聚类分析论文指标选取
聚类分析论文指标选取
有参考标准的指标主要有:
1、Jaccard系数(Jaccard Coefficient, JC)
2、FM指数(Fowlkes and Mallows Index, FMI)
3、Rand指数(Rand Index, RI)
4、F值(F-measure)
上述性能度量的结果值均在[0,1]区间,值越大越好,值越大表明聚类结果和参考模型,直接的聚类结果越吻合,聚类结果就相对越好。
5、兰德系数(Rand index,RI)需要给定实际类别信息C,假设K是聚类结果,RI取值范围为[0,1],值越大意味着聚类结果与真实情况越吻合。
6、调整兰德系数(Adjusted rand index)对于随机结果,RI并不能保证分数接近零。所以ARI取值范围为[-1,1],值越大意味着聚类结果与真实情况越吻合。从广义的角度来讲,ARI衡量的是两个数据分布的吻合程度。
无监督的,无需基准数据集,不需要借助于外部参考模型指标有:
1、紧密度(Compactness):每个聚类簇中的样本点到聚类中心的平均距离。对应聚类结果,需要使用所有簇的紧密度的平均值来衡量聚类算法和聚类各参数选取的优劣。紧密度越小,表示簇内的样本点月集中,样本点之间聚类越短,也就是说簇内相似度越高。
2、分割度(Seperation):是个簇的簇心之间的平均距离。分割度值越大说明簇间间隔越远,分类效果越好,即簇间相似度越低。
3、戴维森堡丁指数(Davies-bouldin Index,DBI):该指标用来衡量任意两个簇的簇内距离之后与簇间距离之比。该指标越小表示簇内距离越小,簇内相似度越高,簇间距离越大,簇间相似度低。
4、邓恩指数(Dunn Validity Index,DVI):任意两个簇的样本点的最短距离与任意簇中样本点的最大距离之商。该值越大,聚类效果越好。
5、轮廓系数 (Silhouette Coefficient):对于一个样本集合,它的轮廓系数是所有样本轮廓系数的平均值。轮廓系数的取值范围是[-1,1],同类别样本距离越相近不同类别样本距离越远,分数越高。
若帮助到您,求采纳~
聚类的评价指标
在聚类任务中,常见的评价指标有:准确率、F值、调整兰德系数和标准互信息素。
将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。“物以类聚,人以群分”,在自然科学和社会科学中,存在着大量的分类问题。聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于分类学,但是聚类不等于分类。聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。
数据分析之聚类分析
RFM分析只能对客户的行为进行分析,包含的信息量有点少。一般来说,对人群进行分类,要综合考虑其行为、态度、模式以及相关背景属性,通过使用特定的方法,发现隐藏在这些信息背后的特征,将其分成几个类别,每一类具有一定的共性,进而做出进一步的探索研究。这个分类的过程就是聚类分析。
聚类分析,就是按照个体的特征将它们分类,目的在于让同一个类别内的个体之间具有较高的相似度,而不同类别之间具有较大的差异性。这样,就能够根据不同类别的特征有的放矢地进行分析,并制定出适用于不同类别的解决方案。
聚类可以对变量进行聚类,但是更常见的还是对个体进行聚类,也就是样本聚类。例如对用户、渠道、商品、员工等方面的聚类,聚类分析主要应用在市场细分、用户细分等领域。
为了合理的聚类,需要采用适当的指标来衡量研究对象之间的联系紧密程度,常用的指标有“距离”和“相似系数”,相似系数一般指的是相关系数。假设将研究对象采用点表示,聚类分析时,将“距离”较小的点或“相似系数”较大的点归为同一类,将“距离”较大的点或“相似系数”较小的点归为不同的类。
聚类分析具有如下特点:
1.对于聚类结果是未知的,不同的聚类分析方法可能得到不同的分类结果,或者相同的聚类分析方法但是所分析的变量不同,也会得到不同的聚类结果;
2.对于聚类结果的合理性判断比较主观,只要类别内相似性和类别间差异性都能得到合理的解释和判断,就认为聚类结果是可行的。
聚类分析可以应用于以下场景:
聚类分析的步骤:
(1)确定需要参与聚类分析的变量;
(2)对数据进行标准化处理;
因为各个变量间的变量值的数量级别差异较大或者单位不一致,例如一个变量的单位是元,另一个变量的单位是百分比,数量级别差异较大,而且单位也不一致,无法直接进行比较或者计算“距离”和“相似系数”等指标。
(3)选择聚类方法和类别个数;
(4)聚类分析结果解读;
常用的聚类方法包括:
1.快速聚类:也称K均值聚类,它是按照一定的方法选取一批聚类中心点,让个案向最近的聚类中心点聚集形成初始分类,然后按照最近距离原则调整不合理的分类,直到分类合理为止。
2.系统聚类:也称层次聚类,首先将参与聚类的个案(或变量)各视为一类,然后根据两个类别之间的聚类或者相似性逐步合并,直到所有个案(或变量)合并为一个大类为止。实际上,系统聚类分析结果展现了每个个案的聚类过程和分类结果。系统聚类之后,要制作交叉表通过每一个类别的均值来了解每一类别的特征。
3.二阶聚类:也称两步聚类,它是随着人工智能的发展起来的一种智能聚类方法。整个聚类方法分为两个步骤,第一个步骤是预聚类,就是根据定义的最大类别数对个案进行初步归类;第二个步骤是正式聚类,就是对第一步得到的初步归类进行再聚类并确定最终聚类结果,并且在这一步中,会根据一定的统计标准确定聚类的类别数。
(1)系统聚类分析不仅支持输入单个分类数量,还支持输入分类数量的范围。这对于暂时无法确定类别数,或者想进行多类别数的结果比较时,非常方便。
(2)系统聚类分析支持生成聚类结果图,从而更加直观地查看聚类过程。系统聚类分析支持两种图形:
谱系图(树状图):它以树状的形式展现个案被分类的过程;
冰柱图:它以“X”的形式显示全部类别或指定类别数的分类过程。
(3)系统聚类分析提供多种聚类方法和适用于不同数据类型的测量方法。
其中,测量方法(度量标准):
(i)区间:适用于连续变量,虽然SPSS提供了8种测量方法,但是通常选用默认的【平方欧式距离】即可。
(ii)计数:适用于连续或分类变量,SPSS提供了2种测量方法,通常选用【卡式测量】即可。
(iii)二元:适用于0/1分类变量,SPSS提供多达27种测量方法,通常选用【平方欧式距离】即可。
通过方法里的转换值项来进行标准化处理。由于参与聚类分析的变量是连续变量,所以,【测量】应选择【区间】项,方法为默认的【平方欧式距离】,标准化可以选择【Z得分】,选择按【变量项】,用以每个变量单独进行标准化。
二阶聚类分析能够对连续变量和分类变量同时进行处理,无需提前指定聚类的数目,二阶聚类会自动分析并输出最优聚类数。二阶聚类的自动聚类结果借由统计指标施瓦兹贝叶斯准则(BIC)帮助判断最佳分类数量。判断一个聚类方案的依据是BIC的数值越小,同时,“BIC变化量”的绝对值和“距离测量比率”数值越大,则说明聚类效果越好。
聚类分析属于探索性数据分析方法,它没有一个所谓的标准流程和答案,不同的数据有不同的适用方法,即使相同的数据,应用不同的方法也可能会得到不同的结果。只要能有效解决实际业务问题即可。
上一篇:初中化学论文题目有哪些
下一篇:心理健康论文2500字