微积分毕业论文一千字
微积分毕业论文一千字
微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。
摘要:初等微积分作为高等数学的一部分,属于大学数学内容。在新课程背景下,几进几出中学课本。可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。但对很多在岗教师而言,还很陌生,或是理解不透彻。这样不利于这方面的教学。我将对初等微积分进入中学数学背景,作用及教学作简单研究.
关键词:微积分;背景;作用;函数
一、微积分进入高中课本的背景及必要性
在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。微积分已成为我们学习数学不可或缺的知识。其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。这使得很多人学不懂微积分,更不用说让中学生来学习微积分。
柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。这为其完全进入高中课本奠定了基础。从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的 概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。
从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。回顾历届高考,微积分相关题型分值越来越高。但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一 方法 ,也是联系中学与大学数学知识的纽带!
二、微积分在中学数学中的作用
1.衔接性与后继作用。微积分本是大学高等数学范畴,是大学开设的课程。让现在中学生提前学习部分微积分知识,这便为其以后升入大学学习微积分打下良好的基础,这也使数学知识从小学到大学从内容上衔接得更加紧密。也不会再出现很多大学生认为的大学数学知识在高中数学教学中没有任何作用的观点.
2.解决数学相关知识的作用。高中数学函数在整个中学数学内容中,不论从高考所占比重还是自身难度来说都应该排在首位。对学生来说永远是最难学的,得分率也相对比较低。很多学生讨厌数学就是讨厌函数,提到数学中的函数就头晕。由于应试 教育 的关系,学生又不得不学习函数,而函数思想本身也是高中数学学习的一条线索。微积分的进入对学生学习函数问题找到了统一的方法。高中阶段我们所研究的函数问题一般是以一些基本初等函数为媒介研究函数的定义,图像和性质,当然也有应用。但随着课改的深入,函数应用问题逐渐在淡化。而初等微积分知识即研究函数的重要工具,如:微积分可以求函数的单调性,最值。最重要的是它可以画出函数的图像,其实,当函数图像画好后,几乎函数所有性质都可以解决。学生只要学好微积分便掌握了研究函数的统一方法,那么高中阶段的二次函数,指数函数,对数函数,三角函数等所有初等函数的学习就可以统一,既节约了教学时间又学习了先进的数学思想。对提高学生的数学修养打下坚实的基础。我相信还可以激发其学习数学的兴趣。另外,在高中阶段,初等微积分还可以解决不等式问题,求二次曲线的切线问题,求曲边梯形的面积等很多数学问题。利用微积分不仅可以使问题简化,并能使问题的研究更为深入、全面。
3.提高数学在其他学科的应用能力。作为自然学科的数学本身已应用于社会经济、技术等各个领域。而作为中学数学,它对中学 其它 学科的推动作用也是毋庸置疑的。如物理,化学,地理等学科也离不开数学。在高中阶段往往会因为数学的教学进度而影响其它学科的进度。如地理中要学习地球的经度,纬度等知识就需要先学习数学中球体相关知识和解三角形相关知识。当微积分进入中学数学后,数学这个学科的作用就更加重要了。特别像物理中匀加速直线运动位移,瞬时速度,加速度等问题利用微积分的导数求解起来更加简单,容易理解。新课程人教版数学教材选修2-2中专门加入了利用定积分求变速直线运动的路程一节。另外,微积分解决生活中的优化问题也进入中学课本。可见,微积分进入中学教材,对促进学科间知识的整合起到了至关重要的作用。
三、国际上一些教材对微积分知识的处理
以苏联中学为例,苏联中小学为十年制,从九年级(1)(相当于我国高中一年级)中讲了数学归纳法和排列组合以后,就介绍无穷数列和极限。然后介绍函数极限和导数,所有这些都在讲解三角函数,幂函数,指数、对数函数之前。随即介绍导数在近似计算,几何(求切线)和在物理中的应用(研究速度,加速度)以及导数在研究函数问题中得应用(求函数极值,最值,单调性等)。到九年级末及十年级(2)再讲三角函数, 利用导数可以研究三角函数的性质。然后介绍不定积分和定积分。接着在指数函数,对数函数和幂函数一章介绍指数函数的导函数,再利用反函数求得对数函数的导函数。在十年级(3)中利用微积分知识研究几何问题,用积分推导锥体,球体等的体积公式。还把球的表面积定义为球的体积V(R)对R的导数,从而立即求得球的表面积公式。可见,苏联课本中及早分散引入导数及积分的概念和计算,而不是到最后整块讲解。这样处理,可以使微积分知识结合研究函数问题,几何问题以及研究物理问题中都得到应用。
当然,还有比如台湾中学教材对微积分处理和我过现行教材区别不大,就不再介绍。而上诉对微积分的处理情况是一种在欧洲中学教材中较普遍的处理方式。其优点主要就是充分发挥了微积分在中学数学教学中的作用。使中学数学知识更加连贯,更加易懂!
摘 要:微积分是高等院校管理类专业的重要数学基础课,第一堂课是上好微积分的关键。通过三个方面就如何上好微积分绪论课做些探讨。
关键词:微积分;起源;内容;方法
微积分是门基础课,这门课的学习直接影响到今后专业课的学习,而绪论课对这门课的学习有着引导的作用,在整门课中有特殊的地位和作用。绪论课应包含下面几个部分的内容:
一、微积分起源的介绍
微积分包括两方面的内容:微分与积分。微积分的创立源于处理17世纪的科学问题。先引入微积分学的创始人之一费马研究的一个问题:假设一个小球正向地面落去,求下落后第5秒时小球的速度?若是匀速运动,则速度等于路程除以时间,然而这里的速度是非均匀的,那能不能把非均匀速度近似看成均匀速度?用什么方法?这就是微分学问题,再引入古希腊人研究的面积问题:计算抛物线y=x2与坐标轴x轴在0≤x≤1间所围成的面积。能不能将面积切割成n个小面积,再将小面积用小矩形来代替,由n个小矩形的面积得到所求面积?这里所用的方法就是积分问题。很早以前就有人研究过微分与积分,而微积分的系统发展是在17世纪开始的,从此逐渐形成了一门系统完整且逻辑严密的学科。微积分通常认为是牛顿和莱布尼茨创立的。这一系统发展关键在于认识到微分和积分这两个过程实际上是彼此互逆地联系着。
介绍提及的人物牛顿和莱布尼茨的相关轶事,例如创建微积分优先权的争论。牛顿于1665~1687年把研究出的微积分相关结果告诉了他的朋友,并将短文《分析学》送给了巴罗,但期间没有正式公开发表过微积分方面的工作。莱布尼茨于1672年访问巴黎,1673年访问伦敦时,和一些知道牛顿工作的人通信。1684年莱布尼茨正式公开发表关于微积分的著作。于是有人怀疑莱布尼茨知道牛顿具体的工作内容,莱布尼茨被指责为剽窃者。在两个人死了很久后,调查证明:牛顿很多工作是在莱布尼茨前做的,但是莱布尼茨是微积分思想的独立发明者。
二、介绍微积分内容及方法
微积分学研究的对象是函数,极限是最主要的推理方法,它是微积分学的基础。微积分内容有四类:一是已知物体移动的距离是时间的函数,怎样由距离得到物体在任意时刻的速度和加速度;反过来,已知物体的加速度是时间的函数,怎样求速度和距离。二是求曲线的切线。三是求函数的最大最小值问题。四是求曲线的长度、平面曲线围成的面积、曲面围成的体积、物体的重心。
三、为什么要学习高等数学
微积分在自然科学、经济管理、工程技术、生命科学等方面都有应用,是各门学科强有力的数学工具。学好微积分,可以增加语言的严密性、精确性,可以从中锻炼人的 理性思维 ,并感受到美的艺术。例如黄金分割,无理数的■与π的表达式:
微积分的绪论课是整个教学的第一课,绪论教学能使学生对这门课有个快速大致的认识与了解,好的绪论课可以引导学生主动、积极地学习。
前 言
21世纪,科学、技术和社会都发生了巨大的变化。高等数学作为高等院校的基础课程之一,在其他各个领域及学科中发挥出越来越大的作用。尤其是微积分教学,是目前数学教育的一大课题。
一、我国微积分教学改革的现状
目前的数学实验中,微积分教学改革的现状中仍然存在一些主要问题。
首先,优秀人才的培养重视不够。在微积分教学中,重视的是教育大众化的人才,而一些顶尖的、优秀的人才的培养却重视不够。
其次,过度应试化。过度重视应试教育在微积分教学中越来越明显,轻能力重考试已成为一种倾向。
再次,学生差异大,素质下降。学生人数的激增带来学生差异的强化,面对这一情况,如何规划班级,如何区别对待学生是微积分教学面临的问题。
二、微积分课改的必要性
随着高等数学改革的不断深入,微积分教学的改革成为其中的重要部分。微积分教学的改革并不是空穴来风,而是一种必然。
(1)社会高度发展提出的要求
微积分作为高等数学的一部分,对技术文明的推动有重要作用,许多数学细想和数学的建树都离不开微积分。可以说,微积分在推进数学思想,推进社会进步,推进科学发展上有举足轻重的作用,是不可或缺的,它是人类思维的伟大成果,不仅是高等数学。而且是其他行业,其他专业,在不同范围和不同程度上对微积分的认识都是必要的。设想一下,如果取消对微积分的学习,那么技能的进步只是一句空谈,社会不会发展,智慧不会被充分开掘。所以,微积分教学的改革是十分必要的。
(2)科技的发展提出的需要
当今世界,是一个科学技术突飞猛进的时代,军事、贸易等激烈的竞争和市场经济,如果没有科技的推进,则会落后于他人。如何促进科学的发展呢?微积分起着重要的作用,它不仅为科学提供了精密的数学思想,也为科学的提供了理论支撑,它不但改变了数学面貌,还是其他学科的工具和方法,微积分在自然学科的各个方面都有运用。随着科技发展的时代,提高微积分教学的质量是势在必行的。
(3)人类思维发展的需要
微积分中蕴藏着很多重要思想,比如辩证的思想,常量与变量,孤立与发展,静止变化,有限与无限等,还有“直”与“曲”,“局部”与“整体”的辩证关系,其实。哲学最处就是与数学密切相关的,所以,数学,尤其是微积分思想充满了逻辑与辩证,微积分的学习。不仅是知识、理论的学习,更是一种思维的训练。因此,微积分教学的完善有利于培养人类思维,使人类思维获得一个飞跃,更有效地解决问题。
三、微积分课改的内容
根据新的教学大纲的修改,微积分教学重新设计了课程内容、教学理念、 教学方法 等,以学生为主体,更直观形象,而且在教学方法上也进行了革新。全面促进了微积分教学的改革。
1、课程基本理念的改革
微积分教学的改革能否成功关键在于观念的转变,过去是偏重理论,现在则要注重应用激发初学者的学习兴趣,尽早把握微积分的基础知识,把抽象难懂的微积分理论转变为学生容易接受、容易理解的微积分教学方式,比如说,极限是微积分知识中的难点,极限概念、运动、辩证思想等对于学生来说是十分抽象,不容易理解,从而没有激发学生的学习兴趣,课堂变得枯燥无味,理论严谨,逻辑性很强,学生上手难。微积分教学大纲的修订也体现出教学理念的更新,新的微积分教学中,适当降低了难点知识。重视对微积分本质的认识,以直观、实例来提高学生的微积分学习兴趣和学习效率,使学生学习的主动性回归到自身,体现以人为本的思想,重视学生的情感态度、生活价值的培养,根据学生自身的特点因材施教,为学生提供更好的学习条件和基础。
2、课程内容的改革
根据《标准》大纲的修订,微积分教学首先是对课程内容和教学大纲的精简、增加、删改。修订后的教学内容比原来的教学大纲更精练,更科学。比如,原来12学时的“极限”在修订大纲中被大面积的删减。并在修订大纲中,引入导数这一很有判断意义的概念,因为导数是微积分初步了解的第一个概念,对导数概念的理解起到基础性的作用。而且,修订的课本内容中,对导数的讲解时直观形象的,应用性很强,又有许多实例来帮助学生加深理解。因此,微积分教学的新课改减轻了学生的学习负担,降低了概念的理解难度。
3、课程设计的改革
原来的课程是从极限、连续、导数、导数应用,再到不定积分、定积分这样的次序设计的,并在“导数和微分”的前面一章给“极限”设计了许多定义,以及对“极限”的求法和运算做了讲解。修订后的大纲对课程设计做了调整,尤其是微积分讲解的路线,发生了变化,从瞬间速度,变化率,导数、导数应用再到定积分。对人文社科方面的高校微积分课程的设置,则多数是作为选修课来处理的,并与生活十分贴近,应用性很强,使非数学专业也对数学有一定的基础了解和学习兴趣。
4、教学方法的革新
(1)数学思想方法的渗透与运用。数学思想方法是多种多样的,在生活中也取得有效地运用。微积分耶是高等数学的一个方面,因此,在微积分教学中引入数学思想方法是科学的。其中,数学分析,也叫微积分,是17世纪出现的十分重要的数学思想,不仅在17世纪有非常重要的地位,即使是在今天,这种思想方法在成功解决无限过程的运算方面,即极限运算有很大的帮助。数学思想的运用已成为各国比较重视一项革新项目。
(3)加强实例分析和应用性。数学是一种逻辑推理。但也是来源于生活的,也最终给应用于生活,因此,数学的教学不能和现实相脱离。修订后的微积分教学大纲明显注重了实际应用性。即使是书上一个很简单的概念,也时刻穿插一些实用性的图片,在习题的练习中,也是紧密结合生活实际,不是空中楼阁。比如说,用指数函数来看银行存款和人口问题,还有对数函数中涉及放射性、分贝、地震级的问题。微积分数学应用于生活中实际问题的解决。
5、教学工具的革新。
现代教育技术,尤其是多媒体技术在微积分教学中的应用,对很好的实现教学理念,完善教学思想和教学方法很有意义,例如,作为重点和难点的“极限”概念和理论一直是教学中难以攻克的,因为它的抽象,所以老师再怎么讲解也难免有学生不理解,而多媒体教学的应用解决了这一难题,教师可用直观形象的动画来表现比如“无限逼近”的理论,给学生一个直观、感性的认知,还可运用多媒体设计可变参数的动画,让学生积极参与,自己动手设计,加深理解。又如导数概念的理解需要借助曲线来表现其某个点在某个时刻的瞬时速度,可以充分利用多媒体技术,画具有艺术性的示意图,设计动画,让学生在动画中领悟微积分的实质和导数的概念。值得注意的是,在运用多媒体技术时,要遵循学科本身的规律,反复渗透,循序渐进,结合教材,积极引导。
四、小结
如何看待微积分对数学的影响1000字论文
微分是变化量的极限.
微分学包括极限、导数与微分、积分这几个部分.
微分是变化量的极限,导数是增量比的极限,它们都是极限.它们的计算仿佛相同,但是所表示的概念是不同的.一个是全增量,一个是增量比.
积分是导数的逆运算,定积分是一种和式的极限.
整个微分学都是讲的极限,因为无论你是导数、微分、积分,它们的本质都是极限.(1)导数:把函数图象上两点连起来,这条直线就有一个斜率.当这两个点无限接近时,直线的斜率就是导数.此时直线是切线.
(2)微分就是把函数图象(曲线)分成无数个小直角三角形.
其中,横直角边就是dx,竖直角边就是dy,左下的直角的正切就是f'(x)
很明显,在这个无限小的直角三角形中,dy=f'(x)dx
这就是微分的定义.
(3)积分就是微分的逆运算,正如减法之于加法,除法之于乘法.
导数与微分:
微分就是那个微小的变化量,比如dx
导数就是微商,微商就是微分的商,比如y对x求导,就可以写成dy/dx,就是y的微分与x的微分的商.从几何意义上讲,导数就是斜率.
所以求一个y的微分的时候,应当是dy=y'*dx,你的因子里面一定要有一个dx,否则就是错的.
要是满意的话别忘了采纳我哦
高等数学论文范文
随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。
一、高等数学在地方高等职业教育中遇到的问题及解决办法
(一)数学师资力量短缺,教师学历偏低
地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。
(二)学生对数学课重要性认识不够,学习热情不高
目前,在高职院校学生中普遍存在着“专业至上”的观念。他们片面地认为只要专业课学好了,其他的文化课无足轻重。所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。
(三)高等数学课程设置不合理,教学与实际应用脱节
由于高等职业教育的教学内容和教材体系不同,高职院校数学课程的安排与普通大学有明显的区别。它的课程设置应根据培训目标、教学计划等内容,合理安排教学方法和步骤。高职数学课程改革的目标应以培养高级技术应用型人才为建设目标,从教学内容和课程体系中择优选择,并围绕这一目标有层次有步骤地实施。比如,高职院校的数学课程设置,在统计、公共管理类的专业上,就应当凸显数学学科特点,强化概率论与数理统计等数学基础课程的教学;在涉及计算机类的高等数学课程设置时,就应该加强数学逻辑思维和离散数学的课堂教学,让学生认识到数学的重要性,从而缩短理论与实践的距离;在涉及到医学类的教学时,应开设“模糊数学”和“线性代数”两部分内容,其目的是在高职阶段让学生在基本掌握微积分知识的前提下,拓宽学生的数学视野,为今后相关的科学研究提供多样性的数学方法,同时培养学生缜密清晰的思维、严谨科学的方法和能力。
二、总结
高职教育是以培养学生应用能力为主的教育方式,所以在高职数学教学中应当强调以实际应用为主要目标,这既适应了数学教学改革的要求,也是今后的发展方向。课程改革既要侧重基础性、应用性,又要增强科学性和理论性;既要加强数学在实际当中的应用,又不应忽视数学作为独立学科的学科特色;既要把握“适度够用”原则,又要把握好它在高职教育中的重新地位,以做好数学课的学科建设工作。
一、网络教育高等数学的现状分析
1.学生方面。通过笔者多年来从事高等数学的网上教学工作来看,网络教育学院上的培养目标主要是面向成人在职人员,为社会培养更多的适用性、应用型人才。然而网络教育学生普遍数学基础较差,个别人甚至严重匿乏。包括有一部分学生没有参加过高考等高中阶段的学习,有一部分学生已参加工作多年早已将有关高等数学知识遗忘。面对这种情况,如果网络教育教师只是单纯地辅导高等数学知识,就会存在一部分学生由于基础差而跟不上高等数学的学习。另外厂部分学生不仅基础较差而且学习方法都很难适应高等数学的学习,再加上对网络教育学习环境不适应严重影响学习质量。
2.教师方面。根据网络教育的目前情况来看很多高校聘用的网络教育教师都是来自其他院校的兼职人员,他们很难把大部分精力用于网络教育高等数学的教学中。从长远发展看,网络教育学院应该拥有自己的专职教师队伍。有的高校聘用的大批高学历、高素质的教师队伍均为刚毕业的优秀人才。他们年龄较小掌习能力较强对工作充满极大热情。但由于他们从小受到传统教育观的影响,对网络教育的学生要求习惯同高校全日制统招生进行比较,而且教师队伍最初成立无历史借鉴周此缺乏一定的教学和实践经验。这就需要教师逐渐掌握网络教育学生的实际水平和个人要求充分利用网络教育的现代化教学水平遵循教学原则顺利实现高等数学的教学目的。
二、网络教育高等数学的教学初探
教学原则是有效进行教学必须遵循的基本要求。它既指导教师的教也指导学生的学应贯彻于教学过程的各个方面和始终。那么根据高等数学的教学特点,教学原则应贯彻以下几个方面:
1.科学性和思想性统一原则。网络教育学院的培养对象是成人在职人员,他们学习的侧重点偏向于跟自己职业相关的专业知识对高等数学等基础课缺乏重视肩个别学生会认为基础课无用,没有什么学习价值。这些都是学习态度不够端正掌习思想不够明确的表现。针对这种情况,可以通过网上教学向学生说明高等数学学习的重要性和必要性指出数学也是一种思想方法掌习数学的过程就是思维训练的过程。人类社会的进步与数学这门科学的广泛应用是分不开的。尤其到了现代现代数学正成为科技发展的强大动力同时也广泛和深入地渗透到各个领域。通过这些讲述河以提高学生的学习意识,为高等数学的学习奠定思想基础。另外还有很多学生学习的主动性很强但缺少科学合理的学习方法,即使花费很多的学习时间却没有达到良好的学习效果。这就需要教师加以引导通过网上教学同学生积极交流和讨论高等数学有益的学习方法,提高学生的学习能力。个人认为学习高等数学之前要对初等数学知识有一定的了解。如基本初等函数及其计算公式会在高等数学中再次重述常用的几何公式、不等式和数学归纳法会对微积分的学习有所帮助;方程的解法是学会微分方程的基础二项式定理、数列公式、因式分解公式是求有关无穷级数相关知识的基本方法等等。这些都是有益的学习方法经过实践认证得到了学生的充分肯定。
2.理论联系实际原则。传统高等数学的教学过于注重理论忽视概念产生的实际背景和数学方法的实际应用。网上教学就应该在淡化理论的同时,加深对数学概念的理解和应用。高等数学的概念可以从学生熟悉的生活实例或与专业相关联的实例引出从而激发学生的学习兴趣。如讲解导数概念时河以通过求变速直线运动瞬时速度的过程归纳出求解方法步骤撇开具体意义得到“导数(变化率)”的概念。还可根据不同专业的学生同时介绍与变化率有关的问题。适用于机电类专业学生河介绍圆周运动的角速度是转角对时间的导数、非恒定电流的电流强度是电量对于时间的导数等变化率问题适用于经济类专业学生河介绍产品总产量对时间的导数就是总产量的变化率、产品总成本对产量的导数就是产品总成本的变化率(边际成本)等等。在引用实例讲述知识后还可以引入典型例题。通过实际问题引出数学知识,再反过来论证数学知识在生活实际中应用这不仅提高了学生学习的兴趣减少了数学学习的枯燥性同时也给学生建立了一种数学建模的思想使学生所学的理论知识能够进一步联系生产实际并为其他学科服务。
大专生毕业论文范文
近年来,高校 毕业 论文质量持续滑坡,甚至出现雷同、抄袭等学术失范现象,症结主要源于高校毕业论文价值的缺失。下面是我为大家推荐的大专生毕业论文 范文 ,供大家参考。
范文一:学生方面大学毕业论文
【摘 要 】对于高等职业 教育 中的高等数学教学来说,随着高职教育对于高数教学的实际需求的不断改变,高职高数同样也需要进行创新性的变革,以满足现今高职学生的实际学习需求.本文旨在通过分析现今高职高数教学遇到的问题,以及如果来进行创新性的高职高数教学.
【关 键 词 】高职 高数 创新性
【中图分类号】G712 【文献标识码】B 【 文章 编号】2095-3089(2013)06-0127-02
要用素质教育来淘汰应试教育一直都是教育制度改革的重点内容,而在这个变革的过程中,教育创新也就成为了一个不可忽视的过程和手段.只有发挥教育主体的主观能动性,对教学内容和教学手段进行创新性提高,素质教育的变革才有可能取得应有的成果.对于高等职业教育中的高等数学教学来说,随着高职教育对于高数教学的实际需求的不断改变,高职高数同样也需要进行创新性的变革,以满足现今高职学生的实际学习需求.本文旨在通过分析现今高职高数教学遇到的问题,以及如果来进行创新性的高职高数教学.
一、高职高数教学问题分析
高等数学作为一门基础性的理论学科,同时因为高数学科本身的难度,对于学生来说,吸引力自然是十分低的,特别是对于高职学生来说,更是显得无足轻重.所以学生对于学习这门课程的学习积极性并不高,一些学生更是对于这一门学科有着极大的恐惧心理.另一方面高职教育往往关注的是以后学生的就业率和就业技能培训,所以高职教师对于高数这门课程的关注度和重视度自然也不会太高.一些高数教师在教授这门课程的时候,更是按照教材按部就班的给学生灌输一大堆晦涩难懂的理论知识,而毫不关心学生对于这些内容是否已经理解.在这种恶性循环之下,学生的学习积极性自然是不会太高,这也让这门学科在高职教育中变得可有可无.
二、高等数学创新教育分析
(一)高数创新教育的特殊性分析
高数的创新教育是在传统高数教育的基础上,实现以培养创新性应用人才的教育模式.与传统的高数教学的相比,创新教育除了让学生学习必备的书本知识以外,更加倾向于让学生的在自己的学习过程中发现问题,并且通过团结协作,共同探讨这些在现实学习中遇到的问题,共同找到问题的最佳答案.在这一过程中,每一个学生的学习能动性都能很好的被调动起来,增强学习高等数学的信心,对于高数这门课程的积极性和主动性也能在这一过程中很好的建立起来。
(三)如何开展高等数学的创新教育
1.考虑如何开展高等数学的创新教育,首先就要站在学习者的角度上考虑问题
数学,对于一个普通的学生来说,它不仅是一门枯燥乏味的基础性工具学科,同时在学习这门课程的过程中,能够帮助学生拓宽他们的空间和时间的思维能力,以及能够帮助学生更好的掌握事物之间的内在逻辑性.为了适应新时期下高职学生对于高等数学这门学科的现实需求.高数创新教育的首先一点就是要转移高数教学的侧重点,一定要从要求学生对课程体系的掌握转移到培养高职学生运用数学解决实际能力上来,以此来培养高职学生的创新数学思维能力,以及充分发展他们的创造能力以及批判能力等.
2.改进教学内容
对于高等数学这个庞大而复杂的学科来说,高职学生的底子基础并不足以能够很好的驾驭这门学科,在各种纷繁复杂的公式、规律、概念面前,许多基础差的学生很容易就陷入奔溃,也会对这些还没开始学习的内容产生极深的恐惧心理,所以高职高数教师在教授高数这门课程的时候,首先就要考虑到高职学生的接受能力和接受习惯.
高职教师在选择高数教学内容的时候,首先第一点就是要坚持做到删繁就简,少而精的原则.对于一些无足轻重的内容可以点到即止,对于一些重点、难点则要进行细致耐心的讲解,最好是在教学过程中,将这些重点难点时不时的融入到实际的例子教学中,让学生在他们最为熟悉的例子中,能够比较轻松的掌握高数重点和难点.
3.创新 教学 方法
学习最大的动力就是将学习培养成为一种兴趣,高数教学要想取得创新性改变,在教学方法上就必须对这门学科进行改革.寓教于乐的方式虽然对于高等数学这门学科来说有着极大的难度,但是也要从学生平时的生活中找到能够与高数这门学科结合的点,把教师讲授为主的教学模式逐渐向研究型学习模式转变.对于感兴趣的学生更是可以开设专门的课题性教学,让他们从对课题和事物的研究中能够更深层次的了解高等数学真正的魅力.
4.采用信息化手段
信息技术的发展在很对领域都对相信的学科科学起到了一定的辅助作用,同样的信息技术也能在高数教学中起到很好的辅助作用.通过多媒体的信息集成技术来对事物创设情境,就能够让学生更加真实的体验到事物发展的变化和特点.通过模拟的手段也能够给学生带来最为直观的心理感受,同时帮助他们能够更好的理解高数这门学科,并且能够进行更加深入的研究学习.
创新教育是教育改革发展的必然趋势,同时创新教育的实施,对于培养高职学生创新能力和创新精神起到了极大的作用.
参考文献:
[1]余达锦.信息技术时代高等数学的创新教育[J]. 科技广场. 2004(11)
[2]蒙诗德.浅论数学建模教学和竞赛活动中的创新教育[J]. 信息系统工程. 2010(03)
[3]文海英,廖瑞华,魏大宽. 离散数学课程教学改革探索与实践[J]. 计算机教育. 2010(06)
[4]龚慧华.高职院校数学教学的新认识[J]. 长沙通信职业技术学院学报. 2010(04)
范文二:与德育教育的实效性与校园环境相关毕业论文
一、增强德育教育实效性的可行 措施
1.转变德育观念,更新德育内容
首先,高中德育教育必须在坚持正确的政治方向的基础上,树立符合市场经济发展需要的德育观念,摒弃形式主义.要针对学生实际情况,分层次地确定德育教育的内容和整体规划.要遵循青少年学生思想品德形成的规律和社会发展的要求,根据德育教育的总体目标,科学地规划初中阶段各年级的具体内容、实施途径和方法,要根据不同年龄段、不同类型的学生,有区别地进行德育教育.这样才能使学校德育工作摆脱“跟着感觉走”、“围着问题转”的窘况.
其次,学校德育教育还要把创新意识融于其中.在教育思想上体现“千教万教,教人求真;千学万学,学做真人”;在教育要求上既有科学性,又有可操作性;在教育内容上从小到大,由此及彼,相互渗透;在教育方式上抓住主 渠道 ,凸现主环节.
2.加强行为规范管理,树立科学的人生观
高中阶段是对学生进行道德情操、心理品质和行为习惯教育的最佳时期,也是为他们树立科学人生观、世界观和形成正确的政治态度奠定基础的重要时期.刚进入高中阶段学习的高中生,在很大程度上习惯于他律,因此,在他们一进入学校时,学校和老师就应该加强管理,用校规校纪及 其它 规范来要求学生,并利用学校或班级发生过的典型事例,通过主题班会和各类教育机会对学生进行德育教育,提高学生的道德认知能力和道德判断,使学生在道德建设上真正形成自律.
学校生活、教材、教法是学校德育教育的三个重要方面,应组织学生直接参与学校生活,通过演讲、影评、参观、访谈、文艺会演等活动,把学生置于必须做出道德选择的具体情境中,让学生充分发挥自主性,用探究、商量、讨论、甚至 辩论 的方法代替强制的灌输.因此,我们必须大力加强学生的常规管理,行为规范只有经过学生的内化、实践,才能使学生形成习惯,所以高中德育应以从活动中学为主,并注重活动的生活性、人文性,寓教于乐和全体参与性.
二、充分利用校园这块净土培育人
1.美化校园环境,和谐育人
校园环境是一种潜在的教育因素,是一部立体的、多彩的、富有吸引力教科书,它时时处处、无孔不入地对学生的思想情操、行为习惯起着熏陶渗透和影响作用.
2.优化精神环境,榜样育人
一所学校的精神是验证它是否具有创新意识和战斗力的重要依据.学校精神主要通过师生精神来体现.其中教师精神尤为重要.教师精神的核心是师德,而爱心又是师德的核心.新世纪的教师应当具有慈母之爱、严父之威、朋友之情等多种角色的扮演意识,积极采用“走动式”的教育方法,运用“思变”的理念,适时对学生进行灵活、多样的教育,让学生充分体味被爱和被尊重的滋味,受到情操的感化、爱心的熏陶.
3.活化集体环境,自主育人
集体是学生成长的摇篮,是学生接受良好思想品德教育的主阵320;.教师是通过集体对学生进行健康品格教育的.以往的教育方式存在着很大弊端,教师把管、卡、压作为德育工作的立足点和有效方法.因此,忽视了学生主体地位和自主意识,片面强调他律而忽视自律,教育方法简单,把教师自己的主观意识强加给学生,这种只重视教师要求,轻视学生自我教育,只重视规章条款,轻视实践活动的倾向,使学生感到教育缺乏活力,活动枯燥无味,致使德育实效甚微.必须真正做到活化集体环境,尊重每位学生的主体地位,敢于发挥学生的积极性和主动性,才能真正培育人.
面对新时期、新形势,高中德育必须引导学生走向社会、了解社会和正确认识社会.因此,必须抓好德育基地的建设,努力为学生创造开展活动的广阔天地,让学生在环境刺激和激发中参加丰富多彩的实践活动,通过主体的主动参与,使德育目标得到内化,从而使他们获得亲身参与研究探索的 经验 ,培养解决问题的能力,培养对社会的责任心和使命感.
应用数学毕业论文
随机环境中经济增长模型研究
广义生产函数假设下的经济增长模型分析
考虑市场预期的供求关系模型
基于Matlab的离散事件模拟
用风险预算进行资产配置
有向图上的PAR贯序模拟系统
单圈图的一般Randic指标的极值问题
模糊数学在公平评奖问题中的应用
模糊矩阵在环境评估中的初步应用
模糊评判在电脑中的初步应用
数学家的数学思想
Riemann积分定义的网收敛表述
微积分思想在不等式证明中的应用
用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义
微积分思想在几何问题中的应用
齐次平衡法求KdV-Burgers方程的Backlund变换
Painleve分析法判定MKdV-Burgers方程的可积性
直接法求KdV-Burgers方程的对称及精确解
行波求解KdV-Burgers方程
因子有向图的矩阵刻划
简单图上的lit-only sigma-game
半正则图及其线图的特征多项式与谱
分数有向图的代数表示
WWW网络的拓扑分析
作者合作网络等的拓扑分析
古诺模型
价格歧视
用数学软件做计算微分方程的计算器
用数学软件做矩阵计算的计算器
弹簧-质点系统的反问题
用线性代数理论做隐含语义搜索
对矩阵若当标准型理论中变换阵求法的探讨
对矩阵分解理论的探讨
对矩阵不等式理论的探讨(1)
对矩阵不等式理论的探讨(2)
函数连续性概念及其在现代数学理论中的延伸
从有限维空间到无限维空间
Banach空间中脉冲泛函微分方程解的存在性
高阶脉冲微分方程的振动性
具有积分边界条件的分数阶微分方程解的存在唯一性
分数阶微分方程的正则摄动
一个形态形成模型的摄动解
一个免疫系统常微分方程模型的渐近解
前列腺肿瘤连续性激素抑制治疗的数学模型
前列腺肿瘤间歇性激素抑制治疗的数学模型
病毒动力学数学模型
肿瘤浸润数学模型
耗散热方程初边值问题解的正则性
耗散波方程初边值问题解的正则性
耗散Schrodinger方程初边值问题解的正则性
非线性发展方程解得稳定性
消费需求的鲁棒调节
生产函数的计量分析
企业的成本形态分析的研究
分数阶Logistic方程的数值计算
分数阶捕食与被捕食模型的数值计算
AIDS传播模型的全局性分析
HIV感染模型的全局性分析
风险度量方法的比较及其应用
具有区间值损益的未定权益定价分析
模糊规划及其在金融分析中的应用
长依赖型金融市场
股票价格与长相依性
分数布朗运动下的外汇期权定价
不确定性与资产定价
加油站点的分布与出租车行业的关系
上一篇:大一数学微积分小论文
下一篇:公共关系课程论文选题