言的整体性来自于其艺术表现的普遍性和广泛性;数学语言的整体性来自于数学统一的符号体系、各个分支之间的有力联系、共同的逻辑规则和约定俗成的阐述方式。(3 )简约性。它首先表现为很高的抽象程度,其次是凝冻与浓缩。(4 )象征性。艺术与数学语言各自的象征性可以诱发某种强烈的情感体验,唤起某种美的感受,而意义则在于把注意力引向思维,升迁为理念,成为表现人类内心意图的方式。(5)形式化。在艺术与数学各自进行的代码与信息的意义交换中,其共同的特征就是达到了实体与形式的分隔。这样提炼出来的形式可以进行形式化处理。艺术与数学具有普适的精神价值。有人把精神价值划分为知识价值、道德价值和审美价值三种。艺术与数学同时具备这三种价值,这一事实赋予了艺术与数学精神价值以普适性。概括起来,其共同的特点有:(1)自律性。数学价值的自律性是与数学价值的客观性相联系的;艺术的价值也是不能由民主选举和个人好恶来衡量的。艺术与数学的价值基本上是在自身框架内被鉴别、鉴赏和评价的。(2)超越性。它们可以超越时空,显示出永恒。在艺术与数学的价值超越过程中,现实被扩张、被延伸。人被重新塑造,赋予理想。艺术与数学的超越性还表现为超前的价值。(3)非功利性。艺术与数学的非功利性是其价值判断有别于其他种类文化与科学的显著特征之一。(4)多样化、物化与泛化。在现代技术与商业化的冲击下,艺术与数学的价值也开始发生嬗变,出现了各自价值在许多领域内的散射、渗透、应用、交叉等现象。在人类思维的全谱系中,艺术思维和数学思维的主要特征决定了其主导思维各居于谱系的两端。但两种思维又有很多交叉、重叠和复合。特别是真正的艺术品和数学创造,一般都不是某种单一思维形式的产物,而是多种思维形式综合作用的结果。人类思维之翼在艺术思维与数学思维形成的巨大张力之间展开了无穷的翱翔,并在人类思维的自然延拓和形式构造中被编织得浑然一体,呈现出整体多样性的统一。人类思维谱系不是线性的,而是主体的、网络式的、多层多维的复合体。当我们想要探索人类思维的奥秘时,艺术思维与数学思维能够提供最典型的范本。其中能够找到包括人类原始思维直至人工智能这样高级思维在内的全部思维素材四,数学韵味——数学的美说到数学美,人们自然会联想到令人心驰神往的优美而和谐的黄金分割;雄伟壮丽的科学宫殿的欧几里得平面几何;数学皇冠上的明珠“哥德巴赫猜想”……数学美可以分为形式美和内在美。数学中的公式、定理、图形等所呈现出来的简单、整齐以及对称的美是形式美的体现。数学中有字符美和构图美还有对称美,数学中的对称美反映的是自然界的和谐性,在几何形体中,最典型的就是轴对称图形。数学中的简洁美,数学具有形式简洁、有序、规整和高度统一的特点,许多纷繁复杂的现象,可以归纳为简单的数学公式。数学的内在美有数学的和谐美,数量的和谐,空间的协调是构成数学美的重要因素。数学中的严谨美,严谨美是数学独特的内在美,我们通常用“滴水不漏”来形容数学。它表现在数学推理的严密,数学定义准确揭示概念的本质属性,数学结构系统的协调完备等等。总之,数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的,数学是一个五彩缤纷的美的世界。美(有限美、神秘美等)会给学生以美的熏陶。数学所揭示的规律会加深学生对美的理解,而学习数学的过程也会使学生体验数学作为人类智慧的结晶所洋溢出的精神美。数学精神是一种理性精神,对完善人的精神品格有着不可估量的作用,主要体现在严谨求实、理智自率、直着求真、开拓创新等方面,通过解题实践既巩固了知识,培养了能力,同时也发展了坚持公正、终于科学、一丝不苟、不懈探索的优良品质,这都是造就人不断追求进取的品质所必备的前提。
1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
小学数学教学理念和教学方式的转变论文
数学是研究数量、结构、变化、空间以及信息等概念的一门学科。下面是我整理的小学数学教学理念和教学方式的转变论文,希望能够帮助到大家。
一、在生活情境中“找”数学
所谓情境,就是把那些不知与已知、浅知与深知之类的需要,学生解决的矛盾问题带到一定情境中去。创设生活情境,能激发学生探索规律的兴趣,新课程标准中很重要的改革是注重学生的情感与态度的培养。有效的课堂教学可以激发学习的兴趣,营造良好的学习情感,学生能积极主动、全身心地投入到学习中。数学来源于生活,生活中处处有数学,数学知识与教学活动离不开学生的生活实践。引导学生在生活实例中发现数学问题,构建数学模型都是生活问题数学化的具体表现。给予学生充分的自由空间,让学生用自己喜欢的方式大胆地探索、创新、寻求解决问题的方式方法,能增强学生的合作意识,学生在不知不觉中主动参与到数学活动中去,在互动学习中培养了学生的问题意识和能力,体验着学习的成功与乐趣。
二、动脑、动口、动手中“思”数学
在新教材的使用中,需要教师转变教学思想,摆正自己的位置,还学生主人的地位;充分发扬教学民主,处理好师生间主导与主体的关系,多给学生创造动脑、动口、动手的时空。在《三角形的认识》一课的教学中,我先让大家看看自己脖子上的红领巾是什么形状?(三角形)日常生活中还有哪些物体的形状是三角形?是的,生活中形状是三角形的物体有很多,除了大家刚才说到的,还有三角小旗、马路上的标志牌等。数学来源于生活。联系学生身边的实物认识三角形,动脑、动口说三角形,让学生感受到数学就在身边,生活中处处有数学,并激发他们热爱生活的情感。再让学生用准备好的几根小棒摆成一个三角形,动手画三角形,同桌合作拉一拉自己准备的学具长方形框架,看看会不会有变化。让学生在摆一摆、画一画的过程中,获得对三角形的感性认识,再通过议一议将感性认识上升到理性认识,进而在老师的引导下主动地探究、思考,使学生认识到数学的价值。
三、在不同的玩中“学”数学
《数学课程标准》指出:教学中,要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境。学生对感兴趣的事物必然会想方设法去认识它,研究它,占有它,从而获得与此有关的知识与技能。教师要抓住低年级学生好玩的心理,设计不同层次的“玩”,由开始的跟着老师玩,到最后的合作玩,自己玩,让他们在玩中不停地思考、探索。
四、游戏中“悟”数学
在低年级数学教学中,把游戏引入课堂,可以把教学内容寓于游戏之中,变静态的课堂教学为动态的教学活动,进而使学生在玩中学,在玩中获取知识。儿童注意的特点主要是无意注意,有意注意不可能持久。因此,学生学习一段时间后,注意力就容易分散,精神不集中,思维不活跃。这时侯,用游戏的形式来完成剩下的教学任务,会收到事半功倍的效果。在游戏中“悟”数学,可使学生体会到数学与自然、数学与身边世界的联系,这样的教学方式,适合儿童的心理特点,遵循儿童的学习规律,取得了较好的教学效果。
五、实际生活中“感受”数学
数学来源于生活,生活中处处有数学。对小学生而言,在生活中形成的常识、经验是他们学习数学的基础。在教学中,我努力拓展学生认识数学、发现数学的空间,重视学生对数学经验的积累,这种做法在课堂教学中收到了事半功倍的效果。随着新课程教学实验的不断深入,通过家庭、学校的有效沟通和一系列的实验作业,既培养了学生学习数学的兴趣,又激发了学生热爱数学的情感,让学生在生活中感受数学,在不知不觉中学习数学。
六、开放的课堂氛围中“做”数学
活泼好动是孩子的天性,课堂教学应顺应孩子的天性,依据孩子的爱好和兴趣设计教学,在学生喜爱的找朋友、送信、小鱼吐泡泡、送小动物回家等游戏中展示活动内容,让他们在这样的学习氛围中,激发学习的积极性,使情感得以交流,为学生提供更多表现自己和充分交流的机会,使他们有更多的自由支配的时间和空间。在活动中相互启发,相互交流,相互影响,共同寻找、探究、体验,掌握数学的知识、思想与方法,充分感受数学的魅力和乐趣。
社会在不断进步,旧的教育理念已经不适应社会的需求,要求我们的教育理念要进一步更新。《数学课程标准》是新形势下数学教学的.行为目标,对教师的课堂教学提出了新的要求。大部分教师正处在从原有的教学理念转变到新的教学理念的一个过渡时期。我们要真正领会《数学课程标准》的精髓,既要突出新课标下的先进教学理念,又要发展传统教学中优秀的教学思想方法。新课改理念下的小学数学课堂教学,要启发学生学习数学的兴趣,培养学生的情感,使学生建立学好数学的自信心,给学生充分提供动手操作、自主探索和合作交流的机会,学生还可以用自己的方法学习数学,使学生在获取数学知识的同时,思维能力、情感态度和价值观等多方面也能有所进步。实践结果证明,课堂教学的变化,学生思维活跃,敢于质疑,愿意与同学、老师交流,勇于发表不同见解,乐于表现自己。下面就自己对数学课堂教学理念和教学方式转变浅谈一点自己的做法。
(一)建构新型学生观。
学生观是教师教学理念的具体表现,也是教师教学行为的出发点。新课程体系充分肯定学生的内在价值,将个性发展作为课程的根本目标。要实现这一理念,首先要求教师改变陈旧的学生观,将学习的主动权交给学生;其次,要着力改变学生由来已久的自我认识和学习方法,通过自身教学方式的改变去唤醒学生的主体意识,把学生从被动的世界中解放出来,使学生真正意识到自己的学习的主体,要自己思索、自己动手、独立学习。具体说,教师应赋予全体学生比传统教学中多得多的参与学习的机会和权利,用动态的、发展的观点评价学生的学习,重视学生的参与程度和学习体验,善待学生生命过程中的各种表现,给学生创造进行独立思考、辨析的空间,主动进行知识的建构。
(二)建立新型师生关系。
在新课程实施过程中,师生之间的交往应是一种对话式的,平等式的“我——你”关系,在这种关系下,师生双方以知识作为对话的文本,尊重彼此视界的差异,敞开精神,相互接纳,无拘无束的自由交流,最终实现视界的融合及知识的生成。对话式教学要求师生双方都作为有思想、有感情、有个性的丰富的人彼此真诚交流,每一方都把另一方看作可与之对话的“你”,双方都作为完整的人在完整的精神世界深处投入到对话中,互相接纳、敞开、理解。即教师不是作为权威将预先组织好的知识体系传授给学生,而是与学生共同探究、创生知识;学生也不再作为知识的容器被动听从教师的指令,而是带着各自的兴趣、需要和观点直接通过与教师的对话而与知识对话,并从中获得生活的意义。对话双方通过彼此心灵的互动与沟通,共同创生和开发课程,并探录、体验、感受知识之中、之外的世界或存在的意义。
(三)在快乐中“学”数学
学生对感兴趣的事物就必然会想方设法去认识它,从而获得与此有关的知识与技能。教师就要抓住学生好玩的心理,设计不同层次的“玩”,由开始的跟着老师玩,到最后的合作玩,自己玩,在玩中不停的思考、探索。在教《0的认识》一课时,先出示一幅空教室图引导学生观察,讨论,说说自己的看法。在我们的周围找一找什么地方有0?再让学生玩一玩、变一变?并说一说自己的发现,怎样的情况下,0表示起点。怎样的情况下,0表示没有。整个教学,学生在快乐中学会了“0”的有关知识。
(四)实际生活中“感受”数学
数学来源于生活,生活中处处有数学。对小学生而言,在生活中形成的常识、经验是他们学习数学的基础。在教学中,我努力拓展学生认识数学、发现数学的空间,重视学生对数学经验的积累,这种做法在课堂教学中收到了事半功倍的效果。随着新课程教学实验的不断深入,通过家庭、学校的有效沟通和一系列的实验作业,既培养了学生学习数学的兴趣,又激发了学生热爱数学的情感,让学生在生活中感受数学,在不知不觉中学习数学。
总之,教与学的方式的改变,要求教师不断地形成新的基本技能,不再以知识形态来呈现,而是以行为的方式来呈现;不断地更新观念,不断探索,以适应课程改革地需要。
没有问题的,,这个我就能够搞定哦,,
很好写,可以给你写一下框架关于道德的要多少字的楼主呢
敏超哥。。。。
我来做个答复。关于《道德的定义》的问题之略谈 耿阁:著 sa56 03月11日 17:02关于《道德的定义》的问题之略谈 耿阁(鸣天士君)著《道的定义》是:“可昭示一切的规律(道理)就是道。” 道大无形囊天纳地其无所不包也!”《德的定义》是:“能载现所有的行为(物象)则为德。” 德广统驭物事情理其皆寓其中也!”《道德定义》是:“能够昭示承载着无极宇宙自然间一切事物固有存在总和的天然法则或之客观规律的道理就是道德。” (之其於人类而言就是:“道德指的是人类所需要遵循着的行为意识趋向的法则和行为行动准则的规律就是道德。” 道德是一种无比正义的公道公德的宇宙观。” “道德她是整个人类灵魂的坐标并整个世界文明的灯塔。”)“别解则缺理,另释则欠情。” 另附我耿阁在“人民网”发表过的一篇小文章现录於下:《道德经》中的“道”和“德”之间的关系之浅识 耿阁:著 sa56 03月06日 14:54耿阁(鸣天士君)著耿阁认为:“若能较为全方位系统的彻悟老子的思想理论的话其结论大慨(这里只能用“大概”一词)就是这样的,即:“说到永恒的这个“道”它常常是以与同时无间的德无间结合的方式表现为“有大行大为”的这个大德的道德之功能的同时而既所本然又所必然的所能达到的无所不能为无所不可为的那种地步或之境界的。” 这一句话的意思说的是:“道”和“德”之间的关系的问题。”“道”和“德”之间是一体的。“道”和“德”之间是不可分割的。“道”和“德”之间是整体无间的。无道是无德的。有道是有德的。无德是无道的。有德是有道的。“道”和“德”之间是“无间整体”“整体无间”之一体的。“道体德用”是极其悖论而又风马牛不相及的。““无为而无不为”说的是“道”本身的大行大为之“道”的本身所固有的本身的本质本能的大行大为是被德所表现所承载着的而又体现成为无所不能为无所不可为的。”说到底就是说:“人家老子先生所说的“道常无为而无不为”指的就是“道”的本身所固有的大行大为是被德这个大行大为所表现所体现所承载着的之道德的无所不能为无所不可为的这个规律道理的”并之“人家老子先生说的是“道”和“德”之道德的本身所固有的那种无限大无限真无限美无限善的无极质场的物质质量能所形成的事物运动发展变化过程始终中的规律道理的及其道和德的作用和意义的。”(并不是说的什么无所作为的那种意境状态的)。” 为了说明:“道常无为而无不为”这句话的道理的真谛之所在,我耿阁在《《妩媚永恒的春天★统御世界的美奂》之“简说人类历史上最伟大的《中国大易经》“并“彻悟世界文明中最伟大的《中国道德经》”》的这篇文章中用了约有两万字的说辞进行了表述论证和诠释。”复
1.ACS Publications(美国化学会期刊全文数据库)
pubs.acs.org/
美国化学学会成立于1876年,现已成为世界上最大的科技学会,会员数超过164,000人。多年以来,ACS一直致力于为全球化学研究机构、企业及个人提供高品质的文献资讯及服务。ACS出版的期刊,内容涵盖了24个主要的化学研究领域,被ISI的Journal Citation Report (JCR)评为“化学领域中被引用次数最多的期刊”。
(1) Journal of the American Chemical Society (JACS) (美国化学会志)
(2)Organic Letters (OL) (有机快报)
(3)The Journal of Organic Chemistry (JOC) (美国有机化学)
(4)Journal of Medicinal Chemistry (JMC) (美国药物化学)
(5)Chemical Reiew (化学评论)
2.Sciencedirect
sciencedirect.com
Elsevier是荷兰一家全球著名的学术期刊出版商,每年出版大量的学术图书和期刊,大部分期刊被SCI、SSCI、EI收录,是世界上公认的高品位学术期刊。该数据库涉及众多学科:计算机科学、工程技术、能源科学、环境科学、材料科学、数学、物理、化学、天文学、医学、生命科学、商业、及经济管理、社会科学等。
(1)Advanced Synthesis & Catalysis (ASC) (先进合成催化)
(2) Angewandte Chemie International Edition (德国应用化学)
(3)Chemistry - A European Journal (欧洲化学)
(4)Chinese Journal of Chemistry (中国化学)
(5)European Journal of Organic Chemistry (欧洲有机化学)
(6)Helvetica Chimica Acta (瑞士化学)
(7)Heteroatom Chemistry (杂原子化学)
3.Wiley
onlinelibrary.wiley.com
作为全球最大、最全面的经同行评审的科学、技术、医学和学术研究的在线多学科资源平台之一,“Wiley Online Library”覆盖了生命科学、健康科学、自然科学、社会与人文科学等全面的学科领域。它收录了来自1500余种期刊、10000多本在线图书以及数百种多卷册的参考工具书、丛书系列、手册和辞典、实验室指南和数据库的400多万篇文章,并提供在线阅读。
(1) Advanced Synthesis & Catalysis (ASC) (先进合成催化)
(2) Angewandte Chemie International Edition (德国应用化学) (3)Chemistry - A European Journal (欧洲化学)
(4)Chinese Journal of Chemistry (中国化学)
(5)European Journal of Organic Chemistry (欧洲有机化学) (6)Helvetica Chimica Acta (瑞士化学)
(7)Heteroatom Chemistry (杂原子化学)
4.ingenta
ingentaconnect.com
Ingenta提供的信息涉及许多学科领域。包括:农业与食品科学、人文艺术科学、生物与生命科学、化学、计算机与信息科学、地球与环境科学、经济工商、工程技术、数学与统计学、医学、护理、哲学与语言学、物理与天文学、心理与精神病学以及社会科学15个类。
(1)Journal of Chemical Research (JCR) (化学研究杂志)
(2)Canadian Journal of Chemistry (加拿大化学)
(3)Current Organic Chemistry
(4)Mini-Reviews in Organic Chemistry
(5)Phosphorus, Sulfur, and Silicon and the Related Elements (磷、硫、硅和相关元素)
(6) Letters in Organic Chemistry
5.Royal Society of Chemistry英国皇家化学学会
rsc-research.fluidreview.com
英国皇家化学学会 (Royal Society of Chemistry,以下简称 RSC) 由致力于化学科学的人员组成,是一个充满活力的全球性团体。作为一家非营利组织,将所有盈余都重新投入到慈善活动中,比如化学国际交流、主办化学期刊、会议、科学研究、教育以及向公众传播化学科学知识。
(1)Green Chemistry (绿色化学)
(2)Chemical Communications (CC) (化学通讯)
(3)Chemical Society Reviews (化学会评论)
(4)Journal of the Chemical Society (化学会志)
(5)Organic & Biomolecular Chemistry (OBC) (有机生物化学)
6.中国知网CNKI
cnki.net
中国知网知识发现网络平台—面向海内外读者提供中国学术文献、外文文献、学位论文、报纸、会议、年鉴、工具书等各类资源统一检索、统一导航、在线阅读和下载服务。中国知网同样不是免费开放,需要购买数据库。
7.seek68文献馆
seek68.cn
seek68文献馆整合了海量的中外文献数据库。覆盖各科领域,医学、化学、农业、科技、人文、计算机、哲学等等。如果没有校园图书馆账号,可以用seek68文献馆。
1、《化学学报》
《化学学报》是1933年创办的中文学术期刊,曾用名《中国化学会会志》,月刊,中国化学会、中国科学院上海有机化学研究所主办,中国科学院主管。
学报刊载化学各学科领域基础研究和应用基础研究的原始性、首创性成果,涉及物理化学、无机化学、有机化学、分析化学和高分子化学等。
2、《化学研究与应用》
《化学研究与应用》创刊于1989年,是由四川省科学技术协会主管、四川省化学化工学会和四川大学主办的化学类综合性学术月刊。
《化学研究与应用》设有评论与综述、研究论文、研究简报、新技术与应用等栏目,读者对象是高校师生、科研院所的科研人员、厂矿企业的技术人员以及有关管理人员和情报工作者。
3、《化学通报》
《化学通报》创刊于1934年,是由中国科学院主管,中国化学会、中科院化学所主办的综合性学术期刊,主要刊登中国内外化学及交叉学科的进展,新的知识和技术以及最新科技成果。
4、《化学教育》
《化学教育》创刊于1980年,是由中国科学技术协主管,中国化学会、北京师范大学主办的国家级化学教育类学术期刊。
《化学教育》主要围绕化学基础学科,交流教育、教学经验和研究成果,开展关于课程、教材教法、实验技术的讨论,介绍化学和化学教学理论的新成就,报道中国国内外化学教育改革的进展和动向。
5、《化学进展》
《化学进展》是由中国科学院基础科学局、化学部、文献情报中心和国家自然科学基金委员会化学科学部共同主办,以刊登化学领域综述与评论性文章为主的学术性期刊。
参考资料来源:百度百科-化学学报
参考资料来源:百度百科-化学研究与应用
参考资料来源:百度百科-化学通报
参考资料来源:百度百科-化学教育
参考资料来源:百度百科-化学进展
化工类专业学术论文发表怎么投稿,今天给大家推荐几本很不错的学术期刊杂志,如下:
2. 《化学工程与装备》杂志于1972年创刊,是由中国科学技术部、国家新闻出版总署批准出版,由福建省化工学会、福建省化工研究所主管,福建省石油化学工业设计院主办,全国公开发行的化学、化工类学术期刊。据2018年10月《化学工程与装备》编辑部官网显示,《化学工程与装备》编辑部拥有编辑1人、特约编辑2人
3. 《山西化工》杂志创刊于1958年(双月),系山西省经济和信息化委员会主管,山西省经贸决策咨询中心、山西经济和信息化出版传媒中心主办、国家新闻出版总署批准的山西省惟一综合性化工科技期刊,为中国石油和化工行业优秀期刊和山西省一级期刊。本刊以促进化学工业发展为己任,重点报道国内外化工、煤化工等相关领域的新技术、新产品、新工艺、新设备,捕捉国内外相关科技动态和经济技术信息,追踪国内外相关市场热点,突出学术性、前瞻性,技术兼容,信息量大。
4. 《云南化工》以"为促进云南化工产业的发展服务"为办刊宗旨,全面报道云南省乃至全国化工领域的科研成果和技术改造成果,重点报道化工企业需要的具有工业化前景的科研成果和对生产具有指导意义的技术改造成果,对企业和科研院所工程技术人员有借鉴作用的经验和体会,对产品市场和技术市场的前景分析;传递国内外有关新技术的发展动态和新产品开发信息。
中文文献:CNKI中国知网, 或者你们学校数据库里去找。 外文文献:ISI WEB KNOWLEDGE, ,这里含所有有用文献的90%以上。 或者你可以根据文献的参考文献去各大期刊网站直接搜,如google一下chemical review,它就属于ACS,到那上面去找就可以了。 一般来说这些数据库的文献能不能下都要看你的学校有没有买这个权限了,如果没上大学的话,去找大学的师兄师姐要个号就好了。 化学品的物性去化工引擎 科普性质的东西一般WIKI一下或者 也能找到一些。 还有IUPAC的网好像是随便上的 其它的具体还想知道什么随时提问!
(一)题名(Title,Topic)题名又称题目或标题。题名是以最恰当、最简明的词语反映论文中最重要的特定内容的逻辑组合。论文格式相关书籍论文题目是一篇论文给出的涉及论文范围与水平的第一个重要信息,也是必须考虑到有助于选定关键词不达意和编制题录、索引等二次文献可以提供检索的特定实用信息。论文题目十分重要,必须用心斟酌选定。有人描述其重要性,用了下面的一句话:“论文题目是文章的一半”。对论文题目的要求是:准确得体:简短精炼:外延和内涵恰如其分:醒目。(二)作者姓名和单位(Author and department)这一项属于论文署名问题。署名一是为了表明文责自负,二是记录作用的劳动成果,三是便于读者与作者的联系及文献检索(作者索引)。大致分为二种情形,即:单个作者论文和多作者论文。后者按署名顺序列为第一作者、第二作者……。重要的是坚持实事求是的态度,对研究工作与论文撰写实际贡献最大的列为第一作者,贡献次之的,列为第二作者,余类推。注明作者所在单位同样是为了便于读者与作者的联系。(三)摘要(Abstract)论文一般应有摘要,有些为了国际交流,还有外文(多用英文)摘要。它是论文内容不加注释和评论的简短陈述。其他用是不阅读论文全文即能获得必要的信息。摘要应包含以下内容:①从事这一研究的目的和重要性;②研究的主要内容,指明完成了哪些工作;③获得的基本结论和研究成果,突出论文的新见解;④结论或结果的意义。(四)关键词(Key words)关键词属于主题词中的一类。主题词除关键词外,还包含有单元词、标题词的叙词。主题词是用来描述文献资料主题和给出检索文献资料的一种新型的情报检索语言词汇,正是由于它的出现和发展,才使得情报检索计算机化(计算机检索)成为可能。主题词是指以概念的特性关系来区分事物,用自然语言来表达,并且具有组配功能,用以准确显示词与词之间的语义概念关系的动态性的词或词组。技巧—:依据学术方向进行选题。论文写作的价值,关键在于能够解决特定行业的特定问题,特别是在学术方面的论文更是如此。因此,论文选择和提炼标题的技巧之一,就是依据学术价值进行选择提炼。技巧二:依据兴趣爱好进行选题。论文选择和提炼标题的技巧之二,就是从作者的爱好和兴趣出发,只有选题符合作者兴趣和爱好,作者平日所积累的资料才能得以发挥效用,语言应用等方面也才能熟能生巧。技巧三:依据掌握的文献资料进行选题。文献资料是支撑、充实论文的基础,同时更能体现论文所研究的方向和观点,因而,作者从现有文献资料出发,进行选题和提炼标题,即成为第三大技巧。技巧四:从小从专进行选题。所谓从小从专,即是指软文撰稿者在进行选则和提炼标题时,要从专业出发,从小处入手进行突破,切记全而不专,大而空洞。
(一)论文名称论文名称就是课题的名字第一,名称要准确、规范。准确就是论文的名称要把论文研究的问题是什么,研究的对象是什么交待清楚,论文的名称一定要和研究的内容相一致,不能太大,也不能太小,要准确地把你研究的对象、问题概括出来。第二,名称要简洁,不能太长。不管是论文或者课题,名称都不能太长,能不要的字就尽量不要,一般不要超过20个字。(二)论文研究的目的、意义研究的目的、意义也就是为什么要研究、研究它有什么价值。这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本论文的研究有什么实际作用,然后,再写论文的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。主要内容包括:⑴研究的有关背景(课题的提出):即根据什么、受什么启发而搞这项研究。⑵通过分析本地(校)的教育教学实际,指出为什么要研究该课题,研究的价值,要解决的问题。(三)本论文国内外研究的历史和现状(文献综述)规范些应该有,如果是小课题可以省略。一般包括:掌握其研究的广度、深度、已取得的成果;寻找有待进一步研究的问题,从而确定本课题研究的平台(起点)、研究的特色或突破点。(四)论文研究的指导思想指导思想就是在宏观上应坚持什么方向,符合什么要求等,这个方向或要求可以是哲学、政治理论,也可以是政府的教育发展规划,也可以是有关研究问题的指导性意见等。(五)论文写作的目标论文写作的目标也就是课题最后要达到的具体目的,要解决哪些具体问题,也就是本论文研究要达到的预定目标:即本论文写作的目标定位,确定目标时要紧扣课题,用词要准确、精练、明了。常见存在问题是:不写研究目标;目标扣题不紧;目标用词不准确;目标定得过高, 对预定的目标没有进行研究或无法进行研究。
《冰雹猜想有规可循》冰雹猜想又名考拉兹猜想、角谷猜想、3x+1猜想等等。其描述为:任一正整数x如果是奇数就乘3加1,如果是偶数就除以2,,反复计算,最终都将会得到数字1。如:11,34,17,52,26,13,40,20,10,5,16,8,4,2,1.该问题一出现就风靡全球,无论是小学、中学还是高校师生都为之着迷。近百年来,数学家、物理学家、计算机科学家等都对此进行过研究;涉及的数学领域也很广,有数论、遍历理论、动态分析、数理逻辑与计算理论、随机过程与概率论和计算机科学等等。虽然取得了一定的成果,但始终没能被彻底解决。这个问题似乎是无解的,几乎无人能破解其中的秘密。世界著名华裔数学家陶哲轩在2019年曾发文证明约99%的初始值大于1千万亿的考拉兹数列,最终值小于200,但依旧没有改变现状。你或许会好奇的说找个反例不就行了,是的,全球计算机在没日没夜的找,可惜都没找到反例。对于这个极其简单又无聊又超有趣的问题,别说常人,数学家几乎都不敢专职研究并直呼:“不要试图去解决这些难题!”;“没有希望,绝对没有希望。”;“当今数学还没有解决此类难题的方法。”等等。那么冰雹猜想就真的如此没有规律吗?那倒也不是,因为无论它怎么变化,也不会背离白言规则(LiKe's rule):对于任一正整数,如果它是奇数则乘3加1;如果它是偶数则除以2,如此循环,最终都将转变到LiKe第二数列(2, 8, 26, 80, …, 3^n-1)中的数,3^n-1再变为更小的3^n-1并最终变为8回到1。如11必变到26(3^3-1),再变为更小的8(3^2-1),并回到1;另外27是个极其强悍的数字,按照规则77步才能到达巅峰值9232(27的342倍多),具有同样步数的2的幂为2的111次方,很惊人吧!其变化更是起伏不定,但按照白言规则却显而易见:27必会转变到3^n-1(242),定会降至3^2-1(8)并回到1。真是太神奇了。这个问题很有趣吧,还超简单,感兴趣的可以自己试试哦。