运筹学方向的毕业论文
运筹学方向的毕业论文
随着我国国民经济的不断发展,企业之间的交易活动更加频繁、同地区、不同地区、甚至跨国的交易活动也不断发生,交通运输则成为交易的活动重点了。 交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已 经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在交通运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。
谈运筹学教学的几点思考
谈关于运筹学教学的几点思考
[论文关键词]运筹学 教学研究 课程建设
[论文摘要]本文对运筹学教学中存在的一些问题进行分析,并就运筹学的教学目的、教学内容、教学形式等方面进行探讨,提出相应的改革思路和措施。
运筹学作为一个学科出现以来,特别是20世纪50年代以来,运筹学的研究与实践在我国得到深入发展,在工程、管理、经济等领域都发挥了重大的作用,并作为一门课程逐渐成为管理科学、系统科学、信息技术、工程管理、物流管理、经济、金融等专业的基础课程之一。然而,由于运筹学知识的综合性及内容上的数学复杂性,使得这一课程的教学表现出强烈的自身特色。结合几年来十几次运筹学教学的体会,对运筹学的教学方法进行一个粗浅的分析,以供探讨。
一、注重其发展背景及现实意义的讲授
运筹学作为一门应用科学,既不同于数学等经典学科,又不同于普通的应用学科,这一点可以从其发展背景中略见一斑。从运筹学的早期的发展来看,它可追溯到1914年提出的军事运筹学中的兰彻斯特(Lanchester)战斗方程、1917年丹麦工程师爱尔朗(Er-lang)在哥本哈根电话公司研究电话通信系统时提出的排队论的先驱者、20世纪20年代初提出的存储论最优批量公式等等。这些发展背景的介绍有助于学生对于这一学科的重要性、学科的特点、以及其中问题的解决思路都会起到非常重要的作用。所以,作为运筹学课程的讲授人员,要把不应在课程绪论的讲授中一带而过,而是要在讲授过程中让学生有所体悟。
二、注重其“学科交叉、多分支”的特点
应该说“学科交叉、多分支”是运筹学作为一门课程的重要特色,也是教学过程中需要认真处理、仔细推敲的一个关键问题。多学科交叉使得运筹学表现出知识结构和思维方式上的复杂性——既具有数学学科的理论特性又具有应用学科的自身特性、既具有理工学科的定量特性、又具有人文学科的分析特性、既追求“完美”又注重“实用”。作为授课教师而言要始终把握运筹学的这一特点,做到对发展现状的较好跟踪,注重对学生启发性引导;做到对授课对象的仔细区分,既包括对学生学历的区分又包括对学生专业的区分,对学生学历的区分主要体现在知识内容、授课学时、授课方式、课程要求等环节,而对学生专业的区分则主要体现在理学、工学和经管专业在知识深度与广度上的差异以及在理论和应用上的差异。而多分支特性则要求授课教师在授课过程中对各个分支有针对性的选择并能够做到对该分支理论及应用的充分把握。
三、注重“案例教学、实验教学”的`综合运用
案例教学与实验教学在运筹学教学中的运用主要在于对学生综合能力的培养。“案例教学”一方面可以在课程讲授过程中起到引导的作用,既可做到由浅入深、又可在较大程度上激发学生的学习兴趣,为接下来的深入做好铺垫;另一方面,又可在知识的运用上起到较好的教学效果,既激发学生的知识运用的兴趣又加深对知识理论的理解。“实验教学”既是对理论教学和案例教学的细化又是对学生动手能力的有效引导手段,特别是对学生脚踏实地的学习态度是一个较好的锤炼,同时也对学生长期以来单纯的“分数为上”的学习方式是一个有效的冲击。正是基于上述考虑,笔者认为在运筹学的讲授过程中要充分重视“案例教学”和“实验教学”的运用,充分考虑二者在运筹学教学过程中比重和搭配问题。
四、注重教学方式的运用
随着教育技术的飞速发展,多媒体教学在课堂教学中运用越来越普遍,它在一定程度上提高了教学的质量和教学率,同时又带来相应的弊端。尤其是多年的高校扩招和运筹学课程的普遍适用性使得多数运筹学课程为大课教学,这就促使教师为了避免后排学生看不清而几乎抹去了板书的运用。所以,在大班化的背景下,板书与多媒体的矛盾始终是运筹学教学中一个难以解决的问题。
五、注重对考核方式的研究
考核作为学习过程中的一个重要环节,其设计的好坏对整个教学质量有着重要影响。在传统的考试方式中,往往过多得强调知识点的掌握情况,而在一定程度上忽视了应用能力的培养。所以,不仅要在教学过程中注重“案例教学”和“实验教学”的运用,又要注重对学生实践能力方面的考核,不仅包括学生对分析能力、动手能力的考核,还要包括对学生探索精神和探索能力的考核。基于此,笔者认为在运筹学考核过程中“专题考核”和“研究论文”都可作为传统考核方式的重要补充。
总之,教学内容、教学方式、教学媒介、考核方式都是运筹学授课教师始终需要认真思考的问题。不仅如此,还要综合考虑自身高校的教学特点,特别是该课程在专业体系中作用的考虑以及该校教学管理部门的课程管理特点。该文仅仅是笔者一点粗浅体会,不足深论,仅供参考。
[参考文献]
[1]杨茂盛,孔凡楼,张炜.对运筹学课程教学改革的看法和建议[J].西安建筑科技大学学报(社会科学版),2006(12),108-110
[2]张润红.从整体角度对工程管理专业《运筹学》教学的探索[J].理工高教研究,2005(2),94-95
[3]胡发胜,刘桂真.国家精品课程运筹学的教学改革与实践[J].中国大学教学,2006(7),9-10
论文相关查阅: 毕业论文范文 、 计算机毕业论文 、 毕业论文格式 、 行政管理论文 、 毕业论文 ;
数学专业本科毕业论文
我这里有一份
“等”对“不等”的启示
对于解集非空的一元二次不等式的求解,我们常用“两根之间”、“两根之外”这类简缩语来说明其结果,同时也表明了它的解法.这是用“等”来解决“不等”的一个典型例子.从表面上看,“等”和“不等”是对立的,但如果着眼于“等”和“不等”的关系,会发现它们之间相互联系的另一面.设M、N是代数式,我们把等式M=N叫做不等式M<N,M≤N,M>N、M≥N相应的等式.我们把一个不等式与其相应的等式对比进行研究,发现“等”是“不等”的“界点”、是不等的特例,稍微深入一步,可以从“等”的解决来发现“不等”的解决思路、方法与技巧.本文通过几个常见的典型例题揭示“等”对于“不等”在问题解决上的启示.
� 1.否定特例,排除错解
�解不等式的实践告诉我们,不等式的解区间的端点是它的相应等式(方程)的解或者是它的定义区间的端点(这里我们把+∞、-∞也看作端点).因此我们可以通过端点的验证,否定特例,排除错解,获得解决问题的启示.
�例1 满足sin(x-π/4)≥1/2的x的集合是().
��A.{x|2kπ+5π/12≤x≤2kπ+13π/12,k∈Z}
��B.{x|2kπ-π/12≤x≤2kπ+7π/12,k∈Z}
��C.{x|2kπ+π/6≤x≤2kπ+5π/6,k∈Z}
��D.{x|2kπ≤x≤2kπ+π/6,k∈Z}∪{2kπ+5π/6≤(2k+1)π,k∈Z}(1991年三南试题)
�分析:当x=-π/12、x=π/6、x=0时,sin(x-π/4)<0,因此排除B、C、D,故选A.
�例2 不等式 +|x|/x≥0的解集是().
��A.{x|-2≤x≤2}
��B.{x|- ≤x<0或0<x≤2}
��C.{x|-2≤x<0或0<x≤2}
��D.{x|- ≤x<0或0<x≤ }
� 分析:由x=-2不是原不等式的解排除A、C,由x=2是原不等式的一个解排除D,故选B.
�这两道题若按部就班地解来,例1是易错题,例2有一定的运算量.上面的解法省时省力,但似有“投机取巧”之嫌.选择题给出了三误一正的答案,这是问题情景的一部分.而且是重要的一部分.我们利用“等”与“不等”之间的内在联系,把目光投向解区间的端点,化繁为简,体现了具体问题具体解决的朴素思想,这种“投机取巧”正是抓住了问题的特征,体现了数学思维的敏捷性和数学地解决问题的机智.在解不等式的解答题中,我们可以用这种方法来探索结果、验证结果或缩小探索的范围.
�例3 解不等式loga(1-1/x)>1.(1996年全国高考试题)
�分析:原不等式相应的等式--方程loga(1-1/x)=1的解为x=1/(1-a)(a≠1是隐含条件).原不等式的定义域为(1,+∞)∪(-∞,0).当x→+∞或x→-∞时,loga(1-1/x)→0,故解区间的端点只可能是0、1或1/(1-a).当0<a<1时,1/(1-a)>1,可猜测解区间是(1,1/(1-a));当a>1时,1/(1-a)<0,可猜测解区间是(1/(1-a),0).当然,猜测的时候要结合定义域考虑.
�上面的分析,可以作为解题的探索,也可以作为解题后的回顾与检验.如果把原题重做一遍视为检验,那么一则费时,对考试来说无实用价值,对解题实践来说也失去检验所特有的意义;二则重做一遍往往可能重蹈错误思路、错误运算程序的复辙,费时而于事无补.因此,抓住端点探索或检验不等式的解,是一条实用、有效的解决问题的思路.
�2.诱导猜想,发现思路
�当我们证明不等式M≥N(或M>N、M≤N、M<N)时,可以先考察M=N的条件,基本不等式都有等号成立的充要条件,而且这些充要条件都是若干个正变量相等,这就使我们的思考有了明确的目标,诱导猜想,从而发现证题思路.这种思想方法对于一些较难的不等式证明更能显示它的作用.
�例4 设a、b、c为正数且满足abc=1,试证:1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥3/2.(第36届IMO第二题)
�分析:容易猜想到a=b=c=1时,原不等式的等号成立,这时1/a3(b+c)=1/b3(c+a)=1/c3(a+b)=1/2.考虑到“≥”在基本不等式中表现为“和”向“积”的不等式变换,故想到给原不等式左边的每一项配上一个因式,这个因式的值当a=b=c=1时等于1/2,且能通过不等式变换的运算使原不等式的表达式得到简化.
�1/a3(b+c)+(b+c)/4bc≥ =1/a,
�1/b3(a+c)+(a+c)/4ca≥1/b,
�等号不一定成立而启迪我们对问题进一步探索的典型例子是1997年全国高考(理科)第22题:
�例8 甲、乙两地相距S千米(km),汽车从甲地匀速行驶到乙地,速度不得超过c千米/小时(km/h).已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为b,固定部分为a元.
�Ⅰ.把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域;
�Ⅱ.为了使全程运输成本最小,汽车应以多大的速度行驶?
�分析:y=aSv+bSv,v∈(0,c〕,由y≥2S 当且仅当aS/v=bSv,即当v= 时等号成立得,当v= 时y有最小值.这是本题的正确答案吗?那就得考虑v= 是否一定成立.当 ≤c时可以,但 是有可能大于c的.这就引发了我们进行分类讨论的动机,同时也获得分类的标准.
�综上所述,“等”是不等式问题中一道特殊的风景,从“等”中寻找问题解决的思路,本质上是特殊化思想在解题中的应用.从教学上看,引导学生注视不等式问题中的“等”,是教会学生发现问题、提出问题,从而分析问题、解决问题的契机.
�1/c3(a+b)+(a+b)/4ab≥1/c,
�将这三个等式相加可得
�1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥1/a+1/b+1/c-(1/4)〔(b+c)/bc+(c+a)/ca+(a+b)/ab〕=(1/2)(1/a+1/b+1/c)≥(3/2) =3/2,从而原不等式获证.
�这道题看似不难,当年却使参赛的412名选手中有300人得0分.上述凑等因子的思路源于由等号的成立条件而产生的猜想,使思路变得较为自然,所用的知识是一般高中生所熟知的.再举二例以说明这种方法有较大的适用范围.
�例5 设a,b,c,d是满足ab+bc+cd+da=1的正实数,求证:a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥1/3.(第31届IMO备选题)
�证明:a3/(b+c+d)+a(b+c+d)/9≥(2/3)a2,
�b3/(a+c+d)+b(a+c+d)/9≥(2/3)b2,
�c3/(a+b+d)+c(a+b+d)/9≥(2/3)c2,
�d3/(a+b+c)+d(a+b+c)/9≥(2/3)d2.
�∴ a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥(2/3)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da+ac+bd)
�=(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)+(1/9)(a2+c2-2ac+b2+d2-2bd)
�≥(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)≥(5/9)(ab+bc+cd+da)-(2/9)(ab+bc+cd+da)=(1/3)(ab+bc+cd+da)=1/3.
�当a=b=c=d=1/2时,原不等式左边的四个项都等于1/12,由此出发凑“等因子”.对于某些中学数学中的常见问题也可用这种方法解决,降低问题解决对知识的要求.
�例6 设a,b,c,d∈R+,a+b+c+d=8,求M= + + + 的最大值.
�分析:猜想当a=b=c=d=2时M取得最大值,这时M中的4个项都等于3.要求M的最大值,需将M向“≤”的方向进行不等变换,由此可得3 ≤(3+4a+1)/2=2a+2,3 ≤2b+2,3 ≤2c+2,3 ≤2d+2.于是3M≤2(a+b+c+d)+8=24,∴M≤8.当且仅当a=b=c=d时等号成立,所以M的最大值为8.
�当然,例6利用平方平均数不小于算术平均数是易于求解的,但需要高中数学教材外的知识.利用较少的知识解决较多的问题,是数学自身的追求,而且从教学上考虑,可以更好地培养学生的数学能力.先有猜想,后有设计,再有证法,也是数学地思考问题的基本特征.
�3.引发矛盾,启迪探索
�在利用基本不等式求最大值或最小值时,都必须考虑等号能否取得,这不仅是解题的规范要求,而且往往对问题的解决提供有益的启示.特别当解题的过程似乎顺理成章,但等号成立的条件却发生矛盾或并不一定成立.这一新的问题情景将启迪我们对问题的进一步探索.
�例7 设a,b∈R+,2a+b=1,则2 -4a2-b2有().
��A.最大值1/4� B.最小值1/4
��C.最大值( -1)/2� D.最小值( -1)/2
� 分析:由4a2+b2≥4ab,得原式≤2 -4ab=-4( )2+2 =-4( -1/4)2+1/4≤1/4.若不对不等变换中等号成立的条件进行研究,似已完成解题任务,而且觉得解题过程颇为自然,但若研究一下等号成立的条件,则出现了矛盾:要使4a2+b2≥4ab中的等号成立,则应有2a=b=1/2,这时 = /4≠1/4,第二个“≤”中的等号不能成立.这一矛盾使我们感觉到解题过程的错误,促使我们另辟解题途径.事实上,原式=2 -(2a+b)2+4ab=4ab+2 -1,而由1=2a+b≥2 得0< ≤ /4,ab≤1/8,∴原式≤ /2+1/2-1=( -1)/2,故选�C.
本文来自论文大学网
上一篇:运筹学方面的毕业论文
下一篇:英语论文选哪个方向好