数学论文1000字初二
数学论文1000字初二
如何学写数学小论文 “ 写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。 (1) 写什么 写小论文的关键,首先就是选题,同学们都是初中一、二年级的学生,受年龄、知识、生活阅历的局限,因此,大家的选题要从自己最熟悉的、最想写的内容入手。 下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。 论文按内容分类,大概有以下几种: ①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测; 如:探究大桥的热胀冷缩度 ②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它; 如: 一台饮水机创造的意想不到的实惠 ③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法 如: 分式“家族”中的亲缘探究 如: 纸飞机里的数学 ④对自己数学学习的某个章节、或某个内容的体会与反思 如: “没有条件”的推理 如: 小议“黄金分割” 如: 奇妙的正五角星 (2) 怎样写 ① 课题要小而集中,要有针对性; ② 见解要真实、独特,有感而发,富有新意; ③ 要用自己的语言表述自己要表达的内容 (四) 评价数学小论文的标准 什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。 “梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与创新论文大赛的活动与交流,并取得好成绩。祝愿今后有更多更好的数学小论文,在同学们的手中诞生;愿有更多的同学从学写数学小论文开始起飞,在今后的人生之路上书写出更多的高水平、高质量的论文。 例子:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个
这个问题初二数学论文1000字,好难啊,辛辛苦苦回答了,给我个满意答案把
八上数学论文(1000字)
我这儿有一个勾股定理的论文,我自个儿做的,你参考一下吧
勾股定理的应用与证明
摘要 直角三角形是三角形中较为特殊的一种,那么这种特殊的三角形有什么性质呢,在生活中又有什么应用呢?人们将直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。数学公式中常写作a2+b2=c2。本文将探究勾股定理的应用以及它的多种证明方式,并进行讨论。
一、前言
如果直角三角形两直角边分别为a、b,斜边为c,那么 ;; 即直角三角形两直角边长的平方和等于斜边长的平方。
如果三角形的三条边A,B,C满足A2+B2=C2;,还有变形公式:AB= ,如:一条直角边是a,另一条直角边是b,如果a的平方与b的平方和等于斜边c的平方那么这个三角形是直角三角形。(称勾股定理的逆定理)
上面就是勾股定理。
毕达哥拉斯树
毕达哥拉斯树由无数直角三角形与正方形构成。形状好似一棵树,所以被称为毕达哥拉斯树。
因为直角三角形两个直角边平方的和等于斜边的平方。所以两个相邻的小正方形面积的和等于相邻的一个大正方形的面积。
这么有趣的图案根据勾股定理所画出来的一个可以无限重复的图形。
可见,勾股定理十分有趣。
二、应用及证明方式
1、最早勾股定理的应用
从很多泥板记载表明,巴比伦人是世界上最早发现“勾股定理”的,这里只举一例。例如公元前1700年的一块泥板(编号为BM85196)上第九题,大意为“有一根长为5米的木梁(AB )竖直靠在墙上,上端(A)下滑一米至D。问下端(C)离墙根(B)多远?”他们解此题就是用了勾股定理,
解:如图
设AB=CD=l=5米,BC=a,AD=h=1米,则BD=l-h=5-1米=4米
∵a= = =3米,∴三角形BDC正是以3、4、5为边的直角三角形。
2、赵爽弦图及青朱出入图
赵爽弦图
在幅弦图中,以弦为边长得到的正方形是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积都为 ;中间小正方形边长为(b-a),则面积为(b-a)2。于是便可得如下的式子:
4× +(b-a)2=c2
化简后便可得:
3、欧几里德射影定理证法
如图,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,通过证明三角形相似则有射影定理如下:
(1) =AD?DC, (2) =AD?AC , (3) =CD?AC 。
由公式(2)+(3)得:
+ =AD?AC+CD?AC =(AD+CD)?AC= ,
+ =
这就是勾股定理的结论。
数学专业大学论文1000字范文
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。下文是我为大家搜集整理的关于数学论文的内容,欢迎大家阅读参考!
浅谈提高课堂的有效性思维的策略
有效的课堂教学是通过课堂教学活动,让学生在认知和情感上均有所发展。从事小学数学教学的过程中,对于其有效性有以下几点思考:
一、重视情境创设充分调动学生有效的学习情感
构建良好的师生关系,调动有效的学习情感,对于维持学生的学习兴趣和注意力至关重要。调动有效的学习情感,既能培养学生的学习信心,调动其学习的主动性,又能切实提高课堂教学的有效性。
在情境创设中,应注意以下几点:
1、情境创设应目的明确
每一节课都有一定的教学任务。情境的创设,要有利于学生数学学习,有利于促进学生认知技能、数学思考、情感态度、价值观等方面的发展。所以,教学中既要紧紧围绕教学目标创设情境,又要充分发挥情境的作用,及时引导学生从情境中运用数学语言提炼出数学问题。如果是问题情境,
提出的问题则要具体、明确,有新意和启发性,不能笼统地提出诸如“你发现了什么”等问题。?
2.教学情境应具有一定的时代气息
作为教师,应该用动态的、发展的眼光来看待学生。在当今的信息社会里,学生可以通过多种 渠道 获得大量信息,教师创设的情境也应具有一种时代气息,让他们学会关心社会,关心国家发展。如教学《百分数的应用》,
创设了中国北京申奥成功的情境:出示第二轮得票统计图(北京56票,多伦多22票,巴黎18票,伊斯坦布尔9票)请学生根据统计图用学的百分数知识来提出问题,解决问题。?
3.情境的内容和形式应根据学生的生活 经验 与年龄特征进行设计?
教学情境的形式有很多,如问题情境、 故事 情境、活动情境、实验情境、竞争情境等。情境的创设要遵循不同年龄 儿童 的心理特征和认知规律,要根据学生的实际生活经验而设计。对低、中高年级的儿童,可以通过讲故事、做游戏、直观演示等形式创设情境,而对于高年级的学生,则要创设有助于学生自主学习、合作交流的问题情境,用数本身的魅力去吸引学生。?
二、深钻教材,确保知识的有效性。
知识的有效性是保证课堂教学有效的一个十分重要的条件。对学生而言,教学知识的有效是指新观点、新材料,他们不知不懂的,学后奏效的内容。教学内容是否有效和知识的属性以及学生的状态有关。第一,学生的知识增长取决于有效知识量。教学中学生知识的增长是教学成败的关键。第二,学生的智慧发展取决于有效知识量。发展是教学的主要任务,知识不是智慧,知识的迁移才是智慧。在个体的知识总量中并不是所有的知识都具有同样的迁移性,而是其中内化的、熟练的知识才是可以随时提取,灵活运用,这一部分知识称为个体知识总量中的有效知识,是智慧的象征。第三,学生的思想提高取决于有效知识量。这种知识是指教学中学生获得的、融会贯通深思熟虑的、实在有益的内容,即有效知识。第四,教学的心理效应取决于有效知识量。通过对知识的获取产生愉悦的心理效应,才能成为活动的原动力和催化剂。
三、探究有效的学习过程。
课堂教学的核心是调动全体学生主动参与学习全过程,使学生自主地学习、和谐地发展。学习过程是否有效,是课堂教学是否有效的关键。学生是学习的主体,但我们也不得不承认,处于成长发展中的小学生,是不成熟的学习主体。由于受年龄、经验、知识、能力的限制,他们提出问题、分析问题的能力毕竟是有限的。因此,只有发挥教师作为组织者、引导者、点拔者的作用,才能发挥学生的主体性、主动性,让学生学会学习。尤其在学生疑难处、意见分歧处,或在知识、 方法 归纳概括时,更要及时加以点拔指导。
有效的学习过程还可以通过游戏实施。小学生注意的特点是无意占优势,尤其是低年级往往表现出学前儿童所具有的那种对游戏的兴趣和足劲要求,他们能一连几小时地玩,却不能长时间地一动不动地坐在一个地方。新课程要求“面向每一个学生,特别是有差异的学生”。因此针对差异性,可以实施分层教学策略,最大限度地利用学生的潜能实施教学过程分层,放手让学生独立思考,展示学生个性,从而使每一个学生都得到发展。使数学课堂教学真实有效。
四、联系生活实际,创设有效的生活情境
创设有效的生活情境是提高课堂教学有效性的重要条件。《数学课程标准》指出:“力求从学生熟悉的生活情景与童话世界出发,选择学生身边的、感兴趣的数学问题,以激发学生学习的兴趣与动机,使学生初步感受数学与日常生活的密切联系。”数学教学中,教师要不失时机创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情景,使学生从中感悟到数学的乐趣,产生学习的需要,激发探索新知识的积极性,主动有效地参与学习。
在创设生活教学情境时,一要选取现实的生活情境。教师可直接选取教材中提供的学生熟悉的日常生活情境进行加工或自己创设学生感兴趣的现实生活素材作为课堂情境。二要构建开放的生活情境。教师要对课内知识进行延伸与拓展,将抽象知识学习过程转变为实践性、开放性的学习过程,引导学生发现问题,大胆提出猜想,不断形成、积累、拓展新的数学生活经验。要创设多元的生活情境。
可以通过对学生生活及兴趣的了解,对教学内容进行二次加工和整合,再次创设生活情境。真正实现课的导入“生活化”——教学的导入仿佛是优美乐章的“序曲”;例题教学“生活化”——例题教学是优美乐章的主旋律;知识运用“生活化”——综合运用知识的能力仿佛是动听的“交响乐”。
生产和生活实际是数学的渊源和归宿,其间大量的素材可以成为数学课堂中学生应用的材料。
要做有心人,不断为学生提供生活素材,让生活走进课堂。真正让文本的“静态”数学变成生活的“动态”数学。要让学生觉得数学不是白学的,学了即可用得上,是实实在在的。这样的课堂教学才是有效的。
五、注重教学 反思 ,促进课堂教学质量
记得有人说过“教无定法,教学是一门遗憾的艺术”。因为我们的教师不是圣人,一堂课不会十全十美。所以我们自己每上一节课,都要进行深入的剖析、反思,对每一个教学环节预设与实际吻合、学生学习状况、
调控状况、课堂生成状况等方面认真进行 总结 ,找出有规律的东西,在不断“反思”中学习。我们反思的主要内容有:思考过程、解题思路、分析过程、运算过程、语言的表述、教学的思想方法进行反思等。以促进课堂教学质量,教学效果也一定会更好。
教学作为一种有明确目的性的认知活动,其有效性是广大教师所共同追求的。无论课程改革到哪一步,“有效的课堂”是我们
永恒的追求。我们要在新课程理念指导下,在发挥学生主体作用的前提下,改革课堂教学模式,提高课堂教学实效。
试谈高中数学学习能力型问题和创新能力型问题
随着数学课程教材和考试评价改革的深入开展,提高学生能力的问题越来越引起人们的重视,被提到了重要的地位。为了进一步提高数学学习的质量,有必要对能力问题开展进一步的研究。在数学 教育 领域内,一般能力通常包括学习新的数学知识的能力、探究数学问题的能力、应用数学知识解决实际问题的能力和数学创新能力,提高这些能力将大大推动学生素质的提高。为此我们结合数学教学和考试命题的实践,有必要对数学教育中如何提高一般能力进行初步的探索,因此,我对高中数学学习能力型问题与创新能力型问题的差异进行了分析,给高中学生以予参考。
一、如何理解学习能力型问题
1.学习能力型习题的特点
(1)内容新。
学习能力型习题中常常出现过去没有学习过的新的概念、定理、公式或方法,要求学生通过自己学习以后,理解这些概念、定理、公式或方法,并且能运用它们解决有关的问题。
(2)抽象性。
这里新的概念、定理、公式或方法的叙述通常比较简略,比较抽象,没有解释性和说明性的语言,需要学生自己去仔细揣摩、领会和理解。与平时在课堂里教师指导下学习新知识有很大的区别,没有教师的讲解、举例和解说,没有许多感性的内容,比较抽象和概括,对学生的独立学习能力和 抽象思维 能力要求较高。因此学生解这类问题往往感到很困难。
(3)学了就用。
这里学习新知识的时间很短,要求通过阅读很快就能理解新的概念、定理、公式和方法,并能立即运用它们解决有关的问题,不举例题,没有模仿的过程。因此对学生思维的敏捷性和独创性要求较高。
2. 解学习能力型习题的步骤
(1)阅读理解
首先通过阅读理解题意,理解题目所包含的新的概念、定理、公式或方法的本质:这里分为两步:1、字面理解:要求读懂其中每一个 句子 的含义。2、深层理解:要求深入理解新的概念的本质属性,分清新的定理和条件和结论,理解新的方法的关键等。
(2)运用
在理解新的概念、定理、公式或方法的基础上,运用它们解决有关的问题。
3.如何提高解学习能力型问题的能力
(1)平时学习时要注意培养独立学习的能力
同于学习能力型问题包含新的概念、定理、公式或方法,在解题时要求通过自己独立学习,理解这些新的概念、定理、公式或方法,在此基础上,运用它们解决有关的总是因此要能顺利地解决这类问题必须有较强的独立学习能力。在平时学习时要培养自己预习的习惯,在上新课之前,自己先预习,尽量通过自己独立学习掌握新的知识,而不依赖教师的讲解。
(2)重视提高阅读理解能力
这里非常重要的就是阅读理解能力。例如学习一个新的概念,题目中只给出名称和抽象的定义,要求通过阅读概念的定义,理解概念的本质,这就对阅读理解能力提出较高的要求。首先要求学生具备一定的语文和数学的基础知识,对定义中的词和句子能有正确的理解,再进一步能根据概念的定义辨别正例和反例,并能具体运用概念。
论小学数学教学中培养学生学习兴趣的途径
数学领域是一片五彩缤纷、任人驰骋的天地,要想学好数学,需要好奇心、学习兴趣、思维能力和创造意识。而"学习的最好刺激乃是对所学学科的兴趣"(美国心理学家布鲁纳)。教师要设法使学生对数学学习产生浓厚的兴趣,只有让学生在学习的过程中体会到愉悦和快乐,才能够激发他们的学习欲望,才能够很好的进行学习。
一、精心设计课堂导入环节
课堂教学的导入虽仅占几分钟或几句话,但它是教学过程的重要环节,负有酝酿情绪、集中学生注意力、渗透主题和带入情境的任务,新课的导入要像磁石一样,牢牢地吸引学生的注意力,使学生强烈的求知欲望和高涨的学习热情,为课堂教学营造良好的学习氛围。因此一节课导入的好坏直接关系到学生的学习效果。导入的方法很多,可以讲故事、猜 谜语 ,也可以做游戏、听音乐,甚至简单的一个设问,都可以导入新课。如在教学能被2、3、5整除数的特征时,教师先写几个较大的数,让学生判断这些数能否被2、3、5整除,所有学生都无法完成这个任务,然后反过来,教师让学生报数,教师来进行判断,无论数多大均能很快并很正确地判断出来。
学生被老师这种"未卜先知"、"料事如神"的本领吸引住了,这时教师引导:"你们写的数那么大,老师根本没有除,为什么能很快判断出它们能不能被2、3、5整除呢?因为这里有一个诀窍,如果你们也掌握了这个知识的诀窍,那么你们也可以像老师一样,不用具体去除,就能迅速判断,你们想学不想学?"短时间内的几句话就把学生的兴趣和求知欲激发起来了,这样就为上好这节课提供了良好的心理品质,变学生"要我学"为"我要学",充分调动了学生学习数学的积极性和主动性。整个教学过程学生学得积极、主动。
二、利用直观教具的演示
教师利用多媒体教学能使学生直观认识新知识,更容易接受新知识。因为小学生好奇心特别强,而且抓住小学生对动画片痴迷这一特点,把他们兴趣引到课堂中往往得到满意的效果。如在教学《长方形周长计算》时,教师利用多媒体设计了龟兔赛跑的动画,把这个小故事制成几张幻灯片,其中设置了小乌龟跑的路线的动画效果,学生聚精会神,对小乌龟的一举一动都产生了一丝不苟地观察,并产生了无可估量的兴趣,因此在兴趣中轻松地解决了教学的重点和难点。
教师还可以利用 简笔画 、画图示例等直观教学吸引学生。简笔画教学是教师的教学基本功之一,如果能充分发挥教师这一特长,也能调动学生的学习兴趣,因为每个小孩生来就有着爱画画的本性,在教学过程中,学生对一笔代过的简笔画非常感兴趣,把这一兴趣潜移默化到教学实例中,同样能使学生在愉快氛围中获取知识。如教学《10以内的加减法》时,教师把小鸡和母鸡简笔画描到黑板上,让学生数出小鸡和母鸡的只数,再提出所要完成的问题,学生联系实例在兴趣盎然中会给得到惊喜的答案。
教学中,教师合理地运用教学模型,采用视想结合,不仅能开拓学生思维,更重要的是引导学生迅速进入教学情景,诱发学生学习兴趣。除了利用电化设备,在教学中还可以运用模型,灵活、广泛的进行直观教学。如教学《图形的认识》时,运用一些模型教具,让学生亲手摸一摸、看一看,调动学生的兴趣,而且能把抽象的几何内容转化为实物,使学生学起来简单易理解,并且提高学习兴趣。
三、培养学生的动手能力
在教学活动中让学生亲自动手操作,既能满足他们好动的要求,又能在愉悦中获取知识。学生理解和掌握知识总是以感性认识为基础,感性认识丰富,表象清晰,理解就深刻。因此,教学中让学生动手操作,独立探索,会极大地激发学生的求知欲和学习兴趣。小学生的思维以具体形象为主,在知识的构建过程中,教师应根据小学生的认知特点和数学知识本身的特点,有意识地设置学生动手操作的情境,使课堂处于一种积极探索的有序状态。例如在《圆的认识》教学中,课前教师给学生准备好硬纸、尺子、剪刀、圆规等学习用具,在授课时教师给学生亲自动手画圆,剪圆,量圆的半径和直径,并且在不同的圆里找出的异同点,通过学生动手,教师的点拨,把圆的特点知识在兴趣中获取。再如,在教学《平均分》时,教师是这样做的:(1)出示问题:"把6个桃子分成2份,可以怎样分?"(2)学生通过自己动手操作得出了三种答案:"5和1","4和2","3和3"。(3)让学生再观察,哪种分法最公平?学生稍加思考便知道"3和3"两份一样多,老师顺势引入"平均分"这一课题。学生通过参加分苹果的实际操作过程,极大地提高了对该教学内容的学习兴趣。
在课堂上,通过学生的动手操作,不折不扣地让学生去摆一摆、折一折、分一分、称一称、量一量、摸一摸、数一数、涂一涂、拼一拼,有利于突破教学的重点、难点,有利于减轻学生负担,有利于激发学生的兴趣,使学生主动积极地参与学习,发展了学生的能力,提高了教学效果。
四、灵活多变的课堂形式
通过创设多变的教学情境,充分调动学生积极参与的情感,既给学生带来了成功的喜悦,又使学生在轻松、愉快的数学活动中提高了计算能力和应用能力。如教师在《多位数乘一位数复习课》中设计了一个到智慧岛游玩的环节自始至终贯穿于整个复习课。一开始是到了智慧岛需要买门票,只要你算对了老师出的题目以后,就可以得到一张门票(下一个环节里用到的题卡),这样,可以激发学生进一步学习的欲望。当学生拿到题卡以后,进行计算的练习。当学生全部计算正确以后,就会得到一颗智慧星,这样设计,提高了学生学习的兴趣。然后老师出了几棵小树,上面是错误的计算题,让学生给生病的小树治病,治好病以后会进入下一个环节,利用两组灯笼间数的规律,通过计算,把剩余的灯笼"点亮",再一次进行了计算练习,同时结束智慧岛之游,使整节课的设计前后连贯,有始有终。
在教学中,根据教学内容,设计各种各样的游戏活动进行教学,使学生在喜悦中理解和掌握知识。如教学"8个和第8个",让小朋友手里拿着红花,先让他们从小到大排列,再从大到小排列。让8个小朋友向前走一步,再比第8个小朋友向后退一步,从而使学生区分8个和第8个的含义。请前面的7个小朋友坐下,再让第7个小朋友举起红花。又如教学"小明有9元,买笔用去4元,买本子用去2元。小明还剩多少钱?"设计了这样的一个游戏,讲台上面摆放着笔和本子,并标上价钱,请一个学生扮演售货员,一个学生扮演小明,并且手里有9元,游戏开始了,请同学们读题目。第一次买笔售货员找回5元给小明,这时,老师就问小明还要买什么东西,同学们异口同声地说:"买本子。"第二次售货员找回3元。通过这样教学,学生很快列出正确的算式。让学生身临其境,培养学生分析应用题数量关系的能力,又正确掌握解题思路。
兴趣是最好的老师,只有在教学中激发了学生的学习兴趣,才能更好地发挥学生的主体性,促进学生自主地学习。只有充分培养学生学习数学的热情,才能激发学生学习数学的兴趣,提高课堂学习效率。
数学的重要性(论文1000字)
数学在人类文明的发展中起着非常重要的作用,数学推动了重大的科学技术进步。但在历史上, 限于技术条件,依据数学推理和推算所作的预见,往往要多年之后才能实现。数学为人类生产和生活 带来的效益容易被忽视。进入二十世纪,尤其是到了二十世纪中叶以后,科学技术发展到这一步:数 学理论研究与实际应用之间的时间差已大大缩短,特别是当前,随着电脑应用的普及,信息的数字化 和信息通道的大规模联网,依据数学所作的创造设想已经达到可即时试验、即时实施的地步。数学技 术将是一种应用最广泛、最直接、最及时、最富创造力和重要的实用技术,
一、数学与科学技术进步
二十世纪科学技术进步给人类生产和生活带来的巨大变化确实令人赞叹不已。从远古时代 起一直是人们幻想的“顺风耳”,“千里眼”,“空中飞行”和“飞向太空”都在这一世纪成为现实。回 顾二十世纪的重大科学技术进步,以下几个项目元疑是影响最大的,而数学的预见和推动作用是 非常关键。
(1)先有了麦克斯韦方程人们从数学上论证了电磁波,其后赫兹才有可能做发射电磁波的实 验,接着才会有电磁波声光信息传递技术的发展。
(2)爱因斯但相对论的质能公式首先从数学上论证了原子反应将释放出的巨大能量,预示了 原子能时代的来临.随后人们才在技术上实现了这一预见,到了今天,原子能已成为发达国家电 力能源的主要组成部分。
(3)牛顿当年已经通过数学计算预见了发射人造天体的可能性,差不多过了将近三个世纪, 人们才实现了这一预见。
(4)电子数字计算机的诞生和发展完全是在数学理论的指导下进行的。数学家图灵和冯诺依 曼的研究对这一重大科学技术进步起了关键性的推动作用。
(5)遗传与变异现象虽然早就为人们所注意。生产和生活中也曾培养过动植物新品种。遗传 的机制却很长时间得不到合理解释,十九世纪60年代,孟德尔以组合数学模型来解释他通过长 达8年的实验观察得到的遗传统计资料,从而预见了遗传基因的存在性。多年以后,人们才发现 了遗传基因的实际承载体,到了本世纪50年代沃森和克里发现了DNA分子的双螺旋结构。这以 后,数学更深刻地进入遗传密码的破译研究。
数学是人类理性思维的重要方式,数学模型,数学研究和数学推断往往能作出先于具体经验 的预见。这种预见并非出于幻想而是出于对以数学方式表现出来的自然规律和必然性的认识,随 着科学技术的发展,数学、预见的精确性和可检验性日益显示其重意义。
二、时代大潮的潮头
我们面临一个科学技术迅猛发展的时代。信息的数字化和信息的数学处理已经成为几乎所 有高科技项目共同的核心技术。从事先设计、制定方案,到试验探索、不断改进,到指挥控制、具体 操作,处处倚重于数学技术。众多新闻报道反映出这一时代大潮汹涌澎湃的势头。下面列举的仅 仅是其中一小部分。
(1)数学技术已经成为工业新产品研制设计的重要关键技术。1994年4月9日,被称为“百 分之百数字化确定”的波音777型飞机举行盛大隆重的出厂典礼.在过去,进行新机型设计,必须 对模型构件和样机反复作强度试验和空气动力学性。:试验。稍有不妥,就必须改变设计再来一轮 试验。新机种的研制周期长达十余年,消耗大量原材料和能源,采用了数学技术以后,所有的试验 可以通过精确设定的数学模型在计算机中进行,探索和修改都可以通过数学指令去实现。新机种 的研制周期从十多年缩短到三年半,大幅度节约了原材料和能源。
(2)许多国家认识到,发展高清晰度电视是未来经济技术竞争的主战场之一。日本和美国都 投入大量资金和人力进行有关研究,日本起步最早,但所研究的是模拟式的;美国虽然起步稍晚, 但所研究的是数字式的。经过多年的较量,数字式研究以其高度优越性取得关键性胜利。1994年 2月24日《人民日报》报道:日本政府正式宣布,转向研究数字式高清晰度电视,承认数字式因其 优越性而得到世界多数国家赞同,很可能成为未来的国际标准。
应该指出,电视屏幕不仅是现代人们日常生活所不可缺少的,而且可能通过联网成为信息传 递处理的工作面。几乎所有重要的工作岗位都将与之有关。数学技术在如此重要项目的激烈较量 中起了决定作用。
(3)199=年的海湾战争是一场现代高科技战争,其核心技术竟然也是数学技术。这一事实引 起人们不小的惊讶。美国总结海湾战争经验得出结论是:“未来的战场是数字化的战争”。
干扰和失真是电磁波通信的一大难题。早在六十年代太空开发竞争的初期,美国施行。‘阿波罗登登月计划时,就已经意识到:由于太空中过强的干扰,无论依靠怎样精密的电子硬件设备 ,也 无法收到任何有用的信息,更不用说操纵控制了,采用了信息数字化、纠错编码、数字滤波等一整套数学通讯技术和数学控制技术之后,送人登月的计划才得以顺利完成,二十年后,在海湾战争 中,多国部队方面使用这一套技术把对方干扰得既聋又瞎,却能让自己方面的信息畅通无阻。采 用精密酌数学技术,可以在短短数十秒的时间内准确拦截对方发射的导弹,又可以引导对方发射 导弹准确击中对方的目标。也正是这一套信息数字化的数学技术,在开发高清晰度电视的竞争中 取得压倒性的胜利。开发一种数学技术可以在,。此众多方面施展效用,足见数学的广泛适用性。
(4)1995年1月,在贩神大地震之后,美国利用数学模型进行地震预测,预告本世纪末加州南部可能发生大地震。
(5)1995年3月,我国中央人民广播电台宣布启用数字式转播方式,指出以前的模拟式转播 方式效果差,所以改用新的转播方式。
(6)1995年6月,欧州联盟开会研讨未来数字化通信的统一制式。
(7)1996年2月,我国电子工业部宣布“九五计划”开发重点:数字化信息技术。所订的两个重 点研制项目是:数字式高清晰度电视接受机样机和数字式激光盘。
(8)1996年4月,我国国家科委发布招标公告,正式宣布数字式高清晰度电视开发项目。
三、当代与未来的发展倚重数学
仅以几件事为例就能清楚地看到数学对当代人们的生产和生活所起的重要作用。当代的生 产和生活离不开石油,石油勘探和生产需要了解地层结构。多年以来已经发展了一整套数学模型 和数学程序。人们发射地震波,然后将各个层面反射回来的信息收集起来力。以数学处理,就能将 地层各个剖面的图像和地层结构的全貌展现出来。这已是目前石油勘探与生产普遍采用的数学 技术。无独有偶,涉及到人的生命也有类似的情况,医生需要了解病人躯体内部和器官内部的状 况与变异,以前的调光片将骨骼和各种器官全都重叠在一起,往往难以辨认)现在也有了一整套 数学方案。借助了精密设备收集射线穿透人体或核磁共振带出的信息力。以数学处理就能将人体各个削面的状况清晰地层现出来,需要了解哪个层面就可以调出哪个层面的图片来,关系到人们 的生产与生活,这样的例证很多很多。
在涉及生存与发展的关键时刻,特别是在涉及人类命运的紧要关头,数学也起着非常重要的 作用。在进入本世纪最后十年的时候,美国国家研究委员会公布了两份重要报告《人人关心数学 教育的未来》和《振兴美国数学—— 90 年代的计划》.两份报告都提到:近半个世纪以来,有三个时 期数学的应用受到特别重视,促进了数学的爆炸性发展,“第二次世界大战促成了许多新的强有 力数学方法的发展……“由于苏联人造卫星发射的刺激,美国政府增加投入促进了数学研究与数 学教育的发展”,“计算机的使用扩大了对数学的需求”.在二次世界大战太平洋战场的关键时刻, 由于采用数学方法破译日军密码,美国海军才能在舰只力量对比绝对劣势的情况下,赢得中途岛 海战的胜利,歼灭日本联合舰队的主力,扭转整个太平洋战局。在关系人类命运的二次世界大战 中,美国几乎是整个反法西斯战线的后勤补给基地。到了反攻阶段,要组织跨越两个大洋的大规 模行动,物资调运和后勤支援成了非常关键的问题,这刺激了有关数学方法的迅速发展。这期间 发展起来并且在战后迅速普及到各个方面的线性规划实用数学技术,为人类带来了数以千亿计 的巨大效益。到了1957年,苏联将第一颗人造卫星迭人太空,震撼了美国朝野。意识到有关数学 应用方面的差距,美国政府加大投入,促进了数学研究与数学教育的迅速发展,随着计算机的发 展,对数学有了空前的需求,刺激数学进入了第三个大发展的时期。
已经有了很多很多极有说服力的例证,说明无论在日常的生产和生活中,还是在涉及生存和 发展的关键时刻,数学都起着非常重要的作用,在新世纪即将到来之前科学技术和生产的发展对 数学提出了空前的需求,我们必须把握时机增大投入,加强数学研究与数学教育,提高全民族的 数学素质,才能更好地迎接未来的挑战。
上一篇:酒店毕业论文范文大全
下一篇:关于道德的议论文题目