欢迎来到学术参考网
当前位置:发表论文>论文发表

数学微积分与物理论文

发布时间:2023-12-08 19:24

数学微积分与物理论文

微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。

摘要:初等微积分作为高等数学的一部分,属于大学数学内容。在新课程背景下,几进几出中学课本。可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。但对很多在岗教师而言,还很陌生,或是理解不透彻。这样不利于这方面的教学。我将对初等微积分进入中学数学背景,作用及教学作简单研究.

关键词:微积分;背景;作用;函数

一、微积分进入高中课本的背景及必要性

在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。微积分已成为我们学习数学不可或缺的知识。其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。这使得很多人学不懂微积分,更不用说让中学生来学习微积分。

柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。这为其完全进入高中课本奠定了基础。从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的 概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。

从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。回顾历届高考,微积分相关题型分值越来越高。但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一 方法 ,也是联系中学与大学数学知识的纽带!

二、微积分在中学数学中的作用

1.衔接性与后继作用。微积分本是大学高等数学范畴,是大学开设的课程。让现在中学生提前学习部分微积分知识,这便为其以后升入大学学习微积分打下良好的基础,这也使数学知识从小学到大学从内容上衔接得更加紧密。也不会再出现很多大学生认为的大学数学知识在高中数学教学中没有任何作用的观点.

2.解决数学相关知识的作用。高中数学函数在整个中学数学内容中,不论从高考所占比重还是自身难度来说都应该排在首位。对学生来说永远是最难学的,得分率也相对比较低。很多学生讨厌数学就是讨厌函数,提到数学中的函数就头晕。由于应试 教育 的关系,学生又不得不学习函数,而函数思想本身也是高中数学学习的一条线索。微积分的进入对学生学习函数问题找到了统一的方法。高中阶段我们所研究的函数问题一般是以一些基本初等函数为媒介研究函数的定义,图像和性质,当然也有应用。但随着课改的深入,函数应用问题逐渐在淡化。而初等微积分知识即研究函数的重要工具,如:微积分可以求函数的单调性,最值。最重要的是它可以画出函数的图像,其实,当函数图像画好后,几乎函数所有性质都可以解决。学生只要学好微积分便掌握了研究函数的统一方法,那么高中阶段的二次函数,指数函数,对数函数,三角函数等所有初等函数的学习就可以统一,既节约了教学时间又学习了先进的数学思想。对提高学生的数学修养打下坚实的基础。我相信还可以激发其学习数学的兴趣。另外,在高中阶段,初等微积分还可以解决不等式问题,求二次曲线的切线问题,求曲边梯形的面积等很多数学问题。利用微积分不仅可以使问题简化,并能使问题的研究更为深入、全面。

3.提高数学在其他学科的应用能力。作为自然学科的数学本身已应用于社会经济、技术等各个领域。而作为中学数学,它对中学 其它 学科的推动作用也是毋庸置疑的。如物理,化学,地理等学科也离不开数学。在高中阶段往往会因为数学的教学进度而影响其它学科的进度。如地理中要学习地球的经度,纬度等知识就需要先学习数学中球体相关知识和解三角形相关知识。当微积分进入中学数学后,数学这个学科的作用就更加重要了。特别像物理中匀加速直线运动位移,瞬时速度,加速度等问题利用微积分的导数求解起来更加简单,容易理解。新课程人教版数学教材选修2-2中专门加入了利用定积分求变速直线运动的路程一节。另外,微积分解决生活中的优化问题也进入中学课本。可见,微积分进入中学教材,对促进学科间知识的整合起到了至关重要的作用。

三、国际上一些教材对微积分知识的处理

以苏联中学为例,苏联中小学为十年制,从九年级(1)(相当于我国高中一年级)中讲了数学归纳法和排列组合以后,就介绍无穷数列和极限。然后介绍函数极限和导数,所有这些都在讲解三角函数,幂函数,指数、对数函数之前。随即介绍导数在近似计算,几何(求切线)和在物理中的应用(研究速度,加速度)以及导数在研究函数问题中得应用(求函数极值,最值,单调性等)。到九年级末及十年级(2)再讲三角函数, 利用导数可以研究三角函数的性质。然后介绍不定积分和定积分。接着在指数函数,对数函数和幂函数一章介绍指数函数的导函数,再利用反函数求得对数函数的导函数。在十年级(3)中利用微积分知识研究几何问题,用积分推导锥体,球体等的体积公式。还把球的表面积定义为球的体积V(R)对R的导数,从而立即求得球的表面积公式。可见,苏联课本中及早分散引入导数及积分的概念和计算,而不是到最后整块讲解。这样处理,可以使微积分知识结合研究函数问题,几何问题以及研究物理问题中都得到应用。

当然,还有比如台湾中学教材对微积分处理和我过现行教材区别不大,就不再介绍。而上诉对微积分的处理情况是一种在欧洲中学教材中较普遍的处理方式。其优点主要就是充分发挥了微积分在中学数学教学中的作用。使中学数学知识更加连贯,更加易懂!

摘 要:微积分是高等院校管理类专业的重要数学基础课,第一堂课是上好微积分的关键。通过三个方面就如何上好微积分绪论课做些探讨。

关键词:微积分;起源;内容;方法

微积分是门基础课,这门课的学习直接影响到今后专业课的学习,而绪论课对这门课的学习有着引导的作用,在整门课中有特殊的地位和作用。绪论课应包含下面几个部分的内容:

一、微积分起源的介绍

微积分包括两方面的内容:微分与积分。微积分的创立源于处理17世纪的科学问题。先引入微积分学的创始人之一费马研究的一个问题:假设一个小球正向地面落去,求下落后第5秒时小球的速度?若是匀速运动,则速度等于路程除以时间,然而这里的速度是非均匀的,那能不能把非均匀速度近似看成均匀速度?用什么方法?这就是微分学问题,再引入古希腊人研究的面积问题:计算抛物线y=x2与坐标轴x轴在0≤x≤1间所围成的面积。能不能将面积切割成n个小面积,再将小面积用小矩形来代替,由n个小矩形的面积得到所求面积?这里所用的方法就是积分问题。很早以前就有人研究过微分与积分,而微积分的系统发展是在17世纪开始的,从此逐渐形成了一门系统完整且逻辑严密的学科。微积分通常认为是牛顿和莱布尼茨创立的。这一系统发展关键在于认识到微分和积分这两个过程实际上是彼此互逆地联系着。

介绍提及的人物牛顿和莱布尼茨的相关轶事,例如创建微积分优先权的争论。牛顿于1665~1687年把研究出的微积分相关结果告诉了他的朋友,并将短文《分析学》送给了巴罗,但期间没有正式公开发表过微积分方面的工作。莱布尼茨于1672年访问巴黎,1673年访问伦敦时,和一些知道牛顿工作的人通信。1684年莱布尼茨正式公开发表关于微积分的著作。于是有人怀疑莱布尼茨知道牛顿具体的工作内容,莱布尼茨被指责为剽窃者。在两个人死了很久后,调查证明:牛顿很多工作是在莱布尼茨前做的,但是莱布尼茨是微积分思想的独立发明者。

二、介绍微积分内容及方法

微积分学研究的对象是函数,极限是最主要的推理方法,它是微积分学的基础。微积分内容有四类:一是已知物体移动的距离是时间的函数,怎样由距离得到物体在任意时刻的速度和加速度;反过来,已知物体的加速度是时间的函数,怎样求速度和距离。二是求曲线的切线。三是求函数的最大最小值问题。四是求曲线的长度、平面曲线围成的面积、曲面围成的体积、物体的重心。

三、为什么要学习高等数学

微积分在自然科学、经济管理、工程技术、生命科学等方面都有应用,是各门学科强有力的数学工具。学好微积分,可以增加语言的严密性、精确性,可以从中锻炼人的 理性思维 ,并感受到美的艺术。例如黄金分割,无理数的■与π的表达式:

微积分的绪论课是整个教学的第一课,绪论教学能使学生对这门课有个快速大致的认识与了解,好的绪论课可以引导学生主动、积极地学习。

前 言

21世纪,科学、技术和社会都发生了巨大的变化。高等数学作为高等院校的基础课程之一,在其他各个领域及学科中发挥出越来越大的作用。尤其是微积分教学,是目前数学教育的一大课题。

一、我国微积分教学改革的现状

目前的数学实验中,微积分教学改革的现状中仍然存在一些主要问题。

首先,优秀人才的培养重视不够。在微积分教学中,重视的是教育大众化的人才,而一些顶尖的、优秀的人才的培养却重视不够。

其次,过度应试化。过度重视应试教育在微积分教学中越来越明显,轻能力重考试已成为一种倾向。

再次,学生差异大,素质下降。学生人数的激增带来学生差异的强化,面对这一情况,如何规划班级,如何区别对待学生是微积分教学面临的问题。

二、微积分课改的必要性

随着高等数学改革的不断深入,微积分教学的改革成为其中的重要部分。微积分教学的改革并不是空穴来风,而是一种必然。

(1)社会高度发展提出的要求

微积分作为高等数学的一部分,对技术文明的推动有重要作用,许多数学细想和数学的建树都离不开微积分。可以说,微积分在推进数学思想,推进社会进步,推进科学发展上有举足轻重的作用,是不可或缺的,它是人类思维的伟大成果,不仅是高等数学。而且是其他行业,其他专业,在不同范围和不同程度上对微积分的认识都是必要的。设想一下,如果取消对微积分的学习,那么技能的进步只是一句空谈,社会不会发展,智慧不会被充分开掘。所以,微积分教学的改革是十分必要的。

(2)科技的发展提出的需要

当今世界,是一个科学技术突飞猛进的时代,军事、贸易等激烈的竞争和市场经济,如果没有科技的推进,则会落后于他人。如何促进科学的发展呢?微积分起着重要的作用,它不仅为科学提供了精密的数学思想,也为科学的提供了理论支撑,它不但改变了数学面貌,还是其他学科的工具和方法,微积分在自然学科的各个方面都有运用。随着科技发展的时代,提高微积分教学的质量是势在必行的。

(3)人类思维发展的需要

微积分中蕴藏着很多重要思想,比如辩证的思想,常量与变量,孤立与发展,静止变化,有限与无限等,还有“直”与“曲”,“局部”与“整体”的辩证关系,其实。哲学最处就是与数学密切相关的,所以,数学,尤其是微积分思想充满了逻辑与辩证,微积分的学习。不仅是知识、理论的学习,更是一种思维的训练。因此,微积分教学的完善有利于培养人类思维,使人类思维获得一个飞跃,更有效地解决问题。

三、微积分课改的内容

根据新的教学大纲的修改,微积分教学重新设计了课程内容、教学理念、 教学方法 等,以学生为主体,更直观形象,而且在教学方法上也进行了革新。全面促进了微积分教学的改革。

1、课程基本理念的改革

微积分教学的改革能否成功关键在于观念的转变,过去是偏重理论,现在则要注重应用激发初学者的学习兴趣,尽早把握微积分的基础知识,把抽象难懂的微积分理论转变为学生容易接受、容易理解的微积分教学方式,比如说,极限是微积分知识中的难点,极限概念、运动、辩证思想等对于学生来说是十分抽象,不容易理解,从而没有激发学生的学习兴趣,课堂变得枯燥无味,理论严谨,逻辑性很强,学生上手难。微积分教学大纲的修订也体现出教学理念的更新,新的微积分教学中,适当降低了难点知识。重视对微积分本质的认识,以直观、实例来提高学生的微积分学习兴趣和学习效率,使学生学习的主动性回归到自身,体现以人为本的思想,重视学生的情感态度、生活价值的培养,根据学生自身的特点因材施教,为学生提供更好的学习条件和基础。

2、课程内容的改革

根据《标准》大纲的修订,微积分教学首先是对课程内容和教学大纲的精简、增加、删改。修订后的教学内容比原来的教学大纲更精练,更科学。比如,原来12学时的“极限”在修订大纲中被大面积的删减。并在修订大纲中,引入导数这一很有判断意义的概念,因为导数是微积分初步了解的第一个概念,对导数概念的理解起到基础性的作用。而且,修订的课本内容中,对导数的讲解时直观形象的,应用性很强,又有许多实例来帮助学生加深理解。因此,微积分教学的新课改减轻了学生的学习负担,降低了概念的理解难度。

3、课程设计的改革

原来的课程是从极限、连续、导数、导数应用,再到不定积分、定积分这样的次序设计的,并在“导数和微分”的前面一章给“极限”设计了许多定义,以及对“极限”的求法和运算做了讲解。修订后的大纲对课程设计做了调整,尤其是微积分讲解的路线,发生了变化,从瞬间速度,变化率,导数、导数应用再到定积分。对人文社科方面的高校微积分课程的设置,则多数是作为选修课来处理的,并与生活十分贴近,应用性很强,使非数学专业也对数学有一定的基础了解和学习兴趣。

4、教学方法的革新

(1)数学思想方法的渗透与运用。数学思想方法是多种多样的,在生活中也取得有效地运用。微积分耶是高等数学的一个方面,因此,在微积分教学中引入数学思想方法是科学的。其中,数学分析,也叫微积分,是17世纪出现的十分重要的数学思想,不仅在17世纪有非常重要的地位,即使是在今天,这种思想方法在成功解决无限过程的运算方面,即极限运算有很大的帮助。数学思想的运用已成为各国比较重视一项革新项目。

(3)加强实例分析和应用性。数学是一种逻辑推理。但也是来源于生活的,也最终给应用于生活,因此,数学的教学不能和现实相脱离。修订后的微积分教学大纲明显注重了实际应用性。即使是书上一个很简单的概念,也时刻穿插一些实用性的图片,在习题的练习中,也是紧密结合生活实际,不是空中楼阁。比如说,用指数函数来看银行存款和人口问题,还有对数函数中涉及放射性、分贝、地震级的问题。微积分数学应用于生活中实际问题的解决。

5、教学工具的革新。

现代教育技术,尤其是多媒体技术在微积分教学中的应用,对很好的实现教学理念,完善教学思想和教学方法很有意义,例如,作为重点和难点的“极限”概念和理论一直是教学中难以攻克的,因为它的抽象,所以老师再怎么讲解也难免有学生不理解,而多媒体教学的应用解决了这一难题,教师可用直观形象的动画来表现比如“无限逼近”的理论,给学生一个直观、感性的认知,还可运用多媒体设计可变参数的动画,让学生积极参与,自己动手设计,加深理解。又如导数概念的理解需要借助曲线来表现其某个点在某个时刻的瞬时速度,可以充分利用多媒体技术,画具有艺术性的示意图,设计动画,让学生在动画中领悟微积分的实质和导数的概念。值得注意的是,在运用多媒体技术时,要遵循学科本身的规律,反复渗透,循序渐进,结合教材,积极引导。

四、小结

高等数学在我们生活中的具体应用论文

高等数学在我们生活中的具体应用论文

从小学、初中、高中到大学乃至工作,大家都尝试过写论文吧,论文是探讨问题进行学术研究的一种手段。你写论文时总是无从下笔?以下是我收集整理的高等数学在我们生活中的具体应用论文,希望对大家有所帮助。

摘要:

进入21世纪,随着经济的不断发展,社会竞争越来越大,对于人才的要求也越来越高。在这种情况下,高等数学的重要作用就凸显了出来,高等数学能够培养人们的思维能力,培养人们发现问题、解决问题的思维方式。高等数学在我们生活中的应用越来越广泛,并且渗透到了各行各业中,许多问题的解决都离不开数学模型的构建。针对高等数学的特点,分析其在我们生活中的具体应用。

关键词 :

高等数学;经济社会;应用;

引言:

数学既是一门理论学科,又是一门应用广泛的工具性学科,在理学、工学、管理学、经济学等各个领域都发挥着重要的作用,如何将抽象的数学理论应用到具体的经济科学实践中去,作为学管理学、经济学的我们更应该对数学有更深的认识。

一、高等数学在学术中的应用

高等数学在众多的学科中扮演着重要的角色,在物理学科中,高等数学与其关系极为紧密,高等数学中最为重要的一部分便是微积分,众所周知,微积分是其创始人,著名的物理学家、数学家牛顿先生在解决经典力学问题的过程中所创立的,力学作为物理学中重要的知识,几乎贯穿于整个物理知识体系中,而微积分就是解决物理知识的关键工具,构建了地球和天体主要运动现象的完整力学体系。

在生物学中,高等数学同样扮演着重要的角色,19世纪时,就有生物学家试图通过数学方法来研究生命现象。而在上世纪20年代中期,就有生物学家利用高等数学的一些知识来解决著名的地中海鳖鱼问题,经历了几十年的发展,生物数学已经成为了生物学中重要的部分,无论是心脏的跳动还是血液的循环、脉搏的周期,都可以用高等数学的知识通过方程组的形式进行表示,并且通过求解的方法来掌握一定的规律,描述生物界的一些现象。

二、高等数学在经济社会的应用

随着社会经济的不断进步以及高等数学的不断发展,数学的手段越来越多样化,经济问题也越来越多样化,利用数学问题对经济环节进行定量分析是十分重要的,最简单的例子就是我们平时生活中的存取款问题以及利率问题。高等数学在经济生活中的应用不止如此,除此之外,高等数学还可以为经营者提供科学合理的数据,以高等数学作为工具来得到最佳的决策。在经济学当中,许多的量如边际成本、边际收益、边际利润都需要用导数来进行计算。而通过这些量可以计算企业生产过程中的一些数据,来对企业的正常运转进行调控,从而达到最优的生产效果。每个经营者都希望用最少的钱创造更多的`价值,在实际经营过程中,难免会出现资金的浪费,利用高等数学知识,能够使资金得到最合理的应用,使成本降低,创造更加大的利润,这种问题,其实就是高等数学中最大值最小值的问题,将其转化为数学模型,能够更好地配置相关资源,合理安排生产,实现最大利润。

三、高等数学在军事中的应用

纵观两次世界大战,无论哪一次都少不了高等数学的身影。射击火力表一直都是数学家需要计算的重要任务。除此之外,各种新型武器装备的研发以及投产,都离不开高等数学的研究。不仅仅是空气动力学、流体动力学还是弹道学,等等,其中都包含着高等数学的知识,这充分说明了高等数学的重要地位。除此之外,高等数学还在原子弹、声呐等新型装备的研发过程中扮演着重要的角色,可能直接影响战争的格局和走向。未来,随着科学技术的不断发展,军事技术也一定会作用于各种新的高科技,而一切高科技领域都少不了高等数学的"加持"。

四、高等数学中概率和数理统计的应用

高等数学中涵盖的知识点较多,概率作为其中的一个知识点,在多种领域尤其是自然科学方面以及社会科学方面的应用十分广泛,而且,还与我们的日常生活息息相关。举例子来说,几年前,我国全面开放了二孩政策,在这项政策开放的背后,是相关专家针对我国人口发展的问题,根据众多的资料数据进行统计分析,判断后做出的决定。近几年,随着我国科学技术的不断进步,以高等数学为核心的生活方式迅速地辐射到了人们日常生活中的各个领域,从移动支付以及购物到智能机器人的应用,办公的自动化,这些都需要我们具有高等数学知识以及素养。

五、高等数学在学生思维构建方面的应用

高等数学通过建立模型,能够有效地培养学生的综合素质,开拓学生的思维。在教学过程中,教师通过给学生树立建模的思想,使学生能够得到全面的发展,能够最大程度地提高学生的学习热情。高等数学可以通过构建数学模型,以此来对现实中的一些事物进行有规律的描述。而高等数学进行数学模型的构建需要人类的思维活动,也就是说,高等数学能够提高学生对于数学理论以及思维方法应用的意识,使学生培养数学思维,利用数学知识解决生活实际问题。

六、结语

当代大学生学习数学的重要性显而易见,我们要想在21世纪的社会有一个立足之地就需要全面地发展自己,而我们学习的高等数学又是其中的重中之重。我们要认清当今社会的人才培养目标,深入地学习高等数学,为中国的经济建设献出自己的力量,为早日实现中华民族的伟大复兴而奋斗。

参考文献

[1]苏丽论高等数学在经济分析中的应用[J].信息记录材料,2016,(06)

[2]卢明宇浅析微积分在金融领域的作用[J].经贸实践,2017,(05)

[3]马源谈谈数学学习在经济金融学中的作用[J].经贸实践,2017,(15)

拓展:

专业论文格式模板

一、毕业论文(设计)资料按以下顺序排列:

(一)封面。包括论文题目、指导教师、学生姓名、学号、院(系)、专业、毕业时间等内容。论文封面由学校统一印制。

(二)中、外文摘要(包括关键词)。外文论文(设计)的中文摘要放在英文摘要后面编排。

(三)正文。

(四)注释。

(五)附录。

(六)参考文献。

(七)致谢。

二、毕业论文的打印与装订

除要检验学生书写规范的专业外,毕业论文(设计)须用计算机打印,一律采用A4纸。

(一)页面设置

毕业论文(设计)要求纵向打印,页边距的要求为:

上(T):2.5cm

下(B):2.5cm

左(L):2cm

右(R):2cm

装订线(T):0.5cm

装订线位置(T):左

其余采取系统默认设置。

(二)排式与用字

文字图形一律从左至右横写横排。

文字一律通栏编辑。

论文采用宋体,字迹清楚整齐,除特殊需要,一般不使用繁体字。

(三)段落设置

采用多倍行距,行距设置值为1.25。

其余采取系统默认设置。

(四)页眉、页脚设置

论文题目(不包括副题目)居中,采用五号宋体字。

页脚需设置页码,页码采用五号黑体字,加粗,居中放置,格式如:1,2,3……页。

三、毕业论文(设计)撰写的内容与要求

(一)封面

1、封面。

纸质封面由学校统一印制。不编排页码。

2、封一(中文摘要)

中文摘要:“中文摘要”四字在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。中文摘要一般不超过250—300字。

关键词:接中文摘要打印,“关键词”三字空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。关键词一般在3—8个之间。

3、封二(外文摘要)

外文摘要:“外文摘要”英文单词在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。外文摘要一般不超过250个实词。

关键词:接外文摘要打印,“关键词”英文单词空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。外文关键词应与中文关键词相对应。

(二)正文

正文一般使用小四号宋体字,重点文句加粗。

1、标题层次。

毕业论文的全部标题层次应整齐清晰,相同的层次应采用统一的表示体例,正文中各级标题下的内容应同各自的标题对应,不应有与标题无关的内容。

各层标题均单独占行。第一级标题居中放置;第二、三、四等级标题序数顶格放置,后空一格接标题内容,末尾不加标点。

标题序数采用1.、2.……1.1、1.2……1.1.1、1.1.2……1.1.1.1……的层次。正文中对总项包括的分项采用一、二、……(一)、(二)……1、2……(1)、(2)……①②……的层次,括号后不再加其他标点。

2、量和单位。各种计量单位一律采用国家标准GB3100—GB3102-93。非物理量的单位可用汉字与符号构成组合形式的单位。

3、标点符号。标点符号应按照国家新闻出版署公布的“标点符号使用方法”的统一规定正确使用,忌误用和含糊混乱。

4、外文字母。外文字母采用我国规定和国际通用的有关标准写法。要分清正斜体、大小写和上下脚码。

5、名词、名称。科学技术名词术语采用全国自然科学技术名词审定委员会公布的规范词或国家标准、部标准中规定的名称,尚未统一规定或叫法有争议的名称术语,可采用惯用的名称。

6、数字。文中的数字,除部分结构层次序数和词、词组、惯用语、缩略语、具有修辞色彩语句中作为词素的数字必须使用汉字外,应当使用阿拉伯数码,同一文中,数字表示方法应前后一致。

7、公式。公式一般居中放置;有编号的公式顶格放置,编号需加圆括号标在公式右边,公式与编号之间不加虚线。

公式下有说明时,应在顶格处标明“注: ”。

较长公式的转行应在加、减、乘、除等符号处。

8、表格和插图。

(1)表格。每个表格应有自己的表序和表题。表内内容应对齐,表内数字、文字连续重复时不可使用“同上”等字样或符号代替。表内有整段文字时,起行处空一格,回行顶格,最后不用标点符号。

(2)插图。每幅图应有自己的图序和图题。一般要求采用计算机制图。

文中图表需在表的上方、图的下方排印表号、表名、表注或图号、图名、图注。

(三)注释

注释采用页末注(将注文放在加注页的页脚)或篇末注(将全部注文集中在文章末尾),不可行中加注。注释编号选用带圈阿拉伯数字,注文使用小五号宋体字。

以下为引用各类文献注释格式:

专著:注释编号.作者.专著.书名[m].出版社,出版年.起止页码

期刊:注释编号.作者.期刊.题名[J].刊名,出版年(卷、期):起止页码

论文集:注释编号.作者.论文名称:论文集名[C].出版地:出版社,出版年度.起止页码

学位论文:注释编号.作者.题名[D].保存地点:保存单位,写作年度.

专利文献:注释编号.专利所有者.题名[P].专利国别:专利号,出版日期

光盘:注释编号.责任者.电子文献题名[电子文献及载体类型标识],出版年(光盘序号)

互联网:注释编号.责任者.文献题名.电子文献网址.访问时间(年-月-日)

文献作者3名以内的全部列出;3名以上则列出前3名,后加“等”(英文加“etc"”)

(四)附录

“附录”两字在第一行居中位置,使用小二号黑体字,加粗。

附录项目名称使用四号黑体字,加粗,居左顶格放置。另起一行空两格,使用小四号宋体字标注附录序号和题名,编排样式可参照正文。

(五)参考文献

参考文献一律放在文后,其书写格式应根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:M专著,C论文集,N报纸文章,J期刊文章,D学位论文,R研究报告,S标准,P专利;对于专著、论文集中的析出文献采用单字母“A”标识,其他未说明的文献类型,采用单字母“Z”标识。

“参考文献”四字居中放置,使用小二号黑体字,加粗。

内容使用小四号宋体字,居左,空两格放置。具体结构格式与标注方法同注释中交代引文出处的注文格式。

微积分在物理学中的应用

极多,随便打开一篇名字里带某某理论某某设计的论文,没有用到积分算我输。
具体来说,物理学经常要进行的测量实验就用到微积分,比如我要获取某工件A的速度加速度曲线,用来研究它的工作状态从而进行前馈补偿什么的。我们没法直接测速度,我们能测的是用激光干涉仪得到的他的位置参数,得到的是个距离-时间曲线。我们最终要得到的是速度-时间曲线,速度-时间曲线就是通过距离-时间曲线做一次求导得到的。

微积分在数学和物理上的应用有什么意义

微积分的开辟把数学进行宏观与微观的结合,在实际的计算中进行客观计算。在物理上,有了微积分,就有了微元法,可以很容易求出非理想模型化的物理量(在中学课本上,那些计算都是理想化的计算,在实际中没有丝毫的意义)。

微积分在物理中的应用

原则上讲,数理不分家,从物理到数学其实就是一个建模抽象的过程,同时也是一个化归的过程,也就是说,物理中的任何一个领域都必然地涉及数学,不存在与数学毫无关联的物理分支。

所以,只要物理中的问题能够抽象划归成微分与积分,就是微积分在物理中的应用。我们所要讨论的只是在物理中微积分用的比较频繁的几个领域。

1.变力做功(涉及力学、电学、热学、原子物理等)

2.刚体转动惯量的计算

3.保守力势能的推导

3.某些特殊物体质心的确定

4.非均匀物体质量体积等的计算

5.电容特殊的充放电

6.电磁感应和动力学的结合等

仅为常用领域
学会用微积分的角度分析问题
才是根本的解决之道

上一篇:小学数学论文格式标准

下一篇:数学微积分论文的结尾