初中物理与数学的论文
初中物理与数学的论文
物理学是研究物质运动最一般的规律、物质基本结构及其相互作用的科学,我整理了初中物理科学论文,有兴趣的亲可以来阅读一下!
物理教学:坚持科学本质
摘要:阐述在物理教学中必须坚持科学本质教育,而不能把物理教学当做是知识的简单灌输和应试技巧的专门传授;以及在教学实践中如何对学生进行潜移默化的科学教育,提高学生科学素养,使学生形成科学的价值观和态度,使之受益终身。
关键词:物理;坚持;科学本质;学生;受益终身
物理学是研究物质运动最一般的规律、物质基本结构及其相互作用的科学,[1]是自然科学的重要组成部分。发展至今,物理学科既有悠久的科学史,又有飞速跃进的现代高科技;既与日常生活紧密联系,又饱含辨证唯物的科学思想;既有严格求实的科学实验,又有严密准确的逻辑推理。简而言之,物理的本质是科学,物理教学理所当然是科学的教育和探索,包括科学理论和技术﹑科学方法和思维﹑科学文化和人文精神等多方面的价值教学,而绝不是知识的简单灌输和应试技巧的专门传授。这是物理教学的基本原则。
国际应用物理联合会曾对20世纪物理教育进行了深刻的反思:“如果所有的学生都要学物理,那么物理教育的主要目标应该放在大多数的未来公民的兴趣和需要上,而不是放在将进一步学习物理而成为科学家或工程师的少数精英分子身上。如果物理教育是为更多学生的全面发展服务的,那就应当重视物理学家的工作成果在社会上、技术上的应用;重视物理学的哲学和物理学的历史;重视蕴含于我们文化之中的物理学方法;重视物理学家这个专业群体的特点,如支持、贡献社会的方式等。”[2]笔者在物理教学实践中也深深体会到:在课堂教学中立足于物理的科学本质教育,进行潜移默化的科学渗透,对于培养学生正确的科学思维、研究方法以及人生观、世界观的确立有着极其重要的作用;而学生正确的方法、信念、准则的形成和强化,又可以转化为学生学习物理的强大内驱力和坚实基础,进一步激发学生学习物理的兴趣和积极性,树立投身科学探究的伟大抱负。
一、以宝贵的科学精神感染人
著名物理学家钱三强先生在《物理学史》的序言中写到:“物理学发
展史是一块蕴藏着巨大精神财富的宝地,这块宝地很值得我们去开垦,这些精神财富很值得我们去发掘。”[3]在科学探索的进程中,并不总有认可、赞美,而是要能够承受来自舆论、宗教、传统观念各方面的压力。因此,伟大的科学家是有献身精神的。今天我们在赞叹伽里略的伟大,学习他的诸多理论时,更应该让学生感知伽里略用生命自由捍卫真理的勇气,理解到科学成功背后的艰辛,培养他们坚持真理的可贵信念和执着精神。
今天我们在广泛的应用电力,那么在学习“电磁感应”时,教师应该不失时机的讲述法拉第是怎样花费了十年的心血,经历了无数次的实验、失败、再实验、再失败的坎坷历程,终于首先发现了“电磁感应” 现象,开辟了人类应用电力的新纪元。从而让学生深刻体会到物理前辈不断求新探索,勇于自我反思,不屈不挠的惊人毅力,培养他们尊重失败、升华失败的科学态度和“从荆棘中收获科学成果”的坚强意志。
在物理学的发展过程中,科学是铁面无私的,科学研究是认真严谨的,但科学的发展和传续是温馨感人的,处处闪耀着“前人栽树,后人乘凉”的人性光环和崇高精神。正如牛顿所言:“如果说我比别人看的远些,那是因为我站在巨人的肩膀上”。在教学“开普勒三大定律”时,开普勒的伟大成就固然令人赞叹,但我们也应该让学生了解这一伟大成就背后的重要奠基人——第谷。第谷几十年如一日的持续观测,孜孜不倦的提高观测的精确性,实事求是的真实记录,最后在生命弥留之际,毫无保留的将全部珍贵的一手资料赠与开普勒。从第谷身上令学生深受感动的不仅是他求真务实的科学态度,更是他甘为人梯,默默奉献的伟大精神。
二、以辩证的科学思想启迪人
物理学科蕴含丰富的辨证唯物主义思想,在物理教学中渗透辩证的科学思想,可以潜移默化的启迪学生并使之:逐步认识到物理学理论的发展历程是动态发展的变化过程;切实体验到科学理论的不断进化、完善;深刻领悟到没有任何一个物理学理论可以被看作是最终完满的,人们在一定条件下的物理学认识只能是近似的、相对的。从而促使他们养成独立思考的习惯,提高认识科学问题的敏锐性和辩证性,使他们的思想沉浸在好奇之中,永不闭塞怀疑的目光。
三、以创新的科学思维塑造人
“授人以鱼,不如授人与渔”,正如著名数学家波利亚所说:“教师在课堂上讲什么当然重要,但学生想的是什么更为重要。思想应当是在学生的头脑中产生出来,教师要做一名真正的优秀的思想助产婆。”因此,塑造具有良好的思维习惯和创新科学思想的当代高中生是中学物理教育的核心价值。在教学中,教师应做到:“确立一个理念——以学生发展为本;落实两个重点——培养学生的创新思维和实践能力;实现三个转变:(1)教师角色的转变——由单纯的知识传授转变为教学活动的指导者和组织者,(2)学生学习地位的转变——由学习的客体转变为学习的主人,(3)教学方式的转变——由教师的主导变为学生的自主合作探究。[4]
教师要为学生创设丰富多彩接近实际的情景,激发学生提出有一定数量和质量的问题,启发学生根据不同的条件、从不同的角度、用不同的方法,引发不同的思路,甚至采用相互对立的思路去解决同一个问题,鼓励学生根据一定的需要,灵活多变的组合相关因素,提出可能可行的设想,可以通过生生交流,师生讨论共同探讨设想是否可行,能否解决问题,在这基础上得出设想的答案,答案可以不是单一的,而是多样的,甚至是开放式的。这样的方法有助于培养学生的创新能力,特别是当学生学会设定虚拟条件,根据解决问题的需要提出有价值的新方法时,他们的创造性思维就会在科学的殿堂自由翱翔,创造性能力同时获得质的飞跃。
四、以严谨的科学实验锻炼人
物理学的形成与发展是以实验为基础的,作为一门实验科学,它源于实验,发展于实验,在实验中得到检验,验证,并上升为高层次的科学理论。在课堂教学中,充分发挥实验的作用,不仅可以激发学生的学习兴趣,培养学生的观察能力;而且在实验中,通过学生的手脑并用,获得观察能力、实验操作能力、数据处理能力等多方面的锻炼,使科学知识与生活实践紧密结合,让学生学以致用,养成学生严谨踏实的科学作风。
物理实验主要分为演示实验、分组实验和课外实验,在教学中要充分发挥各类实验的优势,找准实验的着力点,有的放矢进行设计操作。物理实践活动要着力发挥教师的主导作用,突出学生的主体地位,应充分相信学生,使学生主动参与,让学生独立设计实验,利用物理实验,使学生在不断的实践锻炼中获得综合能力的有效提升。
五、以非凡的科学成就鼓舞人
物理学在悠久的发展过程中,人才辈出,灿如星空,杰出的人才创造伟大的成就。我国古代许多的物理学家,对物理发展有过很大的贡献,不少研究成果长期居世界领先地位。如指南针的发明与应用,不仅在我国古代军事、生产、日常生活中起过重要作用,且对促进东西方文化的交流和世界的发展都卓有功绩。这充分体现了中华民族自古以来的非凡才华和智慧,值得我们每一位炎黄子孙为之感到骄傲和自豪。
随着科技的发展,社会的进步,物理在人类生活的各个领域发挥着越来越重要的作用。在物理教学中,有意识的展示我国当代科技发展成就:例如我国近代著名的力学家、火箭专家钱学森,对我国火箭导弹和航天事业的迅速发展作出了不朽的贡献,被称为“中国的导弹之父”。 如今 “神舟”系列火箭飞船的成功发射圆了中国人的飞天梦,我国成为世界上第三个独立掌握载人航天技术和能够独立开展空间科学试验的国家。又如最近我国大亚湾中微子实验国际合作组在北京宣布,大亚湾中微子实验发现了一种新的中微子振荡,并测量到其振荡几率。这一重要成果是对物质世界基本规律的一项新的认识,对中微子物理未来发展方向起到了决定性作用,并将有助于破解宇宙中的“反物质消失之谜”。[5] ……这一系列的科学成就介绍怎不让我们的学生心潮澎湃,深受鼓舞?民族自信,爱国之情,热爱科技之心怎不油然而生?
总之,物理作为一门重要的基础科学,科学内涵悠久深远,科学素材层出不穷。物理课堂教学中必须坚持科学本质教育,深度挖掘适合教学的“科学题材”, 有效调动学生的学习积极性,让物理课堂焕发科学活力,让我们的每一节物理课都闪耀科学之光,去感染,去鼓舞学生,让学生得到锻炼,获得启迪,促进自我塑造,从而不断提高学生的科学素养,使学生逐步形成科学的价值观和态度,并使之受益终身!
参考文献:
[1] 阎金铎﹑田世昆.中学物理教学概论[M]. 北京:高等教育出版社,1997:35.
[2] 汪明.课堂教学中物理文化教育价值刍议[J]. 物理教学,2011(12):39
[3] 郭奕玲,沈慧君.物理学史[M]. 北京:清华大学出版社,2005:1-2
[4] 徐全学.提高物理教师技能的几点建议[J]. 物理教学,2011(11):21.
[5] 金良快.我国发现新的中微子振荡 有助破解反物质消失之谜. 新华社,2012年03月09日
点击下页还有更多>>>初中物理科学论文
我进了初中数理化数学和物理的复赛,要求写论文,这两科各写什么题目?最好给篇范文,我是真不会写
牛顿第一定律的教学研究,在中学物理教学研究中早已不是一个新问题了.许多物理教育工作者对于这一定律的教学发表了自己颇有见地的教学见解,并且得到了满意的教学效果.
当我们在教学实践中运用这些教学策略时,我们发现,确实可以取得如同一些文献中所述的预期效果.然而,当我们设计一些新的情境让学生运用牛顿第一定律去解决问题时,令我们十分吃惊的是:学生对于牛顿第一定律的掌握程度却又非常之差.这使得我们困惑不解.为何对同一教学策略教学的结果的评价出现如此之大的偏差?是教师教的原因,还是学生学的原因,抑或两者兼而有之.这促使我们对牛顿第一定律的教学进行深层次的理性思考,进一步,我们从学生的认知心理上,对这一规律的教学进行了深入的研究.
1 通常牛顿第一定律的教学,一般是按教材编排顺序,先进行演示实验引出课题,然后通过讲解伽利略与亚里士多德的争论,消除“力是维持物体运动原因”的错误观念,进一步通过做斜面小车实验证明牛顿第一定律的正确性,最后让学生运用牛顿第一定律去解释日常生活中的现象,从而完成整个教学过程.
为了检验学生学习和掌握牛顿第一定律的情况,我们曾用这样一道题目来检测学生.题目如下.你坐在向前匀速直线运动的汽车里,将手中的钥匙竖直上抛,问当钥匙落下来时是落在手里,还是落在手后面.全班56名同学在试卷上皆答:落在手后面.问其原因,皆曰:汽车在走,而钥匙抛出后不再向前走了.
2 怎样更好地改进牛顿第一定律的教学效果,使牛顿第一定律的教学效果真正是实实在在意义上的令人满足.我们认为,囿于一般形式上的教学方法的改进已是隔靴搔痒,而必须深入到学生的认知结构中去考察学生产生错误认识的根源.
认知心理学的理论告诉我们,学生学习物理概念、规律时所形成的错误,常常是由于其头脑中的前科学概念的影响.
所谓前科学概念,是指儿童在学习物理课程以前的生活实际中,对各种物理现象和过程在头脑中反复建构所形成的系统的但并非科学的观念.比如牛顿第一定律就是如此.在物理教学中,那种认为只需要“正面”传授知识,学生就能接受,如果他们仍不理解,可以多讲几遍就能达到目的的想法,实践证明是过于天真了.因为在有些学生的经验中,早已有了与亚里士多德“力是维持物体运动原因“的理论类似的观念.这样,当他们学习了牛顿第一定律之后,就可能把定律纳入到自己原有的认知结构中,牛顿第一定律实际上成了“力是维持物体运动原因”的代名词.让他们解释用手推车、用脚踢球等一些不易暴露错误观念的生活实例时,他们也能解释得头头是道.但当解释用手抛钥匙、飞机扔炸弹的例子时,他们却又运用亚里士多德的理论去解释,其错误观念暴露无遗.这正是牛顿第一定律教学效果不佳的症结之所在.
初中物理力学论文1000字!!急啊!! 最好是初二的学生的思维写的!谢了
物理力学是力学的一个新分支,它从物质的微观结构及其运动规律出发,运用近代物理学、物理化学和量子化学等学科的成就,通过分析研究和数值计算,阐明介质和材料的宏观性质,并对介质和材料的宏观现象及其运动规律作出微观解释。主要包括静力学、动力学、流体力学、分析力学、运动学、固体力学、材料力学、复合材料力学、流变学、结构力学、弹性力学、塑性力学、爆炸力学、磁流体力学、空气动力学、理性力学、物理力学、天体力学、生物力学、计算力学
物理力学主要研究平衡现象,如气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡的研究等。对于这类问题,物理力学主要借助统计力学的方法。
物理力学对非平衡现象的研究包括四个方面:一是趋向于平衡的过程,如各种化学反应和弛豫现象的研究;二是偏离平衡状态较小的、稳定的非平衡过程,如物质的扩散、热传导、粘性以及热辐射等的研究;三是远离于衡态的问题,如开放系统中所遇到的各种能量耗散过程的研究;四是平衡和非平衡状态下所发生的突变过程,如相变等。解决这些问题要借助于非平衡统计力学和不可逆过程热力学理论。
物理力学的研究工作,目前主要集中三个方面:高温气体性质,研究气体在高温下的热力学平衡性质(包括状态方程)、输运性质、辐射性质以及与各种动力学过程有关的弛豫现象;稠密流体性质,主要研究高压气体和各种液体的热力学平衡性质(包括状态方程)、输运性质以及相变行为等;固体材料性质,利用微观理论研究材料的弹性、塑性、强度以及本构关系等。
物质的性质及其随状态参量变化规律的知识,无论对科学研究还是工程应用都极为重要,力学本身的发展就一直离不开物性和对物性的研究。
近代工程技术和尖端科学技术迅猛发展,特别需要深入研究各种宏观状态下物体内部原子、分子所处的微观状态和相互作用过程,从而认识宏观状态参量扩大后物体的宏观性质和变化规律。因此,物理力学的建立和发展,不但可直接为工程技术提供所需介质和材科的物性,也将为力学和其他学科的发展创造条件。
初中数学论文3000字
黄金分割
对于“黄金分割”大家应该都不陌生吧!
由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。
也许,0.618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,0.618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。
古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是0.618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.
有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则34.38°——55.62°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。
多去观察生活,你就会发现生活中奇妙的数学!
数字
中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。
公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。
印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。
阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。
印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。”
14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。
西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。
数学很有用
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
各门科学的数学化
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.
例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.
又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.
谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
已解决问题收藏 转载到QQ空间 有关数学文化方面的论文,3000字左右
200[ 标签:文化 论文,数学,论文 ] 语言性论文,可以是数学的历史,发展,以及数学与其他领域方面的关系和影响 匿名 回答:3 人气:11 解决时间:2008-11-17 19:53
满意答案数学的文化价值 一、数学是哲学思考的重要基础 数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。 (一)数学——-根源于实践 数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。 数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。 其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。 其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。 但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。 总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。 (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗? 事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。 数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。 有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。 就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。
初中物理论文咋写 有经验的还可以说说数学论文咋写 很感谢你八辈祖宗( ⊙ o ⊙ )啊!
初中有“物理论文”一说吗??
初中的你能对物理学提出见解??当然我没有攻击你的意思,只是觉得你问的问题很奇怪,帮你把问题顶起吧
上一篇:初中物理小论文150
下一篇:物理论文800字刚体