碳纤维复合材料是建造高性能机器人的理想材料之一,目前世界上发达国家的空间机器人和大型机械臂多由此种材料制作而成。碳纤维复合材料具有优良的物理特性,它的比强度高,比刚度大,力学性能可以通过设计进行控制改变,而且其在不同温度中变形极微。
以往的工业机器人是由钢和铝制成的,一个一米长的铝结构机械臂杆件,在室温变化12℃的环境里,杆件变化0.13mm,这将大大影响机器人的精度。对高模量碳纤维复合材料来说,如果优化设计纤维的铺层和方向,却可以达到近似零热变形的设计效果,这是普通金属材料无法实现的。
对于给定的机器人运动(具有一定的载荷,在一定的速度下),末端操作器的弹性动力学响应、机械精度、重复性、末端操作器的稳态时间等特性都受到结构部件的质量、刚度、阻尼特性的影响。从力学方面分析,减少质量将降低惯量,提高操作速度;增加刚度将降低挠度;增加材料的阻尼将减少稳态时间。通过设计,合理地选择机械臂的材料特性和几何尺寸,适当选择变量,通过这些特性的改进将有利于提高控制精度。
我们在使用碳纤维复合材料制作机械臂时发现,碳纤维复合材料的铺层方式对上述机械臂的耐热性和力学性能产生直接影响。因此,下面将以无锡威盛新材料科技有限公司(简称:威盛新材)的碳纤维机械臂生产为案例,对该问题作一个简单的分析和说明。
??
无锡威盛新材料科技有限公司的科研团队主攻碳纤维复合材料的研发和生产已有十多年的时间,特别是在碳纤维机械臂的应用方面,是属于国内起步较早、发展较快的一家碳纤维装备制造商。其为哈尔滨某知名机器人制造企业制造的机械臂已进入批量生产环节,在行业内具有一定的影响力,在机械臂的生产制造方面也有许多经验可供借鉴。在制作机械臂时,威盛新材对碳纤维复合材料的铺层处理,主要是根据机器人的性能需求,确定碳纤维复合材料的铺层方向、铺层的顺序和铺层总层数。
1、根据载荷的主方向设定铺层方向
过多的铺层角度取向会给设计工作以及制件成型增加复杂度,所以在满足设计要求的情况下尽可能减少铺层方向数,在铺层设计时,铺层角度一般多选取0°、+45°、-45°、90°这四种,对于其它特殊情况则需另案处理。如果需要将复合材料层合板设计成为准各向同性的,可以用60°的铺层方向(60/0/-60)s,对于使用缠绕工艺制造的制件来说,则不受这些限制。
在实际操作中,角度取向需要根据所承担载荷的类型来选择,即为了最大程度的利用纤维在轴向上的高性能,纤维铺设方向要根据载荷的主方向设定,在点应力状态,角度为0°的铺层对应正应力,角度为±45°的铺层对应剪应力,角度为90°的铺层是用来保证在复合材料制件的径向上有足够的正压力,若复合材料制件承受的载荷以拉压载荷为主,那么铺层方向应该选择拉压载荷的方向;若复合材料制件承受的载荷以剪切载荷为主,那么铺层之中要以+45°和-45°成对铺设为主;若复合材料制件所承受的载荷情况复杂,同时包括多种载荷,那么铺层设计时以0°、±45°、90°多方向混合铺设。
2、调整铺设方式增加碳纤维复合材料的整体性能
为了避免复合材料机械臂制件的基体在各方向上承受载荷,对于选择0°、+45°、-45°、90°四种基本铺层方式铺层的复合材料制件,每一个方向的铺层数占总铺层数的百分比应不小于6%-10%。
在具体铺设时,一般复合材料制件的铺层均采取对称均衡铺设。对称均衡铺设的特点就是在整体的铺层之中,上下铺层关于中间面对称,如果需要设计成非对称均衡铺层,应将这类非均衡或是非对称的铺层布置于靠近整体铺层中间的位置,这种方式能有效避免复合材料制件经历拉-弯耦合、拉-剪耦合之后发生翘曲形变。
在铺设的顺序上还应注意两个方面:第一,为了减少按照相同的方式铺放的相邻两层分层开裂的可能性,一般连续的相同铺层不超过四层,对性能要求更高的复合材料制件不超过两层;第二,为了降低机械臂的层间应力,在使用上述四种铺层角度时,应该尽量将0°层或者90°层布置在±45°层中间,将﹢45°层或者是-45°层布置在0°层与90°层中间。
3、铺层总厚度要兼顾外部尺寸和内部空间
为了不减工业机器人原有的自由度,并保证其原有性能,碳纤维复合材料机械臂在设计时,要维持外部尺寸大小不变,机械臂的内部同时要给布线以及控制电路的安装留有足够的空间,所以机械臂的壳体厚度要在一定的区间内,下限是维持原有性能的最低值,上限是不超过原铸铁结构臂厚度。
通过威盛新材批量生产出的机械臂案例可知,该碳纤维复合材料机械臂制造成本大约是铸铁机械臂的5.5倍,但是在满足工业机器人性能要求的前提下,碳纤维复合材料机械臂要比铸铁机械臂重量减轻72%,机器人的动力学性能因而得到显著提升,同时能耗明显降低。使用碳纤维复合材料替代传统的钢和铝制作机械臂对提升工业生产效率、节约能源保护环境等方面意义重大。我们也相信,随着我国对碳纤维复合材料的基本性能、典型结构、强度分析及成型工艺等方面研究的深入,碳纤维复合材料将在机器人制造中扮演着越来越重要的角色。
参考文献
【1】陈丰,《碳纤维复合材料机械臂设计》,《郑州工学院学报》,1992,12.
【2】田龙飞,《工业机器人用碳纤维复合材料上臂的设计》,中国科学院大学2014年硕士毕业论文。
1.1 碳纤维及石墨纤维的发展简史1.1.1 研发碳纤维的先驱者——斯旺和爱迪生1.1.2 聚丙烯腈基碳纤维发明者——进藤昭男1.1.3 从东丽公司碳纤维发展历程看原丝的重要性1.1.4 我国研制PAN基碳纤维的历程1.2 当前世界PAN基碳纤维的主要生产厂家及产品性能1.2.1 小丝束PAN基碳纤维1.2.2 大丝束碳纤维1.3 碳纤维的发展趋势1.4 应用领域参考文献 2.1 聚丙烯腈的晶态及其多重结构2.1.1 聚丙烯腈的晶胞及构象2.1.2 聚丙烯腈的球晶及其多重结构2.1.3 聚丙烯腈的构型2.2 聚合2.2.1 均相溶液自由基聚合原理2.2.2 分子量调节剂2.2.3 共聚单体及其竞聚率2.2.4 聚合方法2.2.5 氨化2.2.6 混批和混合2.2.7 脱单、脱泡2.3 纺丝2.3.1 凝固成纤过程中的相分离2.3.2 凝固过程中的双扩散2.3.3 湿法纺丝2.3.4 干喷湿纺2.3.5 喷丝板2.3.6 牵伸与取向2.3.7 干燥致密化2.3.8 松弛热定型2.3.9 陶瓷导丝及其导辊2.3.1 0纺丝用的定位沟槽辊2.4 分析测试及表征(聚合?纺丝?原丝)2.4.1 用核磁共振测定聚合物的组成及其立构规整度2.4.2 用红外光谱法测定共聚物的组成2.4.3 特性黏度[η]的测定方法及其与重均分子量(Mw)的关系2.4.4 用渗透压法测定聚合物的数均分子量(Mn)及其分子量分布2.4.5 用凝胶渗透色谱(GPC)测定分子量及其分子量分布2.4.6 转化率的测定方法2.4.7 临界浓度的测定方法2.4.8 纺丝液与凝固液之间润湿性的测定方法2.4.9 纺丝液黏度斑(黏度CV值)的测定方法2.4.10 用TEM观察原纤(fibril)直径——细晶化的源头2.4.11 凝固丝条拉伸模量及凝固丝条纤度的测定方法2.4.12 用压汞法测定凝固丝条的孔隙率及其平均孔径2.4.13 用DSC法测定凝固丝条的孔径尺寸2.4.14 密度法测定原丝的孔隙率2.4.15 用小角X射线散射测定凝固丝条中的微孔数目2.4.16 相分离与膨润度及其测定方法2.4.17 水洗后丝条中残留溶剂量的测定方法2.4.18 用二次离子质谱仪测定原丝中硼(B)的径向分布2.4.19 用WAXD测定PAN原丝的结晶取向度2.4.20 PAN原丝的结晶度和微晶尺寸的测定方法2.4.21 用密度法计算非晶区的密度2.4.22 用X射线衍射仪(粉末法)测定PAN原丝的晶间距2.4.23 用红外二色法测定氰基的总取向2.4.24 用染料二色法测定PAN原丝非晶区的取向度2.4.25 声速法测定纤维的总取向2.4.26 玻璃化温度及其测定方法2.4.27 纤维密度与相对密度的测定方法2.4.28 PAN原丝的致密性测定方法2.4.29 失透度及测试方法2.4.30 纤度及其CV值的测定方法2.4.31 沸水收缩率的测定2.4.32 纤维含水量的测定2.4.33 单丝直径及其CV值的测定2.4.34 单丝形貌2.4.35 纤维的光泽度及其测定方法2.4.36 用扫描电镜测定湿纺PAN原丝的表面粗糙系数2.4.37 评价PAN原丝的最大牵伸率装置参考文献 3.1 预氧化过程中的变化3.1.1 物理变化3.1.2 化学反应3.1.3 结构转化3.2 预氧化机理3.2.1 结构转化与颜色变化3.2.2 预氧化过程中的主要反应3.3 预氧化过程中的物性变化3.3.1 牵伸与收缩3.3.2 温度和温度梯度3.3.3 纤维强度的下降3.3.4 密度的变化3.4 预氧化过程中的质量控制指标之一(氧的径向分布与均质预氧丝)3.5 预氧化设备及其工艺参数3.5.1 概述3.5.2 预氧化炉3.6 头尾衔接技术3.7 预氧丝的质量检测及其相关的测定方法3.7.1 预氧丝中含氧量的测定方法3.7.2 预氧丝含湿量(含水量)的测定方法3.7.3 预氧丝相对密度和密度的测定方法3.7.4 用XRD测定芳构化指数3.7.5 用红外光谱测定相对环化度3.7.6 用红外分光法测定预氧丝中残留氰基3.7.7 用DSC测定环化度(芳构化指数)3.7.8 皮芯结构的测定方法3.7.9 甲酸溶解度3.7.10 用二次离子质谱仪测定纤维中O、Si、B的径向分布3.7.11 极限氧指数的测定方法3.7.12 失控氧化温度的测定方法3.7.13 火焰收缩保持率的测定方法3.7.14 预氧化炉内水分的测定方法参考文献 4.1 固相碳化机理4.1.1 聚丙烯腈碳化机理4.1.2 固相碳化的主要反应4.2 孔隙产生规律及其对碳纤维性能的影响4.2.1 孔隙的变化规律及其对碳纤维拉伸强度的影响4.2.2 密度与孔隙率4.2.3 孔隙尺寸和形状对碳纤维拉伸强度的影响4.3 碳化过程中结构演变4.3.1 皮芯结构4.3.2 结构参数的变化4.4 低温碳化工艺与设备4.4.1 碳化概述4.4.2 低温碳化设备4.4.3 非接式迷宫密封装置4.4.4 焦油的产生及其排除方法4.4.5 废气处理4.4.6 密封氮气与载气氮气4.4.7 牵伸机组及槽辊4.5 高温碳化炉4.5.1 高温碳化炉的发热体4.5.2 设计高温碳化炉的其他几个技术要素4.5.3 高温碳化炉的种类4.5.4 牵伸4.5.5 定位槽辊4.6 碳纤维的测定方法4.6.1 超声波脉冲法在线测定碳纤维的模量4.6.2 用荧光X射线法测定碳纤维的硅含量4.6.3 用激光拉曼光谱测定碳纤维结晶性的径向分布4.6.4 用电子自旋共振(ESR)研究碳纤维的结构特征4.6.5 用电子能量损失谱测定氮的径向分布4.6.6 在线测定丝束宽度的方法与装置4.6.7 高温碳化炉的内压测定方法参考文献 5.1 石墨化机理5.1.1 固相石墨化5.1.2 石墨微晶的形状因子5.1.3 石墨化敏感温度5.1.4 层间距d002与HTT的关系及其(002)晶格图像5.1.5 用HRSEM观察石墨纤维的结构形貌5.2 催化石墨化5.2.1 催化石墨化及其效果5.2.2 硼及其催化石墨化5.2.3 硼的引入途径5.3 石墨化炉及种类5.3.1 塔姆式电阻炉5.3.2 感应石墨化炉5.3.3 射频石墨化炉5.3.4 等离子体石墨化炉5.3.5 光能石墨化炉5.4 石墨化度及其评价方法5.4.1 石墨化度5.4.2 磁阻5.4.3 石墨纤维的皮芯结构参考文献 6.1 界面传递效率6.1.1 润湿与接触角6.1.2 表面处理与表面能6.2 复合材料的界面6.2.1 界面层的生成原理6.2.2 机械嵌合(锚定效应)6.2.3 化学键合6.3 碳纤维的表面处理方法之一——阳极氧化法6.3.1 阳极电解氧化法原理6.3.2 连续直接通电式阳极氧化装置6.3.3 脉冲通电的阳极氧化装置6.3.4 非接触式通电的阳极电解氧化装置6.3.5 阳极氧化的主要工艺参数6.4 臭氧表面处理法6.4.1 臭氧及其主要性质6.4.2 臭氧表面处理方法6.5 表面处理效果的评价方法6.5.1 层间剪切强度的测试方法6.5.2 界面剪切强度的测试方法参考文献 7.1 上浆剂7.1.1 上浆剂及其界面性能7.1.2 上浆剂的作用及要求7.2 上浆剂的组成7.2.1 碳纤维的上浆主剂——双酚A环氧树脂7.2.2 双酚A环氧树脂的改性7.2.3 上浆辅剂7.3 乳液型上浆剂的配制方法——转相法7.4 碳纤维的上浆方法7.4.1 上浆装置的扩幅机构7.4.2 具有空气流动场的上浆装置7.4.3 具有吹气狭缝的上浆装置7.4.4 具有循环系统的上浆装置7.5 几种上浆剂的配制7.5.1 组合型功能上浆剂7.5.2 乳化型上浆剂7.5.3 纳米改性型上浆剂7.5.4 油溶性上浆剂7.5.5 增韧改性的上浆剂7.6 上浆的性能指标及其评价方法7.6.1 开纤性评价装置7.6.2 乳液型上浆剂的粒径测定方法7.6.3 上浆剂的时效稳定性的测定方法7.6.4 上浆量的测定方法7.6.5 毛丝数的测定方法7.6.6 摩擦系数的测定方法7.6.7 浸润性的评价方法7.6.8 悬垂值D及其测定方法7.6.9 含水率与平衡含水率7.6.1 0用Wilhelmy吊片法测定上浆性能参考文献 8.1 碳的丰度及性质8.2 碳原子的杂化轨道及成键原理8.2.1 SP3杂化8.2.2 SP2杂化8.2.3 SP杂化8.3 碳的结晶结构8.3.1 金刚石8.3.2 石墨8.3.3 卡宾8.4 碳的相图和碳的升华8.4.1 碳的相图8.4.2 碳的升华8.5 碳的多种形态结构8.6 碳纤维的结构8.6.1 碳纤维的皮芯结构8.6.2 碳纤维的孔结构8.6.3 碳纤维的结构模型8.7 测试方法8.7.1 用XRD测定碳纤维的结构参数8.7.2 用电子显微镜研究碳纤维的结构8.7.3 用XRD测定取向度8.7.4 用ESR研究碳纤维的微细结构8.7.5 用Raman光谱研究碳纤维结构的多相性8.8 碳纤维和石墨纤维的形态结构与性能8.8.1 缨状原纤弯曲度8.8.2 碳纤维的结构参数及其性能8.8.3 碳纤维结构的非均质性8.8.4 高强高模型碳纤维(MJ系列)参考文献 9.1 拉伸强度与缺陷9.1.1 格拉菲斯微裂纹理论9.1.2 缺陷类型9.1.3 碳纤维拉伸强度的分散性及其表征方法9.2 碳纤维和石墨纤维的压缩强度9.2.1 压缩强度9.2.2 碳纤维复合材料的压缩强度9.2.3 测定压缩强度的方法9.3 拉伸模量9.4 热性能9.4.1 热膨胀9.4.2 热导率9.4.3 热容量9.4.4 复合材料的热性能9.4.5 热氧化9.5 碳纤维的电性能9.5.1 导电原理9.5.2 碳纤维的电阻率及其影响因素9.5.3 碳纤维电阻率的测定方法9.6 磁性能9.6.1 磁阻9.6.2 磁化率参考文献 10.1 碳纤维增强树脂基复合材料10.1.1 热固性基体树脂10.1.2 成型技术10.1.3 预成型中间物10.1.4 热塑性基体树脂10.2 碳/碳复合材料10.2.1 碳/碳复合材料的制造10.2.2 短切碳纤维制造C/C复合材料10.2.3 抗氧化处理10.3 碳纤维增强陶瓷复合材料10.3.1 碳纤维增强碳化硅(CFRSiC)复合材料10.3.2 碳纤维增强氮化硅复合材料10.4 碳纤维增强金属基复合材料10.4.1 两相界面层10.4.2 碳纤维表面的防护方法10.4.3 碳纤维增强铝基复合材料(CF/Al)10.4.4 碳纤维增强铜基复合材料(CF/Cu)10.5 碳纤维纸和碳纤维布10.5.1 造纸用碳纤维的前处理10.5.2 高级碳纤维纸的制造工艺10.5.3 碳纤维布10.6 碳纤维增强橡胶材料10.6.1 碳纤维的选择10.6.2 RFL乳液参考文献 11.1 在航天及军工领域方面的应用11.1.1 航天飞机11.1.2 宇宙探测器11.1.3 人造卫星11.1.4 火箭与导弹11.1.5 舰艇方面的应用11.1.6 石墨炸弹11.1.7 浓缩铀与原子弹11.2 在航空和军工领域中的应用11.2.1 战斗机11.2.2 直升机11.2.3 无人飞机11.2.4 民航客机及大飞机11.2.5 制动刹车材料11.2.6 隐身材料与隐身战机参考文献 12.1 在汽车工业中的应用12.1.1 汽车轻量化,节能降耗12.1.2 压缩气罐(瓶)12.2 碳纤维复合材料辊筒12.3 在新能源领域中的应用12.3.1 风力发电12.3.2 太阳能发电12.3.3 碳纤维复合芯电缆12.3.4 海洋油田方面的应用12.3.5 核能方面的应用12.4 在基础设施和土木建筑方面的应用12.4.1 应用形式和性能的匹配12.4.2 碳纤维复合材料绳索12.5 电热、抗静电和耐热制品12.5.1 电热制品12.5.2 抗静电制品12.5.3 耐热制品12.6 文体休闲器材12.7 碳纤维在医疗器械、生物材料和医疗器材方面的应用12.7.1 医疗器械12.7.2 生物材料12.7.3 医疗器材12.8 碳纤维修复水生态环境12.9 其他方面的应用12.9.1 轨道交通工具12.9.2 机器人部件12.9.3 笔记本电脑12.9.4 宇宙望远镜的构件12.9.5 盘根及密封环12.9.6 音响设备和乐器参考文献
搜一下:谁推荐点碳纤维方面的参考文献
你碳纤维的碳字写成炭,差距很大的哦
1.1 碳纤维及石墨纤维的发展简史1.1.1 研发碳纤维的先驱者——斯旺和爱迪生1.1.2 聚丙烯腈基碳纤维发明者——进藤昭男1.1.3 从东丽公司碳纤维发展历程看原丝的重要性1.1.4 我国研制PAN基碳纤维的历程1.2 当前世界PAN基碳纤维的主要生产厂家及产品性能1.2.1 小丝束PAN基碳纤维1.2.2 大丝束碳纤维1.3 碳纤维的发展趋势1.4 应用领域参考文献 2.1 聚丙烯腈的晶态及其多重结构2.1.1 聚丙烯腈的晶胞及构象2.1.2 聚丙烯腈的球晶及其多重结构2.1.3 聚丙烯腈的构型2.2 聚合2.2.1 均相溶液自由基聚合原理2.2.2 分子量调节剂2.2.3 共聚单体及其竞聚率2.2.4 聚合方法2.2.5 氨化2.2.6 混批和混合2.2.7 脱单、脱泡2.3 纺丝2.3.1 凝固成纤过程中的相分离2.3.2 凝固过程中的双扩散2.3.3 湿法纺丝2.3.4 干喷湿纺2.3.5 喷丝板2.3.6 牵伸与取向2.3.7 干燥致密化2.3.8 松弛热定型2.3.9 陶瓷导丝及其导辊2.3.1 0纺丝用的定位沟槽辊2.4 分析测试及表征(聚合?纺丝?原丝)2.4.1 用核磁共振测定聚合物的组成及其立构规整度2.4.2 用红外光谱法测定共聚物的组成2.4.3 特性黏度[η]的测定方法及其与重均分子量(Mw)的关系2.4.4 用渗透压法测定聚合物的数均分子量(Mn)及其分子量分布2.4.5 用凝胶渗透色谱(GPC)测定分子量及其分子量分布2.4.6 转化率的测定方法2.4.7 临界浓度的测定方法2.4.8 纺丝液与凝固液之间润湿性的测定方法2.4.9 纺丝液黏度斑(黏度CV值)的测定方法2.4.10 用TEM观察原纤(fibril)直径——细晶化的源头2.4.11 凝固丝条拉伸模量及凝固丝条纤度的测定方法2.4.12 用压汞法测定凝固丝条的孔隙率及其平均孔径2.4.13 用DSC法测定凝固丝条的孔径尺寸2.4.14 密度法测定原丝的孔隙率2.4.15 用小角X射线散射测定凝固丝条中的微孔数目2.4.16 相分离与膨润度及其测定方法2.4.17 水洗后丝条中残留溶剂量的测定方法2.4.18 用二次离子质谱仪测定原丝中硼(B)的径向分布2.4.19 用WAXD测定PAN原丝的结晶取向度2.4.20 PAN原丝的结晶度和微晶尺寸的测定方法2.4.21 用密度法计算非晶区的密度2.4.22 用X射线衍射仪(粉末法)测定PAN原丝的晶间距2.4.23 用红外二色法测定氰基的总取向2.4.24 用染料二色法测定PAN原丝非晶区的取向度2.4.25 声速法测定纤维的总取向2.4.26 玻璃化温度及其测定方法2.4.27 纤维密度与相对密度的测定方法2.4.28 PAN原丝的致密性测定方法2.4.29 失透度及测试方法2.4.30 纤度及其CV值的测定方法2.4.31 沸水收缩率的测定2.4.32 纤维含水量的测定2.4.33 单丝直径及其CV值的测定2.4.34 单丝形貌2.4.35 纤维的光泽度及其测定方法2.4.36 用扫描电镜测定湿纺PAN原丝的表面粗糙系数2.4.37 评价PAN原丝的最大牵伸率装置参考文献 3.1 预氧化过程中的变化3.1.1 物理变化3.1.2 化学反应3.1.3 结构转化3.2 预氧化机理3.2.1 结构转化与颜色变化3.2.2 预氧化过程中的主要反应3.3 预氧化过程中的物性变化3.3.1 牵伸与收缩3.3.2 温度和温度梯度3.3.3 纤维强度的下降3.3.4 密度的变化3.4 预氧化过程中的质量控制指标之一(氧的径向分布与均质预氧丝)3.5 预氧化设备及其工艺参数3.5.1 概述3.5.2 预氧化炉3.6 头尾衔接技术3.7 预氧丝的质量检测及其相关的测定方法3.7.1 预氧丝中含氧量的测定方法3.7.2 预氧丝含湿量(含水量)的测定方法3.7.3 预氧丝相对密度和密度的测定方法3.7.4 用XRD测定芳构化指数3.7.5 用红外光谱测定相对环化度3.7.6 用红外分光法测定预氧丝中残留氰基3.7.7 用DSC测定环化度(芳构化指数)3.7.8 皮芯结构的测定方法3.7.9 甲酸溶解度3.7.10 用二次离子质谱仪测定纤维中O、Si、B的径向分布3.7.11 极限氧指数的测定方法3.7.12 失控氧化温度的测定方法3.7.13 火焰收缩保持率的测定方法3.7.14 预氧化炉内水分的测定方法参考文献 4.1 固相碳化机理4.1.1 聚丙烯腈碳化机理4.1.2 固相碳化的主要反应4.2 孔隙产生规律及其对碳纤维性能的影响4.2.1 孔隙的变化规律及其对碳纤维拉伸强度的影响4.2.2 密度与孔隙率4.2.3 孔隙尺寸和形状对碳纤维拉伸强度的影响4.3 碳化过程中结构演变4.3.1 皮芯结构4.3.2 结构参数的变化4.4 低温碳化工艺与设备4.4.1 碳化概述4.4.2 低温碳化设备4.4.3 非接式迷宫密封装置4.4.4 焦油的产生及其排除方法4.4.5 废气处理4.4.6 密封氮气与载气氮气4.4.7 牵伸机组及槽辊4.5 高温碳化炉4.5.1 高温碳化炉的发热体4.5.2 设计高温碳化炉的其他几个技术要素4.5.3 高温碳化炉的种类4.5.4 牵伸4.5.5 定位槽辊4.6 碳纤维的测定方法4.6.1 超声波脉冲法在线测定碳纤维的模量4.6.2 用荧光X射线法测定碳纤维的硅含量4.6.3 用激光拉曼光谱测定碳纤维结晶性的径向分布4.6.4 用电子自旋共振(ESR)研究碳纤维的结构特征4.6.5 用电子能量损失谱测定氮的径向分布4.6.6 在线测定丝束宽度的方法与装置4.6.7 高温碳化炉的内压测定方法参考文献 5.1 石墨化机理5.1.1 固相石墨化5.1.2 石墨微晶的形状因子5.1.3 石墨化敏感温度5.1.4 层间距d002与HTT的关系及其(002)晶格图像5.1.5 用HRSEM观察石墨纤维的结构形貌5.2 催化石墨化5.2.1 催化石墨化及其效果5.2.2 硼及其催化石墨化5.2.3 硼的引入途径5.3 石墨化炉及种类5.3.1 塔姆式电阻炉5.3.2 感应石墨化炉5.3.3 射频石墨化炉5.3.4 等离子体石墨化炉5.3.5 光能石墨化炉5.4 石墨化度及其评价方法5.4.1 石墨化度5.4.2 磁阻5.4.3 石墨纤维的皮芯结构参考文献 6.1 界面传递效率6.1.1 润湿与接触角6.1.2 表面处理与表面能6.2 复合材料的界面6.2.1 界面层的生成原理6.2.2 机械嵌合(锚定效应)6.2.3 化学键合6.3 碳纤维的表面处理方法之一——阳极氧化法6.3.1 阳极电解氧化法原理6.3.2 连续直接通电式阳极氧化装置6.3.3 脉冲通电的阳极氧化装置6.3.4 非接触式通电的阳极电解氧化装置6.3.5 阳极氧化的主要工艺参数6.4 臭氧表面处理法6.4.1 臭氧及其主要性质6.4.2 臭氧表面处理方法6.5 表面处理效果的评价方法6.5.1 层间剪切强度的测试方法6.5.2 界面剪切强度的测试方法参考文献 7.1 上浆剂7.1.1 上浆剂及其界面性能7.1.2 上浆剂的作用及要求7.2 上浆剂的组成7.2.1 碳纤维的上浆主剂——双酚A环氧树脂7.2.2 双酚A环氧树脂的改性7.2.3 上浆辅剂7.3 乳液型上浆剂的配制方法——转相法7.4 碳纤维的上浆方法7.4.1 上浆装置的扩幅机构7.4.2 具有空气流动场的上浆装置7.4.3 具有吹气狭缝的上浆装置7.4.4 具有循环系统的上浆装置7.5 几种上浆剂的配制7.5.1 组合型功能上浆剂7.5.2 乳化型上浆剂7.5.3 纳米改性型上浆剂7.5.4 油溶性上浆剂7.5.5 增韧改性的上浆剂7.6 上浆的性能指标及其评价方法7.6.1 开纤性评价装置7.6.2 乳液型上浆剂的粒径测定方法7.6.3 上浆剂的时效稳定性的测定方法7.6.4 上浆量的测定方法7.6.5 毛丝数的测定方法7.6.6 摩擦系数的测定方法7.6.7 浸润性的评价方法7.6.8 悬垂值D及其测定方法7.6.9 含水率与平衡含水率7.6.1 0用Wilhelmy吊片法测定上浆性能参考文献 8.1 碳的丰度及性质8.2 碳原子的杂化轨道及成键原理8.2.1 SP3杂化8.2.2 SP2杂化8.2.3 SP杂化8.3 碳的结晶结构8.3.1 金刚石8.3.2 石墨8.3.3 卡宾8.4 碳的相图和碳的升华8.4.1 碳的相图8.4.2 碳的升华8.5 碳的多种形态结构8.6 碳纤维的结构8.6.1 碳纤维的皮芯结构8.6.2 碳纤维的孔结构8.6.3 碳纤维的结构模型8.7 测试方法8.7.1 用XRD测定碳纤维的结构参数8.7.2 用电子显微镜研究碳纤维的结构8.7.3 用XRD测定取向度8.7.4 用ESR研究碳纤维的微细结构8.7.5 用Raman光谱研究碳纤维结构的多相性8.8 碳纤维和石墨纤维的形态结构与性能8.8.1 缨状原纤弯曲度8.8.2 碳纤维的结构参数及其性能8.8.3 碳纤维结构的非均质性8.8.4 高强高模型碳纤维(MJ系列)参考文献 9.1 拉伸强度与缺陷9.1.1 格拉菲斯微裂纹理论9.1.2 缺陷类型9.1.3 碳纤维拉伸强度的分散性及其表征方法9.2 碳纤维和石墨纤维的压缩强度9.2.1 压缩强度9.2.2 碳纤维复合材料的压缩强度9.2.3 测定压缩强度的方法9.3 拉伸模量9.4 热性能9.4.1 热膨胀9.4.2 热导率9.4.3 热容量9.4.4 复合材料的热性能9.4.5 热氧化9.5 碳纤维的电性能9.5.1 导电原理9.5.2 碳纤维的电阻率及其影响因素9.5.3 碳纤维电阻率的测定方法9.6 磁性能9.6.1 磁阻9.6.2 磁化率参考文献 10.1 碳纤维增强树脂基复合材料10.1.1 热固性基体树脂10.1.2 成型技术10.1.3 预成型中间物10.1.4 热塑性基体树脂10.2 碳/碳复合材料10.2.1 碳/碳复合材料的制造10.2.2 短切碳纤维制造C/C复合材料10.2.3 抗氧化处理10.3 碳纤维增强陶瓷复合材料10.3.1 碳纤维增强碳化硅(CFRSiC)复合材料10.3.2 碳纤维增强氮化硅复合材料10.4 碳纤维增强金属基复合材料10.4.1 两相界面层10.4.2 碳纤维表面的防护方法10.4.3 碳纤维增强铝基复合材料(CF/Al)10.4.4 碳纤维增强铜基复合材料(CF/Cu)10.5 碳纤维纸和碳纤维布10.5.1 造纸用碳纤维的前处理10.5.2 高级碳纤维纸的制造工艺10.5.3 碳纤维布10.6 碳纤维增强橡胶材料10.6.1 碳纤维的选择10.6.2 RFL乳液参考文献 11.1 在航天及军工领域方面的应用11.1.1 航天飞机11.1.2 宇宙探测器11.1.3 人造卫星11.1.4 火箭与导弹11.1.5 舰艇方面的应用11.1.6 石墨炸弹11.1.7 浓缩铀与原子弹11.2 在航空和军工领域中的应用11.2.1 战斗机11.2.2 直升机11.2.3 无人飞机11.2.4 民航客机及大飞机11.2.5 制动刹车材料11.2.6 隐身材料与隐身战机参考文献 12.1 在汽车工业中的应用12.1.1 汽车轻量化,节能降耗12.1.2 压缩气罐(瓶)12.2 碳纤维复合材料辊筒12.3 在新能源领域中的应用12.3.1 风力发电12.3.2 太阳能发电12.3.3 碳纤维复合芯电缆12.3.4 海洋油田方面的应用12.3.5 核能方面的应用12.4 在基础设施和土木建筑方面的应用12.4.1 应用形式和性能的匹配12.4.2 碳纤维复合材料绳索12.5 电热、抗静电和耐热制品12.5.1 电热制品12.5.2 抗静电制品12.5.3 耐热制品12.6 文体休闲器材12.7 碳纤维在医疗器械、生物材料和医疗器材方面的应用12.7.1 医疗器械12.7.2 生物材料12.7.3 医疗器材12.8 碳纤维修复水生态环境12.9 其他方面的应用12.9.1 轨道交通工具12.9.2 机器人部件12.9.3 笔记本电脑12.9.4 宇宙望远镜的构件12.9.5 盘根及密封环12.9.6 音响设备和乐器参考文献
你碳纤维的碳字写成炭,差距很大的哦
高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。下文是我为大家整理的有关高分子材料毕业论文的范文,欢迎大家阅读参考! 有关高分子材料毕业论文篇1 浅析高分子材料成型加工技术. 【摘要】高分子材料成型加工技术在工业上取得的飞速发展,介绍高分子材料成型加工技术的发展情况,探讨其创新研究,并详细阐述高分子材料成型加工技术的发展趋势。 【关键词】高分子材料;成型加工;技术 近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。 一、高分子材料成型加工技术发展概况 近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。 在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为5.8%,2000年增加至1.8亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。 据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。 目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。 二、现今高分子材料成型加工技术的创新研究 (一)聚合物动态反应加工技术及设备 聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。 目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。 该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。 (二)以动态反应加工设备为基础的新材料制备新技术 1.信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。 2.聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。 3.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。 三、高分子材料成型加工技术的发展趋势 近年来,各个新型成型装备国家工程研究中心在出色完成了国家级火炬计划预备项目和国家“八五”、“九五”重点科技计划(攻关)等项目同时,非常注重科技成果转化与产业化,完成产业化工程配套项目20多项,创办了广州华新科机械有限公司和北京华新科塑料机械有限公司,使其有自主知识产权的新技术与装备在国内外推广应用。塑料电磁动态塑化挤出设备已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台(套)。销售额超过1.5亿元,还有部分新设备销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。 例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新设备的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新设备年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。 综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。 参考文献: [1]Chris Rauwendaal,Polymer Extrusion,Carl Hanser Verlag,Munich/FkG,l999. [2]瞿金平,聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005 427435. [3]瞿金平,聚合物电磁动态塑化挤出方法及设备[J].中国专利9O101034.0,I990;美国专利5217302,1993. 有关高分子材料毕业论文篇2 浅论高分子材料的发展前景 摘要:随着生产和科技的发展,以及人们对知识的追求,对高分子材料的性能提出了各种各样新的要求。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。本文主要分析了高分子材料的发展前景和发展趋势。 关键词:高分子材料;发展;前景 一 高分子材料的发展现状与趋势 高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。从高分子材料与国民经济、高技术和现代生活密切相关的角度说, 人类已进人了高分子时代。高分子材料工业不仅要为工农业生产和人们的衣食住行用等不断提供许多量大面广、日新月异的新产品和新材料又要为发展高技术提供更多更有效的高性能结构材料和功能性材料。 鉴于此, 我国高分子材料应在进一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上重点发展五个方向:工程塑料,复合材料,液晶高分子材料,高分子分离材料,生物医用高分子材料。近年来,随着电气、电子、信息、汽车、航空、航天、海洋开发等尖端技术领域的发展和为了适应这一发展的需要并健进其进? 步的发展, 高分子材料在不断向高功能化高性能化转变方面日趋活跃,并取得了重大突破。 二 高分子材料各领域的应用 1高分子材料在机械工业中的应用 高分子材料在机械工业中的应用越来越广泛, “ 以塑代钢” ,“ 塑代铁” 成为目前材料科学研究的热门和重点。这类研究拓宽了材料选用范围,使机械产品从传统的安全笨重、高消耗向安全轻便、耐用和经济转变。如聚氨酉旨弹性体,聚氨醋弹性体的耐磨性尤为突出, 在某些有机溶剂 如煤油、砂浆混合液中, 其磨耗低于其它材料。聚氨醋弹性体可制成浮选机叶轮、盖板, 广泛使用在工况条件为磨粒磨损的浮选机械上。又如聚甲醛材料聚甲醛具有突出的耐磨性, 对金属的同比磨耗量比尼龙小, 用聚四氟乙烯、机油、二硫化钥、化学润滑等改性, 其摩擦系数和磨耗量更小, 由于其良好的机械性能和耐磨性, 聚甲醛大量用于制造各种齿轮、轴承、凸轮、螺母、各种泵体以及导轨等机械设备的结构零部件。在汽车行业大量代替锌、铜、铝等有色金属, 还能取代铸铁和钢冲压件。 2 高分子材料在燃料电池中的应用 高分子电解质膜的厚度会对电池性能产生很大的影响, 减薄膜的厚度可大幅度降低电池内阻, 获得大的功率输出。全氟磺酸质子交换 膜的大分子主链骨架结构有很好的机械强度和化学耐久性, 氟素化合物具有僧水特性, 水容易排出, 但是电池运转时保水率降低, 又要影响电解质膜的导电性, 所以要对反应气体进行增湿处理。高分子电解质膜的加湿技术, 保证了膜的优良导电性, 也带来电池尺寸变大增大左右、系统复杂化以及低温环境下水的管理等问题。现在一批新的高分子材料如增强型全氟磺酸型高分子质子交换膜耐高温芳杂环磺酸基高分子电解质膜纳米级碳纤维材料新的一导电高分子材料等等, 已经得到研究工作者的关注。 3 高分子材料在现代农业种子处理中的应用及发展 高分子材料在现代农业种子处理中的应用:新一代种子化学处理一般可分为物理包裹利用干型和湿形高分子成膜剂, 包裹种子。种子表面包膜利用高分子成膜剂将农用药物和其他成分涂膜在种子表面。种子物理造粒将种子和其他高分子材料混和造粒, 以改善种子外观和形状, 便于机械播种。高分子材料在现代农业种子处理中研究开发进展:种子处理用高分子材料已经从石油型高分子材料逐步向天然型以及功能型高分子材料的方向发展。其中较为常见和重要的高分子材料类型包括多糖类天然高分子材料, 具有在低温情况下维持较好膜性能的高分子材料, 高吸水性材料, 温敏材料, 以及综合利用天然生物资源开发的天然高分子材料等, 其中利用可持续生物资源并发的种衣剂尤为引人关注。 4 高分子材料在智能隐身技术中的应用 智能隐身材料是伴随着智能材料的发展和装备隐身需求而发展起来的一种功能材料,它是一种对外界信号具有感知功能、信息处理功能。自动调节自身电磁特性功能、自我指令并对信号作出最佳响应功能的材料/系统。区别于传统的外加式隐身和内在式雷达波隐身思路设计,为隐身材料的发展和设计提供了崭新的思路,是隐身技术发展的必然趋势 ,高分子聚合物材料以其可在微观体系即分子水平上对材料进行设计、通过化学键、氢键等组装而成具有多种智能特性而成为智能隐身领域的一个重要发展方向。 三 高分子材料的发展前景 1高性能化 进一步提高耐高温,耐磨性,耐老化,耐腐蚀性及高的机械强度等方面是高分子材料发展的重要方向,这对于航空、航天、电子信息技术、汽车工业、家用电器领域都有极其重要的作用。高分子材料高性能化的发展趋势主要有创造新的高分子聚合物,通过改变催化剂和催化体系,合成工艺及共聚,共混及交联等对高分子进行改性,通过新的加工方法改变聚合物的聚集态结构,通过微观复合方法,对高分子材料进行改性。 2高功能化 功能高分子材料是材料领域最具活力的新领域,目前已研究出了各种各样新功能的高分子材料,如可以像金属一样导热导电的高聚物,能吸收自重几千倍的高吸水性树脂,可以作为人造器官的医用高分子材料等。鉴于以上发展,高分子吸水性材料、光致抗蚀性材料、高分子分离膜、高分子催化剂等都是功能高分子的研究方向。 3复合化 复合材料可克服单一材料的缺点和不足,发挥不同材料的优点,扩大高分子材料的应用范围,提高经济效益。高性能的结构复合材料是新材料革命的一个重要方向,目前主要用于航空航天、造船、海洋工程等方面,今后复合材料的研究方向主要有高性能、高模量的纤维增强材料的研究与开发,合成具有高强度,优良成型加工性能和优良耐热性的基体树脂,界面性能,粘结性能的提高及评价技术的改进等方面。 4智能化 高分子材料的智能化是一项具有挑战性的重大课题,智能材料是使材料本身带有生物所具有的高级智能,例如预知预告性,自我诊断,自我修复,自我识别能力等特性,对环境的变化可以做出合乎要求的解答;根根据人体的状态,控制和调节药剂释放的微胶囊材料,根据生物体生长或愈合的情况或继续生长或发生分解的人造血管人工骨等医用材料。由功能材料到智能材料是材料科学的又一次飞跃,它是新材料,分子原子级工程技术、生物技术和人 工智能诸多学科相互融合的一个产物。 5绿色化 虽然高分子材料对我们的日常生活起了很大的促进作用,但是高分子材料带来的污染我们仍然不能小视。那些从生产到使用能节约能源与资源,废弃物排放少,对环境污染小,又能循环利用的高分子材料备受关注,即要求高分子材料生产的绿色化。主要有以下几个研究方向,开发原子经济的聚合反应,选用无毒无害的原料,利用可再生资源合成高分子材料,高分子材料的再循环利用。 四 结束语 高分子材料为我国的经济建设做出了重要的贡献,我国已建立了较完善的高分子材料的研究、开发和生产体系,我国虽然在高分在材料的开发和综合利用方面起步较晚,但目前来看也取得了不错的进步,我们应提高其整体技术水平,致力于创新的高分在聚合反应和方法,开发出多种绿色功能材料和智能材料,以提高人类的生活质量,并满足各项工业和新技术的需求。 参考文献: [1]金关泰.《高分子化学的理论和应用》,中国石化出版社,1997 [2]李善君 纪才圭等.《高分子光化学原理及应用》复旦大学出版社2003 6. [3]李克友, 张菊华, 向福如. 《高分子合成原理及工艺学》,科学出版社,1999 猜你喜欢: 1. 全国高分子材料学术论文报告 2. 全国高分子材料学术论文 3. 全国高分子材料学术论文 4. 全国高分子材料学术论文报告 5. 关于材料学方面论文
搜一下:谁推荐点碳纤维方面的参考文献
营销策略论文参考文献
无论是在学校还是在社会中,大家对论文都再熟悉不过了吧,论文是探讨问题进行学术研究的一种手段。一篇什么样的论文才能称为优秀论文呢?下面是我为大家整理的营销策略论文参考文献,仅供参考,大家一起来看看吧。
[1]营销策略论文参考文献[1](美)菲利普·科特勒、凯文·莱恩·凯勒.营销管理.[M].上海:格致出版社,2009.
[2](美)菲利普·科特勒、加里·阿姆斯特朗...市场营销原理.[M].上海.中国人民大学出版社,2010.
[3](美)杰罗姆麦卡锡.市场营销学基础.[M].北京:中国人民大学出版社.
[4]美)迈克尔·波特.竞争战略.[M].北京:华夏出版社,2005.
[5](美)彼得·德鲁克.管理的实践.[M].北京:机械工业出版社,2009.
[6]余明阳.市场营销战略.[M].北京:清华大学出版社、北京交通大学出版社,2009.
[7]李东红编.营销战略.[M].北京:首都经济贸易大学出版社.2010.
[8](美)拉里·博西迪.拉姆·查兰.管理的实践.[M].北京:中信出版社,2005.
[9]厉以宁.转型发展理论[J].经济研究参考,1997( 45).
[10]张国华.主动转型发展,增创领先优势[J].求是,2010(12).
[11]Robert. F. Lauterbon.4P retirement, 4C debut [J].Advertising Age,1990(5).
[12]李幼林.金桥开发区转型发展的几点思考[J].浦东开发,2011(02).
[13]黄国平、刘思弘.创新驱动转型制造迈向智造一上海金桥出口加工区转型发展透析[J]浦东开发,2011(06).
[14]南京市开发区协调管理委员会.开发区转型发展战略研究[M].南京:南京大学出版社,2010.
[15]广州经济技术开发区管委会.加快实施双提升战略、促进开发区转型升级[J].港口经济,2011(02).
[16]武非平.园区经济转型发展的对策研究[J].科技创新与生产力.2011(03).
[17]Ambler Tim, Marketing and the Bottom Line [J].Financial Times,2000.
[18]赵志涛、邹可钦.基于资源和能力的战略营销优势研究[J].企业研究,2006 (09).
[19]杨宝珍.企业市场营销战略创新[J].企业经济,2011(05).
[20]Kotler Philip. Marketing Management [M].Prentice Ha11,2003(11).
[21]Keefe Lisa M. What is the meaning of marketing [N].Marketing News,2004
[22]Clark Bruce H. Marketing Performance Measures History and Interrelationships [J].Journalof Marketing Management, 1999
[23]杨勇、束军意.市场营销:理论、案例与实训[M].北京:中国人民大学出版社,2011.
[24]赵杰英.谈谈4Ps, 4Cs, 4Rs房地产营销体系[J]商场现代化.2006(48).
[25]杜伟锦、章斌、张凤霞.市场营销策略的比较研究[N].电子科技大学学报.2004-6 (3).
[26]冯章献、王士君、张颖.中心城市极化背景下开发区功能转型与结构优化[J].城市发展研究,2010(01).
[27](英)格雷厄姆·胡利、约翰·桑德斯、奈杰尔·皮尔西[M].营销战略与竞争定位.北京:中国人民大学出版社,2007.
[28]卢新海.开发区发展与土地利用[M].北京:中国财经经济出版社,2005. [29}傅强.依托重大项目推动转型发展[J].科技与出版.2011.
1.李业.品牌管理.广东高等教育出版社,2004
2.年小山.品牌学.清华大学出版社,2003
3.让.鲍得里亚.消费社会.[M]南京大学出版社,2001
4.唐振华.符号学与跨文化交际[J].深圳大学出版社,1996
5.[美]杰格迪什N谢斯.消费者行为学管理视角[M].机械工业出版社,2004
6.王宁.消费社会学.社会科学文献出版社,2001
7.尹世杰.加强对消费文化的研究.光明日报,1995-4-30
[1].刘子安,中国市场营销,对外经济贸易大学出版社,2016年3月第一版,p105-p125.
[2].(美)菲利普·科特勒,营销管理,中国人民大学出版社,2016年7月第十版.
[3].凯文,战略品牌管理,中国人民大学出版社,1998年,p205-p253.
[4].(英)史密斯等著,方海萍等译,市场营销传播方法与技巧,电子工业出版社,2016年,p134-p168.
[5].李蔚,营销策划,中国经济出版社,2002016年,p56-p90.
[6].汪涛,广告管理,武汉大学出版社,2016年,p100-p115.
[7].胡成中,企业文化与品牌战略,经济日报出版社,2016年,p254-p280.
[8].新加坡唐拉尔著,阳水荣等译,高科技品牌管理:创建新经济时代强势品牌,机械工业出版社,2016年,p360-p380.
[9].凌志军,联想风云,中信出版社,2016年,p148-p160.
[10].乔.吉拉德,戴尔-突破市场的销售细节直销,哈尔滨出版社,2016年,p56-p62.
[11].刘红强,戴尔营销,经济科学出版,2016年,p39-p45.
[12].赵波,联想:公正与效率的博弈,销售与市场杂志XX第8期.
[13].董文胜王缨杨欣,联想从裁员到新文化运动中外管理,2016年5期.
[14].黄景清,10个令你拍案叫绝的营销案例,中华工商联合出版社,XX.
[15].孙在国,体验经济与企业营销战略的调整,经济经纬,22016年第1期.
[16].泽丝曼尔,服务营销,机械工业出版社,2016年,p150-p163.
[17].business and the environment,harvard business review,XX.
[1]左仁淑 . 关系营销 : 服务营销的理论基础 . 四川大学学报 , 2004,(4): 19-23
[2]科特勒, 洪瑞云, 梁绍明等. 市场营销管理(亚洲版). 第 3 版. 北京:中国人民大学出版社, 2004, 15-35
[3]Heide J B, George J. Do Norms Matter in Marketing Relationships. Journal of Marketing, 1992, 56(2): 32-44
[4]陈绍福, 徐宝瑞. 现代医院创新经营. 中国医院管理, 2001, 21(11):60-62
[5]张英. 现代医院应树立的十大营销观念. 中国卫生产业, 2004, (2):76-78
[6]贾守营 . 金牌医院商务策划 . 广州 : 华南理工大学出版社 , 2005,188-193
[7]科特勒, 洪瑞云, 梁绍明等. 市场营销管理(亚洲版). 第 2 版. 北京:中国人民大学出版社, 2001, 55-56
[8]Frank H, Andreas H, Robert E M. Gaining competitive advantagethrough customer value oriented management. Journal of Consumer Marketing, 2005, 22(6): 23-24
[9]丁桂兰. 医疗机构营销. 北京: 清华大学出版社, 2005, 107-113
[10]Christian Gro nroos. Strategic Management and Marketing in the Service Sector. Cambridge. Mass: Marketing Science Institute, 1983,85-88
[11]Parasuraman A, Valarie A Zeithaml, Leonard L Berry. SERVQUAL: A Multiple-Item Scale for Measuring Customer Perceptions of Service Quality, Cambridge. Mass: Marketing Science Institute, 1986, 30-32
[12]Liljander Veronica. Comparison Standards in Perceived Service Quality. Helsingfors: Svenska Handelsho gskolan, 1995
[13]Strandvik, Tore. Tolerance Zones In Perceived Service Quality. Helsingfors: Svenska Handelsh gskolan, 1994
[14]菲利普 科特勒 . 营销管理 . 第九版 . 上海 : 上海人民出版社 ,217-218
[15]Gronroos C. Internal Marketing-Theory and Practice, in American1999 Marketing Association Services Marketing ConferenceProceedings, 1981, 41-47
[1][美]沃伦.基根.全球营销管理[M].北京:清华大学出版社,1997年版.
[2][美]菲力浦.科特勒.市场营销管理[M]..北京:中国人民大学出版社,996年版.
[3]屈云波.品牌营销[M]..北京:.企业管理出版社,1996年版.
[4]李弘,董大海.市场营销[M].大连:大工出版社,.2000年版.
[5]京华企业咨询公司(编).品牌巨匠[M].北京:今日中国出版社,1996年版.
[6]汤正如.市场营销学教学[M]..沈阳:辽宁大学出版社,1993年版.
[7]京华企业咨询公司(编).品牌巨匠[M].北京:今日中国出版社,1996年版.
[8].朱方明.品牌促销[M].北京:中国经济出版社,1998年版.
[9]吴宪和.营销形象策划[M].上海:上海财经大学出版社,1998年版.
[10]晃钢令.营销战略策划[M].上海:上海财经大学出版社,1998年版.
[11]朱方明.品牌促销[M].北京:中国经济出版社,1998年版.
[12]陈志.中国民营企业品牌战略[J].当代经理人(中旬刊),2006,(21).
[13]木梓.以品牌战略推动企业发展[J].信息网络,2007,(3).
[14]刘红霞.我国企业品牌战略问题研究[J].江西金融职工大学学报,2007,(1).
[15]刘新民.我国品牌战略存在的问题与对策[J].郑州航空工业管理学院学报,2005,(4).
[16]胡号寰,钟兆青.中国企业实施品牌战略的`思考[J].长江大学学报(社会科学版),2005,(6).
[17]董伟达.品牌战略与企业发展的关系[J].科技与管理,2005,(6).
[18]于法领.关于品牌战略[J].北方经济,2005,(10).
[19]李水平.浅谈企业的品牌战略[J].湖南财经高等专科学校学报,2004,(3).
[20]姬雄华.企业品牌战略选择研究[J]. 延安大学学报(社会科学版),2001,(3).
[21]蒋海岩.实施品牌战略 创企业名牌[J].山东行政学院.山东省经济管理干部学院学报,2001,(2).
[22]赵小红.试论品牌战略的实施要点[J].科技情报开发与经济,2001,(6).
[23]Arnold,D. The Handbook of Brand Management, FT/Pitman Publishing, London.
[24]Dechernatony, L. and Mcdonald, M.H.B. Creating Powerful Brands, Butterworth Heinemann, Oxford. 1992
[25]Hankinson, G. and Cowking, P Branding in Action, McGraw-Hill,London. 1993
[26]Kapferer, J. H Strategic Brand Management, Kogan Page,London.
[1]左仁淑 . 关系营销 : 服务营销的理论基础 . 四川大学学报
[2]科特勒, 洪瑞云, 梁绍明等. 市场营销管理(亚洲版). 第 3 版. 北京:中国人民大学出版社
[3]Heide J B, George J. Do Norms Matter in Marketing Relationships. Journal of Marketing
[4]陈绍福, 徐宝瑞. 现代医院创新经营. 中国医院管理
[5]张英. 现代医院应树立的十大营销观念. 中国卫生产业
[6]贾守营 . 金牌医院商务策划 . 广州 : 华南理工大学出版社
[7]科特勒, 洪瑞云, 梁绍明等. 市场营销管理(亚洲版). 第 2 版. 北京:中国人民大学出版社
[8]Frank H, Andreas H, Robert E M. Gaining competitive advantagethrough customer value oriented management. Journal of Consumer Marketing
[9]丁桂兰. 医疗机构营销. 北京: 清华大学出版社
[10]Christian Gro nroos. Strategic Management and Marketing in the Service Sector. Cambridge. Mass: Marketing Science Institute
[11]Parasuraman A, Valarie A Zeithaml, Leonard L Berry. SERVQUAL: A Multiple-Item Scale for Measuring Customer Perceptions of Service Quality, Cambridge. Mass: Marketing Science Institute
[12]Liljander Veronica. Comparison Standards in Perceived Service Quality. Helsingfors: Svenska Handelsho gskolan
[13]Strandvik, Tore. Tolerance Zones In Perceived Service Quality. Helsingfors: Svenska Handelsh gskolan
[14]菲利普 · 科特勒 . 营销管理 . 第九版 . 上海 : 上海人民出版社
[15]Gronroos C. Internal Marketing-Theory and Practice, in American1999 Marketing Association Services Marketing ConferenceProceedings
[16]周成红,肖锦诚 . 谈医疗服务市场特征及营销策略 . 卫生软科学
[17]王恕, 陈玉文. 顾客关系管理在医院营销中的应用. 国际医药卫生导报
[18]张英. 品牌战略现代医院营销利器. 国际医药卫生导报
[19]张洪才. 医院差异化营销的探讨. 卫生经济研究
[20]朱恒鑫. 医院经营策略医院一对一营销学. 北京: 清华大学出版社
[21]黄国英, 张公惠. 优质服务与三级医院服务营销策略的关系. 中国医院管理
[22]马淑燕. 现代医院营销战略的实践与思考. 中国卫生经济
[23]迈克·波特. 陈小悦译. 竞争战略. 北京: 华夏出版社
[24]邱巍, 代维昭. 上海瑞金一哈佛心脏中心市场定位和营销策略. 上海交通大学学报(医学版)
[25]张英 . 医疗市场细分与目标医疗市场选择 . 中华医院管理杂志
[26]菲利普·科特勒,托马斯·海斯,保罗·N·布卢姆等著 . 俞利军译. 专业服务营销. 北京: 中信出版社
[27]佩恩. 郑薇译. 服务营销. 2 月版. 北京: 中信出版社
[28]邢永杰,吕爱芝 . 关于医院服务营销的分析 . 中华医院管理杂志
[29]易世志. 浅析波士顿矩阵法的局限. 商业研究
[30]付凤环,尹世全 . 关系营销理论对公立专科医院营销管理的启示 .中国肿瘤
[1]余波.碳纤维生产发展及市场前景.上海化工.2007,9(32):46~49[2]Chanrles Q.Yang,John R.Simms,Infrared spectroscopy studies of the petroleum pitch carbon fiber—I. The raw materials, the stabilization, and carbonization processes[J].carbon,1993.31(3),451-459.[3]王太炎,碳纤维工业发展态势与我国沥青基碳纤维现状[J].燃料与化工,1999,30(6):259-305.[4]张宝宏,沈左松,井厚良,碳纤维作为铅酸蓄电池正极添加剂,电源技术2004(1),29-31
高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。下文是我为大家整理的有关高分子材料毕业论文的范文,欢迎大家阅读参考! 有关高分子材料毕业论文篇1 浅析高分子材料成型加工技术. 【摘要】高分子材料成型加工技术在工业上取得的飞速发展,介绍高分子材料成型加工技术的发展情况,探讨其创新研究,并详细阐述高分子材料成型加工技术的发展趋势。 【关键词】高分子材料;成型加工;技术 近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。 一、高分子材料成型加工技术发展概况 近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。 在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为5.8%,2000年增加至1.8亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。 据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。 目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。 二、现今高分子材料成型加工技术的创新研究 (一)聚合物动态反应加工技术及设备 聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。 目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。 该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。 (二)以动态反应加工设备为基础的新材料制备新技术 1.信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。 2.聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。 3.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。 三、高分子材料成型加工技术的发展趋势 近年来,各个新型成型装备国家工程研究中心在出色完成了国家级火炬计划预备项目和国家“八五”、“九五”重点科技计划(攻关)等项目同时,非常注重科技成果转化与产业化,完成产业化工程配套项目20多项,创办了广州华新科机械有限公司和北京华新科塑料机械有限公司,使其有自主知识产权的新技术与装备在国内外推广应用。塑料电磁动态塑化挤出设备已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台(套)。销售额超过1.5亿元,还有部分新设备销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。 例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新设备的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新设备年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。 综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。 参考文献: [1]Chris Rauwendaal,Polymer Extrusion,Carl Hanser Verlag,Munich/FkG,l999. [2]瞿金平,聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005 427435. [3]瞿金平,聚合物电磁动态塑化挤出方法及设备[J].中国专利9O101034.0,I990;美国专利5217302,1993. 有关高分子材料毕业论文篇2 浅论高分子材料的发展前景 摘要:随着生产和科技的发展,以及人们对知识的追求,对高分子材料的性能提出了各种各样新的要求。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。本文主要分析了高分子材料的发展前景和发展趋势。 关键词:高分子材料;发展;前景 一 高分子材料的发展现状与趋势 高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。从高分子材料与国民经济、高技术和现代生活密切相关的角度说, 人类已进人了高分子时代。高分子材料工业不仅要为工农业生产和人们的衣食住行用等不断提供许多量大面广、日新月异的新产品和新材料又要为发展高技术提供更多更有效的高性能结构材料和功能性材料。 鉴于此, 我国高分子材料应在进一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上重点发展五个方向:工程塑料,复合材料,液晶高分子材料,高分子分离材料,生物医用高分子材料。近年来,随着电气、电子、信息、汽车、航空、航天、海洋开发等尖端技术领域的发展和为了适应这一发展的需要并健进其进? 步的发展, 高分子材料在不断向高功能化高性能化转变方面日趋活跃,并取得了重大突破。 二 高分子材料各领域的应用 1高分子材料在机械工业中的应用 高分子材料在机械工业中的应用越来越广泛, “ 以塑代钢” ,“ 塑代铁” 成为目前材料科学研究的热门和重点。这类研究拓宽了材料选用范围,使机械产品从传统的安全笨重、高消耗向安全轻便、耐用和经济转变。如聚氨酉旨弹性体,聚氨醋弹性体的耐磨性尤为突出, 在某些有机溶剂 如煤油、砂浆混合液中, 其磨耗低于其它材料。聚氨醋弹性体可制成浮选机叶轮、盖板, 广泛使用在工况条件为磨粒磨损的浮选机械上。又如聚甲醛材料聚甲醛具有突出的耐磨性, 对金属的同比磨耗量比尼龙小, 用聚四氟乙烯、机油、二硫化钥、化学润滑等改性, 其摩擦系数和磨耗量更小, 由于其良好的机械性能和耐磨性, 聚甲醛大量用于制造各种齿轮、轴承、凸轮、螺母、各种泵体以及导轨等机械设备的结构零部件。在汽车行业大量代替锌、铜、铝等有色金属, 还能取代铸铁和钢冲压件。 2 高分子材料在燃料电池中的应用 高分子电解质膜的厚度会对电池性能产生很大的影响, 减薄膜的厚度可大幅度降低电池内阻, 获得大的功率输出。全氟磺酸质子交换 膜的大分子主链骨架结构有很好的机械强度和化学耐久性, 氟素化合物具有僧水特性, 水容易排出, 但是电池运转时保水率降低, 又要影响电解质膜的导电性, 所以要对反应气体进行增湿处理。高分子电解质膜的加湿技术, 保证了膜的优良导电性, 也带来电池尺寸变大增大左右、系统复杂化以及低温环境下水的管理等问题。现在一批新的高分子材料如增强型全氟磺酸型高分子质子交换膜耐高温芳杂环磺酸基高分子电解质膜纳米级碳纤维材料新的一导电高分子材料等等, 已经得到研究工作者的关注。 3 高分子材料在现代农业种子处理中的应用及发展 高分子材料在现代农业种子处理中的应用:新一代种子化学处理一般可分为物理包裹利用干型和湿形高分子成膜剂, 包裹种子。种子表面包膜利用高分子成膜剂将农用药物和其他成分涂膜在种子表面。种子物理造粒将种子和其他高分子材料混和造粒, 以改善种子外观和形状, 便于机械播种。高分子材料在现代农业种子处理中研究开发进展:种子处理用高分子材料已经从石油型高分子材料逐步向天然型以及功能型高分子材料的方向发展。其中较为常见和重要的高分子材料类型包括多糖类天然高分子材料, 具有在低温情况下维持较好膜性能的高分子材料, 高吸水性材料, 温敏材料, 以及综合利用天然生物资源开发的天然高分子材料等, 其中利用可持续生物资源并发的种衣剂尤为引人关注。 4 高分子材料在智能隐身技术中的应用 智能隐身材料是伴随着智能材料的发展和装备隐身需求而发展起来的一种功能材料,它是一种对外界信号具有感知功能、信息处理功能。自动调节自身电磁特性功能、自我指令并对信号作出最佳响应功能的材料/系统。区别于传统的外加式隐身和内在式雷达波隐身思路设计,为隐身材料的发展和设计提供了崭新的思路,是隐身技术发展的必然趋势 ,高分子聚合物材料以其可在微观体系即分子水平上对材料进行设计、通过化学键、氢键等组装而成具有多种智能特性而成为智能隐身领域的一个重要发展方向。 三 高分子材料的发展前景 1高性能化 进一步提高耐高温,耐磨性,耐老化,耐腐蚀性及高的机械强度等方面是高分子材料发展的重要方向,这对于航空、航天、电子信息技术、汽车工业、家用电器领域都有极其重要的作用。高分子材料高性能化的发展趋势主要有创造新的高分子聚合物,通过改变催化剂和催化体系,合成工艺及共聚,共混及交联等对高分子进行改性,通过新的加工方法改变聚合物的聚集态结构,通过微观复合方法,对高分子材料进行改性。 2高功能化 功能高分子材料是材料领域最具活力的新领域,目前已研究出了各种各样新功能的高分子材料,如可以像金属一样导热导电的高聚物,能吸收自重几千倍的高吸水性树脂,可以作为人造器官的医用高分子材料等。鉴于以上发展,高分子吸水性材料、光致抗蚀性材料、高分子分离膜、高分子催化剂等都是功能高分子的研究方向。 3复合化 复合材料可克服单一材料的缺点和不足,发挥不同材料的优点,扩大高分子材料的应用范围,提高经济效益。高性能的结构复合材料是新材料革命的一个重要方向,目前主要用于航空航天、造船、海洋工程等方面,今后复合材料的研究方向主要有高性能、高模量的纤维增强材料的研究与开发,合成具有高强度,优良成型加工性能和优良耐热性的基体树脂,界面性能,粘结性能的提高及评价技术的改进等方面。 4智能化 高分子材料的智能化是一项具有挑战性的重大课题,智能材料是使材料本身带有生物所具有的高级智能,例如预知预告性,自我诊断,自我修复,自我识别能力等特性,对环境的变化可以做出合乎要求的解答;根根据人体的状态,控制和调节药剂释放的微胶囊材料,根据生物体生长或愈合的情况或继续生长或发生分解的人造血管人工骨等医用材料。由功能材料到智能材料是材料科学的又一次飞跃,它是新材料,分子原子级工程技术、生物技术和人 工智能诸多学科相互融合的一个产物。 5绿色化 虽然高分子材料对我们的日常生活起了很大的促进作用,但是高分子材料带来的污染我们仍然不能小视。那些从生产到使用能节约能源与资源,废弃物排放少,对环境污染小,又能循环利用的高分子材料备受关注,即要求高分子材料生产的绿色化。主要有以下几个研究方向,开发原子经济的聚合反应,选用无毒无害的原料,利用可再生资源合成高分子材料,高分子材料的再循环利用。 四 结束语 高分子材料为我国的经济建设做出了重要的贡献,我国已建立了较完善的高分子材料的研究、开发和生产体系,我国虽然在高分在材料的开发和综合利用方面起步较晚,但目前来看也取得了不错的进步,我们应提高其整体技术水平,致力于创新的高分在聚合反应和方法,开发出多种绿色功能材料和智能材料,以提高人类的生活质量,并满足各项工业和新技术的需求。 参考文献: [1]金关泰.《高分子化学的理论和应用》,中国石化出版社,1997 [2]李善君 纪才圭等.《高分子光化学原理及应用》复旦大学出版社2003 6. [3]李克友, 张菊华, 向福如. 《高分子合成原理及工艺学》,科学出版社,1999 猜你喜欢: 1. 全国高分子材料学术论文报告 2. 全国高分子材料学术论文 3. 全国高分子材料学术论文 4. 全国高分子材料学术论文报告 5. 关于材料学方面论文
1、纳米Fe_3O_4及Fe_3O_4-SrFe_(12)O_(19)吸波复合材料的制备及性能2、纳米Ag颗粒/In-3Ag复合焊料的微观组织演变3、基于宏微观分析的碳纤维增强高分子复合材料强度性能表征4、新型无卤膨胀阻燃聚丙烯的制备及阻燃性能5、热残余应力对内埋光纤光栅传感性能的影响6、独角仙鞘翅微结构及其纳米力学性能7、聚丙烯-钢纤维混杂高强混凝土高温性能研究8、复合材料层合板准静压损伤的数值模拟9、MgO/Li_2O(mol)及烧结温度对结合剂及cBN磨具性能的影响10、复合材料层合板临界屈曲载荷分散性研究11、Si、Mg含量对离心铸造原位颗粒增强Al-xSi-yMg复合材料的组织与耐磨性能的影响12、颗粒增强金属基复合材料涂层的制备及其特性与应用13、三维五向编织复合材料渐进损伤分析的数值方法14、纳米银/环化聚丙烯腈复合物的制备与结构表征15、功能化碳纳米管的制备及功能化碳纳米管/尼龙6复合纤维16、石墨烯/聚苯胺复合材料的电磁屏蔽性能17、二维编织C/SiC复合材料的非线性损伤本构模型与应用18、压电复合材料表面化学镀镍工艺及镀层性能19、微米级煅烧羟基磷灰石/壳聚糖复合膜的制备及性能20、纳米TiO_2颗粒弱界面增强复合材料宏观力学行为有限元模拟