大黄蒽醌提取毕业论文
大黄蒽醌提取毕业论文
兄弟写论文呀?!
========================
中药成分提取超声技术的应用
中草药中所含的成分相当复杂,不仅含有有效成分,还含有无效成分。要提高中草药的治疗效果,必须把其有效成分提取出来。提取是直接关系到成品中有效成分含量及其内在质量、监床疗效、经济效益。
目前实际生产中提取中草药有效成分的常见方法有浸渍法(常温浸渍法、温浸法、煎煮法)、渗漉法、回流法等,提取时间长,提出率也低。随着现代科学技术的发展,超声技术已广泛地应用于工业、农业、医药卫生等领域。由于该方法所需设备简单、操作方便、提取时间短、提取率高、节能、节约药材、无需加热等优点,其在提取中草药成分方面的应用受到了越来越多的重视。本文综述超声技术在中草药成分提取中的应用以及提取过程中应注意的问题。
1超声技术提取中草药成分的理论依据
超声波是一种弹性机械振动滤,是听觉阈以外的振动,它产生强烈振动,高速度,强烈的空化效应,搅拌作用,因此能破坏植物药材的细胞,使溶媒能渗透到药材细胞中,从而加速药材中的有效成分溶解于溶媒中,以提高有效成分的提出率。同时以常规方法提出的有效成分作对照,考察超声提取出的有效成分的结构是否有改变。据文献报道,两种方法所得到的有效成分进行薄层层析、红外光谱和核磁共振光谱的对比分析,两者所得到的图谱一致,说明超声提取不会改变有效成分的结构,并且缩短了提取时间,提高了提出率,从而为中草药成分的提取提供了一种快速、高产的新方法。
2超声技术在中草药成分提取中的应用
2.1提取皂甙类成分皂甙类成分常用加水煎煮法或有机溶剂浸泡进行提取,耗时长,提出率低。采用超声技术则可缩短提取时间,提高提出率。宋小妹等从长梗绞股蓝中提取其主要有效成分绞股蓝皂甙,以75%乙醇回流为对照,超声提取3次,每次80min,可明显提高绞股蓝皂甙的得率;邵静枸等从党参中提取党参皂甙,以常规的溶剂浸渍法为对照,党参细粉经超声处理40min后,党参皂甙的提出率高出常规法(甲醇冷渍48h)1倍多,时间缩短了98.6%,而且经超声提取的党参皂甙得到的粗品量是常规法的近2倍,纯度也高;有关专家从穿山龙根茎中提到主要有效成分薯蓣皂甙,以70%乙醇浸泡48h为对照,用20kHz的超声波提取30min,其提出率是对照且的12倍,并用1MHz的超声波提取30min,其提出率是对照组的1.34倍,此工艺可以节约药材23.4%。由此看出,超声提取皂甙类成分具有省时、节约药材、杂质少、提出率高等优点。
2.2提取生物碱类成分从中草药中用常规提取生物碱一般提取时间长,收率低,而经超声处理后可以获得很好的效果。从黄柏中提取小檗碱,以饱和石灰水浸泡24h为对照,用20kHz的超声波提取30min,提出率比对照组高18.26%,且小檗碱的结构未发生改变;郭孝武等从黄连根茎中提取黄连素,实验证明超声法优于浸泡法,即用20kHz的超声波处理30min,其提出率高达8.12%。在我国1985年版药典中,曾用超声技术提取木鳖碱(士的宁)、马钱子碱这些毒性成分,并明确规定:在药物含量测定时,用超声波处理40min,相当于冷浸24h。由此看出,应用超声技术提取得生物碱类成分的工艺简便、省时、提出率高。
2.3提取黄酮类成分黄酮类成分常用加水煎煮法,碱提酸沉法或乙醇、甲醇浸泡提取,费时、费工、提取率低,而超声提取则可提高提出率,缩短提取时间。从黄芩根茎中提取主要有效成分黄芩甙,以水为溶剂,仅超声提取10min就高于加水煎煮3h的提取率,并以20kHz超声波提取40min的黄芩甙的提出率为最高。从槐米中提取芦丁,超声提取40min,其提出率为22.53%,是目前大生产得率的1.7~2倍,经对比试验可知,节约药材30~40%,具有较高的经济效益。
2.4提取蒽醌类成分蒽衍生物在植物体朵存在形式复杂,游离态与结合态经常共存于同一种中草药中,一般提取都采用乙醇或稀碱性水溶液提取,因长时间受热而破坏其中的有效成分,影响提出率。从大黄中提取大黄蒽醌类成分,与常规烈煮法相比,用超声法提取10min比煎煮法提取3h的蒽醌类成分高,同时以频率为20kHz的超声波提取的提出率最高,在复方首乌口服液的提取工艺中,对含有大量的蒽醌类衍生物的何首乌、大黄、番泻叶采用超声提取,从而避免蒽醌甙类物质因久煎破坏有效成分失败。
==================================
一、超声波提取中药材的原理
1、超声的空化效应
超声波技术应用于萃取、匀化,是基于惠更斯波动理论和超声波在液体连续介质中传播时特有的“空化效应”的作用
结果。
(1)惠更斯波动原理指出,波动(包括超源与波源的振动)在连续介质中传播时,在其波阵面上将引起介质质点
的运动,波源在介质中达到的每一点都将引起相邻质点的震动和成为新的波源。这种波源引起的波动使其传播路径上的
每一个质点都将获得加速度和动能。超声波可使介质质点加速度达重力加速度的千倍以上。介质质点在超声波作用下,
将每秒种数万次的高频振荡和每秒大于100m的巨大速度和动能作用于溶液分子内,迅速使溶液分子被激活。
(2)超声波在液体介质中产生特有的“空化效应”,不断产生无数内部压力达上千个大气压的微气穴,并不断“微爆”
产生微观上的强冲击波,作用在固-液或液-液分子上,使介质中的空气被“轰击”逸出,并促使介质细胞破裂和变形加速
介质分子中的物质逸出。
(3)超声波在介质中传播时的物理特性引发的机械振动、微射流、微声流等多级效应皆促使有效成分在溶液中扩
散。
2、超声波提取的优点
(1)超声波提取效率高。超声波独具的极端物理特性,能促使植物组织破壁或变形,使中药有效成份提取更充分,
提取率比传统工艺显著提高达50—500%。
(2)超声波提取时间短。超声波强化中药提取通常在24—40分钟即可获得最佳提取率,其提取时间较传统工艺方
法缩短2/3以上,因此药材原材料处理量大。
(3)超声波提取温度低。超声波提取中药材的最佳温度在40—60摄氏度,因此不需要配备锅炉来提供蒸气加热,
有利于节约能源和改善环境污染。更重要的是对遇热不稳定、易水解或氧化的药材中的有效成份具有保护作用。
(4)超声波提取适应性广。超声波提取中药材不受中药材成份性质、分子量大小的限制,适用于绝大多数种类中
药材和各类成份的提取。
(5)超声波提取的药液杂质少,有效成份易于分离、纯化。
(7)超声波提取简单易行,设备的维护和保养方便。
3、超声强化萃取
(1)固-液萃取
固-液萃取通常被称为提取,即用合适的溶剂从物料中提取有用成分,传统工艺方法是采用热处理或机械搅拌来加
强该过程。现已发现应用功率超声能显著强化和改善提取过程。超声的微扰效应增大了溶剂进入提取物细胞的渗透性,
加强了传质过程; 超声的另一作用是超声空化产生的强大剪切力能使介质细胞壁破裂,使细胞容易释放出内含物。超
声强化固-液萃取是有效的质量传递和细胞破裂的主要原因,它超越了以往任何一种可行性技术,获得了高效提取。超
声提取比常驻机构规的热提取更有效,并且缩短了提取时间,大部分物质在过程前10min内就被提取出来。
(2)液-液萃取
液-液萃取涉及到两个互不相溶的有机相和水相之间的质量传递过程。由于超声波的空化作用所引起的界面效应增
加了两相间的接解面积,而空化崩溃时冲击波引起的湍动效应消除了两相效界的阻滞,从而增加了液-液萃取速度。对
于一般受传质速率控制的液-液萃取体系来说,超声波的作用十分显著。
大黄中蒽醌类实验个人心得怎么写
可以做下相关归类,自己学到了写什么。
1、蒽醌类成份提取分离方法的熟悉
2、pH梯度提取法原理的掌握和操作技术
3、学习蒽醌类化合物判定的方法和试验器材材料及试剂。
某中药含有大黄酚 芦荟大黄素 大黄素甲醚等成分,设计合理的 提取 分...
大黄中大黄素的提取、分离和鉴定
(1)酸水解
一、实验目的
1、 学习酸水解的方法
2、 得到大黄粉酸水解药渣
二、实验原理
大黄中蒽醌类化合物有结合态和游离态两种形式存在,为得到游离蒽醌类化合物,先酸水解,使蒽醌类化合物以苷元的形式游离出来。
三、方法
10g大黄粉
20%H2SO4直火回流加热1小时,抽滤
滤渣
水洗中性,干燥
滤饼
四、注意事项
1、药粉在水洗中性过程中尽量避免损失;
2、药渣干燥前要松散;
3、水解液酸性强,避免用手直接接触。
五、思考题
1、酸水加热为什么要用回流装置?
2、要得到大黄中的蒽醌苷元,还有什么办法?
(2)总羟基蒽醌苷元的提取
一、实验目的
1、学习连续回流提取方法
2、得到大黄中总羟基蒽醌苷元提取物
二、实验原理
苷元为亲脂性成分,用乙醚提取。
三、实验方法
滤饼
置索氏提取器中,加150ml Et2O,
提2.5hr(提取液无色)
Et2O液(大黄中总羟基蒽醌苷元)
四、注意事项
1、 纸筒的包法:原则是药粉不漏出
2、 提取器的装法
(1)纸筒的高度不超过侧管的高度;
(2)药粉的高度不超过虹吸管的高度;
(3)线头在管内,保持提取器闭封。
3、 溶剂的倒法
50ml由提取器上端倒入,浸泡药粉;100ml倒入平底烧瓶中。
4、 温度的控制
溶剂蒸气至冷凝管第二个球处,水浴温度约60℃。
5、 实验室禁止明火,实验过程中保持通风,尽量避免乙醚挥出。
6、 平底烧瓶要干燥。
五、思考题
1、同回流提取相比,该方法的优点?
2、还可选用哪些溶剂提取?
3、若平底烧瓶中有水,将会有什么结果?
4、为什么温度控制在溶剂蒸气至冷凝管第二个球处?
(3)PH梯度萃取
一、实验目的
1、学习PH梯度萃取的方法和原理
2、得到大黄素粗品
二、实验原理
依据大黄酸、大黄素、芦荟大黄素、大黄酚、大黄素甲醚的酸性强弱不同,采用强弱不同的碱水萃取,得到大黄素。
三、实验方法
1、 分离方法
乙醚液(T)
↓120ml(40mlX3)2.5%NaHCO3
↓-------------------------↓
乙醚液(1) NaHCO3液
↓120ml(40mlX3)2.5%Na2CO3
↓--------------------------↓
乙醚液(2) Na2CO3液
↓120ml(40mlX3)2.5%Na2CO3 ↓调 pH3
↓--------↓ 沉淀
Na2CO3液 乙醚层(3)
↓100ml(25mlX4)0.5%NaOH
↓------↓
NaOH 乙醚层(4)
2、TLC跟踪检查
硅胶-CMC-Na
展开剂:Pet-EtOAc(7:3)
样品:乙醚液(T,1-4)
四、注意事项
1、分液漏斗使用前检查是否漏。
2、乙醚提取液倒入分液漏斗中,若有沉淀留在瓶中,用待萃取的碱液洗后再倒入分液漏斗中,直至沉淀全部被溶解。
3、 产生乳化层,解决的方法是:
(1)轻摇;
(2)长时间静置;
(3)用电吹风加热
(4)玻棒搅动
(5)抽滤
4、待完全静置分层后放出水层。
五、思考题
1、 萃取时碱水层的颜色?
2、 比较五种蒽醌类化合物极性大小、酸性大小。
3、 在TLC中,五种蒽醌类成分Rf值的大小顺序?
4、 萃取大黄素时,碱水中若含少量乙醚,酸化后能得到沉淀吗?
5、 判断各种蒽醌类成分分离的依据是什么?
6、 你能设计出比该方法更完善的实验条件吗?写出实验方法及验证方案。
(4)柱色谱精制大黄素
一、实验目的
1、学习硅胶柱色谱分离方法
2、得到大黄素精品
二、实验原理
依据大黄酸、大黄素、芦荟大黄素、大黄酚、大黄素甲醚极性差异分离。
三、实验方法
1、装柱方法:100~200目硅胶10g,用脱脂棉填柱子底端。
要求:均匀,柱面平整紧密无气泡。
干法装柱:小漏斗法,下端活塞打开,硅胶均匀地倒入柱中;
湿法装柱:硅胶用洗脱剂拌均匀至无气泡,下端活塞打开,倒入柱中。
2、加样方法
要求:原始色带小,均匀。
干法上样:样品用少量丙酮溶解后,加少许(半牛角匙)硅胶拌匀,将丙酮挥尽后上于柱顶端。
湿法上样:样品用少量(<1ml)洗脱剂溶解,用吸管移入柱顶端。
3、洗脱收集:加洗脱剂洗脱,待色带冲下时,用瓶子分段收集。
分段标准:(1)色带颜色
(2)10~15ml/瓶
洗脱剂:Pet-EtOAc(7:3)
4、合并浓缩:TLC跟踪检查,合并大黄素液,回收至5ml左右。
5、放置析晶
四、注意事项
1、玻璃器皿干燥,无水;
2、装柱时,下端活塞应打开;
3、洗脱剂不能低于柱平面。
五、思考题
1、 比较湿法装柱与干法装柱的特点?
2、 比较湿法上样与干法上样的特点?
(5)鉴 定
一、实验目的
1、蒽醌类化合物的颜色反应
2、大黄素熔点的测定
二、实验内容
1、熔点:大黄素(256~257℃)
2、颜色反应:比较大黄素与茜草素的颜色区别 ( 纸片反应)
试剂:%NaOH,0.5% MgAc2
三、思考题
1、大黄素、茜草素定性反应后的颜色?结构与呈色的关系?
2、其它鉴别方法
关于羟基蒽醌类化合物的提纯
本发明涉及植物药中有效成分的提取方法,具体涉及从植物药中提取、分离蒽醌类化合物的方法。
蒽醌(anthraquinone)是具有如下骨架的化合物的总称。
蒽醌类化合物包括了其不同还原程度的产物和二聚物,如蒽酚(anthranol)、氧化蒽酚(oxanthranol)、蒽酮(anthrone)、二蒽醌 (dianthraquinone)、二蒽酮(dianthrone)等,另外还有这些化合物的甙类。在天然产物中,蒽醌常存在于高等植物的蓼科、豆科、茜草科和低等植物地衣类和菌类的代谢产物中。现代药理研究证明,蒽醌类化合物具有很强的生物活性及药理作用。主要有①止血作用:蒽醌类化合物能促进血小板生成,明显增加纤维蛋白原,使凝血时间缩短,降低毛细血管通透性,改善血管脆性,使血管的收缩活性增加,因此能促进血液凝固。②抗菌作用:蒽醌类化合物对多种细菌均有不同程度的抑制作用,其中以葡萄球菌、链球菌最敏感,痢疾杆菌、白喉杆菌、枯草杆菌及伤寒杆菌等也较敏感。抑菌机理主要是抑制菌体糖及代谢中间产物的氧化和脱氢,并能抑制蛋白和核酸的合成,因此可避免临床上某些抗菌素的毒副反应及耐药性。③泻下作用:结合型蒽醌甙类因由糖基的保护,大部分未经吸收直接到达大肠,在肠内被细菌酶分解成甙元和糖。甙元刺激大肠粘膜,并抑制钠离子从肠腔吸收,使大肠内水分增加,蠕动亢进而致泻。④利尿作用:蒽醌类化合物能使尿量增加,并促进输尿管的蠕动,尿中钠钾亦明显增加,而产生利尿降压作用。其作用是通过减少肠道氨基酸的重吸收,抑制肝肾组织中尿素的合成,提高血中游离必需氨基酸浓度,利用体内尿素氮合成体蛋白和抑制肌蛋白的分解,以及增加尿素和肌酐的排泄来完成的。此外,随着基础理论的研究不断深入,为蒽醌类化合物的临床应用提供了理论依据。含蒽醌类化合物的中药制剂在临床上的应用已涉及到诸多疾病的治疗,如可治疗冠心病、粘膜溃疡、淋巴结核、烧烫伤、慢性胃炎、急性胆囊炎、伤骨科疾病、急性脑血管病等危急重症及杂病。
植物药中存在的蒽醌衍生物多为羟基蒽醌和它们的甙。大多数的蒽醌甙是蒽醌的羟基与糖缩合而成,也有少数是糖与蒽醌的碳原子直接连接而成。通常结合蒽醌分子量小于500,且溶于水和有机溶剂,游离蒽醌分子量约300左右,易溶于有机溶剂如:乙醚、氯仿、苯、乙醇等,还可溶于碱性水溶液如:氨水、氢氧化钠溶液等,而不溶于水。目前,从天然产物中提取含蒽醌类化合物的产品主要是中草药的粗提物,粗提物的总蒽醌含量不大于20%。中草药中蒽醌类化合物的精制常使用乙醚、苯、氯仿等有机溶剂,虽然所得中药浸膏的总蒽醌含量可达50%以上。但这些有机溶剂均为易燃易爆的有毒有害试剂,如浸膏中溶剂残留量不控制好会对人体造成很大伤害,而且该方法危险性大,对环境也有污染不适合大规模生产。
本发明的目的是要提供一种操作简便、安全、无污染、成本低,从植物药中提取的蒽醌类化合物选择性高、有效成分含量高的分离提取方法。
本发明从植物药中提取、分离蒽醌类化合物的方法是由下列步骤来实现的:
将含有蒽醌类化合物的原药材用通常方法提取获得有效成分粗提物,取粗提物加水,用碱溶液调PH至6.5-10,加入到已装有大孔吸附树脂的吸附柱中,粗提物量(g)与树脂量(ml)重量比为1:10—100;经大孔吸附树脂柱吸附,以水和洗脱液洗脱,收集洗脱液,浓缩、干燥即得含有蒽醌类化合物的浸膏,总蒽醌含量≥50%。
本发明所述的粗提物是指含有蒽醌类化合物的原药材用常规方法经水或有机溶剂提取,去药渣,提取液适当浓缩或直接浓缩至干制得的有效成分提取物。粗提物亦可用常用精制法进行预处理。粗提物蒽醌总含量为5-30%。
本发明所述的碱溶液是指氢氧化钠、氢氧化钾、氨水等碱性水溶液。
本发明所述的有机溶剂是指甲醇、乙醇、丙酮和乙酸乙酯等。
本发明所述的大孔吸附树脂为苯乙烯型、2—甲基丙烯酸酯型等大孔吸附树脂,粒度为210~10080目、比表面积为100~300cm2800cm2、/g、孔径1020~50A300A。
本发明所述的洗脱液是指甲醇、乙醇、丙酮、乙酸乙酯以及它们的混合液和氢氧化钠、氢氧化钾、氨水等碱性水溶液以及碱性水溶液与上述有机溶剂的混合液。
本发明上柱方式也可是先将粗提物用有机溶剂溶解,拌入大孔吸附树脂干粉,然后减压蒸去有机溶剂后上柱。
大网格吸附剂是70年代发展起来的一项新技术。国外最早用于废水处理、医药工业、分析化学、临床鉴定和治疗等领域。我国在70年代末开始应用大孔吸附树脂提取、分离中草药化学成分。
大孔吸附树脂一般为白色球形颗粒状,理化性质稳定,不溶于酸、碱及有机溶媒。对有机物选择较好,不受无机盐类及强离子低分子化合物存在的影响。大孔吸附树脂为吸附性和筛选性原理相结合的分离材料,与以往使用的离子交换树脂分离原理不同。它本身具有的吸附性,是由于范德华引力或产生氢键的结果。筛性原理是由于其本身多孔性结构所决定。正因为这些特性,使得有机化合物尤其是水溶性化合物的提纯得以大大的简化。从显微形状上看,大孔吸附树脂包含有许多具有微观小球组成的网状孔穴结构。当这些球体由偶极矩很小的单体聚合制得的不带任何功能基的吸附树脂为非极性吸附树脂,例如,苯乙烯—二乙烯苯体系的吸附树脂。这类吸附树脂孔表面的疏水性较强,可通过小分子内的疏水部分的相互作用吸附溶液中的有机物。而中极性吸附树脂系指含酯基的吸附树脂,例如,丙烯酸酯或甲基丙烯酸酯与双甲基丙烯酸乙二醇酯等交联的一类共聚物,其表面疏水性部分和亲水性部分共存。极性吸附树脂是指含酰胺基、腈基、酚羟基等含氮、氧、硫极性功能基的吸附树脂。除此之外,有时把含氮、氧、硫等配体基团的离子交换树脂称作强极性吸附树脂。由于吸附性和筛性原理,有机化合物根据吸附力的不同及分子量的大小,在大孔吸附树脂上经一定的溶剂洗脱而分开。本发明就是利用了大孔吸附树脂中非极性和中性树脂的特点,将植物药中的游离蒽醌和结合蒽醌分离和纯化。
本发明用大孔吸附树脂吸附法替代有机溶剂萃取法,从中药粗提物中提纯、精制蒽醌类化合物,避免使用有毒有害溶剂,操作工艺简单、成本低、产品质量易于控制,并适用于大规模生产。使中药制剂有效成分明确、有效成分含量提高到较高水平,为中药制剂走向国际、走向现代化提供了方便。
实施例一:从大黄中提取蒽醌类化合物
取大黄生药粗粉500g,加适量95%乙醇浸泡12小时后,加热回流提取三次,(三次95%乙醇提取液的量和提取时间分别为800ml、1小时;500ml、0.5小时;500ml、0.5小时),合并提取液,过滤,滤液浓缩至一定体积,上聚酰胺柱,以水和95%乙醇洗脱,收集醇洗脱液,浓缩、干燥得大黄粗提物。取大黄粗提物10g5g,用无水乙醇溶解拌样上大孔吸附树脂柱(树脂结构为苯乙烯型、粒度5020~80目、比表面300cm2400cm2/g、孔径30A100A),以水和95%乙醇洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥58%,收率>3.5%。
实施例二:从虎杖中提取蒽醌类化合物
取虎杖生药粗粉500g,加适量95%乙醇浸泡12小时后,加热回流提取三次,(三次95%,乙醇提取液的量和提取时间分别为800ml、1小时;500ml、0.5小时;500ml、0.5小时),合并提取液,过滤,滤液浓缩至一定体积,上聚酰胺柱,以水和95%乙醇洗脱,收集醇洗脱液,浓缩、干燥得虎杖粗提物。取虎杖粗提物10g5g,用无水乙醇溶解拌样上大孔吸附树脂柱(树脂结构为苯乙烯型、粒度50目、比表面300cm2400cm2/g、孔径30A100A),以水和95%乙醇洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥52%,收率>3.5%。
实施例三:从何首乌中提取蒽醌类化合物
取何首乌生药粗粉500g,加适量80%乙醇浸泡12小时后,加热回流提取三次,(三次80%乙醇提取液的量和提取时间分别为800ml、1小时;500ml、0.5小时;500ml、0.5小时),合并提取液,过滤,滤液浓缩至一定体积,上聚酰胺柱,以水和95%乙醇洗脱,收集醇洗脱液,浓缩、干燥得何首乌粗提物。取何首乌粗提物10g5g,用无水乙醇溶解拌样上大孔吸附树脂柱(树脂结构为苯乙烯型、粒度5020~80目、比表面300cm2400cm2/g、孔径30A100A,以水和95%乙醇洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥55%,收率≥3.5%。
实施例一:从大黄中提取蒽醌类化合物
取已处理好的大孔吸附树脂(树脂结构为苯乙烯型、粒度5020~80目、比表面300400cm2、孔径30100A)120ml,湿法装柱。另取大黄粗提物5g,加水100ml,用4%氢氧化纳调节pH至7~8,搅拌溶解后上样,流速8~15滴/分,待样品全部加完,先用水洗至流出液几乎无色或淡黄色不再改变,换95%乙醇洗脱液洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥58%,收率≥3.5%。
实施例二:从虎杖中提取蒽醌类化合物
取已处理好的大孔吸附树脂(树脂结构为苯乙烯型、粒度5020~80目、比表面3400cm2、孔径30100A)120ml,湿法装柱。另取虎杖粗提物5g,加水100ml,用4%氢氧化纳调节pH至7~8,搅拌溶解后上样,流速8~15滴/分,待样品全部加完,先用水洗至流出液几乎无色或淡黄色不再改变,换95%乙醇洗脱液洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥52%,收率≥3.5%。
实施例三:从何首乌中提取蒽醌类化合物
取已处理好的大孔吸附树脂(树脂结构为苯乙烯型、粒度520~80目、比表面3400cm2、孔径3100A)120ml,湿法装柱。另取何首乌粗提物5g,加水100ml,用4%氢氧化纳调节pH至7~8,搅拌溶解后上样,流速8~15滴/分,待样品全部加完,先用水洗至流出液几乎无色或淡黄色不再改变,换95%乙醇洗脱液洗脱,收集醇洗脱液,浓缩,干燥即得,总蒽醌含量≥55%,收率≥3.5%。
1、一种从植物药中提取、分离蒽醌类化合物的方法,其特征在于该方法为:将含有蒽醌类化合物的原药材用通常方法提取获得有效成分粗提物,取粗提物加水,用碱溶液调PH至6.5-10,加入到已装有大孔吸附树脂的吸附柱中,粗提物量(g)与树脂量(ml)重量比为1:10—100;经大孔吸附树脂柱吸附,以水和洗脱液洗脱,收集洗脱液,浓缩、干燥即得含有蒽醌类化合物的浸膏,总蒽醌含量≥50%。
2、一种如权利要求1所述的从植物药中提取、分离蒽醌类化合物的方法,其特征在于其中所述的大孔吸附树脂为苯乙烯型、2—甲基丙烯酸酯型等大孔吸附树脂,粒度为2010~80100目、比表面积为100~300cm2800cm2/g、孔径10~50A400A。
3、一种如权利要求1所述的从植物药中提取、分离蒽醌类化合物的方法,其特征在于其中所述的洗脱液是指甲醇、乙醇、丙酮、乙酸乙酯以及它们的混合液和氢氧化钠、氢氧化钾、氨水等碱性水溶液以及碱性水溶液与上述有机溶剂的混合液。
本发明涉及从植物药中提取、分离蒽醌类化合物的方法。本发明用大孔吸附树脂吸附法替代有机溶剂萃取法,从中药粗提物中提纯、精制蒽醌类化合物,总蒽醌含量≥50%,避免使用了有毒有害溶剂,操作工艺简单、成本低、产品质量易于控制,并适用于大规模生产。
大黄中主要游离蒽醌化合物有哪些?如何提取分离?
五种游离蒽醌(芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚等)
区带毛细管电泳分离测定大黄提取液中游离蒽醌化合物《分析科学学报》
2006年01期
高效液相色谱法
上一篇:大学心理健康论文结尾
下一篇:议论文写作格式及范文