欢迎来到学术参考网
当前位置:发表论文>论文发表

关于方程的数学小论文

发布时间:2023-12-08 00:01

关于方程的数学小论文

人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程。而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?。”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大
贝祖(Bezout Etienne 1730.3.31~1783.9.27)法国数学家。少年时酷爱数学,主要从事方程论研究。他是最先认识到行列式价值的数学家之一。最早证明了齐次线性方程组有非零解的条件是系数行列式等于零。他在其第一篇论文《几种类型的方程》中用消元法将只含一个未知数的n次方程问题与解联立方程组问题联系起来,提供了某些n次方程的解法。他还用消元法解次数高于1的两个二元方程,并证明了关于方程次数的贝祖定理。
1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究。

十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根。

十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》。

十一世纪,埃及的阿尔·海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角。

十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法。

十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作。

1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方。

1220年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例。

1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年。

1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。

1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和。

1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法。

1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。

十四世纪中叶前,中国开始应用珠算盘。

1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”。

1464年,德国的约·米勒在《论各种三角形》(1533年出版)中,系统地总结了三角学。

1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识。

1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式。

1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题。

1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论。

1596~1613年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表。

1614年,英国的耐普尔制定了对数。

1615年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积。

1635年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分。

1637年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点”。

1638年,法国的费尔玛开始用微分法求极大、极小问题。

1638年,意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就。

1639年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作。

1641年,法国的帕斯卡发现关于圆锥内接六边形的“帕斯卡定理”。

1649年,法国的帕斯卡制成帕斯卡计算器,它是近代计算机的先驱。

1654年,法国的帕斯卡、费尔玛研究了概率论的基础。

1655年,英国的瓦里斯出版《无穷算术》一书,第一次把代数学扩展到分析学。

1657年,荷兰的惠更斯发表了关于概率论的早期论文《论机会游戏的演算》。

1658年,法国的帕斯卡出版《摆线通论》,对“摆线”进行了充分的研究。

1665~1676年,牛顿(1665~1666年)先于莱布尼茨(1673~1676年)制定了微积分,莱布尼茨(1684~1686年)早于牛顿(1704~1736年)发表了微积分。

1669年,英国的牛顿、雷夫逊发明解非线性方程的牛顿—雷夫逊方法。

1670年,法国的费尔玛提出“费尔玛大定理”。

1673年,荷兰的惠更斯发表了《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线。

1684年,德国的莱布尼茨发表了关于微分法的著作《关于极大极小以及切线的新方法》。

1686年,德国的莱布尼茨发表了关于积分法的著作。

1691年,瑞士的约·贝努利出版《微分学初步》,这促进了微积分在物理学和力学上的应用及研究。

1696年,法国的洛比达发明求不定式极限的“洛比达法则”。

1697年,瑞士的约·贝努利解决了一些变分问题,发现最速下降线和测地线。

1704年,英国的牛顿发表《三次曲线枚举》《利用无穷级数求曲线的面积和长度》《流数法》。

1711年,英国的牛顿发表《使用级数、流数等等的分析》。

1713年,瑞士的雅·贝努利出版了概率论的第一本著作《猜度术》。

1715年,英国的布·泰勒发表《增量方法及其他》。

1731年,法国的克雷洛出版《关于双重曲率的曲线的研究》,这是研究空间解析几何和微分几何的最初尝试。

1733年,英国的德·勒哈佛尔发现正态概率曲线。

1734年,英国的贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机。

1736年,英国的牛顿发表《流数法和无穷级数》。

1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作。

1742年,英国的麦克劳林引进了函数的幂级数展开法。

1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面。

1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论。

1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一。

1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷。书中包括微分方程论和一些特殊的函数。

1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用。

1767年,法国的拉格朗日发现分离代数方程实根的方法和求其近似值的方法。

1770~1771年,法国的拉格朗日把置换群用于代数方程式求解,这是群论的开始。

1772年,法国的拉格朗日给出三体问题最初的特解。

1788年,法国的拉格朗日出版了《解析力学》,把新发展的解析法应用于质点、刚体力学。

1794年,法国的勒让德出版流传很广的初等几何学课本《几何学概要》。

1794年,德国的高斯从研究测量误差,提出最小二乘法,于1809年发表。

1797年,法国的拉格朗日发表《解析函数论》,不用极限的概念而用代数方法建立微分学。

1799年,法国的蒙日创立画法几何学,在工程技术中应用颇多。

1799年,德国的高斯证明了代数学的一个基本定理:实系数代数方程必有根。

微分方程:大致与微积分同时产生 。事实上,求y′=f(x)的原函数问题便是最简单的微分方程。I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。用现在叫做“首次积分”的办法,完全解决了它的求解问题。17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。总之,力学、天文学、几何学等领域的许多问题都导致微分方程。在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。因而微分方程的研究是与人类社会密切相关的。当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等。但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题。
方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。
但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。
物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。
解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式。但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。
在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。
微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布�6�1贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。
常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。
牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。
微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

求一篇关于方程发展史,以及古今中外的数学家对方程的发展所做出的贡献,自选角度以方程为话题的论文

人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程.而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?.”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大
贝祖(Bezout Etienne 1730.3.31~1783.9.27)法国数学家.少年时酷爱数学,主要从事方程论研究.他是最先认识到行列式价值的数学家之一.最早证明了齐次线性方程组有非零解的条件是系数行列式等于零.他在其第一篇论文《几种类型的方程》中用消元法将只含一个未知数的n次方程问题与解联立方程组问题联系起来,提供了某些n次方程的解法.他还用消元法解次数高于1的两个二元方程,并证明了关于方程次数的贝祖定理.
1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究.
十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根.
十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》.
十一世纪,埃及的阿尔·海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角.
十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现.后人所称的“杨辉三角”即指此法.
十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作.
1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方.
1220年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例.
1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”.书中提出的联立一次同余式的解法,比西方早五百七十余年.
1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作.
1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和.
1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法.
1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等).
十四世纪中叶前,中国开始应用珠算盘.
1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”.
1464年,德国的约·米勒在《论各种三角形》(1533年出版)中,系统地总结了三角学.
1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识.
1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式.
1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题.
1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论.
1596~1613年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表.
1614年,英国的耐普尔制定了对数.
1615年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积.
1635年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分.
1637年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点”.
1638年,法国的费尔玛开始用微分法求极大、极小问题.
1638年,意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就.
1639年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作.
1641年,法国的帕斯卡发现关于圆锥内接六边形的“帕斯卡定理”.
1649年,法国的帕斯卡制成帕斯卡计算器,它是近代计算机的先驱.
1654年,法国的帕斯卡、费尔玛研究了概率论的基础.
1655年,英国的瓦里斯出版《无穷算术》一书,第一次把代数学扩展到分析学.
1657年,荷兰的惠更斯发表了关于概率论的早期论文《论机会游戏的演算》.
1658年,法国的帕斯卡出版《摆线通论》,对“摆线”进行了充分的研究.
1665~1676年,牛顿(1665~1666年)先于莱布尼茨(1673~1676年)制定了微积分,莱布尼茨(1684~1686年)早于牛顿(1704~1736年)发表了微积分.
1669年,英国的牛顿、雷夫逊发明解非线性方程的牛顿—雷夫逊方法.
1670年,法国的费尔玛提出“费尔玛大定理”.
1673年,荷兰的惠更斯发表了《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线.
1684年,德国的莱布尼茨发表了关于微分法的著作《关于极大极小以及切线的新方法》.
1686年,德国的莱布尼茨发表了关于积分法的著作.
1691年,瑞士的约·贝努利出版《微分学初步》,这促进了微积分在物理学和力学上的应用及研究.
1696年,法国的洛比达发明求不定式极限的“洛比达法则”.
1697年,瑞士的约·贝努利解决了一些变分问题,发现最速下降线和测地线.
1704年,英国的牛顿发表《三次曲线枚举》《利用无穷级数求曲线的面积和长度》《流数法》.
1711年,英国的牛顿发表《使用级数、流数等等的分析》.
1713年,瑞士的雅·贝努利出版了概率论的第一本著作《猜度术》.
1715年,英国的布·泰勒发表《增量方法及其他》.
1731年,法国的克雷洛出版《关于双重曲率的曲线的研究》,这是研究空间解析几何和微分几何的最初尝试.
1733年,英国的德·勒哈佛尔发现正态概率曲线.
1734年,英国的贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机.
1736年,英国的牛顿发表《流数法和无穷级数》.
1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作.
1742年,英国的麦克劳林引进了函数的幂级数展开法.
1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面.
1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论.
1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一.
1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷.书中包括微分方程论和一些特殊的函数.
1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用.
1767年,法国的拉格朗日发现分离代数方程实根的方法和求其近似值的方法.
1770~1771年,法国的拉格朗日把置换群用于代数方程式求解,这是群论的开始.
1772年,法国的拉格朗日给出三体问题最初的特解.
1788年,法国的拉格朗日出版了《解析力学》,把新发展的解析法应用于质点、刚体力学.
1794年,法国的勒让德出版流传很广的初等几何学课本《几何学概要》.
1794年,德国的高斯从研究测量误差,提出最小二乘法,于1809年发表.
1797年,法国的拉格朗日发表《解析函数论》,不用极限的概念而用代数方法建立微分学.
1799年,法国的蒙日创立画法几何学,在工程技术中应用颇多.
1799年,德国的高斯证明了代数学的一个基本定理:实系数代数方程必有根.
微分方程:大致与微积分同时产生 .事实上,求y′=f(x)的原函数问题便是最简单的微分方程.I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动.他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组.用现在叫做“首次积分”的办法,完全解决了它的求解问题.17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等.总之,力学、天文学、几何学等领域的许多问题都导致微分方程.在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型…….因而微分方程的研究是与人类社会密切相关的.当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等.但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题.
方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等.这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解.
但是在实际工作中,常常出现一些特点和以上方程完全不同的问题.比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等.
物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数.也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数.
解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式.但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方.
在数学上,解这类方程,要用到微分和导数的知识.因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程.
微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时,对简单的微分方程用级数来求解.后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论.
常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的.数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具.
牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律.后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置.这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量.
微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法.微分方程也就成了最有生命力的数学分支.

数学的小论文:500字

数学小论文一
关于“0”

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”

“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……

爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

数学小论文二
各门科学的数学化
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.
例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.
又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.
谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.

数学小论文三
数学是什么
什么是数学?有人说:“数学,不就是数的学问吗?”

这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。

历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。”

那么,究竟什么是数学呢?

伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。

数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。

纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。

应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。

高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。

体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。

广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。

各门科学的“数学化”,是现代科学发展的一大趋势。

初一数学论文,有具体事例,关于一元一次方程的

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”

“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……

爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
生活中的数学
有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。
奇妙的“黄金数”
取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”。
有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。
建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处。音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美。
数0.618…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500次试验的效果!
“黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。
美妙的轴对称
如果在一个图形上能找到一条直线,将这个图形沿着条直线对这可以使两边完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴。
如果仔细观察,可以发现飞机是一个标准的轴对称物体,俯视看,它的机翼、机身、机尾都呈左右对称。轴对称使它飞行起来更平稳,如果飞机没有轴对称,那飞行起来就会东倒西歪,那时,还有谁愿意乘飞机呢?
再仔细观察,不难发现有许多艺术品也成轴对称。举个最简单的例子:桥。它算是生活中最常见的艺术品了(应该算艺术品吧),就拿金华的桥来说:通济桥、金虹桥、双龙大桥、河磐桥。个个都呈轴对称。中国的古代建筑就更明显了,古代宫殿,基本上都呈轴对称。再说个有名的:北京城的布局。这可是最典型的轴对称布局了。它以故宫、天安门、人民英雄纪念碑、前门为中轴线成左右对称。将轴对称用在艺术上,能使艺术品看上去更优美。
轴对称还是一种生物现象:人的耳、眼、四肢、都是对称生长的。耳的轴对称,使我们听到的声音具有强烈的立体感,还可以确定声源的位置;而眼的对称,可以使我们看物体更准确。可见我们的生活离不开轴对称。

初中数学方程教学方法研究论文

初中数学方程教学方法研究论文

【摘要】 在新的教学背景下,每一门科目的教师都在不断寻找最简便有用的授课方法。方程是一种解决问题的方法,在数学、物理、化学等学科中都有广泛的运用,因此教师要利用教学课堂把方程这一知识点详细地给学生进行讲解,使学生可以运用好这一解题方法。在数学的具体授课中,教师要从学生的审题、列方程、解方程、验证方程等各个环节进行讲解,学生要熟练掌握方程这一知识点,运用这一知识点可以解决很多数学问题。通过教师方程的课堂讲解,学生能够学会独立分析问题,学会亲自动手动脑解决问题,开拓自己的学习潜能。通过教师的课堂讲解,学生能更快地明白解题思路,同时掌握更多的学习方法与技能。本文对初中数学中方程教学的有效方法应用进行了深入探究,对相应的问题提出了解决方法。

【关键词】 初中数学;方程教学;方法应用

初中数学中方程知识的教学占据着一定的比重,这一知识点可以贯穿到很多的学习内容中,并成为初中数学题目中解题的基础方法。对于方程教学来说,教师不仅要重视学生的解题思路和方程规律特点的讲解,还要对实践操作中的审题环节、作业反馈出现的问题重点关注。通过这样的方式,才能促进学生对于方程更高效的学习,更透彻更全方位地掌握方程知识。教师在制定教学计划的时候,要进行教材内容的分析,确定好教学主题,明确授课目的,做好知识点的衔接贯通、技巧讲解、教学逻辑性等方面的设计。通过这样的教学方法的制定,激发学生对于方程学习的兴趣、启发学生动脑思考能力,从而促进学生该学科成绩的提升。

一、培养学生的方程意识与思维

初中方程授课主要集中在一元一次方程、二元一次方程与一元二次方程的学习,不一样的形式在解题的运用方法方面也有很大的差异。因此,学生在学习过程中要掌握好每个方程的定义以及解题方法,加减法的运用在方程中是非常广泛的,教师在课堂中要利用理论性的教学方式来为学生讲解方程的不同定义以及意义,让学生通过教师课堂的'讲述分清方程的用法,尤其在选择填空题的解题方法中,教师可以引导学生做题的方法,可以运用画图的方式直接作题。在常见的题型中,如果题面上几何与方程没有太多联系,教师就要通过教学引导,引导学生运用代入方式来构建方程的形式来答题。学生刚接触方程就去解答问题往往还不熟练,因此教师要时刻提醒学生用方程的思想去回答问题,使学生形成习惯,建立高效的方程运用思想。要让学生了解到,题目中给了很多的数量关系,学生就要采取构建式子的形式去解答问题,从而利用方程去解答问题。教师通过这样的方式指导学生答题,既可以培养学生利用方程思想解决问题的习惯,又可以培养学生的动脑思考能力,从而教师也达到了制定的教学计划。

二、一题多变式教学方式应用于方程授课

在初中应用题教学过程中,教师首先要引导学生对应用题要有大概的了解,在把题意读懂的基础上进行分析解答,同时教师可以利用一道习题进行改编,使学生学会举一反三。例如:一个生产队有玉米400亩,收玉米340000斤,平均每亩产多少斤?这是一道求平均数的问题,通过教师的引导又可以发现:如果没有告诉我们总量,那么我们可以先求出总产量。这道题又可以改变成另外一种形式:一个生产队有玉米400亩,分两组收割,第一组收割180000斤,第二组收割160000斤,那么平均每亩产多少斤玉米?因为方程的形式并不是一成不变的,学生可以在这道应用题的基础上进行改编,再变成另外一道方程习题。教师也可以通过小组竞赛的方式来激发学生做题的动力,教师把学生分为几个小组,同时让小组成员进行讨论,看哪个小组能改编的题目最多、最新颖。通过这样的方式,学生可以在旧知识的基础上得到新的东西,从而学生的动脑能力也得到了极大的提高。

三、一题多解式的教学方法应用于方程授课

在初中数学中,应用题是学生拿分数的一项题型,应用题可以培养学生解决问题、分析问题的能力,应用题的解决方法是多种多样的。教师可以鼓励学生多分析,用多种方式去解决应用题。学生想出的解决方法越多,越有助于培养学生独立分析问题的能力,还要思考简单的解决步骤,这样就不会束缚自己的思想,从而思维也得到了锻炼。例如:小红和小明在400米的环形跑道上练习长跑,同一时间同一地点向相同的方向出发,已知小红的速度是8米每秒,小明的速度是10米每秒。那么请问小红跑了几圈以后,小明就可以超过小红一圈?这道题有很多的解答方式,教师可以先指导学生运用普通的解答方式解答问题,接下来要引导学生利用方程去解答问题,从中让学生对比两种解答方法有什么差异或相同之处。从各种角度去寻找不同的解决方式,让学生从不同的解法中获得启发。教师用鼓励的形式去激励学生的动脑能力,在数学的学习中解题的思路有很多种,在答案正确的基础上,学生的思路没有绝对的对与错,教师可以通过引导把学生的思路引到简单的解题方式中,从中也培养了学生的独立思考能力,提升学生对于数学解题的兴趣。通过初中数学中方程的授课,学生对方程有了大概的认识。通过习题的练习,培养了学生独立动脑思考能力及分析问题、解决问题能力,激发了学生对于数学学习的兴趣。用方程的形式解决实际遇到的问题,这种解题方式很高效,这种新形式的解题方法在教学中也许不能立即看出效果,教师要对学生进行长久的训练以及培养,让学生熟记这一解决问题的方法及思路。通过长时间的练习,学生提升了分析问题的能力,养成了推理判断的习惯以及自主解决问题的能力。教师也要随时进行新的授课方法的引进,对自己的授课方式进行总结与完善,从而真正提高学生的课堂效率,达到授课的教学目的。

【参考文献】

[1]卢春华.初中数学教学反思刍议[J].中学教学参考,2016(31):90-90.

[2]刘廷超.刍议在初中数学教学中数学思想和方法的渗透[J].科学咨询,2015(51):130-130.

上一篇:个人如何在知网发表论文

下一篇:初中地理论文3000字